2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
38 #include "transaction.h"
39 #include "btrfs_inode.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
54 #include <asm/cpufeature.h>
57 static struct extent_io_ops btree_extent_io_ops
;
58 static void end_workqueue_fn(struct btrfs_work
*work
);
59 static void free_fs_root(struct btrfs_root
*root
);
60 static int btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
,
62 static void btrfs_destroy_ordered_operations(struct btrfs_transaction
*t
,
63 struct btrfs_root
*root
);
64 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
);
65 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
66 struct btrfs_root
*root
);
67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
);
68 static int btrfs_destroy_marked_extents(struct btrfs_root
*root
,
69 struct extent_io_tree
*dirty_pages
,
71 static int btrfs_destroy_pinned_extent(struct btrfs_root
*root
,
72 struct extent_io_tree
*pinned_extents
);
73 static int btrfs_cleanup_transaction(struct btrfs_root
*root
);
74 static void btrfs_error_commit_super(struct btrfs_root
*root
);
77 * end_io_wq structs are used to do processing in task context when an IO is
78 * complete. This is used during reads to verify checksums, and it is used
79 * by writes to insert metadata for new file extents after IO is complete.
85 struct btrfs_fs_info
*info
;
88 struct list_head list
;
89 struct btrfs_work work
;
93 * async submit bios are used to offload expensive checksumming
94 * onto the worker threads. They checksum file and metadata bios
95 * just before they are sent down the IO stack.
97 struct async_submit_bio
{
100 struct list_head list
;
101 extent_submit_bio_hook_t
*submit_bio_start
;
102 extent_submit_bio_hook_t
*submit_bio_done
;
105 unsigned long bio_flags
;
107 * bio_offset is optional, can be used if the pages in the bio
108 * can't tell us where in the file the bio should go
111 struct btrfs_work work
;
116 * Lockdep class keys for extent_buffer->lock's in this root. For a given
117 * eb, the lockdep key is determined by the btrfs_root it belongs to and
118 * the level the eb occupies in the tree.
120 * Different roots are used for different purposes and may nest inside each
121 * other and they require separate keysets. As lockdep keys should be
122 * static, assign keysets according to the purpose of the root as indicated
123 * by btrfs_root->objectid. This ensures that all special purpose roots
124 * have separate keysets.
126 * Lock-nesting across peer nodes is always done with the immediate parent
127 * node locked thus preventing deadlock. As lockdep doesn't know this, use
128 * subclass to avoid triggering lockdep warning in such cases.
130 * The key is set by the readpage_end_io_hook after the buffer has passed
131 * csum validation but before the pages are unlocked. It is also set by
132 * btrfs_init_new_buffer on freshly allocated blocks.
134 * We also add a check to make sure the highest level of the tree is the
135 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
136 * needs update as well.
138 #ifdef CONFIG_DEBUG_LOCK_ALLOC
139 # if BTRFS_MAX_LEVEL != 8
143 static struct btrfs_lockdep_keyset
{
144 u64 id
; /* root objectid */
145 const char *name_stem
; /* lock name stem */
146 char names
[BTRFS_MAX_LEVEL
+ 1][20];
147 struct lock_class_key keys
[BTRFS_MAX_LEVEL
+ 1];
148 } btrfs_lockdep_keysets
[] = {
149 { .id
= BTRFS_ROOT_TREE_OBJECTID
, .name_stem
= "root" },
150 { .id
= BTRFS_EXTENT_TREE_OBJECTID
, .name_stem
= "extent" },
151 { .id
= BTRFS_CHUNK_TREE_OBJECTID
, .name_stem
= "chunk" },
152 { .id
= BTRFS_DEV_TREE_OBJECTID
, .name_stem
= "dev" },
153 { .id
= BTRFS_FS_TREE_OBJECTID
, .name_stem
= "fs" },
154 { .id
= BTRFS_CSUM_TREE_OBJECTID
, .name_stem
= "csum" },
155 { .id
= BTRFS_QUOTA_TREE_OBJECTID
, .name_stem
= "quota" },
156 { .id
= BTRFS_TREE_LOG_OBJECTID
, .name_stem
= "log" },
157 { .id
= BTRFS_TREE_RELOC_OBJECTID
, .name_stem
= "treloc" },
158 { .id
= BTRFS_DATA_RELOC_TREE_OBJECTID
, .name_stem
= "dreloc" },
159 { .id
= BTRFS_UUID_TREE_OBJECTID
, .name_stem
= "uuid" },
160 { .id
= 0, .name_stem
= "tree" },
163 void __init
btrfs_init_lockdep(void)
167 /* initialize lockdep class names */
168 for (i
= 0; i
< ARRAY_SIZE(btrfs_lockdep_keysets
); i
++) {
169 struct btrfs_lockdep_keyset
*ks
= &btrfs_lockdep_keysets
[i
];
171 for (j
= 0; j
< ARRAY_SIZE(ks
->names
); j
++)
172 snprintf(ks
->names
[j
], sizeof(ks
->names
[j
]),
173 "btrfs-%s-%02d", ks
->name_stem
, j
);
177 void btrfs_set_buffer_lockdep_class(u64 objectid
, struct extent_buffer
*eb
,
180 struct btrfs_lockdep_keyset
*ks
;
182 BUG_ON(level
>= ARRAY_SIZE(ks
->keys
));
184 /* find the matching keyset, id 0 is the default entry */
185 for (ks
= btrfs_lockdep_keysets
; ks
->id
; ks
++)
186 if (ks
->id
== objectid
)
189 lockdep_set_class_and_name(&eb
->lock
,
190 &ks
->keys
[level
], ks
->names
[level
]);
196 * extents on the btree inode are pretty simple, there's one extent
197 * that covers the entire device
199 static struct extent_map
*btree_get_extent(struct inode
*inode
,
200 struct page
*page
, size_t pg_offset
, u64 start
, u64 len
,
203 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
204 struct extent_map
*em
;
207 read_lock(&em_tree
->lock
);
208 em
= lookup_extent_mapping(em_tree
, start
, len
);
211 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
212 read_unlock(&em_tree
->lock
);
215 read_unlock(&em_tree
->lock
);
217 em
= alloc_extent_map();
219 em
= ERR_PTR(-ENOMEM
);
224 em
->block_len
= (u64
)-1;
226 em
->bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
228 write_lock(&em_tree
->lock
);
229 ret
= add_extent_mapping(em_tree
, em
, 0);
230 if (ret
== -EEXIST
) {
232 em
= lookup_extent_mapping(em_tree
, start
, len
);
239 write_unlock(&em_tree
->lock
);
245 u32
btrfs_csum_data(char *data
, u32 seed
, size_t len
)
247 return btrfs_crc32c(seed
, data
, len
);
250 void btrfs_csum_final(u32 crc
, char *result
)
252 put_unaligned_le32(~crc
, result
);
256 * compute the csum for a btree block, and either verify it or write it
257 * into the csum field of the block.
259 static int csum_tree_block(struct btrfs_root
*root
, struct extent_buffer
*buf
,
262 u16 csum_size
= btrfs_super_csum_size(root
->fs_info
->super_copy
);
265 unsigned long cur_len
;
266 unsigned long offset
= BTRFS_CSUM_SIZE
;
268 unsigned long map_start
;
269 unsigned long map_len
;
272 unsigned long inline_result
;
274 len
= buf
->len
- offset
;
276 err
= map_private_extent_buffer(buf
, offset
, 32,
277 &kaddr
, &map_start
, &map_len
);
280 cur_len
= min(len
, map_len
- (offset
- map_start
));
281 crc
= btrfs_csum_data(kaddr
+ offset
- map_start
,
286 if (csum_size
> sizeof(inline_result
)) {
287 result
= kzalloc(csum_size
* sizeof(char), GFP_NOFS
);
291 result
= (char *)&inline_result
;
294 btrfs_csum_final(crc
, result
);
297 if (memcmp_extent_buffer(buf
, result
, 0, csum_size
)) {
300 memcpy(&found
, result
, csum_size
);
302 read_extent_buffer(buf
, &val
, 0, csum_size
);
303 printk_ratelimited(KERN_INFO
304 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
306 root
->fs_info
->sb
->s_id
, buf
->start
,
307 val
, found
, btrfs_header_level(buf
));
308 if (result
!= (char *)&inline_result
)
313 write_extent_buffer(buf
, result
, 0, csum_size
);
315 if (result
!= (char *)&inline_result
)
321 * we can't consider a given block up to date unless the transid of the
322 * block matches the transid in the parent node's pointer. This is how we
323 * detect blocks that either didn't get written at all or got written
324 * in the wrong place.
326 static int verify_parent_transid(struct extent_io_tree
*io_tree
,
327 struct extent_buffer
*eb
, u64 parent_transid
,
330 struct extent_state
*cached_state
= NULL
;
333 if (!parent_transid
|| btrfs_header_generation(eb
) == parent_transid
)
339 lock_extent_bits(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
341 if (extent_buffer_uptodate(eb
) &&
342 btrfs_header_generation(eb
) == parent_transid
) {
346 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
348 eb
->start
, parent_transid
, btrfs_header_generation(eb
));
350 clear_extent_buffer_uptodate(eb
);
352 unlock_extent_cached(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
353 &cached_state
, GFP_NOFS
);
358 * Return 0 if the superblock checksum type matches the checksum value of that
359 * algorithm. Pass the raw disk superblock data.
361 static int btrfs_check_super_csum(char *raw_disk_sb
)
363 struct btrfs_super_block
*disk_sb
=
364 (struct btrfs_super_block
*)raw_disk_sb
;
365 u16 csum_type
= btrfs_super_csum_type(disk_sb
);
368 if (csum_type
== BTRFS_CSUM_TYPE_CRC32
) {
370 const int csum_size
= sizeof(crc
);
371 char result
[csum_size
];
374 * The super_block structure does not span the whole
375 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
376 * is filled with zeros and is included in the checkum.
378 crc
= btrfs_csum_data(raw_disk_sb
+ BTRFS_CSUM_SIZE
,
379 crc
, BTRFS_SUPER_INFO_SIZE
- BTRFS_CSUM_SIZE
);
380 btrfs_csum_final(crc
, result
);
382 if (memcmp(raw_disk_sb
, result
, csum_size
))
385 if (ret
&& btrfs_super_generation(disk_sb
) < 10) {
387 "BTRFS: super block crcs don't match, older mkfs detected\n");
392 if (csum_type
>= ARRAY_SIZE(btrfs_csum_sizes
)) {
393 printk(KERN_ERR
"BTRFS: unsupported checksum algorithm %u\n",
402 * helper to read a given tree block, doing retries as required when
403 * the checksums don't match and we have alternate mirrors to try.
405 static int btree_read_extent_buffer_pages(struct btrfs_root
*root
,
406 struct extent_buffer
*eb
,
407 u64 start
, u64 parent_transid
)
409 struct extent_io_tree
*io_tree
;
414 int failed_mirror
= 0;
416 clear_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
417 io_tree
= &BTRFS_I(root
->fs_info
->btree_inode
)->io_tree
;
419 ret
= read_extent_buffer_pages(io_tree
, eb
, start
,
421 btree_get_extent
, mirror_num
);
423 if (!verify_parent_transid(io_tree
, eb
,
431 * This buffer's crc is fine, but its contents are corrupted, so
432 * there is no reason to read the other copies, they won't be
435 if (test_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
))
438 num_copies
= btrfs_num_copies(root
->fs_info
,
443 if (!failed_mirror
) {
445 failed_mirror
= eb
->read_mirror
;
449 if (mirror_num
== failed_mirror
)
452 if (mirror_num
> num_copies
)
456 if (failed
&& !ret
&& failed_mirror
)
457 repair_eb_io_failure(root
, eb
, failed_mirror
);
463 * checksum a dirty tree block before IO. This has extra checks to make sure
464 * we only fill in the checksum field in the first page of a multi-page block
467 static int csum_dirty_buffer(struct btrfs_root
*root
, struct page
*page
)
469 u64 start
= page_offset(page
);
471 struct extent_buffer
*eb
;
473 eb
= (struct extent_buffer
*)page
->private;
474 if (page
!= eb
->pages
[0])
476 found_start
= btrfs_header_bytenr(eb
);
477 if (WARN_ON(found_start
!= start
|| !PageUptodate(page
)))
479 csum_tree_block(root
, eb
, 0);
483 static int check_tree_block_fsid(struct btrfs_root
*root
,
484 struct extent_buffer
*eb
)
486 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
487 u8 fsid
[BTRFS_UUID_SIZE
];
490 read_extent_buffer(eb
, fsid
, btrfs_header_fsid(), BTRFS_FSID_SIZE
);
492 if (!memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
)) {
496 fs_devices
= fs_devices
->seed
;
501 #define CORRUPT(reason, eb, root, slot) \
502 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
503 "root=%llu, slot=%d", reason, \
504 btrfs_header_bytenr(eb), root->objectid, slot)
506 static noinline
int check_leaf(struct btrfs_root
*root
,
507 struct extent_buffer
*leaf
)
509 struct btrfs_key key
;
510 struct btrfs_key leaf_key
;
511 u32 nritems
= btrfs_header_nritems(leaf
);
517 /* Check the 0 item */
518 if (btrfs_item_offset_nr(leaf
, 0) + btrfs_item_size_nr(leaf
, 0) !=
519 BTRFS_LEAF_DATA_SIZE(root
)) {
520 CORRUPT("invalid item offset size pair", leaf
, root
, 0);
525 * Check to make sure each items keys are in the correct order and their
526 * offsets make sense. We only have to loop through nritems-1 because
527 * we check the current slot against the next slot, which verifies the
528 * next slot's offset+size makes sense and that the current's slot
531 for (slot
= 0; slot
< nritems
- 1; slot
++) {
532 btrfs_item_key_to_cpu(leaf
, &leaf_key
, slot
);
533 btrfs_item_key_to_cpu(leaf
, &key
, slot
+ 1);
535 /* Make sure the keys are in the right order */
536 if (btrfs_comp_cpu_keys(&leaf_key
, &key
) >= 0) {
537 CORRUPT("bad key order", leaf
, root
, slot
);
542 * Make sure the offset and ends are right, remember that the
543 * item data starts at the end of the leaf and grows towards the
546 if (btrfs_item_offset_nr(leaf
, slot
) !=
547 btrfs_item_end_nr(leaf
, slot
+ 1)) {
548 CORRUPT("slot offset bad", leaf
, root
, slot
);
553 * Check to make sure that we don't point outside of the leaf,
554 * just incase all the items are consistent to eachother, but
555 * all point outside of the leaf.
557 if (btrfs_item_end_nr(leaf
, slot
) >
558 BTRFS_LEAF_DATA_SIZE(root
)) {
559 CORRUPT("slot end outside of leaf", leaf
, root
, slot
);
567 static int btree_readpage_end_io_hook(struct btrfs_io_bio
*io_bio
,
568 u64 phy_offset
, struct page
*page
,
569 u64 start
, u64 end
, int mirror
)
573 struct extent_buffer
*eb
;
574 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
581 eb
= (struct extent_buffer
*)page
->private;
583 /* the pending IO might have been the only thing that kept this buffer
584 * in memory. Make sure we have a ref for all this other checks
586 extent_buffer_get(eb
);
588 reads_done
= atomic_dec_and_test(&eb
->io_pages
);
592 eb
->read_mirror
= mirror
;
593 if (test_bit(EXTENT_BUFFER_IOERR
, &eb
->bflags
)) {
598 found_start
= btrfs_header_bytenr(eb
);
599 if (found_start
!= eb
->start
) {
600 printk_ratelimited(KERN_INFO
"BTRFS: bad tree block start "
602 found_start
, eb
->start
);
606 if (check_tree_block_fsid(root
, eb
)) {
607 printk_ratelimited(KERN_INFO
"BTRFS: bad fsid on block %llu\n",
612 found_level
= btrfs_header_level(eb
);
613 if (found_level
>= BTRFS_MAX_LEVEL
) {
614 btrfs_info(root
->fs_info
, "bad tree block level %d",
615 (int)btrfs_header_level(eb
));
620 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb
),
623 ret
= csum_tree_block(root
, eb
, 1);
630 * If this is a leaf block and it is corrupt, set the corrupt bit so
631 * that we don't try and read the other copies of this block, just
634 if (found_level
== 0 && check_leaf(root
, eb
)) {
635 set_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
640 set_extent_buffer_uptodate(eb
);
643 test_and_clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
))
644 btree_readahead_hook(root
, eb
, eb
->start
, ret
);
648 * our io error hook is going to dec the io pages
649 * again, we have to make sure it has something
652 atomic_inc(&eb
->io_pages
);
653 clear_extent_buffer_uptodate(eb
);
655 free_extent_buffer(eb
);
660 static int btree_io_failed_hook(struct page
*page
, int failed_mirror
)
662 struct extent_buffer
*eb
;
663 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
665 eb
= (struct extent_buffer
*)page
->private;
666 set_bit(EXTENT_BUFFER_IOERR
, &eb
->bflags
);
667 eb
->read_mirror
= failed_mirror
;
668 atomic_dec(&eb
->io_pages
);
669 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
))
670 btree_readahead_hook(root
, eb
, eb
->start
, -EIO
);
671 return -EIO
; /* we fixed nothing */
674 static void end_workqueue_bio(struct bio
*bio
, int err
)
676 struct end_io_wq
*end_io_wq
= bio
->bi_private
;
677 struct btrfs_fs_info
*fs_info
;
679 fs_info
= end_io_wq
->info
;
680 end_io_wq
->error
= err
;
681 end_io_wq
->work
.func
= end_workqueue_fn
;
682 end_io_wq
->work
.flags
= 0;
684 if (bio
->bi_rw
& REQ_WRITE
) {
685 if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_METADATA
)
686 btrfs_queue_worker(&fs_info
->endio_meta_write_workers
,
688 else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_FREE_SPACE
)
689 btrfs_queue_worker(&fs_info
->endio_freespace_worker
,
691 else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_RAID56
)
692 btrfs_queue_worker(&fs_info
->endio_raid56_workers
,
695 btrfs_queue_worker(&fs_info
->endio_write_workers
,
698 if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_RAID56
)
699 btrfs_queue_worker(&fs_info
->endio_raid56_workers
,
701 else if (end_io_wq
->metadata
)
702 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
705 btrfs_queue_worker(&fs_info
->endio_workers
,
711 * For the metadata arg you want
714 * 1 - if normal metadta
715 * 2 - if writing to the free space cache area
716 * 3 - raid parity work
718 int btrfs_bio_wq_end_io(struct btrfs_fs_info
*info
, struct bio
*bio
,
721 struct end_io_wq
*end_io_wq
;
722 end_io_wq
= kmalloc(sizeof(*end_io_wq
), GFP_NOFS
);
726 end_io_wq
->private = bio
->bi_private
;
727 end_io_wq
->end_io
= bio
->bi_end_io
;
728 end_io_wq
->info
= info
;
729 end_io_wq
->error
= 0;
730 end_io_wq
->bio
= bio
;
731 end_io_wq
->metadata
= metadata
;
733 bio
->bi_private
= end_io_wq
;
734 bio
->bi_end_io
= end_workqueue_bio
;
738 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info
*info
)
740 unsigned long limit
= min_t(unsigned long,
741 info
->workers
.max_workers
,
742 info
->fs_devices
->open_devices
);
746 static void run_one_async_start(struct btrfs_work
*work
)
748 struct async_submit_bio
*async
;
751 async
= container_of(work
, struct async_submit_bio
, work
);
752 ret
= async
->submit_bio_start(async
->inode
, async
->rw
, async
->bio
,
753 async
->mirror_num
, async
->bio_flags
,
759 static void run_one_async_done(struct btrfs_work
*work
)
761 struct btrfs_fs_info
*fs_info
;
762 struct async_submit_bio
*async
;
765 async
= container_of(work
, struct async_submit_bio
, work
);
766 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
768 limit
= btrfs_async_submit_limit(fs_info
);
769 limit
= limit
* 2 / 3;
771 if (atomic_dec_return(&fs_info
->nr_async_submits
) < limit
&&
772 waitqueue_active(&fs_info
->async_submit_wait
))
773 wake_up(&fs_info
->async_submit_wait
);
775 /* If an error occured we just want to clean up the bio and move on */
777 bio_endio(async
->bio
, async
->error
);
781 async
->submit_bio_done(async
->inode
, async
->rw
, async
->bio
,
782 async
->mirror_num
, async
->bio_flags
,
786 static void run_one_async_free(struct btrfs_work
*work
)
788 struct async_submit_bio
*async
;
790 async
= container_of(work
, struct async_submit_bio
, work
);
794 int btrfs_wq_submit_bio(struct btrfs_fs_info
*fs_info
, struct inode
*inode
,
795 int rw
, struct bio
*bio
, int mirror_num
,
796 unsigned long bio_flags
,
798 extent_submit_bio_hook_t
*submit_bio_start
,
799 extent_submit_bio_hook_t
*submit_bio_done
)
801 struct async_submit_bio
*async
;
803 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
807 async
->inode
= inode
;
810 async
->mirror_num
= mirror_num
;
811 async
->submit_bio_start
= submit_bio_start
;
812 async
->submit_bio_done
= submit_bio_done
;
814 async
->work
.func
= run_one_async_start
;
815 async
->work
.ordered_func
= run_one_async_done
;
816 async
->work
.ordered_free
= run_one_async_free
;
818 async
->work
.flags
= 0;
819 async
->bio_flags
= bio_flags
;
820 async
->bio_offset
= bio_offset
;
824 atomic_inc(&fs_info
->nr_async_submits
);
827 btrfs_set_work_high_prio(&async
->work
);
829 btrfs_queue_worker(&fs_info
->workers
, &async
->work
);
831 while (atomic_read(&fs_info
->async_submit_draining
) &&
832 atomic_read(&fs_info
->nr_async_submits
)) {
833 wait_event(fs_info
->async_submit_wait
,
834 (atomic_read(&fs_info
->nr_async_submits
) == 0));
840 static int btree_csum_one_bio(struct bio
*bio
)
842 struct bio_vec
*bvec
;
843 struct btrfs_root
*root
;
846 bio_for_each_segment_all(bvec
, bio
, i
) {
847 root
= BTRFS_I(bvec
->bv_page
->mapping
->host
)->root
;
848 ret
= csum_dirty_buffer(root
, bvec
->bv_page
);
856 static int __btree_submit_bio_start(struct inode
*inode
, int rw
,
857 struct bio
*bio
, int mirror_num
,
858 unsigned long bio_flags
,
862 * when we're called for a write, we're already in the async
863 * submission context. Just jump into btrfs_map_bio
865 return btree_csum_one_bio(bio
);
868 static int __btree_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
869 int mirror_num
, unsigned long bio_flags
,
875 * when we're called for a write, we're already in the async
876 * submission context. Just jump into btrfs_map_bio
878 ret
= btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
, mirror_num
, 1);
884 static int check_async_write(struct inode
*inode
, unsigned long bio_flags
)
886 if (bio_flags
& EXTENT_BIO_TREE_LOG
)
895 static int btree_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
896 int mirror_num
, unsigned long bio_flags
,
899 int async
= check_async_write(inode
, bio_flags
);
902 if (!(rw
& REQ_WRITE
)) {
904 * called for a read, do the setup so that checksum validation
905 * can happen in the async kernel threads
907 ret
= btrfs_bio_wq_end_io(BTRFS_I(inode
)->root
->fs_info
,
911 ret
= btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
,
914 ret
= btree_csum_one_bio(bio
);
917 ret
= btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
,
921 * kthread helpers are used to submit writes so that
922 * checksumming can happen in parallel across all CPUs
924 ret
= btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
925 inode
, rw
, bio
, mirror_num
, 0,
927 __btree_submit_bio_start
,
928 __btree_submit_bio_done
);
938 #ifdef CONFIG_MIGRATION
939 static int btree_migratepage(struct address_space
*mapping
,
940 struct page
*newpage
, struct page
*page
,
941 enum migrate_mode mode
)
944 * we can't safely write a btree page from here,
945 * we haven't done the locking hook
950 * Buffers may be managed in a filesystem specific way.
951 * We must have no buffers or drop them.
953 if (page_has_private(page
) &&
954 !try_to_release_page(page
, GFP_KERNEL
))
956 return migrate_page(mapping
, newpage
, page
, mode
);
961 static int btree_writepages(struct address_space
*mapping
,
962 struct writeback_control
*wbc
)
964 struct btrfs_fs_info
*fs_info
;
967 if (wbc
->sync_mode
== WB_SYNC_NONE
) {
969 if (wbc
->for_kupdate
)
972 fs_info
= BTRFS_I(mapping
->host
)->root
->fs_info
;
973 /* this is a bit racy, but that's ok */
974 ret
= percpu_counter_compare(&fs_info
->dirty_metadata_bytes
,
975 BTRFS_DIRTY_METADATA_THRESH
);
979 return btree_write_cache_pages(mapping
, wbc
);
982 static int btree_readpage(struct file
*file
, struct page
*page
)
984 struct extent_io_tree
*tree
;
985 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
986 return extent_read_full_page(tree
, page
, btree_get_extent
, 0);
989 static int btree_releasepage(struct page
*page
, gfp_t gfp_flags
)
991 if (PageWriteback(page
) || PageDirty(page
))
994 return try_release_extent_buffer(page
);
997 static void btree_invalidatepage(struct page
*page
, unsigned int offset
,
1000 struct extent_io_tree
*tree
;
1001 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1002 extent_invalidatepage(tree
, page
, offset
);
1003 btree_releasepage(page
, GFP_NOFS
);
1004 if (PagePrivate(page
)) {
1005 btrfs_warn(BTRFS_I(page
->mapping
->host
)->root
->fs_info
,
1006 "page private not zero on page %llu",
1007 (unsigned long long)page_offset(page
));
1008 ClearPagePrivate(page
);
1009 set_page_private(page
, 0);
1010 page_cache_release(page
);
1014 static int btree_set_page_dirty(struct page
*page
)
1017 struct extent_buffer
*eb
;
1019 BUG_ON(!PagePrivate(page
));
1020 eb
= (struct extent_buffer
*)page
->private;
1022 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
1023 BUG_ON(!atomic_read(&eb
->refs
));
1024 btrfs_assert_tree_locked(eb
);
1026 return __set_page_dirty_nobuffers(page
);
1029 static const struct address_space_operations btree_aops
= {
1030 .readpage
= btree_readpage
,
1031 .writepages
= btree_writepages
,
1032 .releasepage
= btree_releasepage
,
1033 .invalidatepage
= btree_invalidatepage
,
1034 #ifdef CONFIG_MIGRATION
1035 .migratepage
= btree_migratepage
,
1037 .set_page_dirty
= btree_set_page_dirty
,
1040 int readahead_tree_block(struct btrfs_root
*root
, u64 bytenr
, u32 blocksize
,
1043 struct extent_buffer
*buf
= NULL
;
1044 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1047 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
1050 read_extent_buffer_pages(&BTRFS_I(btree_inode
)->io_tree
,
1051 buf
, 0, WAIT_NONE
, btree_get_extent
, 0);
1052 free_extent_buffer(buf
);
1056 int reada_tree_block_flagged(struct btrfs_root
*root
, u64 bytenr
, u32 blocksize
,
1057 int mirror_num
, struct extent_buffer
**eb
)
1059 struct extent_buffer
*buf
= NULL
;
1060 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1061 struct extent_io_tree
*io_tree
= &BTRFS_I(btree_inode
)->io_tree
;
1064 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
1068 set_bit(EXTENT_BUFFER_READAHEAD
, &buf
->bflags
);
1070 ret
= read_extent_buffer_pages(io_tree
, buf
, 0, WAIT_PAGE_LOCK
,
1071 btree_get_extent
, mirror_num
);
1073 free_extent_buffer(buf
);
1077 if (test_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
)) {
1078 free_extent_buffer(buf
);
1080 } else if (extent_buffer_uptodate(buf
)) {
1083 free_extent_buffer(buf
);
1088 struct extent_buffer
*btrfs_find_tree_block(struct btrfs_root
*root
,
1089 u64 bytenr
, u32 blocksize
)
1091 return find_extent_buffer(root
->fs_info
, bytenr
);
1094 struct extent_buffer
*btrfs_find_create_tree_block(struct btrfs_root
*root
,
1095 u64 bytenr
, u32 blocksize
)
1097 return alloc_extent_buffer(root
->fs_info
, bytenr
, blocksize
);
1101 int btrfs_write_tree_block(struct extent_buffer
*buf
)
1103 return filemap_fdatawrite_range(buf
->pages
[0]->mapping
, buf
->start
,
1104 buf
->start
+ buf
->len
- 1);
1107 int btrfs_wait_tree_block_writeback(struct extent_buffer
*buf
)
1109 return filemap_fdatawait_range(buf
->pages
[0]->mapping
,
1110 buf
->start
, buf
->start
+ buf
->len
- 1);
1113 struct extent_buffer
*read_tree_block(struct btrfs_root
*root
, u64 bytenr
,
1114 u32 blocksize
, u64 parent_transid
)
1116 struct extent_buffer
*buf
= NULL
;
1119 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
1123 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
1125 free_extent_buffer(buf
);
1132 void clean_tree_block(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
1133 struct extent_buffer
*buf
)
1135 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1137 if (btrfs_header_generation(buf
) ==
1138 fs_info
->running_transaction
->transid
) {
1139 btrfs_assert_tree_locked(buf
);
1141 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
)) {
1142 __percpu_counter_add(&fs_info
->dirty_metadata_bytes
,
1144 fs_info
->dirty_metadata_batch
);
1145 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1146 btrfs_set_lock_blocking(buf
);
1147 clear_extent_buffer_dirty(buf
);
1152 static void __setup_root(u32 nodesize
, u32 leafsize
, u32 sectorsize
,
1153 u32 stripesize
, struct btrfs_root
*root
,
1154 struct btrfs_fs_info
*fs_info
,
1158 root
->commit_root
= NULL
;
1159 root
->sectorsize
= sectorsize
;
1160 root
->nodesize
= nodesize
;
1161 root
->leafsize
= leafsize
;
1162 root
->stripesize
= stripesize
;
1164 root
->track_dirty
= 0;
1166 root
->orphan_item_inserted
= 0;
1167 root
->orphan_cleanup_state
= 0;
1169 root
->objectid
= objectid
;
1170 root
->last_trans
= 0;
1171 root
->highest_objectid
= 0;
1172 root
->nr_delalloc_inodes
= 0;
1173 root
->nr_ordered_extents
= 0;
1175 root
->inode_tree
= RB_ROOT
;
1176 INIT_RADIX_TREE(&root
->delayed_nodes_tree
, GFP_ATOMIC
);
1177 root
->block_rsv
= NULL
;
1178 root
->orphan_block_rsv
= NULL
;
1180 INIT_LIST_HEAD(&root
->dirty_list
);
1181 INIT_LIST_HEAD(&root
->root_list
);
1182 INIT_LIST_HEAD(&root
->delalloc_inodes
);
1183 INIT_LIST_HEAD(&root
->delalloc_root
);
1184 INIT_LIST_HEAD(&root
->ordered_extents
);
1185 INIT_LIST_HEAD(&root
->ordered_root
);
1186 INIT_LIST_HEAD(&root
->logged_list
[0]);
1187 INIT_LIST_HEAD(&root
->logged_list
[1]);
1188 spin_lock_init(&root
->orphan_lock
);
1189 spin_lock_init(&root
->inode_lock
);
1190 spin_lock_init(&root
->delalloc_lock
);
1191 spin_lock_init(&root
->ordered_extent_lock
);
1192 spin_lock_init(&root
->accounting_lock
);
1193 spin_lock_init(&root
->log_extents_lock
[0]);
1194 spin_lock_init(&root
->log_extents_lock
[1]);
1195 mutex_init(&root
->objectid_mutex
);
1196 mutex_init(&root
->log_mutex
);
1197 init_waitqueue_head(&root
->log_writer_wait
);
1198 init_waitqueue_head(&root
->log_commit_wait
[0]);
1199 init_waitqueue_head(&root
->log_commit_wait
[1]);
1200 atomic_set(&root
->log_commit
[0], 0);
1201 atomic_set(&root
->log_commit
[1], 0);
1202 atomic_set(&root
->log_writers
, 0);
1203 atomic_set(&root
->log_batch
, 0);
1204 atomic_set(&root
->orphan_inodes
, 0);
1205 atomic_set(&root
->refs
, 1);
1206 root
->log_transid
= 0;
1207 root
->last_log_commit
= 0;
1209 extent_io_tree_init(&root
->dirty_log_pages
,
1210 fs_info
->btree_inode
->i_mapping
);
1212 memset(&root
->root_key
, 0, sizeof(root
->root_key
));
1213 memset(&root
->root_item
, 0, sizeof(root
->root_item
));
1214 memset(&root
->defrag_progress
, 0, sizeof(root
->defrag_progress
));
1215 memset(&root
->root_kobj
, 0, sizeof(root
->root_kobj
));
1217 root
->defrag_trans_start
= fs_info
->generation
;
1219 root
->defrag_trans_start
= 0;
1220 init_completion(&root
->kobj_unregister
);
1221 root
->defrag_running
= 0;
1222 root
->root_key
.objectid
= objectid
;
1225 spin_lock_init(&root
->root_item_lock
);
1228 static struct btrfs_root
*btrfs_alloc_root(struct btrfs_fs_info
*fs_info
)
1230 struct btrfs_root
*root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1232 root
->fs_info
= fs_info
;
1236 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1237 /* Should only be used by the testing infrastructure */
1238 struct btrfs_root
*btrfs_alloc_dummy_root(void)
1240 struct btrfs_root
*root
;
1242 root
= btrfs_alloc_root(NULL
);
1244 return ERR_PTR(-ENOMEM
);
1245 __setup_root(4096, 4096, 4096, 4096, root
, NULL
, 1);
1246 root
->dummy_root
= 1;
1252 struct btrfs_root
*btrfs_create_tree(struct btrfs_trans_handle
*trans
,
1253 struct btrfs_fs_info
*fs_info
,
1256 struct extent_buffer
*leaf
;
1257 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1258 struct btrfs_root
*root
;
1259 struct btrfs_key key
;
1263 root
= btrfs_alloc_root(fs_info
);
1265 return ERR_PTR(-ENOMEM
);
1267 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1268 tree_root
->sectorsize
, tree_root
->stripesize
,
1269 root
, fs_info
, objectid
);
1270 root
->root_key
.objectid
= objectid
;
1271 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1272 root
->root_key
.offset
= 0;
1274 leaf
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
,
1275 0, objectid
, NULL
, 0, 0, 0);
1277 ret
= PTR_ERR(leaf
);
1282 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
1283 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1284 btrfs_set_header_generation(leaf
, trans
->transid
);
1285 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1286 btrfs_set_header_owner(leaf
, objectid
);
1289 write_extent_buffer(leaf
, fs_info
->fsid
, btrfs_header_fsid(),
1291 write_extent_buffer(leaf
, fs_info
->chunk_tree_uuid
,
1292 btrfs_header_chunk_tree_uuid(leaf
),
1294 btrfs_mark_buffer_dirty(leaf
);
1296 root
->commit_root
= btrfs_root_node(root
);
1297 root
->track_dirty
= 1;
1300 root
->root_item
.flags
= 0;
1301 root
->root_item
.byte_limit
= 0;
1302 btrfs_set_root_bytenr(&root
->root_item
, leaf
->start
);
1303 btrfs_set_root_generation(&root
->root_item
, trans
->transid
);
1304 btrfs_set_root_level(&root
->root_item
, 0);
1305 btrfs_set_root_refs(&root
->root_item
, 1);
1306 btrfs_set_root_used(&root
->root_item
, leaf
->len
);
1307 btrfs_set_root_last_snapshot(&root
->root_item
, 0);
1308 btrfs_set_root_dirid(&root
->root_item
, 0);
1310 memcpy(root
->root_item
.uuid
, uuid
.b
, BTRFS_UUID_SIZE
);
1311 root
->root_item
.drop_level
= 0;
1313 key
.objectid
= objectid
;
1314 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1316 ret
= btrfs_insert_root(trans
, tree_root
, &key
, &root
->root_item
);
1320 btrfs_tree_unlock(leaf
);
1326 btrfs_tree_unlock(leaf
);
1327 free_extent_buffer(leaf
);
1331 return ERR_PTR(ret
);
1334 static struct btrfs_root
*alloc_log_tree(struct btrfs_trans_handle
*trans
,
1335 struct btrfs_fs_info
*fs_info
)
1337 struct btrfs_root
*root
;
1338 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1339 struct extent_buffer
*leaf
;
1341 root
= btrfs_alloc_root(fs_info
);
1343 return ERR_PTR(-ENOMEM
);
1345 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1346 tree_root
->sectorsize
, tree_root
->stripesize
,
1347 root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1349 root
->root_key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
1350 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1351 root
->root_key
.offset
= BTRFS_TREE_LOG_OBJECTID
;
1353 * log trees do not get reference counted because they go away
1354 * before a real commit is actually done. They do store pointers
1355 * to file data extents, and those reference counts still get
1356 * updated (along with back refs to the log tree).
1360 leaf
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
, 0,
1361 BTRFS_TREE_LOG_OBJECTID
, NULL
,
1365 return ERR_CAST(leaf
);
1368 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
1369 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1370 btrfs_set_header_generation(leaf
, trans
->transid
);
1371 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1372 btrfs_set_header_owner(leaf
, BTRFS_TREE_LOG_OBJECTID
);
1375 write_extent_buffer(root
->node
, root
->fs_info
->fsid
,
1376 btrfs_header_fsid(), BTRFS_FSID_SIZE
);
1377 btrfs_mark_buffer_dirty(root
->node
);
1378 btrfs_tree_unlock(root
->node
);
1382 int btrfs_init_log_root_tree(struct btrfs_trans_handle
*trans
,
1383 struct btrfs_fs_info
*fs_info
)
1385 struct btrfs_root
*log_root
;
1387 log_root
= alloc_log_tree(trans
, fs_info
);
1388 if (IS_ERR(log_root
))
1389 return PTR_ERR(log_root
);
1390 WARN_ON(fs_info
->log_root_tree
);
1391 fs_info
->log_root_tree
= log_root
;
1395 int btrfs_add_log_tree(struct btrfs_trans_handle
*trans
,
1396 struct btrfs_root
*root
)
1398 struct btrfs_root
*log_root
;
1399 struct btrfs_inode_item
*inode_item
;
1401 log_root
= alloc_log_tree(trans
, root
->fs_info
);
1402 if (IS_ERR(log_root
))
1403 return PTR_ERR(log_root
);
1405 log_root
->last_trans
= trans
->transid
;
1406 log_root
->root_key
.offset
= root
->root_key
.objectid
;
1408 inode_item
= &log_root
->root_item
.inode
;
1409 btrfs_set_stack_inode_generation(inode_item
, 1);
1410 btrfs_set_stack_inode_size(inode_item
, 3);
1411 btrfs_set_stack_inode_nlink(inode_item
, 1);
1412 btrfs_set_stack_inode_nbytes(inode_item
, root
->leafsize
);
1413 btrfs_set_stack_inode_mode(inode_item
, S_IFDIR
| 0755);
1415 btrfs_set_root_node(&log_root
->root_item
, log_root
->node
);
1417 WARN_ON(root
->log_root
);
1418 root
->log_root
= log_root
;
1419 root
->log_transid
= 0;
1420 root
->last_log_commit
= 0;
1424 static struct btrfs_root
*btrfs_read_tree_root(struct btrfs_root
*tree_root
,
1425 struct btrfs_key
*key
)
1427 struct btrfs_root
*root
;
1428 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1429 struct btrfs_path
*path
;
1434 path
= btrfs_alloc_path();
1436 return ERR_PTR(-ENOMEM
);
1438 root
= btrfs_alloc_root(fs_info
);
1444 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1445 tree_root
->sectorsize
, tree_root
->stripesize
,
1446 root
, fs_info
, key
->objectid
);
1448 ret
= btrfs_find_root(tree_root
, key
, path
,
1449 &root
->root_item
, &root
->root_key
);
1456 generation
= btrfs_root_generation(&root
->root_item
);
1457 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
1458 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
1459 blocksize
, generation
);
1463 } else if (!btrfs_buffer_uptodate(root
->node
, generation
, 0)) {
1467 root
->commit_root
= btrfs_root_node(root
);
1469 btrfs_free_path(path
);
1473 free_extent_buffer(root
->node
);
1477 root
= ERR_PTR(ret
);
1481 struct btrfs_root
*btrfs_read_fs_root(struct btrfs_root
*tree_root
,
1482 struct btrfs_key
*location
)
1484 struct btrfs_root
*root
;
1486 root
= btrfs_read_tree_root(tree_root
, location
);
1490 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
1492 btrfs_check_and_init_root_item(&root
->root_item
);
1498 int btrfs_init_fs_root(struct btrfs_root
*root
)
1502 root
->free_ino_ctl
= kzalloc(sizeof(*root
->free_ino_ctl
), GFP_NOFS
);
1503 root
->free_ino_pinned
= kzalloc(sizeof(*root
->free_ino_pinned
),
1505 if (!root
->free_ino_pinned
|| !root
->free_ino_ctl
) {
1510 btrfs_init_free_ino_ctl(root
);
1511 mutex_init(&root
->fs_commit_mutex
);
1512 spin_lock_init(&root
->cache_lock
);
1513 init_waitqueue_head(&root
->cache_wait
);
1515 ret
= get_anon_bdev(&root
->anon_dev
);
1520 kfree(root
->free_ino_ctl
);
1521 kfree(root
->free_ino_pinned
);
1525 static struct btrfs_root
*btrfs_lookup_fs_root(struct btrfs_fs_info
*fs_info
,
1528 struct btrfs_root
*root
;
1530 spin_lock(&fs_info
->fs_roots_radix_lock
);
1531 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1532 (unsigned long)root_id
);
1533 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1537 int btrfs_insert_fs_root(struct btrfs_fs_info
*fs_info
,
1538 struct btrfs_root
*root
)
1542 ret
= radix_tree_preload(GFP_NOFS
& ~__GFP_HIGHMEM
);
1546 spin_lock(&fs_info
->fs_roots_radix_lock
);
1547 ret
= radix_tree_insert(&fs_info
->fs_roots_radix
,
1548 (unsigned long)root
->root_key
.objectid
,
1552 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1553 radix_tree_preload_end();
1558 struct btrfs_root
*btrfs_get_fs_root(struct btrfs_fs_info
*fs_info
,
1559 struct btrfs_key
*location
,
1562 struct btrfs_root
*root
;
1565 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1566 return fs_info
->tree_root
;
1567 if (location
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1568 return fs_info
->extent_root
;
1569 if (location
->objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
1570 return fs_info
->chunk_root
;
1571 if (location
->objectid
== BTRFS_DEV_TREE_OBJECTID
)
1572 return fs_info
->dev_root
;
1573 if (location
->objectid
== BTRFS_CSUM_TREE_OBJECTID
)
1574 return fs_info
->csum_root
;
1575 if (location
->objectid
== BTRFS_QUOTA_TREE_OBJECTID
)
1576 return fs_info
->quota_root
? fs_info
->quota_root
:
1578 if (location
->objectid
== BTRFS_UUID_TREE_OBJECTID
)
1579 return fs_info
->uuid_root
? fs_info
->uuid_root
:
1582 root
= btrfs_lookup_fs_root(fs_info
, location
->objectid
);
1584 if (check_ref
&& btrfs_root_refs(&root
->root_item
) == 0)
1585 return ERR_PTR(-ENOENT
);
1589 root
= btrfs_read_fs_root(fs_info
->tree_root
, location
);
1593 if (check_ref
&& btrfs_root_refs(&root
->root_item
) == 0) {
1598 ret
= btrfs_init_fs_root(root
);
1602 ret
= btrfs_find_item(fs_info
->tree_root
, NULL
, BTRFS_ORPHAN_OBJECTID
,
1603 location
->objectid
, BTRFS_ORPHAN_ITEM_KEY
, NULL
);
1607 root
->orphan_item_inserted
= 1;
1609 ret
= btrfs_insert_fs_root(fs_info
, root
);
1611 if (ret
== -EEXIST
) {
1620 return ERR_PTR(ret
);
1623 static int btrfs_congested_fn(void *congested_data
, int bdi_bits
)
1625 struct btrfs_fs_info
*info
= (struct btrfs_fs_info
*)congested_data
;
1627 struct btrfs_device
*device
;
1628 struct backing_dev_info
*bdi
;
1631 list_for_each_entry_rcu(device
, &info
->fs_devices
->devices
, dev_list
) {
1634 bdi
= blk_get_backing_dev_info(device
->bdev
);
1635 if (bdi
&& bdi_congested(bdi
, bdi_bits
)) {
1645 * If this fails, caller must call bdi_destroy() to get rid of the
1648 static int setup_bdi(struct btrfs_fs_info
*info
, struct backing_dev_info
*bdi
)
1652 bdi
->capabilities
= BDI_CAP_MAP_COPY
;
1653 err
= bdi_setup_and_register(bdi
, "btrfs", BDI_CAP_MAP_COPY
);
1657 bdi
->ra_pages
= default_backing_dev_info
.ra_pages
;
1658 bdi
->congested_fn
= btrfs_congested_fn
;
1659 bdi
->congested_data
= info
;
1664 * called by the kthread helper functions to finally call the bio end_io
1665 * functions. This is where read checksum verification actually happens
1667 static void end_workqueue_fn(struct btrfs_work
*work
)
1670 struct end_io_wq
*end_io_wq
;
1673 end_io_wq
= container_of(work
, struct end_io_wq
, work
);
1674 bio
= end_io_wq
->bio
;
1676 error
= end_io_wq
->error
;
1677 bio
->bi_private
= end_io_wq
->private;
1678 bio
->bi_end_io
= end_io_wq
->end_io
;
1680 bio_endio_nodec(bio
, error
);
1683 static int cleaner_kthread(void *arg
)
1685 struct btrfs_root
*root
= arg
;
1691 /* Make the cleaner go to sleep early. */
1692 if (btrfs_need_cleaner_sleep(root
))
1695 if (!mutex_trylock(&root
->fs_info
->cleaner_mutex
))
1699 * Avoid the problem that we change the status of the fs
1700 * during the above check and trylock.
1702 if (btrfs_need_cleaner_sleep(root
)) {
1703 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
1707 btrfs_run_delayed_iputs(root
);
1708 again
= btrfs_clean_one_deleted_snapshot(root
);
1709 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
1712 * The defragger has dealt with the R/O remount and umount,
1713 * needn't do anything special here.
1715 btrfs_run_defrag_inodes(root
->fs_info
);
1717 if (!try_to_freeze() && !again
) {
1718 set_current_state(TASK_INTERRUPTIBLE
);
1719 if (!kthread_should_stop())
1721 __set_current_state(TASK_RUNNING
);
1723 } while (!kthread_should_stop());
1727 static int transaction_kthread(void *arg
)
1729 struct btrfs_root
*root
= arg
;
1730 struct btrfs_trans_handle
*trans
;
1731 struct btrfs_transaction
*cur
;
1734 unsigned long delay
;
1738 cannot_commit
= false;
1739 delay
= HZ
* root
->fs_info
->commit_interval
;
1740 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
1742 spin_lock(&root
->fs_info
->trans_lock
);
1743 cur
= root
->fs_info
->running_transaction
;
1745 spin_unlock(&root
->fs_info
->trans_lock
);
1749 now
= get_seconds();
1750 if (cur
->state
< TRANS_STATE_BLOCKED
&&
1751 (now
< cur
->start_time
||
1752 now
- cur
->start_time
< root
->fs_info
->commit_interval
)) {
1753 spin_unlock(&root
->fs_info
->trans_lock
);
1757 transid
= cur
->transid
;
1758 spin_unlock(&root
->fs_info
->trans_lock
);
1760 /* If the file system is aborted, this will always fail. */
1761 trans
= btrfs_attach_transaction(root
);
1762 if (IS_ERR(trans
)) {
1763 if (PTR_ERR(trans
) != -ENOENT
)
1764 cannot_commit
= true;
1767 if (transid
== trans
->transid
) {
1768 btrfs_commit_transaction(trans
, root
);
1770 btrfs_end_transaction(trans
, root
);
1773 wake_up_process(root
->fs_info
->cleaner_kthread
);
1774 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
1776 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR
,
1777 &root
->fs_info
->fs_state
)))
1778 btrfs_cleanup_transaction(root
);
1779 if (!try_to_freeze()) {
1780 set_current_state(TASK_INTERRUPTIBLE
);
1781 if (!kthread_should_stop() &&
1782 (!btrfs_transaction_blocked(root
->fs_info
) ||
1784 schedule_timeout(delay
);
1785 __set_current_state(TASK_RUNNING
);
1787 } while (!kthread_should_stop());
1792 * this will find the highest generation in the array of
1793 * root backups. The index of the highest array is returned,
1794 * or -1 if we can't find anything.
1796 * We check to make sure the array is valid by comparing the
1797 * generation of the latest root in the array with the generation
1798 * in the super block. If they don't match we pitch it.
1800 static int find_newest_super_backup(struct btrfs_fs_info
*info
, u64 newest_gen
)
1803 int newest_index
= -1;
1804 struct btrfs_root_backup
*root_backup
;
1807 for (i
= 0; i
< BTRFS_NUM_BACKUP_ROOTS
; i
++) {
1808 root_backup
= info
->super_copy
->super_roots
+ i
;
1809 cur
= btrfs_backup_tree_root_gen(root_backup
);
1810 if (cur
== newest_gen
)
1814 /* check to see if we actually wrapped around */
1815 if (newest_index
== BTRFS_NUM_BACKUP_ROOTS
- 1) {
1816 root_backup
= info
->super_copy
->super_roots
;
1817 cur
= btrfs_backup_tree_root_gen(root_backup
);
1818 if (cur
== newest_gen
)
1821 return newest_index
;
1826 * find the oldest backup so we know where to store new entries
1827 * in the backup array. This will set the backup_root_index
1828 * field in the fs_info struct
1830 static void find_oldest_super_backup(struct btrfs_fs_info
*info
,
1833 int newest_index
= -1;
1835 newest_index
= find_newest_super_backup(info
, newest_gen
);
1836 /* if there was garbage in there, just move along */
1837 if (newest_index
== -1) {
1838 info
->backup_root_index
= 0;
1840 info
->backup_root_index
= (newest_index
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
1845 * copy all the root pointers into the super backup array.
1846 * this will bump the backup pointer by one when it is
1849 static void backup_super_roots(struct btrfs_fs_info
*info
)
1852 struct btrfs_root_backup
*root_backup
;
1855 next_backup
= info
->backup_root_index
;
1856 last_backup
= (next_backup
+ BTRFS_NUM_BACKUP_ROOTS
- 1) %
1857 BTRFS_NUM_BACKUP_ROOTS
;
1860 * just overwrite the last backup if we're at the same generation
1861 * this happens only at umount
1863 root_backup
= info
->super_for_commit
->super_roots
+ last_backup
;
1864 if (btrfs_backup_tree_root_gen(root_backup
) ==
1865 btrfs_header_generation(info
->tree_root
->node
))
1866 next_backup
= last_backup
;
1868 root_backup
= info
->super_for_commit
->super_roots
+ next_backup
;
1871 * make sure all of our padding and empty slots get zero filled
1872 * regardless of which ones we use today
1874 memset(root_backup
, 0, sizeof(*root_backup
));
1876 info
->backup_root_index
= (next_backup
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
1878 btrfs_set_backup_tree_root(root_backup
, info
->tree_root
->node
->start
);
1879 btrfs_set_backup_tree_root_gen(root_backup
,
1880 btrfs_header_generation(info
->tree_root
->node
));
1882 btrfs_set_backup_tree_root_level(root_backup
,
1883 btrfs_header_level(info
->tree_root
->node
));
1885 btrfs_set_backup_chunk_root(root_backup
, info
->chunk_root
->node
->start
);
1886 btrfs_set_backup_chunk_root_gen(root_backup
,
1887 btrfs_header_generation(info
->chunk_root
->node
));
1888 btrfs_set_backup_chunk_root_level(root_backup
,
1889 btrfs_header_level(info
->chunk_root
->node
));
1891 btrfs_set_backup_extent_root(root_backup
, info
->extent_root
->node
->start
);
1892 btrfs_set_backup_extent_root_gen(root_backup
,
1893 btrfs_header_generation(info
->extent_root
->node
));
1894 btrfs_set_backup_extent_root_level(root_backup
,
1895 btrfs_header_level(info
->extent_root
->node
));
1898 * we might commit during log recovery, which happens before we set
1899 * the fs_root. Make sure it is valid before we fill it in.
1901 if (info
->fs_root
&& info
->fs_root
->node
) {
1902 btrfs_set_backup_fs_root(root_backup
,
1903 info
->fs_root
->node
->start
);
1904 btrfs_set_backup_fs_root_gen(root_backup
,
1905 btrfs_header_generation(info
->fs_root
->node
));
1906 btrfs_set_backup_fs_root_level(root_backup
,
1907 btrfs_header_level(info
->fs_root
->node
));
1910 btrfs_set_backup_dev_root(root_backup
, info
->dev_root
->node
->start
);
1911 btrfs_set_backup_dev_root_gen(root_backup
,
1912 btrfs_header_generation(info
->dev_root
->node
));
1913 btrfs_set_backup_dev_root_level(root_backup
,
1914 btrfs_header_level(info
->dev_root
->node
));
1916 btrfs_set_backup_csum_root(root_backup
, info
->csum_root
->node
->start
);
1917 btrfs_set_backup_csum_root_gen(root_backup
,
1918 btrfs_header_generation(info
->csum_root
->node
));
1919 btrfs_set_backup_csum_root_level(root_backup
,
1920 btrfs_header_level(info
->csum_root
->node
));
1922 btrfs_set_backup_total_bytes(root_backup
,
1923 btrfs_super_total_bytes(info
->super_copy
));
1924 btrfs_set_backup_bytes_used(root_backup
,
1925 btrfs_super_bytes_used(info
->super_copy
));
1926 btrfs_set_backup_num_devices(root_backup
,
1927 btrfs_super_num_devices(info
->super_copy
));
1930 * if we don't copy this out to the super_copy, it won't get remembered
1931 * for the next commit
1933 memcpy(&info
->super_copy
->super_roots
,
1934 &info
->super_for_commit
->super_roots
,
1935 sizeof(*root_backup
) * BTRFS_NUM_BACKUP_ROOTS
);
1939 * this copies info out of the root backup array and back into
1940 * the in-memory super block. It is meant to help iterate through
1941 * the array, so you send it the number of backups you've already
1942 * tried and the last backup index you used.
1944 * this returns -1 when it has tried all the backups
1946 static noinline
int next_root_backup(struct btrfs_fs_info
*info
,
1947 struct btrfs_super_block
*super
,
1948 int *num_backups_tried
, int *backup_index
)
1950 struct btrfs_root_backup
*root_backup
;
1951 int newest
= *backup_index
;
1953 if (*num_backups_tried
== 0) {
1954 u64 gen
= btrfs_super_generation(super
);
1956 newest
= find_newest_super_backup(info
, gen
);
1960 *backup_index
= newest
;
1961 *num_backups_tried
= 1;
1962 } else if (*num_backups_tried
== BTRFS_NUM_BACKUP_ROOTS
) {
1963 /* we've tried all the backups, all done */
1966 /* jump to the next oldest backup */
1967 newest
= (*backup_index
+ BTRFS_NUM_BACKUP_ROOTS
- 1) %
1968 BTRFS_NUM_BACKUP_ROOTS
;
1969 *backup_index
= newest
;
1970 *num_backups_tried
+= 1;
1972 root_backup
= super
->super_roots
+ newest
;
1974 btrfs_set_super_generation(super
,
1975 btrfs_backup_tree_root_gen(root_backup
));
1976 btrfs_set_super_root(super
, btrfs_backup_tree_root(root_backup
));
1977 btrfs_set_super_root_level(super
,
1978 btrfs_backup_tree_root_level(root_backup
));
1979 btrfs_set_super_bytes_used(super
, btrfs_backup_bytes_used(root_backup
));
1982 * fixme: the total bytes and num_devices need to match or we should
1985 btrfs_set_super_total_bytes(super
, btrfs_backup_total_bytes(root_backup
));
1986 btrfs_set_super_num_devices(super
, btrfs_backup_num_devices(root_backup
));
1990 /* helper to cleanup workers */
1991 static void btrfs_stop_all_workers(struct btrfs_fs_info
*fs_info
)
1993 btrfs_stop_workers(&fs_info
->generic_worker
);
1994 btrfs_stop_workers(&fs_info
->fixup_workers
);
1995 btrfs_stop_workers(&fs_info
->delalloc_workers
);
1996 btrfs_stop_workers(&fs_info
->workers
);
1997 btrfs_stop_workers(&fs_info
->endio_workers
);
1998 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
1999 btrfs_stop_workers(&fs_info
->endio_raid56_workers
);
2000 btrfs_stop_workers(&fs_info
->rmw_workers
);
2001 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
2002 btrfs_stop_workers(&fs_info
->endio_write_workers
);
2003 btrfs_stop_workers(&fs_info
->endio_freespace_worker
);
2004 btrfs_stop_workers(&fs_info
->submit_workers
);
2005 btrfs_stop_workers(&fs_info
->delayed_workers
);
2006 btrfs_stop_workers(&fs_info
->caching_workers
);
2007 btrfs_stop_workers(&fs_info
->readahead_workers
);
2008 btrfs_stop_workers(&fs_info
->flush_workers
);
2009 btrfs_stop_workers(&fs_info
->qgroup_rescan_workers
);
2012 static void free_root_extent_buffers(struct btrfs_root
*root
)
2015 free_extent_buffer(root
->node
);
2016 free_extent_buffer(root
->commit_root
);
2018 root
->commit_root
= NULL
;
2022 /* helper to cleanup tree roots */
2023 static void free_root_pointers(struct btrfs_fs_info
*info
, int chunk_root
)
2025 free_root_extent_buffers(info
->tree_root
);
2027 free_root_extent_buffers(info
->dev_root
);
2028 free_root_extent_buffers(info
->extent_root
);
2029 free_root_extent_buffers(info
->csum_root
);
2030 free_root_extent_buffers(info
->quota_root
);
2031 free_root_extent_buffers(info
->uuid_root
);
2033 free_root_extent_buffers(info
->chunk_root
);
2036 static void del_fs_roots(struct btrfs_fs_info
*fs_info
)
2039 struct btrfs_root
*gang
[8];
2042 while (!list_empty(&fs_info
->dead_roots
)) {
2043 gang
[0] = list_entry(fs_info
->dead_roots
.next
,
2044 struct btrfs_root
, root_list
);
2045 list_del(&gang
[0]->root_list
);
2047 if (gang
[0]->in_radix
) {
2048 btrfs_drop_and_free_fs_root(fs_info
, gang
[0]);
2050 free_extent_buffer(gang
[0]->node
);
2051 free_extent_buffer(gang
[0]->commit_root
);
2052 btrfs_put_fs_root(gang
[0]);
2057 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2062 for (i
= 0; i
< ret
; i
++)
2063 btrfs_drop_and_free_fs_root(fs_info
, gang
[i
]);
2066 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
2067 btrfs_free_log_root_tree(NULL
, fs_info
);
2068 btrfs_destroy_pinned_extent(fs_info
->tree_root
,
2069 fs_info
->pinned_extents
);
2073 int open_ctree(struct super_block
*sb
,
2074 struct btrfs_fs_devices
*fs_devices
,
2084 struct btrfs_key location
;
2085 struct buffer_head
*bh
;
2086 struct btrfs_super_block
*disk_super
;
2087 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
2088 struct btrfs_root
*tree_root
;
2089 struct btrfs_root
*extent_root
;
2090 struct btrfs_root
*csum_root
;
2091 struct btrfs_root
*chunk_root
;
2092 struct btrfs_root
*dev_root
;
2093 struct btrfs_root
*quota_root
;
2094 struct btrfs_root
*uuid_root
;
2095 struct btrfs_root
*log_tree_root
;
2098 int num_backups_tried
= 0;
2099 int backup_index
= 0;
2100 bool create_uuid_tree
;
2101 bool check_uuid_tree
;
2103 tree_root
= fs_info
->tree_root
= btrfs_alloc_root(fs_info
);
2104 chunk_root
= fs_info
->chunk_root
= btrfs_alloc_root(fs_info
);
2105 if (!tree_root
|| !chunk_root
) {
2110 ret
= init_srcu_struct(&fs_info
->subvol_srcu
);
2116 ret
= setup_bdi(fs_info
, &fs_info
->bdi
);
2122 ret
= percpu_counter_init(&fs_info
->dirty_metadata_bytes
, 0);
2127 fs_info
->dirty_metadata_batch
= PAGE_CACHE_SIZE
*
2128 (1 + ilog2(nr_cpu_ids
));
2130 ret
= percpu_counter_init(&fs_info
->delalloc_bytes
, 0);
2133 goto fail_dirty_metadata_bytes
;
2136 fs_info
->btree_inode
= new_inode(sb
);
2137 if (!fs_info
->btree_inode
) {
2139 goto fail_delalloc_bytes
;
2142 mapping_set_gfp_mask(fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
2144 INIT_RADIX_TREE(&fs_info
->fs_roots_radix
, GFP_ATOMIC
);
2145 INIT_RADIX_TREE(&fs_info
->buffer_radix
, GFP_ATOMIC
);
2146 INIT_LIST_HEAD(&fs_info
->trans_list
);
2147 INIT_LIST_HEAD(&fs_info
->dead_roots
);
2148 INIT_LIST_HEAD(&fs_info
->delayed_iputs
);
2149 INIT_LIST_HEAD(&fs_info
->delalloc_roots
);
2150 INIT_LIST_HEAD(&fs_info
->caching_block_groups
);
2151 spin_lock_init(&fs_info
->delalloc_root_lock
);
2152 spin_lock_init(&fs_info
->trans_lock
);
2153 spin_lock_init(&fs_info
->fs_roots_radix_lock
);
2154 spin_lock_init(&fs_info
->delayed_iput_lock
);
2155 spin_lock_init(&fs_info
->defrag_inodes_lock
);
2156 spin_lock_init(&fs_info
->free_chunk_lock
);
2157 spin_lock_init(&fs_info
->tree_mod_seq_lock
);
2158 spin_lock_init(&fs_info
->super_lock
);
2159 spin_lock_init(&fs_info
->buffer_lock
);
2160 rwlock_init(&fs_info
->tree_mod_log_lock
);
2161 mutex_init(&fs_info
->reloc_mutex
);
2162 seqlock_init(&fs_info
->profiles_lock
);
2164 init_completion(&fs_info
->kobj_unregister
);
2165 INIT_LIST_HEAD(&fs_info
->dirty_cowonly_roots
);
2166 INIT_LIST_HEAD(&fs_info
->space_info
);
2167 INIT_LIST_HEAD(&fs_info
->tree_mod_seq_list
);
2168 btrfs_mapping_init(&fs_info
->mapping_tree
);
2169 btrfs_init_block_rsv(&fs_info
->global_block_rsv
,
2170 BTRFS_BLOCK_RSV_GLOBAL
);
2171 btrfs_init_block_rsv(&fs_info
->delalloc_block_rsv
,
2172 BTRFS_BLOCK_RSV_DELALLOC
);
2173 btrfs_init_block_rsv(&fs_info
->trans_block_rsv
, BTRFS_BLOCK_RSV_TRANS
);
2174 btrfs_init_block_rsv(&fs_info
->chunk_block_rsv
, BTRFS_BLOCK_RSV_CHUNK
);
2175 btrfs_init_block_rsv(&fs_info
->empty_block_rsv
, BTRFS_BLOCK_RSV_EMPTY
);
2176 btrfs_init_block_rsv(&fs_info
->delayed_block_rsv
,
2177 BTRFS_BLOCK_RSV_DELOPS
);
2178 atomic_set(&fs_info
->nr_async_submits
, 0);
2179 atomic_set(&fs_info
->async_delalloc_pages
, 0);
2180 atomic_set(&fs_info
->async_submit_draining
, 0);
2181 atomic_set(&fs_info
->nr_async_bios
, 0);
2182 atomic_set(&fs_info
->defrag_running
, 0);
2183 atomic64_set(&fs_info
->tree_mod_seq
, 0);
2185 fs_info
->max_inline
= 8192 * 1024;
2186 fs_info
->metadata_ratio
= 0;
2187 fs_info
->defrag_inodes
= RB_ROOT
;
2188 fs_info
->free_chunk_space
= 0;
2189 fs_info
->tree_mod_log
= RB_ROOT
;
2190 fs_info
->commit_interval
= BTRFS_DEFAULT_COMMIT_INTERVAL
;
2191 fs_info
->avg_delayed_ref_runtime
= div64_u64(NSEC_PER_SEC
, 64);
2192 /* readahead state */
2193 INIT_RADIX_TREE(&fs_info
->reada_tree
, GFP_NOFS
& ~__GFP_WAIT
);
2194 spin_lock_init(&fs_info
->reada_lock
);
2196 fs_info
->thread_pool_size
= min_t(unsigned long,
2197 num_online_cpus() + 2, 8);
2199 INIT_LIST_HEAD(&fs_info
->ordered_roots
);
2200 spin_lock_init(&fs_info
->ordered_root_lock
);
2201 fs_info
->delayed_root
= kmalloc(sizeof(struct btrfs_delayed_root
),
2203 if (!fs_info
->delayed_root
) {
2207 btrfs_init_delayed_root(fs_info
->delayed_root
);
2209 mutex_init(&fs_info
->scrub_lock
);
2210 atomic_set(&fs_info
->scrubs_running
, 0);
2211 atomic_set(&fs_info
->scrub_pause_req
, 0);
2212 atomic_set(&fs_info
->scrubs_paused
, 0);
2213 atomic_set(&fs_info
->scrub_cancel_req
, 0);
2214 init_waitqueue_head(&fs_info
->scrub_pause_wait
);
2215 fs_info
->scrub_workers_refcnt
= 0;
2216 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2217 fs_info
->check_integrity_print_mask
= 0;
2220 spin_lock_init(&fs_info
->balance_lock
);
2221 mutex_init(&fs_info
->balance_mutex
);
2222 atomic_set(&fs_info
->balance_running
, 0);
2223 atomic_set(&fs_info
->balance_pause_req
, 0);
2224 atomic_set(&fs_info
->balance_cancel_req
, 0);
2225 fs_info
->balance_ctl
= NULL
;
2226 init_waitqueue_head(&fs_info
->balance_wait_q
);
2228 sb
->s_blocksize
= 4096;
2229 sb
->s_blocksize_bits
= blksize_bits(4096);
2230 sb
->s_bdi
= &fs_info
->bdi
;
2232 fs_info
->btree_inode
->i_ino
= BTRFS_BTREE_INODE_OBJECTID
;
2233 set_nlink(fs_info
->btree_inode
, 1);
2235 * we set the i_size on the btree inode to the max possible int.
2236 * the real end of the address space is determined by all of
2237 * the devices in the system
2239 fs_info
->btree_inode
->i_size
= OFFSET_MAX
;
2240 fs_info
->btree_inode
->i_mapping
->a_ops
= &btree_aops
;
2241 fs_info
->btree_inode
->i_mapping
->backing_dev_info
= &fs_info
->bdi
;
2243 RB_CLEAR_NODE(&BTRFS_I(fs_info
->btree_inode
)->rb_node
);
2244 extent_io_tree_init(&BTRFS_I(fs_info
->btree_inode
)->io_tree
,
2245 fs_info
->btree_inode
->i_mapping
);
2246 BTRFS_I(fs_info
->btree_inode
)->io_tree
.track_uptodate
= 0;
2247 extent_map_tree_init(&BTRFS_I(fs_info
->btree_inode
)->extent_tree
);
2249 BTRFS_I(fs_info
->btree_inode
)->io_tree
.ops
= &btree_extent_io_ops
;
2251 BTRFS_I(fs_info
->btree_inode
)->root
= tree_root
;
2252 memset(&BTRFS_I(fs_info
->btree_inode
)->location
, 0,
2253 sizeof(struct btrfs_key
));
2254 set_bit(BTRFS_INODE_DUMMY
,
2255 &BTRFS_I(fs_info
->btree_inode
)->runtime_flags
);
2256 btrfs_insert_inode_hash(fs_info
->btree_inode
);
2258 spin_lock_init(&fs_info
->block_group_cache_lock
);
2259 fs_info
->block_group_cache_tree
= RB_ROOT
;
2260 fs_info
->first_logical_byte
= (u64
)-1;
2262 extent_io_tree_init(&fs_info
->freed_extents
[0],
2263 fs_info
->btree_inode
->i_mapping
);
2264 extent_io_tree_init(&fs_info
->freed_extents
[1],
2265 fs_info
->btree_inode
->i_mapping
);
2266 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
2267 fs_info
->do_barriers
= 1;
2270 mutex_init(&fs_info
->ordered_operations_mutex
);
2271 mutex_init(&fs_info
->ordered_extent_flush_mutex
);
2272 mutex_init(&fs_info
->tree_log_mutex
);
2273 mutex_init(&fs_info
->chunk_mutex
);
2274 mutex_init(&fs_info
->transaction_kthread_mutex
);
2275 mutex_init(&fs_info
->cleaner_mutex
);
2276 mutex_init(&fs_info
->volume_mutex
);
2277 init_rwsem(&fs_info
->extent_commit_sem
);
2278 init_rwsem(&fs_info
->cleanup_work_sem
);
2279 init_rwsem(&fs_info
->subvol_sem
);
2280 sema_init(&fs_info
->uuid_tree_rescan_sem
, 1);
2281 fs_info
->dev_replace
.lock_owner
= 0;
2282 atomic_set(&fs_info
->dev_replace
.nesting_level
, 0);
2283 mutex_init(&fs_info
->dev_replace
.lock_finishing_cancel_unmount
);
2284 mutex_init(&fs_info
->dev_replace
.lock_management_lock
);
2285 mutex_init(&fs_info
->dev_replace
.lock
);
2287 spin_lock_init(&fs_info
->qgroup_lock
);
2288 mutex_init(&fs_info
->qgroup_ioctl_lock
);
2289 fs_info
->qgroup_tree
= RB_ROOT
;
2290 INIT_LIST_HEAD(&fs_info
->dirty_qgroups
);
2291 fs_info
->qgroup_seq
= 1;
2292 fs_info
->quota_enabled
= 0;
2293 fs_info
->pending_quota_state
= 0;
2294 fs_info
->qgroup_ulist
= NULL
;
2295 mutex_init(&fs_info
->qgroup_rescan_lock
);
2297 btrfs_init_free_cluster(&fs_info
->meta_alloc_cluster
);
2298 btrfs_init_free_cluster(&fs_info
->data_alloc_cluster
);
2300 init_waitqueue_head(&fs_info
->transaction_throttle
);
2301 init_waitqueue_head(&fs_info
->transaction_wait
);
2302 init_waitqueue_head(&fs_info
->transaction_blocked_wait
);
2303 init_waitqueue_head(&fs_info
->async_submit_wait
);
2305 ret
= btrfs_alloc_stripe_hash_table(fs_info
);
2311 __setup_root(4096, 4096, 4096, 4096, tree_root
,
2312 fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
2314 invalidate_bdev(fs_devices
->latest_bdev
);
2317 * Read super block and check the signature bytes only
2319 bh
= btrfs_read_dev_super(fs_devices
->latest_bdev
);
2326 * We want to check superblock checksum, the type is stored inside.
2327 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2329 if (btrfs_check_super_csum(bh
->b_data
)) {
2330 printk(KERN_ERR
"BTRFS: superblock checksum mismatch\n");
2336 * super_copy is zeroed at allocation time and we never touch the
2337 * following bytes up to INFO_SIZE, the checksum is calculated from
2338 * the whole block of INFO_SIZE
2340 memcpy(fs_info
->super_copy
, bh
->b_data
, sizeof(*fs_info
->super_copy
));
2341 memcpy(fs_info
->super_for_commit
, fs_info
->super_copy
,
2342 sizeof(*fs_info
->super_for_commit
));
2345 memcpy(fs_info
->fsid
, fs_info
->super_copy
->fsid
, BTRFS_FSID_SIZE
);
2347 ret
= btrfs_check_super_valid(fs_info
, sb
->s_flags
& MS_RDONLY
);
2349 printk(KERN_ERR
"BTRFS: superblock contains fatal errors\n");
2354 disk_super
= fs_info
->super_copy
;
2355 if (!btrfs_super_root(disk_super
))
2358 /* check FS state, whether FS is broken. */
2359 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_ERROR
)
2360 set_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
);
2363 * run through our array of backup supers and setup
2364 * our ring pointer to the oldest one
2366 generation
= btrfs_super_generation(disk_super
);
2367 find_oldest_super_backup(fs_info
, generation
);
2370 * In the long term, we'll store the compression type in the super
2371 * block, and it'll be used for per file compression control.
2373 fs_info
->compress_type
= BTRFS_COMPRESS_ZLIB
;
2375 ret
= btrfs_parse_options(tree_root
, options
);
2381 features
= btrfs_super_incompat_flags(disk_super
) &
2382 ~BTRFS_FEATURE_INCOMPAT_SUPP
;
2384 printk(KERN_ERR
"BTRFS: couldn't mount because of "
2385 "unsupported optional features (%Lx).\n",
2391 if (btrfs_super_leafsize(disk_super
) !=
2392 btrfs_super_nodesize(disk_super
)) {
2393 printk(KERN_ERR
"BTRFS: couldn't mount because metadata "
2394 "blocksizes don't match. node %d leaf %d\n",
2395 btrfs_super_nodesize(disk_super
),
2396 btrfs_super_leafsize(disk_super
));
2400 if (btrfs_super_leafsize(disk_super
) > BTRFS_MAX_METADATA_BLOCKSIZE
) {
2401 printk(KERN_ERR
"BTRFS: couldn't mount because metadata "
2402 "blocksize (%d) was too large\n",
2403 btrfs_super_leafsize(disk_super
));
2408 features
= btrfs_super_incompat_flags(disk_super
);
2409 features
|= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
;
2410 if (tree_root
->fs_info
->compress_type
== BTRFS_COMPRESS_LZO
)
2411 features
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO
;
2413 if (features
& BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA
)
2414 printk(KERN_ERR
"BTRFS: has skinny extents\n");
2417 * flag our filesystem as having big metadata blocks if
2418 * they are bigger than the page size
2420 if (btrfs_super_leafsize(disk_super
) > PAGE_CACHE_SIZE
) {
2421 if (!(features
& BTRFS_FEATURE_INCOMPAT_BIG_METADATA
))
2422 printk(KERN_INFO
"BTRFS: flagging fs with big metadata feature\n");
2423 features
|= BTRFS_FEATURE_INCOMPAT_BIG_METADATA
;
2426 nodesize
= btrfs_super_nodesize(disk_super
);
2427 leafsize
= btrfs_super_leafsize(disk_super
);
2428 sectorsize
= btrfs_super_sectorsize(disk_super
);
2429 stripesize
= btrfs_super_stripesize(disk_super
);
2430 fs_info
->dirty_metadata_batch
= leafsize
* (1 + ilog2(nr_cpu_ids
));
2431 fs_info
->delalloc_batch
= sectorsize
* 512 * (1 + ilog2(nr_cpu_ids
));
2434 * mixed block groups end up with duplicate but slightly offset
2435 * extent buffers for the same range. It leads to corruptions
2437 if ((features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
) &&
2438 (sectorsize
!= leafsize
)) {
2439 printk(KERN_WARNING
"BTRFS: unequal leaf/node/sector sizes "
2440 "are not allowed for mixed block groups on %s\n",
2446 * Needn't use the lock because there is no other task which will
2449 btrfs_set_super_incompat_flags(disk_super
, features
);
2451 features
= btrfs_super_compat_ro_flags(disk_super
) &
2452 ~BTRFS_FEATURE_COMPAT_RO_SUPP
;
2453 if (!(sb
->s_flags
& MS_RDONLY
) && features
) {
2454 printk(KERN_ERR
"BTRFS: couldn't mount RDWR because of "
2455 "unsupported option features (%Lx).\n",
2461 btrfs_init_workers(&fs_info
->generic_worker
,
2462 "genwork", 1, NULL
);
2464 btrfs_init_workers(&fs_info
->workers
, "worker",
2465 fs_info
->thread_pool_size
,
2466 &fs_info
->generic_worker
);
2468 btrfs_init_workers(&fs_info
->delalloc_workers
, "delalloc",
2469 fs_info
->thread_pool_size
, NULL
);
2471 btrfs_init_workers(&fs_info
->flush_workers
, "flush_delalloc",
2472 fs_info
->thread_pool_size
, NULL
);
2474 btrfs_init_workers(&fs_info
->submit_workers
, "submit",
2475 min_t(u64
, fs_devices
->num_devices
,
2476 fs_info
->thread_pool_size
), NULL
);
2478 btrfs_init_workers(&fs_info
->caching_workers
, "cache",
2479 fs_info
->thread_pool_size
, NULL
);
2481 /* a higher idle thresh on the submit workers makes it much more
2482 * likely that bios will be send down in a sane order to the
2485 fs_info
->submit_workers
.idle_thresh
= 64;
2487 fs_info
->workers
.idle_thresh
= 16;
2488 fs_info
->workers
.ordered
= 1;
2490 fs_info
->delalloc_workers
.idle_thresh
= 2;
2491 fs_info
->delalloc_workers
.ordered
= 1;
2493 btrfs_init_workers(&fs_info
->fixup_workers
, "fixup", 1,
2494 &fs_info
->generic_worker
);
2495 btrfs_init_workers(&fs_info
->endio_workers
, "endio",
2496 fs_info
->thread_pool_size
,
2497 &fs_info
->generic_worker
);
2498 btrfs_init_workers(&fs_info
->endio_meta_workers
, "endio-meta",
2499 fs_info
->thread_pool_size
,
2500 &fs_info
->generic_worker
);
2501 btrfs_init_workers(&fs_info
->endio_meta_write_workers
,
2502 "endio-meta-write", fs_info
->thread_pool_size
,
2503 &fs_info
->generic_worker
);
2504 btrfs_init_workers(&fs_info
->endio_raid56_workers
,
2505 "endio-raid56", fs_info
->thread_pool_size
,
2506 &fs_info
->generic_worker
);
2507 btrfs_init_workers(&fs_info
->rmw_workers
,
2508 "rmw", fs_info
->thread_pool_size
,
2509 &fs_info
->generic_worker
);
2510 btrfs_init_workers(&fs_info
->endio_write_workers
, "endio-write",
2511 fs_info
->thread_pool_size
,
2512 &fs_info
->generic_worker
);
2513 btrfs_init_workers(&fs_info
->endio_freespace_worker
, "freespace-write",
2514 1, &fs_info
->generic_worker
);
2515 btrfs_init_workers(&fs_info
->delayed_workers
, "delayed-meta",
2516 fs_info
->thread_pool_size
,
2517 &fs_info
->generic_worker
);
2518 btrfs_init_workers(&fs_info
->readahead_workers
, "readahead",
2519 fs_info
->thread_pool_size
,
2520 &fs_info
->generic_worker
);
2521 btrfs_init_workers(&fs_info
->qgroup_rescan_workers
, "qgroup-rescan", 1,
2522 &fs_info
->generic_worker
);
2525 * endios are largely parallel and should have a very
2528 fs_info
->endio_workers
.idle_thresh
= 4;
2529 fs_info
->endio_meta_workers
.idle_thresh
= 4;
2530 fs_info
->endio_raid56_workers
.idle_thresh
= 4;
2531 fs_info
->rmw_workers
.idle_thresh
= 2;
2533 fs_info
->endio_write_workers
.idle_thresh
= 2;
2534 fs_info
->endio_meta_write_workers
.idle_thresh
= 2;
2535 fs_info
->readahead_workers
.idle_thresh
= 2;
2538 * btrfs_start_workers can really only fail because of ENOMEM so just
2539 * return -ENOMEM if any of these fail.
2541 ret
= btrfs_start_workers(&fs_info
->workers
);
2542 ret
|= btrfs_start_workers(&fs_info
->generic_worker
);
2543 ret
|= btrfs_start_workers(&fs_info
->submit_workers
);
2544 ret
|= btrfs_start_workers(&fs_info
->delalloc_workers
);
2545 ret
|= btrfs_start_workers(&fs_info
->fixup_workers
);
2546 ret
|= btrfs_start_workers(&fs_info
->endio_workers
);
2547 ret
|= btrfs_start_workers(&fs_info
->endio_meta_workers
);
2548 ret
|= btrfs_start_workers(&fs_info
->rmw_workers
);
2549 ret
|= btrfs_start_workers(&fs_info
->endio_raid56_workers
);
2550 ret
|= btrfs_start_workers(&fs_info
->endio_meta_write_workers
);
2551 ret
|= btrfs_start_workers(&fs_info
->endio_write_workers
);
2552 ret
|= btrfs_start_workers(&fs_info
->endio_freespace_worker
);
2553 ret
|= btrfs_start_workers(&fs_info
->delayed_workers
);
2554 ret
|= btrfs_start_workers(&fs_info
->caching_workers
);
2555 ret
|= btrfs_start_workers(&fs_info
->readahead_workers
);
2556 ret
|= btrfs_start_workers(&fs_info
->flush_workers
);
2557 ret
|= btrfs_start_workers(&fs_info
->qgroup_rescan_workers
);
2560 goto fail_sb_buffer
;
2563 fs_info
->bdi
.ra_pages
*= btrfs_super_num_devices(disk_super
);
2564 fs_info
->bdi
.ra_pages
= max(fs_info
->bdi
.ra_pages
,
2565 4 * 1024 * 1024 / PAGE_CACHE_SIZE
);
2567 tree_root
->nodesize
= nodesize
;
2568 tree_root
->leafsize
= leafsize
;
2569 tree_root
->sectorsize
= sectorsize
;
2570 tree_root
->stripesize
= stripesize
;
2572 sb
->s_blocksize
= sectorsize
;
2573 sb
->s_blocksize_bits
= blksize_bits(sectorsize
);
2575 if (btrfs_super_magic(disk_super
) != BTRFS_MAGIC
) {
2576 printk(KERN_INFO
"BTRFS: valid FS not found on %s\n", sb
->s_id
);
2577 goto fail_sb_buffer
;
2580 if (sectorsize
!= PAGE_SIZE
) {
2581 printk(KERN_WARNING
"BTRFS: Incompatible sector size(%lu) "
2582 "found on %s\n", (unsigned long)sectorsize
, sb
->s_id
);
2583 goto fail_sb_buffer
;
2586 mutex_lock(&fs_info
->chunk_mutex
);
2587 ret
= btrfs_read_sys_array(tree_root
);
2588 mutex_unlock(&fs_info
->chunk_mutex
);
2590 printk(KERN_WARNING
"BTRFS: failed to read the system "
2591 "array on %s\n", sb
->s_id
);
2592 goto fail_sb_buffer
;
2595 blocksize
= btrfs_level_size(tree_root
,
2596 btrfs_super_chunk_root_level(disk_super
));
2597 generation
= btrfs_super_chunk_root_generation(disk_super
);
2599 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
2600 chunk_root
, fs_info
, BTRFS_CHUNK_TREE_OBJECTID
);
2602 chunk_root
->node
= read_tree_block(chunk_root
,
2603 btrfs_super_chunk_root(disk_super
),
2604 blocksize
, generation
);
2605 if (!chunk_root
->node
||
2606 !test_bit(EXTENT_BUFFER_UPTODATE
, &chunk_root
->node
->bflags
)) {
2607 printk(KERN_WARNING
"BTRFS: failed to read chunk root on %s\n",
2609 goto fail_tree_roots
;
2611 btrfs_set_root_node(&chunk_root
->root_item
, chunk_root
->node
);
2612 chunk_root
->commit_root
= btrfs_root_node(chunk_root
);
2614 read_extent_buffer(chunk_root
->node
, fs_info
->chunk_tree_uuid
,
2615 btrfs_header_chunk_tree_uuid(chunk_root
->node
), BTRFS_UUID_SIZE
);
2617 ret
= btrfs_read_chunk_tree(chunk_root
);
2619 printk(KERN_WARNING
"BTRFS: failed to read chunk tree on %s\n",
2621 goto fail_tree_roots
;
2625 * keep the device that is marked to be the target device for the
2626 * dev_replace procedure
2628 btrfs_close_extra_devices(fs_info
, fs_devices
, 0);
2630 if (!fs_devices
->latest_bdev
) {
2631 printk(KERN_CRIT
"BTRFS: failed to read devices on %s\n",
2633 goto fail_tree_roots
;
2637 blocksize
= btrfs_level_size(tree_root
,
2638 btrfs_super_root_level(disk_super
));
2639 generation
= btrfs_super_generation(disk_super
);
2641 tree_root
->node
= read_tree_block(tree_root
,
2642 btrfs_super_root(disk_super
),
2643 blocksize
, generation
);
2644 if (!tree_root
->node
||
2645 !test_bit(EXTENT_BUFFER_UPTODATE
, &tree_root
->node
->bflags
)) {
2646 printk(KERN_WARNING
"BTRFS: failed to read tree root on %s\n",
2649 goto recovery_tree_root
;
2652 btrfs_set_root_node(&tree_root
->root_item
, tree_root
->node
);
2653 tree_root
->commit_root
= btrfs_root_node(tree_root
);
2654 btrfs_set_root_refs(&tree_root
->root_item
, 1);
2656 location
.objectid
= BTRFS_EXTENT_TREE_OBJECTID
;
2657 location
.type
= BTRFS_ROOT_ITEM_KEY
;
2658 location
.offset
= 0;
2660 extent_root
= btrfs_read_tree_root(tree_root
, &location
);
2661 if (IS_ERR(extent_root
)) {
2662 ret
= PTR_ERR(extent_root
);
2663 goto recovery_tree_root
;
2665 extent_root
->track_dirty
= 1;
2666 fs_info
->extent_root
= extent_root
;
2668 location
.objectid
= BTRFS_DEV_TREE_OBJECTID
;
2669 dev_root
= btrfs_read_tree_root(tree_root
, &location
);
2670 if (IS_ERR(dev_root
)) {
2671 ret
= PTR_ERR(dev_root
);
2672 goto recovery_tree_root
;
2674 dev_root
->track_dirty
= 1;
2675 fs_info
->dev_root
= dev_root
;
2676 btrfs_init_devices_late(fs_info
);
2678 location
.objectid
= BTRFS_CSUM_TREE_OBJECTID
;
2679 csum_root
= btrfs_read_tree_root(tree_root
, &location
);
2680 if (IS_ERR(csum_root
)) {
2681 ret
= PTR_ERR(csum_root
);
2682 goto recovery_tree_root
;
2684 csum_root
->track_dirty
= 1;
2685 fs_info
->csum_root
= csum_root
;
2687 location
.objectid
= BTRFS_QUOTA_TREE_OBJECTID
;
2688 quota_root
= btrfs_read_tree_root(tree_root
, &location
);
2689 if (!IS_ERR(quota_root
)) {
2690 quota_root
->track_dirty
= 1;
2691 fs_info
->quota_enabled
= 1;
2692 fs_info
->pending_quota_state
= 1;
2693 fs_info
->quota_root
= quota_root
;
2696 location
.objectid
= BTRFS_UUID_TREE_OBJECTID
;
2697 uuid_root
= btrfs_read_tree_root(tree_root
, &location
);
2698 if (IS_ERR(uuid_root
)) {
2699 ret
= PTR_ERR(uuid_root
);
2701 goto recovery_tree_root
;
2702 create_uuid_tree
= true;
2703 check_uuid_tree
= false;
2705 uuid_root
->track_dirty
= 1;
2706 fs_info
->uuid_root
= uuid_root
;
2707 create_uuid_tree
= false;
2709 generation
!= btrfs_super_uuid_tree_generation(disk_super
);
2712 fs_info
->generation
= generation
;
2713 fs_info
->last_trans_committed
= generation
;
2715 ret
= btrfs_recover_balance(fs_info
);
2717 printk(KERN_WARNING
"BTRFS: failed to recover balance\n");
2718 goto fail_block_groups
;
2721 ret
= btrfs_init_dev_stats(fs_info
);
2723 printk(KERN_ERR
"BTRFS: failed to init dev_stats: %d\n",
2725 goto fail_block_groups
;
2728 ret
= btrfs_init_dev_replace(fs_info
);
2730 pr_err("BTRFS: failed to init dev_replace: %d\n", ret
);
2731 goto fail_block_groups
;
2734 btrfs_close_extra_devices(fs_info
, fs_devices
, 1);
2736 ret
= btrfs_sysfs_add_one(fs_info
);
2738 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret
);
2739 goto fail_block_groups
;
2742 ret
= btrfs_init_space_info(fs_info
);
2744 printk(KERN_ERR
"BTRFS: Failed to initial space info: %d\n", ret
);
2748 ret
= btrfs_read_block_groups(extent_root
);
2750 printk(KERN_ERR
"BTRFS: Failed to read block groups: %d\n", ret
);
2753 fs_info
->num_tolerated_disk_barrier_failures
=
2754 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
);
2755 if (fs_info
->fs_devices
->missing_devices
>
2756 fs_info
->num_tolerated_disk_barrier_failures
&&
2757 !(sb
->s_flags
& MS_RDONLY
)) {
2758 printk(KERN_WARNING
"BTRFS: "
2759 "too many missing devices, writeable mount is not allowed\n");
2763 fs_info
->cleaner_kthread
= kthread_run(cleaner_kthread
, tree_root
,
2765 if (IS_ERR(fs_info
->cleaner_kthread
))
2768 fs_info
->transaction_kthread
= kthread_run(transaction_kthread
,
2770 "btrfs-transaction");
2771 if (IS_ERR(fs_info
->transaction_kthread
))
2774 if (!btrfs_test_opt(tree_root
, SSD
) &&
2775 !btrfs_test_opt(tree_root
, NOSSD
) &&
2776 !fs_info
->fs_devices
->rotating
) {
2777 printk(KERN_INFO
"BTRFS: detected SSD devices, enabling SSD "
2779 btrfs_set_opt(fs_info
->mount_opt
, SSD
);
2782 /* Set the real inode map cache flag */
2783 if (btrfs_test_opt(tree_root
, CHANGE_INODE_CACHE
))
2784 btrfs_set_opt(tree_root
->fs_info
->mount_opt
, INODE_MAP_CACHE
);
2786 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2787 if (btrfs_test_opt(tree_root
, CHECK_INTEGRITY
)) {
2788 ret
= btrfsic_mount(tree_root
, fs_devices
,
2789 btrfs_test_opt(tree_root
,
2790 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA
) ?
2792 fs_info
->check_integrity_print_mask
);
2794 printk(KERN_WARNING
"BTRFS: failed to initialize"
2795 " integrity check module %s\n", sb
->s_id
);
2798 ret
= btrfs_read_qgroup_config(fs_info
);
2800 goto fail_trans_kthread
;
2802 /* do not make disk changes in broken FS */
2803 if (btrfs_super_log_root(disk_super
) != 0) {
2804 u64 bytenr
= btrfs_super_log_root(disk_super
);
2806 if (fs_devices
->rw_devices
== 0) {
2807 printk(KERN_WARNING
"BTRFS: log replay required "
2813 btrfs_level_size(tree_root
,
2814 btrfs_super_log_root_level(disk_super
));
2816 log_tree_root
= btrfs_alloc_root(fs_info
);
2817 if (!log_tree_root
) {
2822 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
2823 log_tree_root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
2825 log_tree_root
->node
= read_tree_block(tree_root
, bytenr
,
2828 if (!log_tree_root
->node
||
2829 !extent_buffer_uptodate(log_tree_root
->node
)) {
2830 printk(KERN_ERR
"BTRFS: failed to read log tree\n");
2831 free_extent_buffer(log_tree_root
->node
);
2832 kfree(log_tree_root
);
2833 goto fail_trans_kthread
;
2835 /* returns with log_tree_root freed on success */
2836 ret
= btrfs_recover_log_trees(log_tree_root
);
2838 btrfs_error(tree_root
->fs_info
, ret
,
2839 "Failed to recover log tree");
2840 free_extent_buffer(log_tree_root
->node
);
2841 kfree(log_tree_root
);
2842 goto fail_trans_kthread
;
2845 if (sb
->s_flags
& MS_RDONLY
) {
2846 ret
= btrfs_commit_super(tree_root
);
2848 goto fail_trans_kthread
;
2852 ret
= btrfs_find_orphan_roots(tree_root
);
2854 goto fail_trans_kthread
;
2856 if (!(sb
->s_flags
& MS_RDONLY
)) {
2857 ret
= btrfs_cleanup_fs_roots(fs_info
);
2859 goto fail_trans_kthread
;
2861 ret
= btrfs_recover_relocation(tree_root
);
2864 "BTRFS: failed to recover relocation\n");
2870 location
.objectid
= BTRFS_FS_TREE_OBJECTID
;
2871 location
.type
= BTRFS_ROOT_ITEM_KEY
;
2872 location
.offset
= 0;
2874 fs_info
->fs_root
= btrfs_read_fs_root_no_name(fs_info
, &location
);
2875 if (IS_ERR(fs_info
->fs_root
)) {
2876 err
= PTR_ERR(fs_info
->fs_root
);
2880 if (sb
->s_flags
& MS_RDONLY
)
2883 down_read(&fs_info
->cleanup_work_sem
);
2884 if ((ret
= btrfs_orphan_cleanup(fs_info
->fs_root
)) ||
2885 (ret
= btrfs_orphan_cleanup(fs_info
->tree_root
))) {
2886 up_read(&fs_info
->cleanup_work_sem
);
2887 close_ctree(tree_root
);
2890 up_read(&fs_info
->cleanup_work_sem
);
2892 ret
= btrfs_resume_balance_async(fs_info
);
2894 printk(KERN_WARNING
"BTRFS: failed to resume balance\n");
2895 close_ctree(tree_root
);
2899 ret
= btrfs_resume_dev_replace_async(fs_info
);
2901 pr_warn("BTRFS: failed to resume dev_replace\n");
2902 close_ctree(tree_root
);
2906 btrfs_qgroup_rescan_resume(fs_info
);
2908 if (create_uuid_tree
) {
2909 pr_info("BTRFS: creating UUID tree\n");
2910 ret
= btrfs_create_uuid_tree(fs_info
);
2912 pr_warn("BTRFS: failed to create the UUID tree %d\n",
2914 close_ctree(tree_root
);
2917 } else if (check_uuid_tree
||
2918 btrfs_test_opt(tree_root
, RESCAN_UUID_TREE
)) {
2919 pr_info("BTRFS: checking UUID tree\n");
2920 ret
= btrfs_check_uuid_tree(fs_info
);
2922 pr_warn("BTRFS: failed to check the UUID tree %d\n",
2924 close_ctree(tree_root
);
2928 fs_info
->update_uuid_tree_gen
= 1;
2934 btrfs_free_qgroup_config(fs_info
);
2936 kthread_stop(fs_info
->transaction_kthread
);
2937 btrfs_cleanup_transaction(fs_info
->tree_root
);
2938 del_fs_roots(fs_info
);
2940 kthread_stop(fs_info
->cleaner_kthread
);
2943 * make sure we're done with the btree inode before we stop our
2946 filemap_write_and_wait(fs_info
->btree_inode
->i_mapping
);
2949 btrfs_sysfs_remove_one(fs_info
);
2952 btrfs_put_block_group_cache(fs_info
);
2953 btrfs_free_block_groups(fs_info
);
2956 free_root_pointers(fs_info
, 1);
2957 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
2960 btrfs_stop_all_workers(fs_info
);
2963 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
2965 iput(fs_info
->btree_inode
);
2966 fail_delalloc_bytes
:
2967 percpu_counter_destroy(&fs_info
->delalloc_bytes
);
2968 fail_dirty_metadata_bytes
:
2969 percpu_counter_destroy(&fs_info
->dirty_metadata_bytes
);
2971 bdi_destroy(&fs_info
->bdi
);
2973 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
2975 btrfs_free_stripe_hash_table(fs_info
);
2976 btrfs_close_devices(fs_info
->fs_devices
);
2980 if (!btrfs_test_opt(tree_root
, RECOVERY
))
2981 goto fail_tree_roots
;
2983 free_root_pointers(fs_info
, 0);
2985 /* don't use the log in recovery mode, it won't be valid */
2986 btrfs_set_super_log_root(disk_super
, 0);
2988 /* we can't trust the free space cache either */
2989 btrfs_set_opt(fs_info
->mount_opt
, CLEAR_CACHE
);
2991 ret
= next_root_backup(fs_info
, fs_info
->super_copy
,
2992 &num_backups_tried
, &backup_index
);
2994 goto fail_block_groups
;
2995 goto retry_root_backup
;
2998 static void btrfs_end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
3001 set_buffer_uptodate(bh
);
3003 struct btrfs_device
*device
= (struct btrfs_device
*)
3006 printk_ratelimited_in_rcu(KERN_WARNING
"BTRFS: lost page write due to "
3007 "I/O error on %s\n",
3008 rcu_str_deref(device
->name
));
3009 /* note, we dont' set_buffer_write_io_error because we have
3010 * our own ways of dealing with the IO errors
3012 clear_buffer_uptodate(bh
);
3013 btrfs_dev_stat_inc_and_print(device
, BTRFS_DEV_STAT_WRITE_ERRS
);
3019 struct buffer_head
*btrfs_read_dev_super(struct block_device
*bdev
)
3021 struct buffer_head
*bh
;
3022 struct buffer_head
*latest
= NULL
;
3023 struct btrfs_super_block
*super
;
3028 /* we would like to check all the supers, but that would make
3029 * a btrfs mount succeed after a mkfs from a different FS.
3030 * So, we need to add a special mount option to scan for
3031 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3033 for (i
= 0; i
< 1; i
++) {
3034 bytenr
= btrfs_sb_offset(i
);
3035 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
3036 i_size_read(bdev
->bd_inode
))
3038 bh
= __bread(bdev
, bytenr
/ 4096,
3039 BTRFS_SUPER_INFO_SIZE
);
3043 super
= (struct btrfs_super_block
*)bh
->b_data
;
3044 if (btrfs_super_bytenr(super
) != bytenr
||
3045 btrfs_super_magic(super
) != BTRFS_MAGIC
) {
3050 if (!latest
|| btrfs_super_generation(super
) > transid
) {
3053 transid
= btrfs_super_generation(super
);
3062 * this should be called twice, once with wait == 0 and
3063 * once with wait == 1. When wait == 0 is done, all the buffer heads
3064 * we write are pinned.
3066 * They are released when wait == 1 is done.
3067 * max_mirrors must be the same for both runs, and it indicates how
3068 * many supers on this one device should be written.
3070 * max_mirrors == 0 means to write them all.
3072 static int write_dev_supers(struct btrfs_device
*device
,
3073 struct btrfs_super_block
*sb
,
3074 int do_barriers
, int wait
, int max_mirrors
)
3076 struct buffer_head
*bh
;
3083 if (max_mirrors
== 0)
3084 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
3086 for (i
= 0; i
< max_mirrors
; i
++) {
3087 bytenr
= btrfs_sb_offset(i
);
3088 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>= device
->total_bytes
)
3092 bh
= __find_get_block(device
->bdev
, bytenr
/ 4096,
3093 BTRFS_SUPER_INFO_SIZE
);
3099 if (!buffer_uptodate(bh
))
3102 /* drop our reference */
3105 /* drop the reference from the wait == 0 run */
3109 btrfs_set_super_bytenr(sb
, bytenr
);
3112 crc
= btrfs_csum_data((char *)sb
+
3113 BTRFS_CSUM_SIZE
, crc
,
3114 BTRFS_SUPER_INFO_SIZE
-
3116 btrfs_csum_final(crc
, sb
->csum
);
3119 * one reference for us, and we leave it for the
3122 bh
= __getblk(device
->bdev
, bytenr
/ 4096,
3123 BTRFS_SUPER_INFO_SIZE
);
3125 printk(KERN_ERR
"BTRFS: couldn't get super "
3126 "buffer head for bytenr %Lu\n", bytenr
);
3131 memcpy(bh
->b_data
, sb
, BTRFS_SUPER_INFO_SIZE
);
3133 /* one reference for submit_bh */
3136 set_buffer_uptodate(bh
);
3138 bh
->b_end_io
= btrfs_end_buffer_write_sync
;
3139 bh
->b_private
= device
;
3143 * we fua the first super. The others we allow
3147 ret
= btrfsic_submit_bh(WRITE_FUA
, bh
);
3149 ret
= btrfsic_submit_bh(WRITE_SYNC
, bh
);
3153 return errors
< i
? 0 : -1;
3157 * endio for the write_dev_flush, this will wake anyone waiting
3158 * for the barrier when it is done
3160 static void btrfs_end_empty_barrier(struct bio
*bio
, int err
)
3163 if (err
== -EOPNOTSUPP
)
3164 set_bit(BIO_EOPNOTSUPP
, &bio
->bi_flags
);
3165 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
3167 if (bio
->bi_private
)
3168 complete(bio
->bi_private
);
3173 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3174 * sent down. With wait == 1, it waits for the previous flush.
3176 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3179 static int write_dev_flush(struct btrfs_device
*device
, int wait
)
3184 if (device
->nobarriers
)
3188 bio
= device
->flush_bio
;
3192 wait_for_completion(&device
->flush_wait
);
3194 if (bio_flagged(bio
, BIO_EOPNOTSUPP
)) {
3195 printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3196 rcu_str_deref(device
->name
));
3197 device
->nobarriers
= 1;
3198 } else if (!bio_flagged(bio
, BIO_UPTODATE
)) {
3200 btrfs_dev_stat_inc_and_print(device
,
3201 BTRFS_DEV_STAT_FLUSH_ERRS
);
3204 /* drop the reference from the wait == 0 run */
3206 device
->flush_bio
= NULL
;
3212 * one reference for us, and we leave it for the
3215 device
->flush_bio
= NULL
;
3216 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 0);
3220 bio
->bi_end_io
= btrfs_end_empty_barrier
;
3221 bio
->bi_bdev
= device
->bdev
;
3222 init_completion(&device
->flush_wait
);
3223 bio
->bi_private
= &device
->flush_wait
;
3224 device
->flush_bio
= bio
;
3227 btrfsic_submit_bio(WRITE_FLUSH
, bio
);
3233 * send an empty flush down to each device in parallel,
3234 * then wait for them
3236 static int barrier_all_devices(struct btrfs_fs_info
*info
)
3238 struct list_head
*head
;
3239 struct btrfs_device
*dev
;
3240 int errors_send
= 0;
3241 int errors_wait
= 0;
3244 /* send down all the barriers */
3245 head
= &info
->fs_devices
->devices
;
3246 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3251 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3254 ret
= write_dev_flush(dev
, 0);
3259 /* wait for all the barriers */
3260 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3265 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3268 ret
= write_dev_flush(dev
, 1);
3272 if (errors_send
> info
->num_tolerated_disk_barrier_failures
||
3273 errors_wait
> info
->num_tolerated_disk_barrier_failures
)
3278 int btrfs_calc_num_tolerated_disk_barrier_failures(
3279 struct btrfs_fs_info
*fs_info
)
3281 struct btrfs_ioctl_space_info space
;
3282 struct btrfs_space_info
*sinfo
;
3283 u64 types
[] = {BTRFS_BLOCK_GROUP_DATA
,
3284 BTRFS_BLOCK_GROUP_SYSTEM
,
3285 BTRFS_BLOCK_GROUP_METADATA
,
3286 BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
};
3290 int num_tolerated_disk_barrier_failures
=
3291 (int)fs_info
->fs_devices
->num_devices
;
3293 for (i
= 0; i
< num_types
; i
++) {
3294 struct btrfs_space_info
*tmp
;
3298 list_for_each_entry_rcu(tmp
, &fs_info
->space_info
, list
) {
3299 if (tmp
->flags
== types
[i
]) {
3309 down_read(&sinfo
->groups_sem
);
3310 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
3311 if (!list_empty(&sinfo
->block_groups
[c
])) {
3314 btrfs_get_block_group_info(
3315 &sinfo
->block_groups
[c
], &space
);
3316 if (space
.total_bytes
== 0 ||
3317 space
.used_bytes
== 0)
3319 flags
= space
.flags
;
3322 * 0: if dup, single or RAID0 is configured for
3323 * any of metadata, system or data, else
3324 * 1: if RAID5 is configured, or if RAID1 or
3325 * RAID10 is configured and only two mirrors
3327 * 2: if RAID6 is configured, else
3328 * num_mirrors - 1: if RAID1 or RAID10 is
3329 * configured and more than
3330 * 2 mirrors are used.
3332 if (num_tolerated_disk_barrier_failures
> 0 &&
3333 ((flags
& (BTRFS_BLOCK_GROUP_DUP
|
3334 BTRFS_BLOCK_GROUP_RAID0
)) ||
3335 ((flags
& BTRFS_BLOCK_GROUP_PROFILE_MASK
)
3337 num_tolerated_disk_barrier_failures
= 0;
3338 else if (num_tolerated_disk_barrier_failures
> 1) {
3339 if (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
3340 BTRFS_BLOCK_GROUP_RAID5
|
3341 BTRFS_BLOCK_GROUP_RAID10
)) {
3342 num_tolerated_disk_barrier_failures
= 1;
3344 BTRFS_BLOCK_GROUP_RAID6
) {
3345 num_tolerated_disk_barrier_failures
= 2;
3350 up_read(&sinfo
->groups_sem
);
3353 return num_tolerated_disk_barrier_failures
;
3356 static int write_all_supers(struct btrfs_root
*root
, int max_mirrors
)
3358 struct list_head
*head
;
3359 struct btrfs_device
*dev
;
3360 struct btrfs_super_block
*sb
;
3361 struct btrfs_dev_item
*dev_item
;
3365 int total_errors
= 0;
3368 do_barriers
= !btrfs_test_opt(root
, NOBARRIER
);
3369 backup_super_roots(root
->fs_info
);
3371 sb
= root
->fs_info
->super_for_commit
;
3372 dev_item
= &sb
->dev_item
;
3374 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
3375 head
= &root
->fs_info
->fs_devices
->devices
;
3376 max_errors
= btrfs_super_num_devices(root
->fs_info
->super_copy
) - 1;
3379 ret
= barrier_all_devices(root
->fs_info
);
3382 &root
->fs_info
->fs_devices
->device_list_mutex
);
3383 btrfs_error(root
->fs_info
, ret
,
3384 "errors while submitting device barriers.");
3389 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3394 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3397 btrfs_set_stack_device_generation(dev_item
, 0);
3398 btrfs_set_stack_device_type(dev_item
, dev
->type
);
3399 btrfs_set_stack_device_id(dev_item
, dev
->devid
);
3400 btrfs_set_stack_device_total_bytes(dev_item
, dev
->total_bytes
);
3401 btrfs_set_stack_device_bytes_used(dev_item
, dev
->bytes_used
);
3402 btrfs_set_stack_device_io_align(dev_item
, dev
->io_align
);
3403 btrfs_set_stack_device_io_width(dev_item
, dev
->io_width
);
3404 btrfs_set_stack_device_sector_size(dev_item
, dev
->sector_size
);
3405 memcpy(dev_item
->uuid
, dev
->uuid
, BTRFS_UUID_SIZE
);
3406 memcpy(dev_item
->fsid
, dev
->fs_devices
->fsid
, BTRFS_UUID_SIZE
);
3408 flags
= btrfs_super_flags(sb
);
3409 btrfs_set_super_flags(sb
, flags
| BTRFS_HEADER_FLAG_WRITTEN
);
3411 ret
= write_dev_supers(dev
, sb
, do_barriers
, 0, max_mirrors
);
3415 if (total_errors
> max_errors
) {
3416 btrfs_err(root
->fs_info
, "%d errors while writing supers",
3418 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
3420 /* FUA is masked off if unsupported and can't be the reason */
3421 btrfs_error(root
->fs_info
, -EIO
,
3422 "%d errors while writing supers", total_errors
);
3427 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3430 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3433 ret
= write_dev_supers(dev
, sb
, do_barriers
, 1, max_mirrors
);
3437 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
3438 if (total_errors
> max_errors
) {
3439 btrfs_error(root
->fs_info
, -EIO
,
3440 "%d errors while writing supers", total_errors
);
3446 int write_ctree_super(struct btrfs_trans_handle
*trans
,
3447 struct btrfs_root
*root
, int max_mirrors
)
3449 return write_all_supers(root
, max_mirrors
);
3452 /* Drop a fs root from the radix tree and free it. */
3453 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info
*fs_info
,
3454 struct btrfs_root
*root
)
3456 spin_lock(&fs_info
->fs_roots_radix_lock
);
3457 radix_tree_delete(&fs_info
->fs_roots_radix
,
3458 (unsigned long)root
->root_key
.objectid
);
3459 spin_unlock(&fs_info
->fs_roots_radix_lock
);
3461 if (btrfs_root_refs(&root
->root_item
) == 0)
3462 synchronize_srcu(&fs_info
->subvol_srcu
);
3464 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
3465 btrfs_free_log(NULL
, root
);
3467 __btrfs_remove_free_space_cache(root
->free_ino_pinned
);
3468 __btrfs_remove_free_space_cache(root
->free_ino_ctl
);
3472 static void free_fs_root(struct btrfs_root
*root
)
3474 iput(root
->cache_inode
);
3475 WARN_ON(!RB_EMPTY_ROOT(&root
->inode_tree
));
3476 btrfs_free_block_rsv(root
, root
->orphan_block_rsv
);
3477 root
->orphan_block_rsv
= NULL
;
3479 free_anon_bdev(root
->anon_dev
);
3480 free_extent_buffer(root
->node
);
3481 free_extent_buffer(root
->commit_root
);
3482 kfree(root
->free_ino_ctl
);
3483 kfree(root
->free_ino_pinned
);
3485 btrfs_put_fs_root(root
);
3488 void btrfs_free_fs_root(struct btrfs_root
*root
)
3493 int btrfs_cleanup_fs_roots(struct btrfs_fs_info
*fs_info
)
3495 u64 root_objectid
= 0;
3496 struct btrfs_root
*gang
[8];
3501 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
3502 (void **)gang
, root_objectid
,
3507 root_objectid
= gang
[ret
- 1]->root_key
.objectid
+ 1;
3508 for (i
= 0; i
< ret
; i
++) {
3511 root_objectid
= gang
[i
]->root_key
.objectid
;
3512 err
= btrfs_orphan_cleanup(gang
[i
]);
3521 int btrfs_commit_super(struct btrfs_root
*root
)
3523 struct btrfs_trans_handle
*trans
;
3525 mutex_lock(&root
->fs_info
->cleaner_mutex
);
3526 btrfs_run_delayed_iputs(root
);
3527 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
3528 wake_up_process(root
->fs_info
->cleaner_kthread
);
3530 /* wait until ongoing cleanup work done */
3531 down_write(&root
->fs_info
->cleanup_work_sem
);
3532 up_write(&root
->fs_info
->cleanup_work_sem
);
3534 trans
= btrfs_join_transaction(root
);
3536 return PTR_ERR(trans
);
3537 return btrfs_commit_transaction(trans
, root
);
3540 int close_ctree(struct btrfs_root
*root
)
3542 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3545 fs_info
->closing
= 1;
3548 /* wait for the uuid_scan task to finish */
3549 down(&fs_info
->uuid_tree_rescan_sem
);
3550 /* avoid complains from lockdep et al., set sem back to initial state */
3551 up(&fs_info
->uuid_tree_rescan_sem
);
3553 /* pause restriper - we want to resume on mount */
3554 btrfs_pause_balance(fs_info
);
3556 btrfs_dev_replace_suspend_for_unmount(fs_info
);
3558 btrfs_scrub_cancel(fs_info
);
3560 /* wait for any defraggers to finish */
3561 wait_event(fs_info
->transaction_wait
,
3562 (atomic_read(&fs_info
->defrag_running
) == 0));
3564 /* clear out the rbtree of defraggable inodes */
3565 btrfs_cleanup_defrag_inodes(fs_info
);
3567 if (!(fs_info
->sb
->s_flags
& MS_RDONLY
)) {
3568 ret
= btrfs_commit_super(root
);
3570 btrfs_err(root
->fs_info
, "commit super ret %d", ret
);
3573 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
3574 btrfs_error_commit_super(root
);
3576 kthread_stop(fs_info
->transaction_kthread
);
3577 kthread_stop(fs_info
->cleaner_kthread
);
3579 fs_info
->closing
= 2;
3582 btrfs_free_qgroup_config(root
->fs_info
);
3584 if (percpu_counter_sum(&fs_info
->delalloc_bytes
)) {
3585 btrfs_info(root
->fs_info
, "at unmount delalloc count %lld",
3586 percpu_counter_sum(&fs_info
->delalloc_bytes
));
3589 btrfs_sysfs_remove_one(fs_info
);
3591 del_fs_roots(fs_info
);
3593 btrfs_put_block_group_cache(fs_info
);
3595 btrfs_free_block_groups(fs_info
);
3597 btrfs_stop_all_workers(fs_info
);
3599 free_root_pointers(fs_info
, 1);
3601 iput(fs_info
->btree_inode
);
3603 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3604 if (btrfs_test_opt(root
, CHECK_INTEGRITY
))
3605 btrfsic_unmount(root
, fs_info
->fs_devices
);
3608 btrfs_close_devices(fs_info
->fs_devices
);
3609 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
3611 percpu_counter_destroy(&fs_info
->dirty_metadata_bytes
);
3612 percpu_counter_destroy(&fs_info
->delalloc_bytes
);
3613 bdi_destroy(&fs_info
->bdi
);
3614 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
3616 btrfs_free_stripe_hash_table(fs_info
);
3618 btrfs_free_block_rsv(root
, root
->orphan_block_rsv
);
3619 root
->orphan_block_rsv
= NULL
;
3624 int btrfs_buffer_uptodate(struct extent_buffer
*buf
, u64 parent_transid
,
3628 struct inode
*btree_inode
= buf
->pages
[0]->mapping
->host
;
3630 ret
= extent_buffer_uptodate(buf
);
3634 ret
= verify_parent_transid(&BTRFS_I(btree_inode
)->io_tree
, buf
,
3635 parent_transid
, atomic
);
3641 int btrfs_set_buffer_uptodate(struct extent_buffer
*buf
)
3643 return set_extent_buffer_uptodate(buf
);
3646 void btrfs_mark_buffer_dirty(struct extent_buffer
*buf
)
3648 struct btrfs_root
*root
;
3649 u64 transid
= btrfs_header_generation(buf
);
3652 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3654 * This is a fast path so only do this check if we have sanity tests
3655 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3656 * outside of the sanity tests.
3658 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY
, &buf
->bflags
)))
3661 root
= BTRFS_I(buf
->pages
[0]->mapping
->host
)->root
;
3662 btrfs_assert_tree_locked(buf
);
3663 if (transid
!= root
->fs_info
->generation
)
3664 WARN(1, KERN_CRIT
"btrfs transid mismatch buffer %llu, "
3665 "found %llu running %llu\n",
3666 buf
->start
, transid
, root
->fs_info
->generation
);
3667 was_dirty
= set_extent_buffer_dirty(buf
);
3669 __percpu_counter_add(&root
->fs_info
->dirty_metadata_bytes
,
3671 root
->fs_info
->dirty_metadata_batch
);
3674 static void __btrfs_btree_balance_dirty(struct btrfs_root
*root
,
3678 * looks as though older kernels can get into trouble with
3679 * this code, they end up stuck in balance_dirty_pages forever
3683 if (current
->flags
& PF_MEMALLOC
)
3687 btrfs_balance_delayed_items(root
);
3689 ret
= percpu_counter_compare(&root
->fs_info
->dirty_metadata_bytes
,
3690 BTRFS_DIRTY_METADATA_THRESH
);
3692 balance_dirty_pages_ratelimited(
3693 root
->fs_info
->btree_inode
->i_mapping
);
3698 void btrfs_btree_balance_dirty(struct btrfs_root
*root
)
3700 __btrfs_btree_balance_dirty(root
, 1);
3703 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root
*root
)
3705 __btrfs_btree_balance_dirty(root
, 0);
3708 int btrfs_read_buffer(struct extent_buffer
*buf
, u64 parent_transid
)
3710 struct btrfs_root
*root
= BTRFS_I(buf
->pages
[0]->mapping
->host
)->root
;
3711 return btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
3714 static int btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
,
3718 * Placeholder for checks
3723 static void btrfs_error_commit_super(struct btrfs_root
*root
)
3725 mutex_lock(&root
->fs_info
->cleaner_mutex
);
3726 btrfs_run_delayed_iputs(root
);
3727 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
3729 down_write(&root
->fs_info
->cleanup_work_sem
);
3730 up_write(&root
->fs_info
->cleanup_work_sem
);
3732 /* cleanup FS via transaction */
3733 btrfs_cleanup_transaction(root
);
3736 static void btrfs_destroy_ordered_operations(struct btrfs_transaction
*t
,
3737 struct btrfs_root
*root
)
3739 struct btrfs_inode
*btrfs_inode
;
3740 struct list_head splice
;
3742 INIT_LIST_HEAD(&splice
);
3744 mutex_lock(&root
->fs_info
->ordered_operations_mutex
);
3745 spin_lock(&root
->fs_info
->ordered_root_lock
);
3747 list_splice_init(&t
->ordered_operations
, &splice
);
3748 while (!list_empty(&splice
)) {
3749 btrfs_inode
= list_entry(splice
.next
, struct btrfs_inode
,
3750 ordered_operations
);
3752 list_del_init(&btrfs_inode
->ordered_operations
);
3753 spin_unlock(&root
->fs_info
->ordered_root_lock
);
3755 btrfs_invalidate_inodes(btrfs_inode
->root
);
3757 spin_lock(&root
->fs_info
->ordered_root_lock
);
3760 spin_unlock(&root
->fs_info
->ordered_root_lock
);
3761 mutex_unlock(&root
->fs_info
->ordered_operations_mutex
);
3764 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
)
3766 struct btrfs_ordered_extent
*ordered
;
3768 spin_lock(&root
->ordered_extent_lock
);
3770 * This will just short circuit the ordered completion stuff which will
3771 * make sure the ordered extent gets properly cleaned up.
3773 list_for_each_entry(ordered
, &root
->ordered_extents
,
3775 set_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
);
3776 spin_unlock(&root
->ordered_extent_lock
);
3779 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info
*fs_info
)
3781 struct btrfs_root
*root
;
3782 struct list_head splice
;
3784 INIT_LIST_HEAD(&splice
);
3786 spin_lock(&fs_info
->ordered_root_lock
);
3787 list_splice_init(&fs_info
->ordered_roots
, &splice
);
3788 while (!list_empty(&splice
)) {
3789 root
= list_first_entry(&splice
, struct btrfs_root
,
3791 list_move_tail(&root
->ordered_root
,
3792 &fs_info
->ordered_roots
);
3794 btrfs_destroy_ordered_extents(root
);
3796 cond_resched_lock(&fs_info
->ordered_root_lock
);
3798 spin_unlock(&fs_info
->ordered_root_lock
);
3801 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
3802 struct btrfs_root
*root
)
3804 struct rb_node
*node
;
3805 struct btrfs_delayed_ref_root
*delayed_refs
;
3806 struct btrfs_delayed_ref_node
*ref
;
3809 delayed_refs
= &trans
->delayed_refs
;
3811 spin_lock(&delayed_refs
->lock
);
3812 if (atomic_read(&delayed_refs
->num_entries
) == 0) {
3813 spin_unlock(&delayed_refs
->lock
);
3814 btrfs_info(root
->fs_info
, "delayed_refs has NO entry");
3818 while ((node
= rb_first(&delayed_refs
->href_root
)) != NULL
) {
3819 struct btrfs_delayed_ref_head
*head
;
3820 bool pin_bytes
= false;
3822 head
= rb_entry(node
, struct btrfs_delayed_ref_head
,
3824 if (!mutex_trylock(&head
->mutex
)) {
3825 atomic_inc(&head
->node
.refs
);
3826 spin_unlock(&delayed_refs
->lock
);
3828 mutex_lock(&head
->mutex
);
3829 mutex_unlock(&head
->mutex
);
3830 btrfs_put_delayed_ref(&head
->node
);
3831 spin_lock(&delayed_refs
->lock
);
3834 spin_lock(&head
->lock
);
3835 while ((node
= rb_first(&head
->ref_root
)) != NULL
) {
3836 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
,
3839 rb_erase(&ref
->rb_node
, &head
->ref_root
);
3840 atomic_dec(&delayed_refs
->num_entries
);
3841 btrfs_put_delayed_ref(ref
);
3843 if (head
->must_insert_reserved
)
3845 btrfs_free_delayed_extent_op(head
->extent_op
);
3846 delayed_refs
->num_heads
--;
3847 if (head
->processing
== 0)
3848 delayed_refs
->num_heads_ready
--;
3849 atomic_dec(&delayed_refs
->num_entries
);
3850 head
->node
.in_tree
= 0;
3851 rb_erase(&head
->href_node
, &delayed_refs
->href_root
);
3852 spin_unlock(&head
->lock
);
3853 spin_unlock(&delayed_refs
->lock
);
3854 mutex_unlock(&head
->mutex
);
3857 btrfs_pin_extent(root
, head
->node
.bytenr
,
3858 head
->node
.num_bytes
, 1);
3859 btrfs_put_delayed_ref(&head
->node
);
3861 spin_lock(&delayed_refs
->lock
);
3864 spin_unlock(&delayed_refs
->lock
);
3869 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
)
3871 struct btrfs_inode
*btrfs_inode
;
3872 struct list_head splice
;
3874 INIT_LIST_HEAD(&splice
);
3876 spin_lock(&root
->delalloc_lock
);
3877 list_splice_init(&root
->delalloc_inodes
, &splice
);
3879 while (!list_empty(&splice
)) {
3880 btrfs_inode
= list_first_entry(&splice
, struct btrfs_inode
,
3883 list_del_init(&btrfs_inode
->delalloc_inodes
);
3884 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
3885 &btrfs_inode
->runtime_flags
);
3886 spin_unlock(&root
->delalloc_lock
);
3888 btrfs_invalidate_inodes(btrfs_inode
->root
);
3890 spin_lock(&root
->delalloc_lock
);
3893 spin_unlock(&root
->delalloc_lock
);
3896 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info
*fs_info
)
3898 struct btrfs_root
*root
;
3899 struct list_head splice
;
3901 INIT_LIST_HEAD(&splice
);
3903 spin_lock(&fs_info
->delalloc_root_lock
);
3904 list_splice_init(&fs_info
->delalloc_roots
, &splice
);
3905 while (!list_empty(&splice
)) {
3906 root
= list_first_entry(&splice
, struct btrfs_root
,
3908 list_del_init(&root
->delalloc_root
);
3909 root
= btrfs_grab_fs_root(root
);
3911 spin_unlock(&fs_info
->delalloc_root_lock
);
3913 btrfs_destroy_delalloc_inodes(root
);
3914 btrfs_put_fs_root(root
);
3916 spin_lock(&fs_info
->delalloc_root_lock
);
3918 spin_unlock(&fs_info
->delalloc_root_lock
);
3921 static int btrfs_destroy_marked_extents(struct btrfs_root
*root
,
3922 struct extent_io_tree
*dirty_pages
,
3926 struct extent_buffer
*eb
;
3931 ret
= find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
3936 clear_extent_bits(dirty_pages
, start
, end
, mark
, GFP_NOFS
);
3937 while (start
<= end
) {
3938 eb
= btrfs_find_tree_block(root
, start
,
3940 start
+= root
->leafsize
;
3943 wait_on_extent_buffer_writeback(eb
);
3945 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
,
3947 clear_extent_buffer_dirty(eb
);
3948 free_extent_buffer_stale(eb
);
3955 static int btrfs_destroy_pinned_extent(struct btrfs_root
*root
,
3956 struct extent_io_tree
*pinned_extents
)
3958 struct extent_io_tree
*unpin
;
3964 unpin
= pinned_extents
;
3967 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
3968 EXTENT_DIRTY
, NULL
);
3973 if (btrfs_test_opt(root
, DISCARD
))
3974 ret
= btrfs_error_discard_extent(root
, start
,
3978 clear_extent_dirty(unpin
, start
, end
, GFP_NOFS
);
3979 btrfs_error_unpin_extent_range(root
, start
, end
);
3984 if (unpin
== &root
->fs_info
->freed_extents
[0])
3985 unpin
= &root
->fs_info
->freed_extents
[1];
3987 unpin
= &root
->fs_info
->freed_extents
[0];
3995 void btrfs_cleanup_one_transaction(struct btrfs_transaction
*cur_trans
,
3996 struct btrfs_root
*root
)
3998 btrfs_destroy_ordered_operations(cur_trans
, root
);
4000 btrfs_destroy_delayed_refs(cur_trans
, root
);
4002 cur_trans
->state
= TRANS_STATE_COMMIT_START
;
4003 wake_up(&root
->fs_info
->transaction_blocked_wait
);
4005 cur_trans
->state
= TRANS_STATE_UNBLOCKED
;
4006 wake_up(&root
->fs_info
->transaction_wait
);
4008 btrfs_destroy_delayed_inodes(root
);
4009 btrfs_assert_delayed_root_empty(root
);
4011 btrfs_destroy_marked_extents(root
, &cur_trans
->dirty_pages
,
4013 btrfs_destroy_pinned_extent(root
,
4014 root
->fs_info
->pinned_extents
);
4016 cur_trans
->state
=TRANS_STATE_COMPLETED
;
4017 wake_up(&cur_trans
->commit_wait
);
4020 memset(cur_trans, 0, sizeof(*cur_trans));
4021 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4025 static int btrfs_cleanup_transaction(struct btrfs_root
*root
)
4027 struct btrfs_transaction
*t
;
4029 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
4031 spin_lock(&root
->fs_info
->trans_lock
);
4032 while (!list_empty(&root
->fs_info
->trans_list
)) {
4033 t
= list_first_entry(&root
->fs_info
->trans_list
,
4034 struct btrfs_transaction
, list
);
4035 if (t
->state
>= TRANS_STATE_COMMIT_START
) {
4036 atomic_inc(&t
->use_count
);
4037 spin_unlock(&root
->fs_info
->trans_lock
);
4038 btrfs_wait_for_commit(root
, t
->transid
);
4039 btrfs_put_transaction(t
);
4040 spin_lock(&root
->fs_info
->trans_lock
);
4043 if (t
== root
->fs_info
->running_transaction
) {
4044 t
->state
= TRANS_STATE_COMMIT_DOING
;
4045 spin_unlock(&root
->fs_info
->trans_lock
);
4047 * We wait for 0 num_writers since we don't hold a trans
4048 * handle open currently for this transaction.
4050 wait_event(t
->writer_wait
,
4051 atomic_read(&t
->num_writers
) == 0);
4053 spin_unlock(&root
->fs_info
->trans_lock
);
4055 btrfs_cleanup_one_transaction(t
, root
);
4057 spin_lock(&root
->fs_info
->trans_lock
);
4058 if (t
== root
->fs_info
->running_transaction
)
4059 root
->fs_info
->running_transaction
= NULL
;
4060 list_del_init(&t
->list
);
4061 spin_unlock(&root
->fs_info
->trans_lock
);
4063 btrfs_put_transaction(t
);
4064 trace_btrfs_transaction_commit(root
);
4065 spin_lock(&root
->fs_info
->trans_lock
);
4067 spin_unlock(&root
->fs_info
->trans_lock
);
4068 btrfs_destroy_all_ordered_extents(root
->fs_info
);
4069 btrfs_destroy_delayed_inodes(root
);
4070 btrfs_assert_delayed_root_empty(root
);
4071 btrfs_destroy_pinned_extent(root
, root
->fs_info
->pinned_extents
);
4072 btrfs_destroy_all_delalloc_inodes(root
->fs_info
);
4073 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
4078 static struct extent_io_ops btree_extent_io_ops
= {
4079 .readpage_end_io_hook
= btree_readpage_end_io_hook
,
4080 .readpage_io_failed_hook
= btree_io_failed_hook
,
4081 .submit_bio_hook
= btree_submit_bio_hook
,
4082 /* note we're sharing with inode.c for the merge bio hook */
4083 .merge_bio_hook
= btrfs_merge_bio_hook
,