2 * Copyright (C) 2011 Fujitsu. All rights reserved.
3 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
23 #include "transaction.h"
26 #define BTRFS_DELAYED_WRITEBACK 512
27 #define BTRFS_DELAYED_BACKGROUND 128
28 #define BTRFS_DELAYED_BATCH 16
30 static struct kmem_cache
*delayed_node_cache
;
32 int __init
btrfs_delayed_inode_init(void)
34 delayed_node_cache
= kmem_cache_create("btrfs_delayed_node",
35 sizeof(struct btrfs_delayed_node
),
37 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
,
39 if (!delayed_node_cache
)
44 void btrfs_delayed_inode_exit(void)
46 if (delayed_node_cache
)
47 kmem_cache_destroy(delayed_node_cache
);
50 static inline void btrfs_init_delayed_node(
51 struct btrfs_delayed_node
*delayed_node
,
52 struct btrfs_root
*root
, u64 inode_id
)
54 delayed_node
->root
= root
;
55 delayed_node
->inode_id
= inode_id
;
56 atomic_set(&delayed_node
->refs
, 0);
57 delayed_node
->count
= 0;
58 delayed_node
->flags
= 0;
59 delayed_node
->ins_root
= RB_ROOT
;
60 delayed_node
->del_root
= RB_ROOT
;
61 mutex_init(&delayed_node
->mutex
);
62 delayed_node
->index_cnt
= 0;
63 INIT_LIST_HEAD(&delayed_node
->n_list
);
64 INIT_LIST_HEAD(&delayed_node
->p_list
);
65 delayed_node
->bytes_reserved
= 0;
66 memset(&delayed_node
->inode_item
, 0, sizeof(delayed_node
->inode_item
));
69 static inline int btrfs_is_continuous_delayed_item(
70 struct btrfs_delayed_item
*item1
,
71 struct btrfs_delayed_item
*item2
)
73 if (item1
->key
.type
== BTRFS_DIR_INDEX_KEY
&&
74 item1
->key
.objectid
== item2
->key
.objectid
&&
75 item1
->key
.type
== item2
->key
.type
&&
76 item1
->key
.offset
+ 1 == item2
->key
.offset
)
81 static inline struct btrfs_delayed_root
*btrfs_get_delayed_root(
82 struct btrfs_root
*root
)
84 return root
->fs_info
->delayed_root
;
87 static struct btrfs_delayed_node
*btrfs_get_delayed_node(struct inode
*inode
)
89 struct btrfs_inode
*btrfs_inode
= BTRFS_I(inode
);
90 struct btrfs_root
*root
= btrfs_inode
->root
;
91 u64 ino
= btrfs_ino(inode
);
92 struct btrfs_delayed_node
*node
;
94 node
= ACCESS_ONCE(btrfs_inode
->delayed_node
);
96 atomic_inc(&node
->refs
);
100 spin_lock(&root
->inode_lock
);
101 node
= radix_tree_lookup(&root
->delayed_nodes_tree
, ino
);
103 if (btrfs_inode
->delayed_node
) {
104 atomic_inc(&node
->refs
); /* can be accessed */
105 BUG_ON(btrfs_inode
->delayed_node
!= node
);
106 spin_unlock(&root
->inode_lock
);
109 btrfs_inode
->delayed_node
= node
;
110 /* can be accessed and cached in the inode */
111 atomic_add(2, &node
->refs
);
112 spin_unlock(&root
->inode_lock
);
115 spin_unlock(&root
->inode_lock
);
120 /* Will return either the node or PTR_ERR(-ENOMEM) */
121 static struct btrfs_delayed_node
*btrfs_get_or_create_delayed_node(
124 struct btrfs_delayed_node
*node
;
125 struct btrfs_inode
*btrfs_inode
= BTRFS_I(inode
);
126 struct btrfs_root
*root
= btrfs_inode
->root
;
127 u64 ino
= btrfs_ino(inode
);
131 node
= btrfs_get_delayed_node(inode
);
135 node
= kmem_cache_alloc(delayed_node_cache
, GFP_NOFS
);
137 return ERR_PTR(-ENOMEM
);
138 btrfs_init_delayed_node(node
, root
, ino
);
140 /* cached in the btrfs inode and can be accessed */
141 atomic_add(2, &node
->refs
);
143 ret
= radix_tree_preload(GFP_NOFS
& ~__GFP_HIGHMEM
);
145 kmem_cache_free(delayed_node_cache
, node
);
149 spin_lock(&root
->inode_lock
);
150 ret
= radix_tree_insert(&root
->delayed_nodes_tree
, ino
, node
);
151 if (ret
== -EEXIST
) {
152 kmem_cache_free(delayed_node_cache
, node
);
153 spin_unlock(&root
->inode_lock
);
154 radix_tree_preload_end();
157 btrfs_inode
->delayed_node
= node
;
158 spin_unlock(&root
->inode_lock
);
159 radix_tree_preload_end();
165 * Call it when holding delayed_node->mutex
167 * If mod = 1, add this node into the prepared list.
169 static void btrfs_queue_delayed_node(struct btrfs_delayed_root
*root
,
170 struct btrfs_delayed_node
*node
,
173 spin_lock(&root
->lock
);
174 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST
, &node
->flags
)) {
175 if (!list_empty(&node
->p_list
))
176 list_move_tail(&node
->p_list
, &root
->prepare_list
);
178 list_add_tail(&node
->p_list
, &root
->prepare_list
);
180 list_add_tail(&node
->n_list
, &root
->node_list
);
181 list_add_tail(&node
->p_list
, &root
->prepare_list
);
182 atomic_inc(&node
->refs
); /* inserted into list */
184 set_bit(BTRFS_DELAYED_NODE_IN_LIST
, &node
->flags
);
186 spin_unlock(&root
->lock
);
189 /* Call it when holding delayed_node->mutex */
190 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root
*root
,
191 struct btrfs_delayed_node
*node
)
193 spin_lock(&root
->lock
);
194 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST
, &node
->flags
)) {
196 atomic_dec(&node
->refs
); /* not in the list */
197 list_del_init(&node
->n_list
);
198 if (!list_empty(&node
->p_list
))
199 list_del_init(&node
->p_list
);
200 clear_bit(BTRFS_DELAYED_NODE_IN_LIST
, &node
->flags
);
202 spin_unlock(&root
->lock
);
205 static struct btrfs_delayed_node
*btrfs_first_delayed_node(
206 struct btrfs_delayed_root
*delayed_root
)
209 struct btrfs_delayed_node
*node
= NULL
;
211 spin_lock(&delayed_root
->lock
);
212 if (list_empty(&delayed_root
->node_list
))
215 p
= delayed_root
->node_list
.next
;
216 node
= list_entry(p
, struct btrfs_delayed_node
, n_list
);
217 atomic_inc(&node
->refs
);
219 spin_unlock(&delayed_root
->lock
);
224 static struct btrfs_delayed_node
*btrfs_next_delayed_node(
225 struct btrfs_delayed_node
*node
)
227 struct btrfs_delayed_root
*delayed_root
;
229 struct btrfs_delayed_node
*next
= NULL
;
231 delayed_root
= node
->root
->fs_info
->delayed_root
;
232 spin_lock(&delayed_root
->lock
);
233 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST
, &node
->flags
)) {
234 /* not in the list */
235 if (list_empty(&delayed_root
->node_list
))
237 p
= delayed_root
->node_list
.next
;
238 } else if (list_is_last(&node
->n_list
, &delayed_root
->node_list
))
241 p
= node
->n_list
.next
;
243 next
= list_entry(p
, struct btrfs_delayed_node
, n_list
);
244 atomic_inc(&next
->refs
);
246 spin_unlock(&delayed_root
->lock
);
251 static void __btrfs_release_delayed_node(
252 struct btrfs_delayed_node
*delayed_node
,
255 struct btrfs_delayed_root
*delayed_root
;
260 delayed_root
= delayed_node
->root
->fs_info
->delayed_root
;
262 mutex_lock(&delayed_node
->mutex
);
263 if (delayed_node
->count
)
264 btrfs_queue_delayed_node(delayed_root
, delayed_node
, mod
);
266 btrfs_dequeue_delayed_node(delayed_root
, delayed_node
);
267 mutex_unlock(&delayed_node
->mutex
);
269 if (atomic_dec_and_test(&delayed_node
->refs
)) {
270 struct btrfs_root
*root
= delayed_node
->root
;
271 spin_lock(&root
->inode_lock
);
272 if (atomic_read(&delayed_node
->refs
) == 0) {
273 radix_tree_delete(&root
->delayed_nodes_tree
,
274 delayed_node
->inode_id
);
275 kmem_cache_free(delayed_node_cache
, delayed_node
);
277 spin_unlock(&root
->inode_lock
);
281 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node
*node
)
283 __btrfs_release_delayed_node(node
, 0);
286 static struct btrfs_delayed_node
*btrfs_first_prepared_delayed_node(
287 struct btrfs_delayed_root
*delayed_root
)
290 struct btrfs_delayed_node
*node
= NULL
;
292 spin_lock(&delayed_root
->lock
);
293 if (list_empty(&delayed_root
->prepare_list
))
296 p
= delayed_root
->prepare_list
.next
;
298 node
= list_entry(p
, struct btrfs_delayed_node
, p_list
);
299 atomic_inc(&node
->refs
);
301 spin_unlock(&delayed_root
->lock
);
306 static inline void btrfs_release_prepared_delayed_node(
307 struct btrfs_delayed_node
*node
)
309 __btrfs_release_delayed_node(node
, 1);
312 static struct btrfs_delayed_item
*btrfs_alloc_delayed_item(u32 data_len
)
314 struct btrfs_delayed_item
*item
;
315 item
= kmalloc(sizeof(*item
) + data_len
, GFP_NOFS
);
317 item
->data_len
= data_len
;
318 item
->ins_or_del
= 0;
319 item
->bytes_reserved
= 0;
320 item
->delayed_node
= NULL
;
321 atomic_set(&item
->refs
, 1);
327 * __btrfs_lookup_delayed_item - look up the delayed item by key
328 * @delayed_node: pointer to the delayed node
329 * @key: the key to look up
330 * @prev: used to store the prev item if the right item isn't found
331 * @next: used to store the next item if the right item isn't found
333 * Note: if we don't find the right item, we will return the prev item and
336 static struct btrfs_delayed_item
*__btrfs_lookup_delayed_item(
337 struct rb_root
*root
,
338 struct btrfs_key
*key
,
339 struct btrfs_delayed_item
**prev
,
340 struct btrfs_delayed_item
**next
)
342 struct rb_node
*node
, *prev_node
= NULL
;
343 struct btrfs_delayed_item
*delayed_item
= NULL
;
346 node
= root
->rb_node
;
349 delayed_item
= rb_entry(node
, struct btrfs_delayed_item
,
352 ret
= btrfs_comp_cpu_keys(&delayed_item
->key
, key
);
354 node
= node
->rb_right
;
356 node
= node
->rb_left
;
365 *prev
= delayed_item
;
366 else if ((node
= rb_prev(prev_node
)) != NULL
) {
367 *prev
= rb_entry(node
, struct btrfs_delayed_item
,
377 *next
= delayed_item
;
378 else if ((node
= rb_next(prev_node
)) != NULL
) {
379 *next
= rb_entry(node
, struct btrfs_delayed_item
,
387 static struct btrfs_delayed_item
*__btrfs_lookup_delayed_insertion_item(
388 struct btrfs_delayed_node
*delayed_node
,
389 struct btrfs_key
*key
)
391 struct btrfs_delayed_item
*item
;
393 item
= __btrfs_lookup_delayed_item(&delayed_node
->ins_root
, key
,
398 static int __btrfs_add_delayed_item(struct btrfs_delayed_node
*delayed_node
,
399 struct btrfs_delayed_item
*ins
,
402 struct rb_node
**p
, *node
;
403 struct rb_node
*parent_node
= NULL
;
404 struct rb_root
*root
;
405 struct btrfs_delayed_item
*item
;
408 if (action
== BTRFS_DELAYED_INSERTION_ITEM
)
409 root
= &delayed_node
->ins_root
;
410 else if (action
== BTRFS_DELAYED_DELETION_ITEM
)
411 root
= &delayed_node
->del_root
;
415 node
= &ins
->rb_node
;
419 item
= rb_entry(parent_node
, struct btrfs_delayed_item
,
422 cmp
= btrfs_comp_cpu_keys(&item
->key
, &ins
->key
);
431 rb_link_node(node
, parent_node
, p
);
432 rb_insert_color(node
, root
);
433 ins
->delayed_node
= delayed_node
;
434 ins
->ins_or_del
= action
;
436 if (ins
->key
.type
== BTRFS_DIR_INDEX_KEY
&&
437 action
== BTRFS_DELAYED_INSERTION_ITEM
&&
438 ins
->key
.offset
>= delayed_node
->index_cnt
)
439 delayed_node
->index_cnt
= ins
->key
.offset
+ 1;
441 delayed_node
->count
++;
442 atomic_inc(&delayed_node
->root
->fs_info
->delayed_root
->items
);
446 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node
*node
,
447 struct btrfs_delayed_item
*item
)
449 return __btrfs_add_delayed_item(node
, item
,
450 BTRFS_DELAYED_INSERTION_ITEM
);
453 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node
*node
,
454 struct btrfs_delayed_item
*item
)
456 return __btrfs_add_delayed_item(node
, item
,
457 BTRFS_DELAYED_DELETION_ITEM
);
460 static void finish_one_item(struct btrfs_delayed_root
*delayed_root
)
462 int seq
= atomic_inc_return(&delayed_root
->items_seq
);
463 if ((atomic_dec_return(&delayed_root
->items
) <
464 BTRFS_DELAYED_BACKGROUND
|| seq
% BTRFS_DELAYED_BATCH
== 0) &&
465 waitqueue_active(&delayed_root
->wait
))
466 wake_up(&delayed_root
->wait
);
469 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item
*delayed_item
)
471 struct rb_root
*root
;
472 struct btrfs_delayed_root
*delayed_root
;
474 delayed_root
= delayed_item
->delayed_node
->root
->fs_info
->delayed_root
;
476 BUG_ON(!delayed_root
);
477 BUG_ON(delayed_item
->ins_or_del
!= BTRFS_DELAYED_DELETION_ITEM
&&
478 delayed_item
->ins_or_del
!= BTRFS_DELAYED_INSERTION_ITEM
);
480 if (delayed_item
->ins_or_del
== BTRFS_DELAYED_INSERTION_ITEM
)
481 root
= &delayed_item
->delayed_node
->ins_root
;
483 root
= &delayed_item
->delayed_node
->del_root
;
485 rb_erase(&delayed_item
->rb_node
, root
);
486 delayed_item
->delayed_node
->count
--;
488 finish_one_item(delayed_root
);
491 static void btrfs_release_delayed_item(struct btrfs_delayed_item
*item
)
494 __btrfs_remove_delayed_item(item
);
495 if (atomic_dec_and_test(&item
->refs
))
500 static struct btrfs_delayed_item
*__btrfs_first_delayed_insertion_item(
501 struct btrfs_delayed_node
*delayed_node
)
504 struct btrfs_delayed_item
*item
= NULL
;
506 p
= rb_first(&delayed_node
->ins_root
);
508 item
= rb_entry(p
, struct btrfs_delayed_item
, rb_node
);
513 static struct btrfs_delayed_item
*__btrfs_first_delayed_deletion_item(
514 struct btrfs_delayed_node
*delayed_node
)
517 struct btrfs_delayed_item
*item
= NULL
;
519 p
= rb_first(&delayed_node
->del_root
);
521 item
= rb_entry(p
, struct btrfs_delayed_item
, rb_node
);
526 static struct btrfs_delayed_item
*__btrfs_next_delayed_item(
527 struct btrfs_delayed_item
*item
)
530 struct btrfs_delayed_item
*next
= NULL
;
532 p
= rb_next(&item
->rb_node
);
534 next
= rb_entry(p
, struct btrfs_delayed_item
, rb_node
);
539 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle
*trans
,
540 struct btrfs_root
*root
,
541 struct btrfs_delayed_item
*item
)
543 struct btrfs_block_rsv
*src_rsv
;
544 struct btrfs_block_rsv
*dst_rsv
;
548 if (!trans
->bytes_reserved
)
551 src_rsv
= trans
->block_rsv
;
552 dst_rsv
= &root
->fs_info
->delayed_block_rsv
;
554 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
555 ret
= btrfs_block_rsv_migrate(src_rsv
, dst_rsv
, num_bytes
);
557 trace_btrfs_space_reservation(root
->fs_info
, "delayed_item",
560 item
->bytes_reserved
= num_bytes
;
566 static void btrfs_delayed_item_release_metadata(struct btrfs_root
*root
,
567 struct btrfs_delayed_item
*item
)
569 struct btrfs_block_rsv
*rsv
;
571 if (!item
->bytes_reserved
)
574 rsv
= &root
->fs_info
->delayed_block_rsv
;
575 trace_btrfs_space_reservation(root
->fs_info
, "delayed_item",
576 item
->key
.objectid
, item
->bytes_reserved
,
578 btrfs_block_rsv_release(root
, rsv
,
579 item
->bytes_reserved
);
582 static int btrfs_delayed_inode_reserve_metadata(
583 struct btrfs_trans_handle
*trans
,
584 struct btrfs_root
*root
,
586 struct btrfs_delayed_node
*node
)
588 struct btrfs_block_rsv
*src_rsv
;
589 struct btrfs_block_rsv
*dst_rsv
;
592 bool release
= false;
594 src_rsv
= trans
->block_rsv
;
595 dst_rsv
= &root
->fs_info
->delayed_block_rsv
;
597 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
600 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
601 * which doesn't reserve space for speed. This is a problem since we
602 * still need to reserve space for this update, so try to reserve the
605 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
606 * we're accounted for.
608 if (!src_rsv
|| (!trans
->bytes_reserved
&&
609 src_rsv
->type
!= BTRFS_BLOCK_RSV_DELALLOC
)) {
610 ret
= btrfs_block_rsv_add(root
, dst_rsv
, num_bytes
,
611 BTRFS_RESERVE_NO_FLUSH
);
613 * Since we're under a transaction reserve_metadata_bytes could
614 * try to commit the transaction which will make it return
615 * EAGAIN to make us stop the transaction we have, so return
616 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
621 node
->bytes_reserved
= num_bytes
;
622 trace_btrfs_space_reservation(root
->fs_info
,
628 } else if (src_rsv
->type
== BTRFS_BLOCK_RSV_DELALLOC
) {
629 spin_lock(&BTRFS_I(inode
)->lock
);
630 if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
631 &BTRFS_I(inode
)->runtime_flags
)) {
632 spin_unlock(&BTRFS_I(inode
)->lock
);
636 spin_unlock(&BTRFS_I(inode
)->lock
);
638 /* Ok we didn't have space pre-reserved. This shouldn't happen
639 * too often but it can happen if we do delalloc to an existing
640 * inode which gets dirtied because of the time update, and then
641 * isn't touched again until after the transaction commits and
642 * then we try to write out the data. First try to be nice and
643 * reserve something strictly for us. If not be a pain and try
644 * to steal from the delalloc block rsv.
646 ret
= btrfs_block_rsv_add(root
, dst_rsv
, num_bytes
,
647 BTRFS_RESERVE_NO_FLUSH
);
651 ret
= btrfs_block_rsv_migrate(src_rsv
, dst_rsv
, num_bytes
);
656 * Ok this is a problem, let's just steal from the global rsv
657 * since this really shouldn't happen that often.
659 ret
= btrfs_block_rsv_migrate(&root
->fs_info
->global_block_rsv
,
665 ret
= btrfs_block_rsv_migrate(src_rsv
, dst_rsv
, num_bytes
);
669 * Migrate only takes a reservation, it doesn't touch the size of the
670 * block_rsv. This is to simplify people who don't normally have things
671 * migrated from their block rsv. If they go to release their
672 * reservation, that will decrease the size as well, so if migrate
673 * reduced size we'd end up with a negative size. But for the
674 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
675 * but we could in fact do this reserve/migrate dance several times
676 * between the time we did the original reservation and we'd clean it
677 * up. So to take care of this, release the space for the meta
678 * reservation here. I think it may be time for a documentation page on
679 * how block rsvs. work.
682 trace_btrfs_space_reservation(root
->fs_info
, "delayed_inode",
683 btrfs_ino(inode
), num_bytes
, 1);
684 node
->bytes_reserved
= num_bytes
;
688 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
689 btrfs_ino(inode
), num_bytes
, 0);
690 btrfs_block_rsv_release(root
, src_rsv
, num_bytes
);
696 static void btrfs_delayed_inode_release_metadata(struct btrfs_root
*root
,
697 struct btrfs_delayed_node
*node
)
699 struct btrfs_block_rsv
*rsv
;
701 if (!node
->bytes_reserved
)
704 rsv
= &root
->fs_info
->delayed_block_rsv
;
705 trace_btrfs_space_reservation(root
->fs_info
, "delayed_inode",
706 node
->inode_id
, node
->bytes_reserved
, 0);
707 btrfs_block_rsv_release(root
, rsv
,
708 node
->bytes_reserved
);
709 node
->bytes_reserved
= 0;
713 * This helper will insert some continuous items into the same leaf according
714 * to the free space of the leaf.
716 static int btrfs_batch_insert_items(struct btrfs_root
*root
,
717 struct btrfs_path
*path
,
718 struct btrfs_delayed_item
*item
)
720 struct btrfs_delayed_item
*curr
, *next
;
722 int total_data_size
= 0, total_size
= 0;
723 struct extent_buffer
*leaf
;
725 struct btrfs_key
*keys
;
727 struct list_head head
;
733 BUG_ON(!path
->nodes
[0]);
735 leaf
= path
->nodes
[0];
736 free_space
= btrfs_leaf_free_space(root
, leaf
);
737 INIT_LIST_HEAD(&head
);
743 * count the number of the continuous items that we can insert in batch
745 while (total_size
+ next
->data_len
+ sizeof(struct btrfs_item
) <=
747 total_data_size
+= next
->data_len
;
748 total_size
+= next
->data_len
+ sizeof(struct btrfs_item
);
749 list_add_tail(&next
->tree_list
, &head
);
753 next
= __btrfs_next_delayed_item(curr
);
757 if (!btrfs_is_continuous_delayed_item(curr
, next
))
767 * we need allocate some memory space, but it might cause the task
768 * to sleep, so we set all locked nodes in the path to blocking locks
771 btrfs_set_path_blocking(path
);
773 keys
= kmalloc_array(nitems
, sizeof(struct btrfs_key
), GFP_NOFS
);
779 data_size
= kmalloc_array(nitems
, sizeof(u32
), GFP_NOFS
);
785 /* get keys of all the delayed items */
787 list_for_each_entry(next
, &head
, tree_list
) {
789 data_size
[i
] = next
->data_len
;
793 /* reset all the locked nodes in the patch to spinning locks. */
794 btrfs_clear_path_blocking(path
, NULL
, 0);
796 /* insert the keys of the items */
797 setup_items_for_insert(root
, path
, keys
, data_size
,
798 total_data_size
, total_size
, nitems
);
800 /* insert the dir index items */
801 slot
= path
->slots
[0];
802 list_for_each_entry_safe(curr
, next
, &head
, tree_list
) {
803 data_ptr
= btrfs_item_ptr(leaf
, slot
, char);
804 write_extent_buffer(leaf
, &curr
->data
,
805 (unsigned long)data_ptr
,
809 btrfs_delayed_item_release_metadata(root
, curr
);
811 list_del(&curr
->tree_list
);
812 btrfs_release_delayed_item(curr
);
823 * This helper can just do simple insertion that needn't extend item for new
824 * data, such as directory name index insertion, inode insertion.
826 static int btrfs_insert_delayed_item(struct btrfs_trans_handle
*trans
,
827 struct btrfs_root
*root
,
828 struct btrfs_path
*path
,
829 struct btrfs_delayed_item
*delayed_item
)
831 struct extent_buffer
*leaf
;
835 ret
= btrfs_insert_empty_item(trans
, root
, path
, &delayed_item
->key
,
836 delayed_item
->data_len
);
837 if (ret
< 0 && ret
!= -EEXIST
)
840 leaf
= path
->nodes
[0];
842 ptr
= btrfs_item_ptr(leaf
, path
->slots
[0], char);
844 write_extent_buffer(leaf
, delayed_item
->data
, (unsigned long)ptr
,
845 delayed_item
->data_len
);
846 btrfs_mark_buffer_dirty(leaf
);
848 btrfs_delayed_item_release_metadata(root
, delayed_item
);
853 * we insert an item first, then if there are some continuous items, we try
854 * to insert those items into the same leaf.
856 static int btrfs_insert_delayed_items(struct btrfs_trans_handle
*trans
,
857 struct btrfs_path
*path
,
858 struct btrfs_root
*root
,
859 struct btrfs_delayed_node
*node
)
861 struct btrfs_delayed_item
*curr
, *prev
;
865 mutex_lock(&node
->mutex
);
866 curr
= __btrfs_first_delayed_insertion_item(node
);
870 ret
= btrfs_insert_delayed_item(trans
, root
, path
, curr
);
872 btrfs_release_path(path
);
877 curr
= __btrfs_next_delayed_item(prev
);
878 if (curr
&& btrfs_is_continuous_delayed_item(prev
, curr
)) {
879 /* insert the continuous items into the same leaf */
881 btrfs_batch_insert_items(root
, path
, curr
);
883 btrfs_release_delayed_item(prev
);
884 btrfs_mark_buffer_dirty(path
->nodes
[0]);
886 btrfs_release_path(path
);
887 mutex_unlock(&node
->mutex
);
891 mutex_unlock(&node
->mutex
);
895 static int btrfs_batch_delete_items(struct btrfs_trans_handle
*trans
,
896 struct btrfs_root
*root
,
897 struct btrfs_path
*path
,
898 struct btrfs_delayed_item
*item
)
900 struct btrfs_delayed_item
*curr
, *next
;
901 struct extent_buffer
*leaf
;
902 struct btrfs_key key
;
903 struct list_head head
;
904 int nitems
, i
, last_item
;
907 BUG_ON(!path
->nodes
[0]);
909 leaf
= path
->nodes
[0];
912 last_item
= btrfs_header_nritems(leaf
) - 1;
914 return -ENOENT
; /* FIXME: Is errno suitable? */
917 INIT_LIST_HEAD(&head
);
918 btrfs_item_key_to_cpu(leaf
, &key
, i
);
921 * count the number of the dir index items that we can delete in batch
923 while (btrfs_comp_cpu_keys(&next
->key
, &key
) == 0) {
924 list_add_tail(&next
->tree_list
, &head
);
928 next
= __btrfs_next_delayed_item(curr
);
932 if (!btrfs_is_continuous_delayed_item(curr
, next
))
938 btrfs_item_key_to_cpu(leaf
, &key
, i
);
944 ret
= btrfs_del_items(trans
, root
, path
, path
->slots
[0], nitems
);
948 list_for_each_entry_safe(curr
, next
, &head
, tree_list
) {
949 btrfs_delayed_item_release_metadata(root
, curr
);
950 list_del(&curr
->tree_list
);
951 btrfs_release_delayed_item(curr
);
958 static int btrfs_delete_delayed_items(struct btrfs_trans_handle
*trans
,
959 struct btrfs_path
*path
,
960 struct btrfs_root
*root
,
961 struct btrfs_delayed_node
*node
)
963 struct btrfs_delayed_item
*curr
, *prev
;
967 mutex_lock(&node
->mutex
);
968 curr
= __btrfs_first_delayed_deletion_item(node
);
972 ret
= btrfs_search_slot(trans
, root
, &curr
->key
, path
, -1, 1);
977 * can't find the item which the node points to, so this node
978 * is invalid, just drop it.
981 curr
= __btrfs_next_delayed_item(prev
);
982 btrfs_release_delayed_item(prev
);
984 btrfs_release_path(path
);
986 mutex_unlock(&node
->mutex
);
992 btrfs_batch_delete_items(trans
, root
, path
, curr
);
993 btrfs_release_path(path
);
994 mutex_unlock(&node
->mutex
);
998 btrfs_release_path(path
);
999 mutex_unlock(&node
->mutex
);
1003 static void btrfs_release_delayed_inode(struct btrfs_delayed_node
*delayed_node
)
1005 struct btrfs_delayed_root
*delayed_root
;
1008 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
)) {
1009 BUG_ON(!delayed_node
->root
);
1010 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
);
1011 delayed_node
->count
--;
1013 delayed_root
= delayed_node
->root
->fs_info
->delayed_root
;
1014 finish_one_item(delayed_root
);
1018 static void btrfs_release_delayed_iref(struct btrfs_delayed_node
*delayed_node
)
1020 struct btrfs_delayed_root
*delayed_root
;
1022 ASSERT(delayed_node
->root
);
1023 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF
, &delayed_node
->flags
);
1024 delayed_node
->count
--;
1026 delayed_root
= delayed_node
->root
->fs_info
->delayed_root
;
1027 finish_one_item(delayed_root
);
1030 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle
*trans
,
1031 struct btrfs_root
*root
,
1032 struct btrfs_path
*path
,
1033 struct btrfs_delayed_node
*node
)
1035 struct btrfs_key key
;
1036 struct btrfs_inode_item
*inode_item
;
1037 struct extent_buffer
*leaf
;
1041 key
.objectid
= node
->inode_id
;
1042 btrfs_set_key_type(&key
, BTRFS_INODE_ITEM_KEY
);
1045 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF
, &node
->flags
))
1050 ret
= btrfs_lookup_inode(trans
, root
, path
, &key
, mod
);
1052 btrfs_release_path(path
);
1054 } else if (ret
< 0) {
1058 leaf
= path
->nodes
[0];
1059 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
1060 struct btrfs_inode_item
);
1061 write_extent_buffer(leaf
, &node
->inode_item
, (unsigned long)inode_item
,
1062 sizeof(struct btrfs_inode_item
));
1063 btrfs_mark_buffer_dirty(leaf
);
1065 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF
, &node
->flags
))
1069 if (path
->slots
[0] >= btrfs_header_nritems(leaf
))
1072 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1073 if (key
.objectid
!= node
->inode_id
)
1076 if (key
.type
!= BTRFS_INODE_REF_KEY
&&
1077 key
.type
!= BTRFS_INODE_EXTREF_KEY
)
1081 * Delayed iref deletion is for the inode who has only one link,
1082 * so there is only one iref. The case that several irefs are
1083 * in the same item doesn't exist.
1085 btrfs_del_item(trans
, root
, path
);
1087 btrfs_release_delayed_iref(node
);
1089 btrfs_release_path(path
);
1091 btrfs_delayed_inode_release_metadata(root
, node
);
1092 btrfs_release_delayed_inode(node
);
1097 btrfs_release_path(path
);
1099 btrfs_set_key_type(&key
, BTRFS_INODE_EXTREF_KEY
);
1101 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1107 leaf
= path
->nodes
[0];
1112 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle
*trans
,
1113 struct btrfs_root
*root
,
1114 struct btrfs_path
*path
,
1115 struct btrfs_delayed_node
*node
)
1119 mutex_lock(&node
->mutex
);
1120 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &node
->flags
)) {
1121 mutex_unlock(&node
->mutex
);
1125 ret
= __btrfs_update_delayed_inode(trans
, root
, path
, node
);
1126 mutex_unlock(&node
->mutex
);
1131 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle
*trans
,
1132 struct btrfs_path
*path
,
1133 struct btrfs_delayed_node
*node
)
1137 ret
= btrfs_insert_delayed_items(trans
, path
, node
->root
, node
);
1141 ret
= btrfs_delete_delayed_items(trans
, path
, node
->root
, node
);
1145 ret
= btrfs_update_delayed_inode(trans
, node
->root
, path
, node
);
1150 * Called when committing the transaction.
1151 * Returns 0 on success.
1152 * Returns < 0 on error and returns with an aborted transaction with any
1153 * outstanding delayed items cleaned up.
1155 static int __btrfs_run_delayed_items(struct btrfs_trans_handle
*trans
,
1156 struct btrfs_root
*root
, int nr
)
1158 struct btrfs_delayed_root
*delayed_root
;
1159 struct btrfs_delayed_node
*curr_node
, *prev_node
;
1160 struct btrfs_path
*path
;
1161 struct btrfs_block_rsv
*block_rsv
;
1163 bool count
= (nr
> 0);
1168 path
= btrfs_alloc_path();
1171 path
->leave_spinning
= 1;
1173 block_rsv
= trans
->block_rsv
;
1174 trans
->block_rsv
= &root
->fs_info
->delayed_block_rsv
;
1176 delayed_root
= btrfs_get_delayed_root(root
);
1178 curr_node
= btrfs_first_delayed_node(delayed_root
);
1179 while (curr_node
&& (!count
|| (count
&& nr
--))) {
1180 ret
= __btrfs_commit_inode_delayed_items(trans
, path
,
1183 btrfs_release_delayed_node(curr_node
);
1185 btrfs_abort_transaction(trans
, root
, ret
);
1189 prev_node
= curr_node
;
1190 curr_node
= btrfs_next_delayed_node(curr_node
);
1191 btrfs_release_delayed_node(prev_node
);
1195 btrfs_release_delayed_node(curr_node
);
1196 btrfs_free_path(path
);
1197 trans
->block_rsv
= block_rsv
;
1202 int btrfs_run_delayed_items(struct btrfs_trans_handle
*trans
,
1203 struct btrfs_root
*root
)
1205 return __btrfs_run_delayed_items(trans
, root
, -1);
1208 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle
*trans
,
1209 struct btrfs_root
*root
, int nr
)
1211 return __btrfs_run_delayed_items(trans
, root
, nr
);
1214 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle
*trans
,
1215 struct inode
*inode
)
1217 struct btrfs_delayed_node
*delayed_node
= btrfs_get_delayed_node(inode
);
1218 struct btrfs_path
*path
;
1219 struct btrfs_block_rsv
*block_rsv
;
1225 mutex_lock(&delayed_node
->mutex
);
1226 if (!delayed_node
->count
) {
1227 mutex_unlock(&delayed_node
->mutex
);
1228 btrfs_release_delayed_node(delayed_node
);
1231 mutex_unlock(&delayed_node
->mutex
);
1233 path
= btrfs_alloc_path();
1235 btrfs_release_delayed_node(delayed_node
);
1238 path
->leave_spinning
= 1;
1240 block_rsv
= trans
->block_rsv
;
1241 trans
->block_rsv
= &delayed_node
->root
->fs_info
->delayed_block_rsv
;
1243 ret
= __btrfs_commit_inode_delayed_items(trans
, path
, delayed_node
);
1245 btrfs_release_delayed_node(delayed_node
);
1246 btrfs_free_path(path
);
1247 trans
->block_rsv
= block_rsv
;
1252 int btrfs_commit_inode_delayed_inode(struct inode
*inode
)
1254 struct btrfs_trans_handle
*trans
;
1255 struct btrfs_delayed_node
*delayed_node
= btrfs_get_delayed_node(inode
);
1256 struct btrfs_path
*path
;
1257 struct btrfs_block_rsv
*block_rsv
;
1263 mutex_lock(&delayed_node
->mutex
);
1264 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
)) {
1265 mutex_unlock(&delayed_node
->mutex
);
1266 btrfs_release_delayed_node(delayed_node
);
1269 mutex_unlock(&delayed_node
->mutex
);
1271 trans
= btrfs_join_transaction(delayed_node
->root
);
1272 if (IS_ERR(trans
)) {
1273 ret
= PTR_ERR(trans
);
1277 path
= btrfs_alloc_path();
1282 path
->leave_spinning
= 1;
1284 block_rsv
= trans
->block_rsv
;
1285 trans
->block_rsv
= &delayed_node
->root
->fs_info
->delayed_block_rsv
;
1287 mutex_lock(&delayed_node
->mutex
);
1288 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
))
1289 ret
= __btrfs_update_delayed_inode(trans
, delayed_node
->root
,
1290 path
, delayed_node
);
1293 mutex_unlock(&delayed_node
->mutex
);
1295 btrfs_free_path(path
);
1296 trans
->block_rsv
= block_rsv
;
1298 btrfs_end_transaction(trans
, delayed_node
->root
);
1299 btrfs_btree_balance_dirty(delayed_node
->root
);
1301 btrfs_release_delayed_node(delayed_node
);
1306 void btrfs_remove_delayed_node(struct inode
*inode
)
1308 struct btrfs_delayed_node
*delayed_node
;
1310 delayed_node
= ACCESS_ONCE(BTRFS_I(inode
)->delayed_node
);
1314 BTRFS_I(inode
)->delayed_node
= NULL
;
1315 btrfs_release_delayed_node(delayed_node
);
1318 struct btrfs_async_delayed_work
{
1319 struct btrfs_delayed_root
*delayed_root
;
1321 struct btrfs_work work
;
1324 static void btrfs_async_run_delayed_root(struct btrfs_work
*work
)
1326 struct btrfs_async_delayed_work
*async_work
;
1327 struct btrfs_delayed_root
*delayed_root
;
1328 struct btrfs_trans_handle
*trans
;
1329 struct btrfs_path
*path
;
1330 struct btrfs_delayed_node
*delayed_node
= NULL
;
1331 struct btrfs_root
*root
;
1332 struct btrfs_block_rsv
*block_rsv
;
1335 async_work
= container_of(work
, struct btrfs_async_delayed_work
, work
);
1336 delayed_root
= async_work
->delayed_root
;
1338 path
= btrfs_alloc_path();
1343 if (atomic_read(&delayed_root
->items
) < BTRFS_DELAYED_BACKGROUND
/ 2)
1346 delayed_node
= btrfs_first_prepared_delayed_node(delayed_root
);
1350 path
->leave_spinning
= 1;
1351 root
= delayed_node
->root
;
1353 trans
= btrfs_join_transaction(root
);
1357 block_rsv
= trans
->block_rsv
;
1358 trans
->block_rsv
= &root
->fs_info
->delayed_block_rsv
;
1360 __btrfs_commit_inode_delayed_items(trans
, path
, delayed_node
);
1362 trans
->block_rsv
= block_rsv
;
1363 btrfs_end_transaction(trans
, root
);
1364 btrfs_btree_balance_dirty_nodelay(root
);
1367 btrfs_release_path(path
);
1370 btrfs_release_prepared_delayed_node(delayed_node
);
1371 if (async_work
->nr
== 0 || total_done
< async_work
->nr
)
1375 btrfs_free_path(path
);
1377 wake_up(&delayed_root
->wait
);
1382 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root
*delayed_root
,
1383 struct btrfs_root
*root
, int nr
)
1385 struct btrfs_async_delayed_work
*async_work
;
1387 if (atomic_read(&delayed_root
->items
) < BTRFS_DELAYED_BACKGROUND
)
1390 async_work
= kmalloc(sizeof(*async_work
), GFP_NOFS
);
1394 async_work
->delayed_root
= delayed_root
;
1395 async_work
->work
.func
= btrfs_async_run_delayed_root
;
1396 async_work
->work
.flags
= 0;
1397 async_work
->nr
= nr
;
1399 btrfs_queue_worker(&root
->fs_info
->delayed_workers
, &async_work
->work
);
1403 void btrfs_assert_delayed_root_empty(struct btrfs_root
*root
)
1405 struct btrfs_delayed_root
*delayed_root
;
1406 delayed_root
= btrfs_get_delayed_root(root
);
1407 WARN_ON(btrfs_first_delayed_node(delayed_root
));
1410 static int could_end_wait(struct btrfs_delayed_root
*delayed_root
, int seq
)
1412 int val
= atomic_read(&delayed_root
->items_seq
);
1414 if (val
< seq
|| val
>= seq
+ BTRFS_DELAYED_BATCH
)
1417 if (atomic_read(&delayed_root
->items
) < BTRFS_DELAYED_BACKGROUND
)
1423 void btrfs_balance_delayed_items(struct btrfs_root
*root
)
1425 struct btrfs_delayed_root
*delayed_root
;
1427 delayed_root
= btrfs_get_delayed_root(root
);
1429 if (atomic_read(&delayed_root
->items
) < BTRFS_DELAYED_BACKGROUND
)
1432 if (atomic_read(&delayed_root
->items
) >= BTRFS_DELAYED_WRITEBACK
) {
1436 seq
= atomic_read(&delayed_root
->items_seq
);
1438 ret
= btrfs_wq_run_delayed_node(delayed_root
, root
, 0);
1442 wait_event_interruptible(delayed_root
->wait
,
1443 could_end_wait(delayed_root
, seq
));
1447 btrfs_wq_run_delayed_node(delayed_root
, root
, BTRFS_DELAYED_BATCH
);
1450 /* Will return 0 or -ENOMEM */
1451 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle
*trans
,
1452 struct btrfs_root
*root
, const char *name
,
1453 int name_len
, struct inode
*dir
,
1454 struct btrfs_disk_key
*disk_key
, u8 type
,
1457 struct btrfs_delayed_node
*delayed_node
;
1458 struct btrfs_delayed_item
*delayed_item
;
1459 struct btrfs_dir_item
*dir_item
;
1462 delayed_node
= btrfs_get_or_create_delayed_node(dir
);
1463 if (IS_ERR(delayed_node
))
1464 return PTR_ERR(delayed_node
);
1466 delayed_item
= btrfs_alloc_delayed_item(sizeof(*dir_item
) + name_len
);
1467 if (!delayed_item
) {
1472 delayed_item
->key
.objectid
= btrfs_ino(dir
);
1473 btrfs_set_key_type(&delayed_item
->key
, BTRFS_DIR_INDEX_KEY
);
1474 delayed_item
->key
.offset
= index
;
1476 dir_item
= (struct btrfs_dir_item
*)delayed_item
->data
;
1477 dir_item
->location
= *disk_key
;
1478 btrfs_set_stack_dir_transid(dir_item
, trans
->transid
);
1479 btrfs_set_stack_dir_data_len(dir_item
, 0);
1480 btrfs_set_stack_dir_name_len(dir_item
, name_len
);
1481 btrfs_set_stack_dir_type(dir_item
, type
);
1482 memcpy((char *)(dir_item
+ 1), name
, name_len
);
1484 ret
= btrfs_delayed_item_reserve_metadata(trans
, root
, delayed_item
);
1486 * we have reserved enough space when we start a new transaction,
1487 * so reserving metadata failure is impossible
1492 mutex_lock(&delayed_node
->mutex
);
1493 ret
= __btrfs_add_delayed_insertion_item(delayed_node
, delayed_item
);
1494 if (unlikely(ret
)) {
1495 btrfs_err(root
->fs_info
, "err add delayed dir index item(name: %.*s) "
1496 "into the insertion tree of the delayed node"
1497 "(root id: %llu, inode id: %llu, errno: %d)",
1498 name_len
, name
, delayed_node
->root
->objectid
,
1499 delayed_node
->inode_id
, ret
);
1502 mutex_unlock(&delayed_node
->mutex
);
1505 btrfs_release_delayed_node(delayed_node
);
1509 static int btrfs_delete_delayed_insertion_item(struct btrfs_root
*root
,
1510 struct btrfs_delayed_node
*node
,
1511 struct btrfs_key
*key
)
1513 struct btrfs_delayed_item
*item
;
1515 mutex_lock(&node
->mutex
);
1516 item
= __btrfs_lookup_delayed_insertion_item(node
, key
);
1518 mutex_unlock(&node
->mutex
);
1522 btrfs_delayed_item_release_metadata(root
, item
);
1523 btrfs_release_delayed_item(item
);
1524 mutex_unlock(&node
->mutex
);
1528 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle
*trans
,
1529 struct btrfs_root
*root
, struct inode
*dir
,
1532 struct btrfs_delayed_node
*node
;
1533 struct btrfs_delayed_item
*item
;
1534 struct btrfs_key item_key
;
1537 node
= btrfs_get_or_create_delayed_node(dir
);
1539 return PTR_ERR(node
);
1541 item_key
.objectid
= btrfs_ino(dir
);
1542 btrfs_set_key_type(&item_key
, BTRFS_DIR_INDEX_KEY
);
1543 item_key
.offset
= index
;
1545 ret
= btrfs_delete_delayed_insertion_item(root
, node
, &item_key
);
1549 item
= btrfs_alloc_delayed_item(0);
1555 item
->key
= item_key
;
1557 ret
= btrfs_delayed_item_reserve_metadata(trans
, root
, item
);
1559 * we have reserved enough space when we start a new transaction,
1560 * so reserving metadata failure is impossible.
1564 mutex_lock(&node
->mutex
);
1565 ret
= __btrfs_add_delayed_deletion_item(node
, item
);
1566 if (unlikely(ret
)) {
1567 btrfs_err(root
->fs_info
, "err add delayed dir index item(index: %llu) "
1568 "into the deletion tree of the delayed node"
1569 "(root id: %llu, inode id: %llu, errno: %d)",
1570 index
, node
->root
->objectid
, node
->inode_id
,
1574 mutex_unlock(&node
->mutex
);
1576 btrfs_release_delayed_node(node
);
1580 int btrfs_inode_delayed_dir_index_count(struct inode
*inode
)
1582 struct btrfs_delayed_node
*delayed_node
= btrfs_get_delayed_node(inode
);
1588 * Since we have held i_mutex of this directory, it is impossible that
1589 * a new directory index is added into the delayed node and index_cnt
1590 * is updated now. So we needn't lock the delayed node.
1592 if (!delayed_node
->index_cnt
) {
1593 btrfs_release_delayed_node(delayed_node
);
1597 BTRFS_I(inode
)->index_cnt
= delayed_node
->index_cnt
;
1598 btrfs_release_delayed_node(delayed_node
);
1602 void btrfs_get_delayed_items(struct inode
*inode
, struct list_head
*ins_list
,
1603 struct list_head
*del_list
)
1605 struct btrfs_delayed_node
*delayed_node
;
1606 struct btrfs_delayed_item
*item
;
1608 delayed_node
= btrfs_get_delayed_node(inode
);
1612 mutex_lock(&delayed_node
->mutex
);
1613 item
= __btrfs_first_delayed_insertion_item(delayed_node
);
1615 atomic_inc(&item
->refs
);
1616 list_add_tail(&item
->readdir_list
, ins_list
);
1617 item
= __btrfs_next_delayed_item(item
);
1620 item
= __btrfs_first_delayed_deletion_item(delayed_node
);
1622 atomic_inc(&item
->refs
);
1623 list_add_tail(&item
->readdir_list
, del_list
);
1624 item
= __btrfs_next_delayed_item(item
);
1626 mutex_unlock(&delayed_node
->mutex
);
1628 * This delayed node is still cached in the btrfs inode, so refs
1629 * must be > 1 now, and we needn't check it is going to be freed
1632 * Besides that, this function is used to read dir, we do not
1633 * insert/delete delayed items in this period. So we also needn't
1634 * requeue or dequeue this delayed node.
1636 atomic_dec(&delayed_node
->refs
);
1639 void btrfs_put_delayed_items(struct list_head
*ins_list
,
1640 struct list_head
*del_list
)
1642 struct btrfs_delayed_item
*curr
, *next
;
1644 list_for_each_entry_safe(curr
, next
, ins_list
, readdir_list
) {
1645 list_del(&curr
->readdir_list
);
1646 if (atomic_dec_and_test(&curr
->refs
))
1650 list_for_each_entry_safe(curr
, next
, del_list
, readdir_list
) {
1651 list_del(&curr
->readdir_list
);
1652 if (atomic_dec_and_test(&curr
->refs
))
1657 int btrfs_should_delete_dir_index(struct list_head
*del_list
,
1660 struct btrfs_delayed_item
*curr
, *next
;
1663 if (list_empty(del_list
))
1666 list_for_each_entry_safe(curr
, next
, del_list
, readdir_list
) {
1667 if (curr
->key
.offset
> index
)
1670 list_del(&curr
->readdir_list
);
1671 ret
= (curr
->key
.offset
== index
);
1673 if (atomic_dec_and_test(&curr
->refs
))
1685 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1688 int btrfs_readdir_delayed_dir_index(struct dir_context
*ctx
,
1689 struct list_head
*ins_list
)
1691 struct btrfs_dir_item
*di
;
1692 struct btrfs_delayed_item
*curr
, *next
;
1693 struct btrfs_key location
;
1697 unsigned char d_type
;
1699 if (list_empty(ins_list
))
1703 * Changing the data of the delayed item is impossible. So
1704 * we needn't lock them. And we have held i_mutex of the
1705 * directory, nobody can delete any directory indexes now.
1707 list_for_each_entry_safe(curr
, next
, ins_list
, readdir_list
) {
1708 list_del(&curr
->readdir_list
);
1710 if (curr
->key
.offset
< ctx
->pos
) {
1711 if (atomic_dec_and_test(&curr
->refs
))
1716 ctx
->pos
= curr
->key
.offset
;
1718 di
= (struct btrfs_dir_item
*)curr
->data
;
1719 name
= (char *)(di
+ 1);
1720 name_len
= btrfs_stack_dir_name_len(di
);
1722 d_type
= btrfs_filetype_table
[di
->type
];
1723 btrfs_disk_key_to_cpu(&location
, &di
->location
);
1725 over
= !dir_emit(ctx
, name
, name_len
,
1726 location
.objectid
, d_type
);
1728 if (atomic_dec_and_test(&curr
->refs
))
1737 static void fill_stack_inode_item(struct btrfs_trans_handle
*trans
,
1738 struct btrfs_inode_item
*inode_item
,
1739 struct inode
*inode
)
1741 btrfs_set_stack_inode_uid(inode_item
, i_uid_read(inode
));
1742 btrfs_set_stack_inode_gid(inode_item
, i_gid_read(inode
));
1743 btrfs_set_stack_inode_size(inode_item
, BTRFS_I(inode
)->disk_i_size
);
1744 btrfs_set_stack_inode_mode(inode_item
, inode
->i_mode
);
1745 btrfs_set_stack_inode_nlink(inode_item
, inode
->i_nlink
);
1746 btrfs_set_stack_inode_nbytes(inode_item
, inode_get_bytes(inode
));
1747 btrfs_set_stack_inode_generation(inode_item
,
1748 BTRFS_I(inode
)->generation
);
1749 btrfs_set_stack_inode_sequence(inode_item
, inode
->i_version
);
1750 btrfs_set_stack_inode_transid(inode_item
, trans
->transid
);
1751 btrfs_set_stack_inode_rdev(inode_item
, inode
->i_rdev
);
1752 btrfs_set_stack_inode_flags(inode_item
, BTRFS_I(inode
)->flags
);
1753 btrfs_set_stack_inode_block_group(inode_item
, 0);
1755 btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item
),
1756 inode
->i_atime
.tv_sec
);
1757 btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item
),
1758 inode
->i_atime
.tv_nsec
);
1760 btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item
),
1761 inode
->i_mtime
.tv_sec
);
1762 btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item
),
1763 inode
->i_mtime
.tv_nsec
);
1765 btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item
),
1766 inode
->i_ctime
.tv_sec
);
1767 btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item
),
1768 inode
->i_ctime
.tv_nsec
);
1771 int btrfs_fill_inode(struct inode
*inode
, u32
*rdev
)
1773 struct btrfs_delayed_node
*delayed_node
;
1774 struct btrfs_inode_item
*inode_item
;
1775 struct btrfs_timespec
*tspec
;
1777 delayed_node
= btrfs_get_delayed_node(inode
);
1781 mutex_lock(&delayed_node
->mutex
);
1782 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
)) {
1783 mutex_unlock(&delayed_node
->mutex
);
1784 btrfs_release_delayed_node(delayed_node
);
1788 inode_item
= &delayed_node
->inode_item
;
1790 i_uid_write(inode
, btrfs_stack_inode_uid(inode_item
));
1791 i_gid_write(inode
, btrfs_stack_inode_gid(inode_item
));
1792 btrfs_i_size_write(inode
, btrfs_stack_inode_size(inode_item
));
1793 inode
->i_mode
= btrfs_stack_inode_mode(inode_item
);
1794 set_nlink(inode
, btrfs_stack_inode_nlink(inode_item
));
1795 inode_set_bytes(inode
, btrfs_stack_inode_nbytes(inode_item
));
1796 BTRFS_I(inode
)->generation
= btrfs_stack_inode_generation(inode_item
);
1797 inode
->i_version
= btrfs_stack_inode_sequence(inode_item
);
1799 *rdev
= btrfs_stack_inode_rdev(inode_item
);
1800 BTRFS_I(inode
)->flags
= btrfs_stack_inode_flags(inode_item
);
1802 tspec
= btrfs_inode_atime(inode_item
);
1803 inode
->i_atime
.tv_sec
= btrfs_stack_timespec_sec(tspec
);
1804 inode
->i_atime
.tv_nsec
= btrfs_stack_timespec_nsec(tspec
);
1806 tspec
= btrfs_inode_mtime(inode_item
);
1807 inode
->i_mtime
.tv_sec
= btrfs_stack_timespec_sec(tspec
);
1808 inode
->i_mtime
.tv_nsec
= btrfs_stack_timespec_nsec(tspec
);
1810 tspec
= btrfs_inode_ctime(inode_item
);
1811 inode
->i_ctime
.tv_sec
= btrfs_stack_timespec_sec(tspec
);
1812 inode
->i_ctime
.tv_nsec
= btrfs_stack_timespec_nsec(tspec
);
1814 inode
->i_generation
= BTRFS_I(inode
)->generation
;
1815 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
1817 mutex_unlock(&delayed_node
->mutex
);
1818 btrfs_release_delayed_node(delayed_node
);
1822 int btrfs_delayed_update_inode(struct btrfs_trans_handle
*trans
,
1823 struct btrfs_root
*root
, struct inode
*inode
)
1825 struct btrfs_delayed_node
*delayed_node
;
1828 delayed_node
= btrfs_get_or_create_delayed_node(inode
);
1829 if (IS_ERR(delayed_node
))
1830 return PTR_ERR(delayed_node
);
1832 mutex_lock(&delayed_node
->mutex
);
1833 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
)) {
1834 fill_stack_inode_item(trans
, &delayed_node
->inode_item
, inode
);
1838 ret
= btrfs_delayed_inode_reserve_metadata(trans
, root
, inode
,
1843 fill_stack_inode_item(trans
, &delayed_node
->inode_item
, inode
);
1844 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
);
1845 delayed_node
->count
++;
1846 atomic_inc(&root
->fs_info
->delayed_root
->items
);
1848 mutex_unlock(&delayed_node
->mutex
);
1849 btrfs_release_delayed_node(delayed_node
);
1853 int btrfs_delayed_delete_inode_ref(struct inode
*inode
)
1855 struct btrfs_delayed_node
*delayed_node
;
1857 delayed_node
= btrfs_get_or_create_delayed_node(inode
);
1858 if (IS_ERR(delayed_node
))
1859 return PTR_ERR(delayed_node
);
1862 * We don't reserve space for inode ref deletion is because:
1863 * - We ONLY do async inode ref deletion for the inode who has only
1864 * one link(i_nlink == 1), it means there is only one inode ref.
1865 * And in most case, the inode ref and the inode item are in the
1866 * same leaf, and we will deal with them at the same time.
1867 * Since we are sure we will reserve the space for the inode item,
1868 * it is unnecessary to reserve space for inode ref deletion.
1869 * - If the inode ref and the inode item are not in the same leaf,
1870 * We also needn't worry about enospc problem, because we reserve
1871 * much more space for the inode update than it needs.
1872 * - At the worst, we can steal some space from the global reservation.
1875 mutex_lock(&delayed_node
->mutex
);
1876 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF
, &delayed_node
->flags
))
1879 set_bit(BTRFS_DELAYED_NODE_DEL_IREF
, &delayed_node
->flags
);
1880 delayed_node
->count
++;
1881 atomic_inc(&BTRFS_I(inode
)->root
->fs_info
->delayed_root
->items
);
1883 mutex_unlock(&delayed_node
->mutex
);
1884 btrfs_release_delayed_node(delayed_node
);
1888 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node
*delayed_node
)
1890 struct btrfs_root
*root
= delayed_node
->root
;
1891 struct btrfs_delayed_item
*curr_item
, *prev_item
;
1893 mutex_lock(&delayed_node
->mutex
);
1894 curr_item
= __btrfs_first_delayed_insertion_item(delayed_node
);
1896 btrfs_delayed_item_release_metadata(root
, curr_item
);
1897 prev_item
= curr_item
;
1898 curr_item
= __btrfs_next_delayed_item(prev_item
);
1899 btrfs_release_delayed_item(prev_item
);
1902 curr_item
= __btrfs_first_delayed_deletion_item(delayed_node
);
1904 btrfs_delayed_item_release_metadata(root
, curr_item
);
1905 prev_item
= curr_item
;
1906 curr_item
= __btrfs_next_delayed_item(prev_item
);
1907 btrfs_release_delayed_item(prev_item
);
1910 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF
, &delayed_node
->flags
))
1911 btrfs_release_delayed_iref(delayed_node
);
1913 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
)) {
1914 btrfs_delayed_inode_release_metadata(root
, delayed_node
);
1915 btrfs_release_delayed_inode(delayed_node
);
1917 mutex_unlock(&delayed_node
->mutex
);
1920 void btrfs_kill_delayed_inode_items(struct inode
*inode
)
1922 struct btrfs_delayed_node
*delayed_node
;
1924 delayed_node
= btrfs_get_delayed_node(inode
);
1928 __btrfs_kill_delayed_node(delayed_node
);
1929 btrfs_release_delayed_node(delayed_node
);
1932 void btrfs_kill_all_delayed_nodes(struct btrfs_root
*root
)
1935 struct btrfs_delayed_node
*delayed_nodes
[8];
1939 spin_lock(&root
->inode_lock
);
1940 n
= radix_tree_gang_lookup(&root
->delayed_nodes_tree
,
1941 (void **)delayed_nodes
, inode_id
,
1942 ARRAY_SIZE(delayed_nodes
));
1944 spin_unlock(&root
->inode_lock
);
1948 inode_id
= delayed_nodes
[n
- 1]->inode_id
+ 1;
1950 for (i
= 0; i
< n
; i
++)
1951 atomic_inc(&delayed_nodes
[i
]->refs
);
1952 spin_unlock(&root
->inode_lock
);
1954 for (i
= 0; i
< n
; i
++) {
1955 __btrfs_kill_delayed_node(delayed_nodes
[i
]);
1956 btrfs_release_delayed_node(delayed_nodes
[i
]);
1961 void btrfs_destroy_delayed_inodes(struct btrfs_root
*root
)
1963 struct btrfs_delayed_root
*delayed_root
;
1964 struct btrfs_delayed_node
*curr_node
, *prev_node
;
1966 delayed_root
= btrfs_get_delayed_root(root
);
1968 curr_node
= btrfs_first_delayed_node(delayed_root
);
1970 __btrfs_kill_delayed_node(curr_node
);
1972 prev_node
= curr_node
;
1973 curr_node
= btrfs_next_delayed_node(curr_node
);
1974 btrfs_release_delayed_node(prev_node
);