Merge branch 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux/fpc-iii.git] / fs / btrfs / extent_io.c
blob85bbd01f1271379de6b3bcf41f4a42bd9d30320a
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
28 #ifdef CONFIG_BTRFS_DEBUG
29 static LIST_HEAD(buffers);
30 static LIST_HEAD(states);
32 static DEFINE_SPINLOCK(leak_lock);
34 static inline
35 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
37 unsigned long flags;
39 spin_lock_irqsave(&leak_lock, flags);
40 list_add(new, head);
41 spin_unlock_irqrestore(&leak_lock, flags);
44 static inline
45 void btrfs_leak_debug_del(struct list_head *entry)
47 unsigned long flags;
49 spin_lock_irqsave(&leak_lock, flags);
50 list_del(entry);
51 spin_unlock_irqrestore(&leak_lock, flags);
54 static inline
55 void btrfs_leak_debug_check(void)
57 struct extent_state *state;
58 struct extent_buffer *eb;
60 while (!list_empty(&states)) {
61 state = list_entry(states.next, struct extent_state, leak_list);
62 printk(KERN_ERR "BTRFS: state leak: start %llu end %llu "
63 "state %lu in tree %p refs %d\n",
64 state->start, state->end, state->state, state->tree,
65 atomic_read(&state->refs));
66 list_del(&state->leak_list);
67 kmem_cache_free(extent_state_cache, state);
70 while (!list_empty(&buffers)) {
71 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
72 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
73 "refs %d\n",
74 eb->start, eb->len, atomic_read(&eb->refs));
75 list_del(&eb->leak_list);
76 kmem_cache_free(extent_buffer_cache, eb);
80 #define btrfs_debug_check_extent_io_range(tree, start, end) \
81 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
82 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
83 struct extent_io_tree *tree, u64 start, u64 end)
85 struct inode *inode;
86 u64 isize;
88 if (!tree->mapping)
89 return;
91 inode = tree->mapping->host;
92 isize = i_size_read(inode);
93 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
94 printk_ratelimited(KERN_DEBUG
95 "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
96 caller, btrfs_ino(inode), isize, start, end);
99 #else
100 #define btrfs_leak_debug_add(new, head) do {} while (0)
101 #define btrfs_leak_debug_del(entry) do {} while (0)
102 #define btrfs_leak_debug_check() do {} while (0)
103 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
104 #endif
106 #define BUFFER_LRU_MAX 64
108 struct tree_entry {
109 u64 start;
110 u64 end;
111 struct rb_node rb_node;
114 struct extent_page_data {
115 struct bio *bio;
116 struct extent_io_tree *tree;
117 get_extent_t *get_extent;
118 unsigned long bio_flags;
120 /* tells writepage not to lock the state bits for this range
121 * it still does the unlocking
123 unsigned int extent_locked:1;
125 /* tells the submit_bio code to use a WRITE_SYNC */
126 unsigned int sync_io:1;
129 static noinline void flush_write_bio(void *data);
130 static inline struct btrfs_fs_info *
131 tree_fs_info(struct extent_io_tree *tree)
133 if (!tree->mapping)
134 return NULL;
135 return btrfs_sb(tree->mapping->host->i_sb);
138 int __init extent_io_init(void)
140 extent_state_cache = kmem_cache_create("btrfs_extent_state",
141 sizeof(struct extent_state), 0,
142 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
143 if (!extent_state_cache)
144 return -ENOMEM;
146 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
147 sizeof(struct extent_buffer), 0,
148 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
149 if (!extent_buffer_cache)
150 goto free_state_cache;
152 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
153 offsetof(struct btrfs_io_bio, bio));
154 if (!btrfs_bioset)
155 goto free_buffer_cache;
157 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
158 goto free_bioset;
160 return 0;
162 free_bioset:
163 bioset_free(btrfs_bioset);
164 btrfs_bioset = NULL;
166 free_buffer_cache:
167 kmem_cache_destroy(extent_buffer_cache);
168 extent_buffer_cache = NULL;
170 free_state_cache:
171 kmem_cache_destroy(extent_state_cache);
172 extent_state_cache = NULL;
173 return -ENOMEM;
176 void extent_io_exit(void)
178 btrfs_leak_debug_check();
181 * Make sure all delayed rcu free are flushed before we
182 * destroy caches.
184 rcu_barrier();
185 if (extent_state_cache)
186 kmem_cache_destroy(extent_state_cache);
187 if (extent_buffer_cache)
188 kmem_cache_destroy(extent_buffer_cache);
189 if (btrfs_bioset)
190 bioset_free(btrfs_bioset);
193 void extent_io_tree_init(struct extent_io_tree *tree,
194 struct address_space *mapping)
196 tree->state = RB_ROOT;
197 tree->ops = NULL;
198 tree->dirty_bytes = 0;
199 spin_lock_init(&tree->lock);
200 tree->mapping = mapping;
203 static struct extent_state *alloc_extent_state(gfp_t mask)
205 struct extent_state *state;
207 state = kmem_cache_alloc(extent_state_cache, mask);
208 if (!state)
209 return state;
210 state->state = 0;
211 state->private = 0;
212 state->tree = NULL;
213 btrfs_leak_debug_add(&state->leak_list, &states);
214 atomic_set(&state->refs, 1);
215 init_waitqueue_head(&state->wq);
216 trace_alloc_extent_state(state, mask, _RET_IP_);
217 return state;
220 void free_extent_state(struct extent_state *state)
222 if (!state)
223 return;
224 if (atomic_dec_and_test(&state->refs)) {
225 WARN_ON(state->tree);
226 btrfs_leak_debug_del(&state->leak_list);
227 trace_free_extent_state(state, _RET_IP_);
228 kmem_cache_free(extent_state_cache, state);
232 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
233 struct rb_node *node,
234 struct rb_node ***p_in,
235 struct rb_node **parent_in)
237 struct rb_node **p = &root->rb_node;
238 struct rb_node *parent = NULL;
239 struct tree_entry *entry;
241 if (p_in && parent_in) {
242 p = *p_in;
243 parent = *parent_in;
244 goto do_insert;
247 while (*p) {
248 parent = *p;
249 entry = rb_entry(parent, struct tree_entry, rb_node);
251 if (offset < entry->start)
252 p = &(*p)->rb_left;
253 else if (offset > entry->end)
254 p = &(*p)->rb_right;
255 else
256 return parent;
259 do_insert:
260 rb_link_node(node, parent, p);
261 rb_insert_color(node, root);
262 return NULL;
265 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
266 struct rb_node **prev_ret,
267 struct rb_node **next_ret,
268 struct rb_node ***p_ret,
269 struct rb_node **parent_ret)
271 struct rb_root *root = &tree->state;
272 struct rb_node **n = &root->rb_node;
273 struct rb_node *prev = NULL;
274 struct rb_node *orig_prev = NULL;
275 struct tree_entry *entry;
276 struct tree_entry *prev_entry = NULL;
278 while (*n) {
279 prev = *n;
280 entry = rb_entry(prev, struct tree_entry, rb_node);
281 prev_entry = entry;
283 if (offset < entry->start)
284 n = &(*n)->rb_left;
285 else if (offset > entry->end)
286 n = &(*n)->rb_right;
287 else
288 return *n;
291 if (p_ret)
292 *p_ret = n;
293 if (parent_ret)
294 *parent_ret = prev;
296 if (prev_ret) {
297 orig_prev = prev;
298 while (prev && offset > prev_entry->end) {
299 prev = rb_next(prev);
300 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
302 *prev_ret = prev;
303 prev = orig_prev;
306 if (next_ret) {
307 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
308 while (prev && offset < prev_entry->start) {
309 prev = rb_prev(prev);
310 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
312 *next_ret = prev;
314 return NULL;
317 static inline struct rb_node *
318 tree_search_for_insert(struct extent_io_tree *tree,
319 u64 offset,
320 struct rb_node ***p_ret,
321 struct rb_node **parent_ret)
323 struct rb_node *prev = NULL;
324 struct rb_node *ret;
326 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
327 if (!ret)
328 return prev;
329 return ret;
332 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
333 u64 offset)
335 return tree_search_for_insert(tree, offset, NULL, NULL);
338 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
339 struct extent_state *other)
341 if (tree->ops && tree->ops->merge_extent_hook)
342 tree->ops->merge_extent_hook(tree->mapping->host, new,
343 other);
347 * utility function to look for merge candidates inside a given range.
348 * Any extents with matching state are merged together into a single
349 * extent in the tree. Extents with EXTENT_IO in their state field
350 * are not merged because the end_io handlers need to be able to do
351 * operations on them without sleeping (or doing allocations/splits).
353 * This should be called with the tree lock held.
355 static void merge_state(struct extent_io_tree *tree,
356 struct extent_state *state)
358 struct extent_state *other;
359 struct rb_node *other_node;
361 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
362 return;
364 other_node = rb_prev(&state->rb_node);
365 if (other_node) {
366 other = rb_entry(other_node, struct extent_state, rb_node);
367 if (other->end == state->start - 1 &&
368 other->state == state->state) {
369 merge_cb(tree, state, other);
370 state->start = other->start;
371 other->tree = NULL;
372 rb_erase(&other->rb_node, &tree->state);
373 free_extent_state(other);
376 other_node = rb_next(&state->rb_node);
377 if (other_node) {
378 other = rb_entry(other_node, struct extent_state, rb_node);
379 if (other->start == state->end + 1 &&
380 other->state == state->state) {
381 merge_cb(tree, state, other);
382 state->end = other->end;
383 other->tree = NULL;
384 rb_erase(&other->rb_node, &tree->state);
385 free_extent_state(other);
390 static void set_state_cb(struct extent_io_tree *tree,
391 struct extent_state *state, unsigned long *bits)
393 if (tree->ops && tree->ops->set_bit_hook)
394 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
397 static void clear_state_cb(struct extent_io_tree *tree,
398 struct extent_state *state, unsigned long *bits)
400 if (tree->ops && tree->ops->clear_bit_hook)
401 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
404 static void set_state_bits(struct extent_io_tree *tree,
405 struct extent_state *state, unsigned long *bits);
408 * insert an extent_state struct into the tree. 'bits' are set on the
409 * struct before it is inserted.
411 * This may return -EEXIST if the extent is already there, in which case the
412 * state struct is freed.
414 * The tree lock is not taken internally. This is a utility function and
415 * probably isn't what you want to call (see set/clear_extent_bit).
417 static int insert_state(struct extent_io_tree *tree,
418 struct extent_state *state, u64 start, u64 end,
419 struct rb_node ***p,
420 struct rb_node **parent,
421 unsigned long *bits)
423 struct rb_node *node;
425 if (end < start)
426 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
427 end, start);
428 state->start = start;
429 state->end = end;
431 set_state_bits(tree, state, bits);
433 node = tree_insert(&tree->state, end, &state->rb_node, p, parent);
434 if (node) {
435 struct extent_state *found;
436 found = rb_entry(node, struct extent_state, rb_node);
437 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
438 "%llu %llu\n",
439 found->start, found->end, start, end);
440 return -EEXIST;
442 state->tree = tree;
443 merge_state(tree, state);
444 return 0;
447 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
448 u64 split)
450 if (tree->ops && tree->ops->split_extent_hook)
451 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
455 * split a given extent state struct in two, inserting the preallocated
456 * struct 'prealloc' as the newly created second half. 'split' indicates an
457 * offset inside 'orig' where it should be split.
459 * Before calling,
460 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
461 * are two extent state structs in the tree:
462 * prealloc: [orig->start, split - 1]
463 * orig: [ split, orig->end ]
465 * The tree locks are not taken by this function. They need to be held
466 * by the caller.
468 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
469 struct extent_state *prealloc, u64 split)
471 struct rb_node *node;
473 split_cb(tree, orig, split);
475 prealloc->start = orig->start;
476 prealloc->end = split - 1;
477 prealloc->state = orig->state;
478 orig->start = split;
480 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node,
481 NULL, NULL);
482 if (node) {
483 free_extent_state(prealloc);
484 return -EEXIST;
486 prealloc->tree = tree;
487 return 0;
490 static struct extent_state *next_state(struct extent_state *state)
492 struct rb_node *next = rb_next(&state->rb_node);
493 if (next)
494 return rb_entry(next, struct extent_state, rb_node);
495 else
496 return NULL;
500 * utility function to clear some bits in an extent state struct.
501 * it will optionally wake up any one waiting on this state (wake == 1).
503 * If no bits are set on the state struct after clearing things, the
504 * struct is freed and removed from the tree
506 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
507 struct extent_state *state,
508 unsigned long *bits, int wake)
510 struct extent_state *next;
511 unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
513 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
514 u64 range = state->end - state->start + 1;
515 WARN_ON(range > tree->dirty_bytes);
516 tree->dirty_bytes -= range;
518 clear_state_cb(tree, state, bits);
519 state->state &= ~bits_to_clear;
520 if (wake)
521 wake_up(&state->wq);
522 if (state->state == 0) {
523 next = next_state(state);
524 if (state->tree) {
525 rb_erase(&state->rb_node, &tree->state);
526 state->tree = NULL;
527 free_extent_state(state);
528 } else {
529 WARN_ON(1);
531 } else {
532 merge_state(tree, state);
533 next = next_state(state);
535 return next;
538 static struct extent_state *
539 alloc_extent_state_atomic(struct extent_state *prealloc)
541 if (!prealloc)
542 prealloc = alloc_extent_state(GFP_ATOMIC);
544 return prealloc;
547 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
549 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
550 "Extent tree was modified by another "
551 "thread while locked.");
555 * clear some bits on a range in the tree. This may require splitting
556 * or inserting elements in the tree, so the gfp mask is used to
557 * indicate which allocations or sleeping are allowed.
559 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
560 * the given range from the tree regardless of state (ie for truncate).
562 * the range [start, end] is inclusive.
564 * This takes the tree lock, and returns 0 on success and < 0 on error.
566 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
567 unsigned long bits, int wake, int delete,
568 struct extent_state **cached_state,
569 gfp_t mask)
571 struct extent_state *state;
572 struct extent_state *cached;
573 struct extent_state *prealloc = NULL;
574 struct rb_node *node;
575 u64 last_end;
576 int err;
577 int clear = 0;
579 btrfs_debug_check_extent_io_range(tree, start, end);
581 if (bits & EXTENT_DELALLOC)
582 bits |= EXTENT_NORESERVE;
584 if (delete)
585 bits |= ~EXTENT_CTLBITS;
586 bits |= EXTENT_FIRST_DELALLOC;
588 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
589 clear = 1;
590 again:
591 if (!prealloc && (mask & __GFP_WAIT)) {
592 prealloc = alloc_extent_state(mask);
593 if (!prealloc)
594 return -ENOMEM;
597 spin_lock(&tree->lock);
598 if (cached_state) {
599 cached = *cached_state;
601 if (clear) {
602 *cached_state = NULL;
603 cached_state = NULL;
606 if (cached && cached->tree && cached->start <= start &&
607 cached->end > start) {
608 if (clear)
609 atomic_dec(&cached->refs);
610 state = cached;
611 goto hit_next;
613 if (clear)
614 free_extent_state(cached);
617 * this search will find the extents that end after
618 * our range starts
620 node = tree_search(tree, start);
621 if (!node)
622 goto out;
623 state = rb_entry(node, struct extent_state, rb_node);
624 hit_next:
625 if (state->start > end)
626 goto out;
627 WARN_ON(state->end < start);
628 last_end = state->end;
630 /* the state doesn't have the wanted bits, go ahead */
631 if (!(state->state & bits)) {
632 state = next_state(state);
633 goto next;
637 * | ---- desired range ---- |
638 * | state | or
639 * | ------------- state -------------- |
641 * We need to split the extent we found, and may flip
642 * bits on second half.
644 * If the extent we found extends past our range, we
645 * just split and search again. It'll get split again
646 * the next time though.
648 * If the extent we found is inside our range, we clear
649 * the desired bit on it.
652 if (state->start < start) {
653 prealloc = alloc_extent_state_atomic(prealloc);
654 BUG_ON(!prealloc);
655 err = split_state(tree, state, prealloc, start);
656 if (err)
657 extent_io_tree_panic(tree, err);
659 prealloc = NULL;
660 if (err)
661 goto out;
662 if (state->end <= end) {
663 state = clear_state_bit(tree, state, &bits, wake);
664 goto next;
666 goto search_again;
669 * | ---- desired range ---- |
670 * | state |
671 * We need to split the extent, and clear the bit
672 * on the first half
674 if (state->start <= end && state->end > end) {
675 prealloc = alloc_extent_state_atomic(prealloc);
676 BUG_ON(!prealloc);
677 err = split_state(tree, state, prealloc, end + 1);
678 if (err)
679 extent_io_tree_panic(tree, err);
681 if (wake)
682 wake_up(&state->wq);
684 clear_state_bit(tree, prealloc, &bits, wake);
686 prealloc = NULL;
687 goto out;
690 state = clear_state_bit(tree, state, &bits, wake);
691 next:
692 if (last_end == (u64)-1)
693 goto out;
694 start = last_end + 1;
695 if (start <= end && state && !need_resched())
696 goto hit_next;
697 goto search_again;
699 out:
700 spin_unlock(&tree->lock);
701 if (prealloc)
702 free_extent_state(prealloc);
704 return 0;
706 search_again:
707 if (start > end)
708 goto out;
709 spin_unlock(&tree->lock);
710 if (mask & __GFP_WAIT)
711 cond_resched();
712 goto again;
715 static void wait_on_state(struct extent_io_tree *tree,
716 struct extent_state *state)
717 __releases(tree->lock)
718 __acquires(tree->lock)
720 DEFINE_WAIT(wait);
721 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
722 spin_unlock(&tree->lock);
723 schedule();
724 spin_lock(&tree->lock);
725 finish_wait(&state->wq, &wait);
729 * waits for one or more bits to clear on a range in the state tree.
730 * The range [start, end] is inclusive.
731 * The tree lock is taken by this function
733 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
734 unsigned long bits)
736 struct extent_state *state;
737 struct rb_node *node;
739 btrfs_debug_check_extent_io_range(tree, start, end);
741 spin_lock(&tree->lock);
742 again:
743 while (1) {
745 * this search will find all the extents that end after
746 * our range starts
748 node = tree_search(tree, start);
749 if (!node)
750 break;
752 state = rb_entry(node, struct extent_state, rb_node);
754 if (state->start > end)
755 goto out;
757 if (state->state & bits) {
758 start = state->start;
759 atomic_inc(&state->refs);
760 wait_on_state(tree, state);
761 free_extent_state(state);
762 goto again;
764 start = state->end + 1;
766 if (start > end)
767 break;
769 cond_resched_lock(&tree->lock);
771 out:
772 spin_unlock(&tree->lock);
775 static void set_state_bits(struct extent_io_tree *tree,
776 struct extent_state *state,
777 unsigned long *bits)
779 unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
781 set_state_cb(tree, state, bits);
782 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
783 u64 range = state->end - state->start + 1;
784 tree->dirty_bytes += range;
786 state->state |= bits_to_set;
789 static void cache_state(struct extent_state *state,
790 struct extent_state **cached_ptr)
792 if (cached_ptr && !(*cached_ptr)) {
793 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
794 *cached_ptr = state;
795 atomic_inc(&state->refs);
801 * set some bits on a range in the tree. This may require allocations or
802 * sleeping, so the gfp mask is used to indicate what is allowed.
804 * If any of the exclusive bits are set, this will fail with -EEXIST if some
805 * part of the range already has the desired bits set. The start of the
806 * existing range is returned in failed_start in this case.
808 * [start, end] is inclusive This takes the tree lock.
811 static int __must_check
812 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
813 unsigned long bits, unsigned long exclusive_bits,
814 u64 *failed_start, struct extent_state **cached_state,
815 gfp_t mask)
817 struct extent_state *state;
818 struct extent_state *prealloc = NULL;
819 struct rb_node *node;
820 struct rb_node **p;
821 struct rb_node *parent;
822 int err = 0;
823 u64 last_start;
824 u64 last_end;
826 btrfs_debug_check_extent_io_range(tree, start, end);
828 bits |= EXTENT_FIRST_DELALLOC;
829 again:
830 if (!prealloc && (mask & __GFP_WAIT)) {
831 prealloc = alloc_extent_state(mask);
832 BUG_ON(!prealloc);
835 spin_lock(&tree->lock);
836 if (cached_state && *cached_state) {
837 state = *cached_state;
838 if (state->start <= start && state->end > start &&
839 state->tree) {
840 node = &state->rb_node;
841 goto hit_next;
845 * this search will find all the extents that end after
846 * our range starts.
848 node = tree_search_for_insert(tree, start, &p, &parent);
849 if (!node) {
850 prealloc = alloc_extent_state_atomic(prealloc);
851 BUG_ON(!prealloc);
852 err = insert_state(tree, prealloc, start, end,
853 &p, &parent, &bits);
854 if (err)
855 extent_io_tree_panic(tree, err);
857 cache_state(prealloc, cached_state);
858 prealloc = NULL;
859 goto out;
861 state = rb_entry(node, struct extent_state, rb_node);
862 hit_next:
863 last_start = state->start;
864 last_end = state->end;
867 * | ---- desired range ---- |
868 * | state |
870 * Just lock what we found and keep going
872 if (state->start == start && state->end <= end) {
873 if (state->state & exclusive_bits) {
874 *failed_start = state->start;
875 err = -EEXIST;
876 goto out;
879 set_state_bits(tree, state, &bits);
880 cache_state(state, cached_state);
881 merge_state(tree, state);
882 if (last_end == (u64)-1)
883 goto out;
884 start = last_end + 1;
885 state = next_state(state);
886 if (start < end && state && state->start == start &&
887 !need_resched())
888 goto hit_next;
889 goto search_again;
893 * | ---- desired range ---- |
894 * | state |
895 * or
896 * | ------------- state -------------- |
898 * We need to split the extent we found, and may flip bits on
899 * second half.
901 * If the extent we found extends past our
902 * range, we just split and search again. It'll get split
903 * again the next time though.
905 * If the extent we found is inside our range, we set the
906 * desired bit on it.
908 if (state->start < start) {
909 if (state->state & exclusive_bits) {
910 *failed_start = start;
911 err = -EEXIST;
912 goto out;
915 prealloc = alloc_extent_state_atomic(prealloc);
916 BUG_ON(!prealloc);
917 err = split_state(tree, state, prealloc, start);
918 if (err)
919 extent_io_tree_panic(tree, err);
921 prealloc = NULL;
922 if (err)
923 goto out;
924 if (state->end <= end) {
925 set_state_bits(tree, state, &bits);
926 cache_state(state, cached_state);
927 merge_state(tree, state);
928 if (last_end == (u64)-1)
929 goto out;
930 start = last_end + 1;
931 state = next_state(state);
932 if (start < end && state && state->start == start &&
933 !need_resched())
934 goto hit_next;
936 goto search_again;
939 * | ---- desired range ---- |
940 * | state | or | state |
942 * There's a hole, we need to insert something in it and
943 * ignore the extent we found.
945 if (state->start > start) {
946 u64 this_end;
947 if (end < last_start)
948 this_end = end;
949 else
950 this_end = last_start - 1;
952 prealloc = alloc_extent_state_atomic(prealloc);
953 BUG_ON(!prealloc);
956 * Avoid to free 'prealloc' if it can be merged with
957 * the later extent.
959 err = insert_state(tree, prealloc, start, this_end,
960 NULL, NULL, &bits);
961 if (err)
962 extent_io_tree_panic(tree, err);
964 cache_state(prealloc, cached_state);
965 prealloc = NULL;
966 start = this_end + 1;
967 goto search_again;
970 * | ---- desired range ---- |
971 * | state |
972 * We need to split the extent, and set the bit
973 * on the first half
975 if (state->start <= end && state->end > end) {
976 if (state->state & exclusive_bits) {
977 *failed_start = start;
978 err = -EEXIST;
979 goto out;
982 prealloc = alloc_extent_state_atomic(prealloc);
983 BUG_ON(!prealloc);
984 err = split_state(tree, state, prealloc, end + 1);
985 if (err)
986 extent_io_tree_panic(tree, err);
988 set_state_bits(tree, prealloc, &bits);
989 cache_state(prealloc, cached_state);
990 merge_state(tree, prealloc);
991 prealloc = NULL;
992 goto out;
995 goto search_again;
997 out:
998 spin_unlock(&tree->lock);
999 if (prealloc)
1000 free_extent_state(prealloc);
1002 return err;
1004 search_again:
1005 if (start > end)
1006 goto out;
1007 spin_unlock(&tree->lock);
1008 if (mask & __GFP_WAIT)
1009 cond_resched();
1010 goto again;
1013 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1014 unsigned long bits, u64 * failed_start,
1015 struct extent_state **cached_state, gfp_t mask)
1017 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1018 cached_state, mask);
1023 * convert_extent_bit - convert all bits in a given range from one bit to
1024 * another
1025 * @tree: the io tree to search
1026 * @start: the start offset in bytes
1027 * @end: the end offset in bytes (inclusive)
1028 * @bits: the bits to set in this range
1029 * @clear_bits: the bits to clear in this range
1030 * @cached_state: state that we're going to cache
1031 * @mask: the allocation mask
1033 * This will go through and set bits for the given range. If any states exist
1034 * already in this range they are set with the given bit and cleared of the
1035 * clear_bits. This is only meant to be used by things that are mergeable, ie
1036 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1037 * boundary bits like LOCK.
1039 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1040 unsigned long bits, unsigned long clear_bits,
1041 struct extent_state **cached_state, gfp_t mask)
1043 struct extent_state *state;
1044 struct extent_state *prealloc = NULL;
1045 struct rb_node *node;
1046 struct rb_node **p;
1047 struct rb_node *parent;
1048 int err = 0;
1049 u64 last_start;
1050 u64 last_end;
1052 btrfs_debug_check_extent_io_range(tree, start, end);
1054 again:
1055 if (!prealloc && (mask & __GFP_WAIT)) {
1056 prealloc = alloc_extent_state(mask);
1057 if (!prealloc)
1058 return -ENOMEM;
1061 spin_lock(&tree->lock);
1062 if (cached_state && *cached_state) {
1063 state = *cached_state;
1064 if (state->start <= start && state->end > start &&
1065 state->tree) {
1066 node = &state->rb_node;
1067 goto hit_next;
1072 * this search will find all the extents that end after
1073 * our range starts.
1075 node = tree_search_for_insert(tree, start, &p, &parent);
1076 if (!node) {
1077 prealloc = alloc_extent_state_atomic(prealloc);
1078 if (!prealloc) {
1079 err = -ENOMEM;
1080 goto out;
1082 err = insert_state(tree, prealloc, start, end,
1083 &p, &parent, &bits);
1084 if (err)
1085 extent_io_tree_panic(tree, err);
1086 cache_state(prealloc, cached_state);
1087 prealloc = NULL;
1088 goto out;
1090 state = rb_entry(node, struct extent_state, rb_node);
1091 hit_next:
1092 last_start = state->start;
1093 last_end = state->end;
1096 * | ---- desired range ---- |
1097 * | state |
1099 * Just lock what we found and keep going
1101 if (state->start == start && state->end <= end) {
1102 set_state_bits(tree, state, &bits);
1103 cache_state(state, cached_state);
1104 state = clear_state_bit(tree, state, &clear_bits, 0);
1105 if (last_end == (u64)-1)
1106 goto out;
1107 start = last_end + 1;
1108 if (start < end && state && state->start == start &&
1109 !need_resched())
1110 goto hit_next;
1111 goto search_again;
1115 * | ---- desired range ---- |
1116 * | state |
1117 * or
1118 * | ------------- state -------------- |
1120 * We need to split the extent we found, and may flip bits on
1121 * second half.
1123 * If the extent we found extends past our
1124 * range, we just split and search again. It'll get split
1125 * again the next time though.
1127 * If the extent we found is inside our range, we set the
1128 * desired bit on it.
1130 if (state->start < start) {
1131 prealloc = alloc_extent_state_atomic(prealloc);
1132 if (!prealloc) {
1133 err = -ENOMEM;
1134 goto out;
1136 err = split_state(tree, state, prealloc, start);
1137 if (err)
1138 extent_io_tree_panic(tree, err);
1139 prealloc = NULL;
1140 if (err)
1141 goto out;
1142 if (state->end <= end) {
1143 set_state_bits(tree, state, &bits);
1144 cache_state(state, cached_state);
1145 state = clear_state_bit(tree, state, &clear_bits, 0);
1146 if (last_end == (u64)-1)
1147 goto out;
1148 start = last_end + 1;
1149 if (start < end && state && state->start == start &&
1150 !need_resched())
1151 goto hit_next;
1153 goto search_again;
1156 * | ---- desired range ---- |
1157 * | state | or | state |
1159 * There's a hole, we need to insert something in it and
1160 * ignore the extent we found.
1162 if (state->start > start) {
1163 u64 this_end;
1164 if (end < last_start)
1165 this_end = end;
1166 else
1167 this_end = last_start - 1;
1169 prealloc = alloc_extent_state_atomic(prealloc);
1170 if (!prealloc) {
1171 err = -ENOMEM;
1172 goto out;
1176 * Avoid to free 'prealloc' if it can be merged with
1177 * the later extent.
1179 err = insert_state(tree, prealloc, start, this_end,
1180 NULL, NULL, &bits);
1181 if (err)
1182 extent_io_tree_panic(tree, err);
1183 cache_state(prealloc, cached_state);
1184 prealloc = NULL;
1185 start = this_end + 1;
1186 goto search_again;
1189 * | ---- desired range ---- |
1190 * | state |
1191 * We need to split the extent, and set the bit
1192 * on the first half
1194 if (state->start <= end && state->end > end) {
1195 prealloc = alloc_extent_state_atomic(prealloc);
1196 if (!prealloc) {
1197 err = -ENOMEM;
1198 goto out;
1201 err = split_state(tree, state, prealloc, end + 1);
1202 if (err)
1203 extent_io_tree_panic(tree, err);
1205 set_state_bits(tree, prealloc, &bits);
1206 cache_state(prealloc, cached_state);
1207 clear_state_bit(tree, prealloc, &clear_bits, 0);
1208 prealloc = NULL;
1209 goto out;
1212 goto search_again;
1214 out:
1215 spin_unlock(&tree->lock);
1216 if (prealloc)
1217 free_extent_state(prealloc);
1219 return err;
1221 search_again:
1222 if (start > end)
1223 goto out;
1224 spin_unlock(&tree->lock);
1225 if (mask & __GFP_WAIT)
1226 cond_resched();
1227 goto again;
1230 /* wrappers around set/clear extent bit */
1231 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1232 gfp_t mask)
1234 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1235 NULL, mask);
1238 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1239 unsigned long bits, gfp_t mask)
1241 return set_extent_bit(tree, start, end, bits, NULL,
1242 NULL, mask);
1245 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1246 unsigned long bits, gfp_t mask)
1248 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1251 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1252 struct extent_state **cached_state, gfp_t mask)
1254 return set_extent_bit(tree, start, end,
1255 EXTENT_DELALLOC | EXTENT_UPTODATE,
1256 NULL, cached_state, mask);
1259 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1260 struct extent_state **cached_state, gfp_t mask)
1262 return set_extent_bit(tree, start, end,
1263 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1264 NULL, cached_state, mask);
1267 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1268 gfp_t mask)
1270 return clear_extent_bit(tree, start, end,
1271 EXTENT_DIRTY | EXTENT_DELALLOC |
1272 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1275 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1276 gfp_t mask)
1278 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1279 NULL, mask);
1282 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1283 struct extent_state **cached_state, gfp_t mask)
1285 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1286 cached_state, mask);
1289 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1290 struct extent_state **cached_state, gfp_t mask)
1292 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1293 cached_state, mask);
1297 * either insert or lock state struct between start and end use mask to tell
1298 * us if waiting is desired.
1300 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1301 unsigned long bits, struct extent_state **cached_state)
1303 int err;
1304 u64 failed_start;
1305 while (1) {
1306 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1307 EXTENT_LOCKED, &failed_start,
1308 cached_state, GFP_NOFS);
1309 if (err == -EEXIST) {
1310 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1311 start = failed_start;
1312 } else
1313 break;
1314 WARN_ON(start > end);
1316 return err;
1319 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1321 return lock_extent_bits(tree, start, end, 0, NULL);
1324 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1326 int err;
1327 u64 failed_start;
1329 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1330 &failed_start, NULL, GFP_NOFS);
1331 if (err == -EEXIST) {
1332 if (failed_start > start)
1333 clear_extent_bit(tree, start, failed_start - 1,
1334 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1335 return 0;
1337 return 1;
1340 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1341 struct extent_state **cached, gfp_t mask)
1343 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1344 mask);
1347 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1349 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1350 GFP_NOFS);
1353 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1355 unsigned long index = start >> PAGE_CACHE_SHIFT;
1356 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1357 struct page *page;
1359 while (index <= end_index) {
1360 page = find_get_page(inode->i_mapping, index);
1361 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1362 clear_page_dirty_for_io(page);
1363 page_cache_release(page);
1364 index++;
1366 return 0;
1369 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1371 unsigned long index = start >> PAGE_CACHE_SHIFT;
1372 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1373 struct page *page;
1375 while (index <= end_index) {
1376 page = find_get_page(inode->i_mapping, index);
1377 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1378 account_page_redirty(page);
1379 __set_page_dirty_nobuffers(page);
1380 page_cache_release(page);
1381 index++;
1383 return 0;
1387 * helper function to set both pages and extents in the tree writeback
1389 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1391 unsigned long index = start >> PAGE_CACHE_SHIFT;
1392 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1393 struct page *page;
1395 while (index <= end_index) {
1396 page = find_get_page(tree->mapping, index);
1397 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1398 set_page_writeback(page);
1399 page_cache_release(page);
1400 index++;
1402 return 0;
1405 /* find the first state struct with 'bits' set after 'start', and
1406 * return it. tree->lock must be held. NULL will returned if
1407 * nothing was found after 'start'
1409 static struct extent_state *
1410 find_first_extent_bit_state(struct extent_io_tree *tree,
1411 u64 start, unsigned long bits)
1413 struct rb_node *node;
1414 struct extent_state *state;
1417 * this search will find all the extents that end after
1418 * our range starts.
1420 node = tree_search(tree, start);
1421 if (!node)
1422 goto out;
1424 while (1) {
1425 state = rb_entry(node, struct extent_state, rb_node);
1426 if (state->end >= start && (state->state & bits))
1427 return state;
1429 node = rb_next(node);
1430 if (!node)
1431 break;
1433 out:
1434 return NULL;
1438 * find the first offset in the io tree with 'bits' set. zero is
1439 * returned if we find something, and *start_ret and *end_ret are
1440 * set to reflect the state struct that was found.
1442 * If nothing was found, 1 is returned. If found something, return 0.
1444 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1445 u64 *start_ret, u64 *end_ret, unsigned long bits,
1446 struct extent_state **cached_state)
1448 struct extent_state *state;
1449 struct rb_node *n;
1450 int ret = 1;
1452 spin_lock(&tree->lock);
1453 if (cached_state && *cached_state) {
1454 state = *cached_state;
1455 if (state->end == start - 1 && state->tree) {
1456 n = rb_next(&state->rb_node);
1457 while (n) {
1458 state = rb_entry(n, struct extent_state,
1459 rb_node);
1460 if (state->state & bits)
1461 goto got_it;
1462 n = rb_next(n);
1464 free_extent_state(*cached_state);
1465 *cached_state = NULL;
1466 goto out;
1468 free_extent_state(*cached_state);
1469 *cached_state = NULL;
1472 state = find_first_extent_bit_state(tree, start, bits);
1473 got_it:
1474 if (state) {
1475 cache_state(state, cached_state);
1476 *start_ret = state->start;
1477 *end_ret = state->end;
1478 ret = 0;
1480 out:
1481 spin_unlock(&tree->lock);
1482 return ret;
1486 * find a contiguous range of bytes in the file marked as delalloc, not
1487 * more than 'max_bytes'. start and end are used to return the range,
1489 * 1 is returned if we find something, 0 if nothing was in the tree
1491 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1492 u64 *start, u64 *end, u64 max_bytes,
1493 struct extent_state **cached_state)
1495 struct rb_node *node;
1496 struct extent_state *state;
1497 u64 cur_start = *start;
1498 u64 found = 0;
1499 u64 total_bytes = 0;
1501 spin_lock(&tree->lock);
1504 * this search will find all the extents that end after
1505 * our range starts.
1507 node = tree_search(tree, cur_start);
1508 if (!node) {
1509 if (!found)
1510 *end = (u64)-1;
1511 goto out;
1514 while (1) {
1515 state = rb_entry(node, struct extent_state, rb_node);
1516 if (found && (state->start != cur_start ||
1517 (state->state & EXTENT_BOUNDARY))) {
1518 goto out;
1520 if (!(state->state & EXTENT_DELALLOC)) {
1521 if (!found)
1522 *end = state->end;
1523 goto out;
1525 if (!found) {
1526 *start = state->start;
1527 *cached_state = state;
1528 atomic_inc(&state->refs);
1530 found++;
1531 *end = state->end;
1532 cur_start = state->end + 1;
1533 node = rb_next(node);
1534 total_bytes += state->end - state->start + 1;
1535 if (total_bytes >= max_bytes)
1536 break;
1537 if (!node)
1538 break;
1540 out:
1541 spin_unlock(&tree->lock);
1542 return found;
1545 static noinline void __unlock_for_delalloc(struct inode *inode,
1546 struct page *locked_page,
1547 u64 start, u64 end)
1549 int ret;
1550 struct page *pages[16];
1551 unsigned long index = start >> PAGE_CACHE_SHIFT;
1552 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1553 unsigned long nr_pages = end_index - index + 1;
1554 int i;
1556 if (index == locked_page->index && end_index == index)
1557 return;
1559 while (nr_pages > 0) {
1560 ret = find_get_pages_contig(inode->i_mapping, index,
1561 min_t(unsigned long, nr_pages,
1562 ARRAY_SIZE(pages)), pages);
1563 for (i = 0; i < ret; i++) {
1564 if (pages[i] != locked_page)
1565 unlock_page(pages[i]);
1566 page_cache_release(pages[i]);
1568 nr_pages -= ret;
1569 index += ret;
1570 cond_resched();
1574 static noinline int lock_delalloc_pages(struct inode *inode,
1575 struct page *locked_page,
1576 u64 delalloc_start,
1577 u64 delalloc_end)
1579 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1580 unsigned long start_index = index;
1581 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1582 unsigned long pages_locked = 0;
1583 struct page *pages[16];
1584 unsigned long nrpages;
1585 int ret;
1586 int i;
1588 /* the caller is responsible for locking the start index */
1589 if (index == locked_page->index && index == end_index)
1590 return 0;
1592 /* skip the page at the start index */
1593 nrpages = end_index - index + 1;
1594 while (nrpages > 0) {
1595 ret = find_get_pages_contig(inode->i_mapping, index,
1596 min_t(unsigned long,
1597 nrpages, ARRAY_SIZE(pages)), pages);
1598 if (ret == 0) {
1599 ret = -EAGAIN;
1600 goto done;
1602 /* now we have an array of pages, lock them all */
1603 for (i = 0; i < ret; i++) {
1605 * the caller is taking responsibility for
1606 * locked_page
1608 if (pages[i] != locked_page) {
1609 lock_page(pages[i]);
1610 if (!PageDirty(pages[i]) ||
1611 pages[i]->mapping != inode->i_mapping) {
1612 ret = -EAGAIN;
1613 unlock_page(pages[i]);
1614 page_cache_release(pages[i]);
1615 goto done;
1618 page_cache_release(pages[i]);
1619 pages_locked++;
1621 nrpages -= ret;
1622 index += ret;
1623 cond_resched();
1625 ret = 0;
1626 done:
1627 if (ret && pages_locked) {
1628 __unlock_for_delalloc(inode, locked_page,
1629 delalloc_start,
1630 ((u64)(start_index + pages_locked - 1)) <<
1631 PAGE_CACHE_SHIFT);
1633 return ret;
1637 * find a contiguous range of bytes in the file marked as delalloc, not
1638 * more than 'max_bytes'. start and end are used to return the range,
1640 * 1 is returned if we find something, 0 if nothing was in the tree
1642 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1643 struct extent_io_tree *tree,
1644 struct page *locked_page, u64 *start,
1645 u64 *end, u64 max_bytes)
1647 u64 delalloc_start;
1648 u64 delalloc_end;
1649 u64 found;
1650 struct extent_state *cached_state = NULL;
1651 int ret;
1652 int loops = 0;
1654 again:
1655 /* step one, find a bunch of delalloc bytes starting at start */
1656 delalloc_start = *start;
1657 delalloc_end = 0;
1658 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1659 max_bytes, &cached_state);
1660 if (!found || delalloc_end <= *start) {
1661 *start = delalloc_start;
1662 *end = delalloc_end;
1663 free_extent_state(cached_state);
1664 return 0;
1668 * start comes from the offset of locked_page. We have to lock
1669 * pages in order, so we can't process delalloc bytes before
1670 * locked_page
1672 if (delalloc_start < *start)
1673 delalloc_start = *start;
1676 * make sure to limit the number of pages we try to lock down
1678 if (delalloc_end + 1 - delalloc_start > max_bytes)
1679 delalloc_end = delalloc_start + max_bytes - 1;
1681 /* step two, lock all the pages after the page that has start */
1682 ret = lock_delalloc_pages(inode, locked_page,
1683 delalloc_start, delalloc_end);
1684 if (ret == -EAGAIN) {
1685 /* some of the pages are gone, lets avoid looping by
1686 * shortening the size of the delalloc range we're searching
1688 free_extent_state(cached_state);
1689 if (!loops) {
1690 max_bytes = PAGE_CACHE_SIZE;
1691 loops = 1;
1692 goto again;
1693 } else {
1694 found = 0;
1695 goto out_failed;
1698 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1700 /* step three, lock the state bits for the whole range */
1701 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1703 /* then test to make sure it is all still delalloc */
1704 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1705 EXTENT_DELALLOC, 1, cached_state);
1706 if (!ret) {
1707 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1708 &cached_state, GFP_NOFS);
1709 __unlock_for_delalloc(inode, locked_page,
1710 delalloc_start, delalloc_end);
1711 cond_resched();
1712 goto again;
1714 free_extent_state(cached_state);
1715 *start = delalloc_start;
1716 *end = delalloc_end;
1717 out_failed:
1718 return found;
1721 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1722 struct page *locked_page,
1723 unsigned long clear_bits,
1724 unsigned long page_ops)
1726 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1727 int ret;
1728 struct page *pages[16];
1729 unsigned long index = start >> PAGE_CACHE_SHIFT;
1730 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1731 unsigned long nr_pages = end_index - index + 1;
1732 int i;
1734 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1735 if (page_ops == 0)
1736 return 0;
1738 while (nr_pages > 0) {
1739 ret = find_get_pages_contig(inode->i_mapping, index,
1740 min_t(unsigned long,
1741 nr_pages, ARRAY_SIZE(pages)), pages);
1742 for (i = 0; i < ret; i++) {
1744 if (page_ops & PAGE_SET_PRIVATE2)
1745 SetPagePrivate2(pages[i]);
1747 if (pages[i] == locked_page) {
1748 page_cache_release(pages[i]);
1749 continue;
1751 if (page_ops & PAGE_CLEAR_DIRTY)
1752 clear_page_dirty_for_io(pages[i]);
1753 if (page_ops & PAGE_SET_WRITEBACK)
1754 set_page_writeback(pages[i]);
1755 if (page_ops & PAGE_END_WRITEBACK)
1756 end_page_writeback(pages[i]);
1757 if (page_ops & PAGE_UNLOCK)
1758 unlock_page(pages[i]);
1759 page_cache_release(pages[i]);
1761 nr_pages -= ret;
1762 index += ret;
1763 cond_resched();
1765 return 0;
1769 * count the number of bytes in the tree that have a given bit(s)
1770 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1771 * cached. The total number found is returned.
1773 u64 count_range_bits(struct extent_io_tree *tree,
1774 u64 *start, u64 search_end, u64 max_bytes,
1775 unsigned long bits, int contig)
1777 struct rb_node *node;
1778 struct extent_state *state;
1779 u64 cur_start = *start;
1780 u64 total_bytes = 0;
1781 u64 last = 0;
1782 int found = 0;
1784 if (WARN_ON(search_end <= cur_start))
1785 return 0;
1787 spin_lock(&tree->lock);
1788 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1789 total_bytes = tree->dirty_bytes;
1790 goto out;
1793 * this search will find all the extents that end after
1794 * our range starts.
1796 node = tree_search(tree, cur_start);
1797 if (!node)
1798 goto out;
1800 while (1) {
1801 state = rb_entry(node, struct extent_state, rb_node);
1802 if (state->start > search_end)
1803 break;
1804 if (contig && found && state->start > last + 1)
1805 break;
1806 if (state->end >= cur_start && (state->state & bits) == bits) {
1807 total_bytes += min(search_end, state->end) + 1 -
1808 max(cur_start, state->start);
1809 if (total_bytes >= max_bytes)
1810 break;
1811 if (!found) {
1812 *start = max(cur_start, state->start);
1813 found = 1;
1815 last = state->end;
1816 } else if (contig && found) {
1817 break;
1819 node = rb_next(node);
1820 if (!node)
1821 break;
1823 out:
1824 spin_unlock(&tree->lock);
1825 return total_bytes;
1829 * set the private field for a given byte offset in the tree. If there isn't
1830 * an extent_state there already, this does nothing.
1832 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1834 struct rb_node *node;
1835 struct extent_state *state;
1836 int ret = 0;
1838 spin_lock(&tree->lock);
1840 * this search will find all the extents that end after
1841 * our range starts.
1843 node = tree_search(tree, start);
1844 if (!node) {
1845 ret = -ENOENT;
1846 goto out;
1848 state = rb_entry(node, struct extent_state, rb_node);
1849 if (state->start != start) {
1850 ret = -ENOENT;
1851 goto out;
1853 state->private = private;
1854 out:
1855 spin_unlock(&tree->lock);
1856 return ret;
1859 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1861 struct rb_node *node;
1862 struct extent_state *state;
1863 int ret = 0;
1865 spin_lock(&tree->lock);
1867 * this search will find all the extents that end after
1868 * our range starts.
1870 node = tree_search(tree, start);
1871 if (!node) {
1872 ret = -ENOENT;
1873 goto out;
1875 state = rb_entry(node, struct extent_state, rb_node);
1876 if (state->start != start) {
1877 ret = -ENOENT;
1878 goto out;
1880 *private = state->private;
1881 out:
1882 spin_unlock(&tree->lock);
1883 return ret;
1887 * searches a range in the state tree for a given mask.
1888 * If 'filled' == 1, this returns 1 only if every extent in the tree
1889 * has the bits set. Otherwise, 1 is returned if any bit in the
1890 * range is found set.
1892 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1893 unsigned long bits, int filled, struct extent_state *cached)
1895 struct extent_state *state = NULL;
1896 struct rb_node *node;
1897 int bitset = 0;
1899 spin_lock(&tree->lock);
1900 if (cached && cached->tree && cached->start <= start &&
1901 cached->end > start)
1902 node = &cached->rb_node;
1903 else
1904 node = tree_search(tree, start);
1905 while (node && start <= end) {
1906 state = rb_entry(node, struct extent_state, rb_node);
1908 if (filled && state->start > start) {
1909 bitset = 0;
1910 break;
1913 if (state->start > end)
1914 break;
1916 if (state->state & bits) {
1917 bitset = 1;
1918 if (!filled)
1919 break;
1920 } else if (filled) {
1921 bitset = 0;
1922 break;
1925 if (state->end == (u64)-1)
1926 break;
1928 start = state->end + 1;
1929 if (start > end)
1930 break;
1931 node = rb_next(node);
1932 if (!node) {
1933 if (filled)
1934 bitset = 0;
1935 break;
1938 spin_unlock(&tree->lock);
1939 return bitset;
1943 * helper function to set a given page up to date if all the
1944 * extents in the tree for that page are up to date
1946 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1948 u64 start = page_offset(page);
1949 u64 end = start + PAGE_CACHE_SIZE - 1;
1950 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1951 SetPageUptodate(page);
1955 * When IO fails, either with EIO or csum verification fails, we
1956 * try other mirrors that might have a good copy of the data. This
1957 * io_failure_record is used to record state as we go through all the
1958 * mirrors. If another mirror has good data, the page is set up to date
1959 * and things continue. If a good mirror can't be found, the original
1960 * bio end_io callback is called to indicate things have failed.
1962 struct io_failure_record {
1963 struct page *page;
1964 u64 start;
1965 u64 len;
1966 u64 logical;
1967 unsigned long bio_flags;
1968 int this_mirror;
1969 int failed_mirror;
1970 int in_validation;
1973 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1974 int did_repair)
1976 int ret;
1977 int err = 0;
1978 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1980 set_state_private(failure_tree, rec->start, 0);
1981 ret = clear_extent_bits(failure_tree, rec->start,
1982 rec->start + rec->len - 1,
1983 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1984 if (ret)
1985 err = ret;
1987 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1988 rec->start + rec->len - 1,
1989 EXTENT_DAMAGED, GFP_NOFS);
1990 if (ret && !err)
1991 err = ret;
1993 kfree(rec);
1994 return err;
1998 * this bypasses the standard btrfs submit functions deliberately, as
1999 * the standard behavior is to write all copies in a raid setup. here we only
2000 * want to write the one bad copy. so we do the mapping for ourselves and issue
2001 * submit_bio directly.
2002 * to avoid any synchronization issues, wait for the data after writing, which
2003 * actually prevents the read that triggered the error from finishing.
2004 * currently, there can be no more than two copies of every data bit. thus,
2005 * exactly one rewrite is required.
2007 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
2008 u64 length, u64 logical, struct page *page,
2009 int mirror_num)
2011 struct bio *bio;
2012 struct btrfs_device *dev;
2013 u64 map_length = 0;
2014 u64 sector;
2015 struct btrfs_bio *bbio = NULL;
2016 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2017 int ret;
2019 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2020 BUG_ON(!mirror_num);
2022 /* we can't repair anything in raid56 yet */
2023 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2024 return 0;
2026 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2027 if (!bio)
2028 return -EIO;
2029 bio->bi_iter.bi_size = 0;
2030 map_length = length;
2032 ret = btrfs_map_block(fs_info, WRITE, logical,
2033 &map_length, &bbio, mirror_num);
2034 if (ret) {
2035 bio_put(bio);
2036 return -EIO;
2038 BUG_ON(mirror_num != bbio->mirror_num);
2039 sector = bbio->stripes[mirror_num-1].physical >> 9;
2040 bio->bi_iter.bi_sector = sector;
2041 dev = bbio->stripes[mirror_num-1].dev;
2042 kfree(bbio);
2043 if (!dev || !dev->bdev || !dev->writeable) {
2044 bio_put(bio);
2045 return -EIO;
2047 bio->bi_bdev = dev->bdev;
2048 bio_add_page(bio, page, length, start - page_offset(page));
2050 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2051 /* try to remap that extent elsewhere? */
2052 bio_put(bio);
2053 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2054 return -EIO;
2057 printk_ratelimited_in_rcu(KERN_INFO
2058 "BTRFS: read error corrected: ino %lu off %llu "
2059 "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2060 start, rcu_str_deref(dev->name), sector);
2062 bio_put(bio);
2063 return 0;
2066 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2067 int mirror_num)
2069 u64 start = eb->start;
2070 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2071 int ret = 0;
2073 if (root->fs_info->sb->s_flags & MS_RDONLY)
2074 return -EROFS;
2076 for (i = 0; i < num_pages; i++) {
2077 struct page *p = extent_buffer_page(eb, i);
2078 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
2079 start, p, mirror_num);
2080 if (ret)
2081 break;
2082 start += PAGE_CACHE_SIZE;
2085 return ret;
2089 * each time an IO finishes, we do a fast check in the IO failure tree
2090 * to see if we need to process or clean up an io_failure_record
2092 static int clean_io_failure(u64 start, struct page *page)
2094 u64 private;
2095 u64 private_failure;
2096 struct io_failure_record *failrec;
2097 struct inode *inode = page->mapping->host;
2098 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2099 struct extent_state *state;
2100 int num_copies;
2101 int did_repair = 0;
2102 int ret;
2104 private = 0;
2105 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2106 (u64)-1, 1, EXTENT_DIRTY, 0);
2107 if (!ret)
2108 return 0;
2110 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2111 &private_failure);
2112 if (ret)
2113 return 0;
2115 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2116 BUG_ON(!failrec->this_mirror);
2118 if (failrec->in_validation) {
2119 /* there was no real error, just free the record */
2120 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2121 failrec->start);
2122 did_repair = 1;
2123 goto out;
2125 if (fs_info->sb->s_flags & MS_RDONLY)
2126 goto out;
2128 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2129 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2130 failrec->start,
2131 EXTENT_LOCKED);
2132 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2134 if (state && state->start <= failrec->start &&
2135 state->end >= failrec->start + failrec->len - 1) {
2136 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2137 failrec->len);
2138 if (num_copies > 1) {
2139 ret = repair_io_failure(fs_info, start, failrec->len,
2140 failrec->logical, page,
2141 failrec->failed_mirror);
2142 did_repair = !ret;
2144 ret = 0;
2147 out:
2148 if (!ret)
2149 ret = free_io_failure(inode, failrec, did_repair);
2151 return ret;
2155 * this is a generic handler for readpage errors (default
2156 * readpage_io_failed_hook). if other copies exist, read those and write back
2157 * good data to the failed position. does not investigate in remapping the
2158 * failed extent elsewhere, hoping the device will be smart enough to do this as
2159 * needed
2162 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2163 struct page *page, u64 start, u64 end,
2164 int failed_mirror)
2166 struct io_failure_record *failrec = NULL;
2167 u64 private;
2168 struct extent_map *em;
2169 struct inode *inode = page->mapping->host;
2170 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2171 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2172 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2173 struct bio *bio;
2174 struct btrfs_io_bio *btrfs_failed_bio;
2175 struct btrfs_io_bio *btrfs_bio;
2176 int num_copies;
2177 int ret;
2178 int read_mode;
2179 u64 logical;
2181 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2183 ret = get_state_private(failure_tree, start, &private);
2184 if (ret) {
2185 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2186 if (!failrec)
2187 return -ENOMEM;
2188 failrec->start = start;
2189 failrec->len = end - start + 1;
2190 failrec->this_mirror = 0;
2191 failrec->bio_flags = 0;
2192 failrec->in_validation = 0;
2194 read_lock(&em_tree->lock);
2195 em = lookup_extent_mapping(em_tree, start, failrec->len);
2196 if (!em) {
2197 read_unlock(&em_tree->lock);
2198 kfree(failrec);
2199 return -EIO;
2202 if (em->start > start || em->start + em->len <= start) {
2203 free_extent_map(em);
2204 em = NULL;
2206 read_unlock(&em_tree->lock);
2208 if (!em) {
2209 kfree(failrec);
2210 return -EIO;
2212 logical = start - em->start;
2213 logical = em->block_start + logical;
2214 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2215 logical = em->block_start;
2216 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2217 extent_set_compress_type(&failrec->bio_flags,
2218 em->compress_type);
2220 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2221 "len=%llu\n", logical, start, failrec->len);
2222 failrec->logical = logical;
2223 free_extent_map(em);
2225 /* set the bits in the private failure tree */
2226 ret = set_extent_bits(failure_tree, start, end,
2227 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2228 if (ret >= 0)
2229 ret = set_state_private(failure_tree, start,
2230 (u64)(unsigned long)failrec);
2231 /* set the bits in the inode's tree */
2232 if (ret >= 0)
2233 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2234 GFP_NOFS);
2235 if (ret < 0) {
2236 kfree(failrec);
2237 return ret;
2239 } else {
2240 failrec = (struct io_failure_record *)(unsigned long)private;
2241 pr_debug("bio_readpage_error: (found) logical=%llu, "
2242 "start=%llu, len=%llu, validation=%d\n",
2243 failrec->logical, failrec->start, failrec->len,
2244 failrec->in_validation);
2246 * when data can be on disk more than twice, add to failrec here
2247 * (e.g. with a list for failed_mirror) to make
2248 * clean_io_failure() clean all those errors at once.
2251 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2252 failrec->logical, failrec->len);
2253 if (num_copies == 1) {
2255 * we only have a single copy of the data, so don't bother with
2256 * all the retry and error correction code that follows. no
2257 * matter what the error is, it is very likely to persist.
2259 pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2260 num_copies, failrec->this_mirror, failed_mirror);
2261 free_io_failure(inode, failrec, 0);
2262 return -EIO;
2266 * there are two premises:
2267 * a) deliver good data to the caller
2268 * b) correct the bad sectors on disk
2270 if (failed_bio->bi_vcnt > 1) {
2272 * to fulfill b), we need to know the exact failing sectors, as
2273 * we don't want to rewrite any more than the failed ones. thus,
2274 * we need separate read requests for the failed bio
2276 * if the following BUG_ON triggers, our validation request got
2277 * merged. we need separate requests for our algorithm to work.
2279 BUG_ON(failrec->in_validation);
2280 failrec->in_validation = 1;
2281 failrec->this_mirror = failed_mirror;
2282 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2283 } else {
2285 * we're ready to fulfill a) and b) alongside. get a good copy
2286 * of the failed sector and if we succeed, we have setup
2287 * everything for repair_io_failure to do the rest for us.
2289 if (failrec->in_validation) {
2290 BUG_ON(failrec->this_mirror != failed_mirror);
2291 failrec->in_validation = 0;
2292 failrec->this_mirror = 0;
2294 failrec->failed_mirror = failed_mirror;
2295 failrec->this_mirror++;
2296 if (failrec->this_mirror == failed_mirror)
2297 failrec->this_mirror++;
2298 read_mode = READ_SYNC;
2301 if (failrec->this_mirror > num_copies) {
2302 pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2303 num_copies, failrec->this_mirror, failed_mirror);
2304 free_io_failure(inode, failrec, 0);
2305 return -EIO;
2308 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2309 if (!bio) {
2310 free_io_failure(inode, failrec, 0);
2311 return -EIO;
2313 bio->bi_end_io = failed_bio->bi_end_io;
2314 bio->bi_iter.bi_sector = failrec->logical >> 9;
2315 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2316 bio->bi_iter.bi_size = 0;
2318 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2319 if (btrfs_failed_bio->csum) {
2320 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2321 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2323 btrfs_bio = btrfs_io_bio(bio);
2324 btrfs_bio->csum = btrfs_bio->csum_inline;
2325 phy_offset >>= inode->i_sb->s_blocksize_bits;
2326 phy_offset *= csum_size;
2327 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset,
2328 csum_size);
2331 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2333 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2334 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2335 failrec->this_mirror, num_copies, failrec->in_validation);
2337 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2338 failrec->this_mirror,
2339 failrec->bio_flags, 0);
2340 return ret;
2343 /* lots and lots of room for performance fixes in the end_bio funcs */
2345 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2347 int uptodate = (err == 0);
2348 struct extent_io_tree *tree;
2349 int ret;
2351 tree = &BTRFS_I(page->mapping->host)->io_tree;
2353 if (tree->ops && tree->ops->writepage_end_io_hook) {
2354 ret = tree->ops->writepage_end_io_hook(page, start,
2355 end, NULL, uptodate);
2356 if (ret)
2357 uptodate = 0;
2360 if (!uptodate) {
2361 ClearPageUptodate(page);
2362 SetPageError(page);
2364 return 0;
2368 * after a writepage IO is done, we need to:
2369 * clear the uptodate bits on error
2370 * clear the writeback bits in the extent tree for this IO
2371 * end_page_writeback if the page has no more pending IO
2373 * Scheduling is not allowed, so the extent state tree is expected
2374 * to have one and only one object corresponding to this IO.
2376 static void end_bio_extent_writepage(struct bio *bio, int err)
2378 struct bio_vec *bvec;
2379 u64 start;
2380 u64 end;
2381 int i;
2383 bio_for_each_segment_all(bvec, bio, i) {
2384 struct page *page = bvec->bv_page;
2386 /* We always issue full-page reads, but if some block
2387 * in a page fails to read, blk_update_request() will
2388 * advance bv_offset and adjust bv_len to compensate.
2389 * Print a warning for nonzero offsets, and an error
2390 * if they don't add up to a full page. */
2391 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2392 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2393 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2394 "partial page write in btrfs with offset %u and length %u",
2395 bvec->bv_offset, bvec->bv_len);
2396 else
2397 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2398 "incomplete page write in btrfs with offset %u and "
2399 "length %u",
2400 bvec->bv_offset, bvec->bv_len);
2403 start = page_offset(page);
2404 end = start + bvec->bv_offset + bvec->bv_len - 1;
2406 if (end_extent_writepage(page, err, start, end))
2407 continue;
2409 end_page_writeback(page);
2412 bio_put(bio);
2415 static void
2416 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2417 int uptodate)
2419 struct extent_state *cached = NULL;
2420 u64 end = start + len - 1;
2422 if (uptodate && tree->track_uptodate)
2423 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2424 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2428 * after a readpage IO is done, we need to:
2429 * clear the uptodate bits on error
2430 * set the uptodate bits if things worked
2431 * set the page up to date if all extents in the tree are uptodate
2432 * clear the lock bit in the extent tree
2433 * unlock the page if there are no other extents locked for it
2435 * Scheduling is not allowed, so the extent state tree is expected
2436 * to have one and only one object corresponding to this IO.
2438 static void end_bio_extent_readpage(struct bio *bio, int err)
2440 struct bio_vec *bvec;
2441 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2442 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2443 struct extent_io_tree *tree;
2444 u64 offset = 0;
2445 u64 start;
2446 u64 end;
2447 u64 len;
2448 u64 extent_start = 0;
2449 u64 extent_len = 0;
2450 int mirror;
2451 int ret;
2452 int i;
2454 if (err)
2455 uptodate = 0;
2457 bio_for_each_segment_all(bvec, bio, i) {
2458 struct page *page = bvec->bv_page;
2459 struct inode *inode = page->mapping->host;
2461 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2462 "mirror=%lu\n", (u64)bio->bi_iter.bi_sector, err,
2463 io_bio->mirror_num);
2464 tree = &BTRFS_I(inode)->io_tree;
2466 /* We always issue full-page reads, but if some block
2467 * in a page fails to read, blk_update_request() will
2468 * advance bv_offset and adjust bv_len to compensate.
2469 * Print a warning for nonzero offsets, and an error
2470 * if they don't add up to a full page. */
2471 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2472 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2473 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2474 "partial page read in btrfs with offset %u and length %u",
2475 bvec->bv_offset, bvec->bv_len);
2476 else
2477 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2478 "incomplete page read in btrfs with offset %u and "
2479 "length %u",
2480 bvec->bv_offset, bvec->bv_len);
2483 start = page_offset(page);
2484 end = start + bvec->bv_offset + bvec->bv_len - 1;
2485 len = bvec->bv_len;
2487 mirror = io_bio->mirror_num;
2488 if (likely(uptodate && tree->ops &&
2489 tree->ops->readpage_end_io_hook)) {
2490 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2491 page, start, end,
2492 mirror);
2493 if (ret)
2494 uptodate = 0;
2495 else
2496 clean_io_failure(start, page);
2499 if (likely(uptodate))
2500 goto readpage_ok;
2502 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2503 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2504 if (!ret && !err &&
2505 test_bit(BIO_UPTODATE, &bio->bi_flags))
2506 uptodate = 1;
2507 } else {
2509 * The generic bio_readpage_error handles errors the
2510 * following way: If possible, new read requests are
2511 * created and submitted and will end up in
2512 * end_bio_extent_readpage as well (if we're lucky, not
2513 * in the !uptodate case). In that case it returns 0 and
2514 * we just go on with the next page in our bio. If it
2515 * can't handle the error it will return -EIO and we
2516 * remain responsible for that page.
2518 ret = bio_readpage_error(bio, offset, page, start, end,
2519 mirror);
2520 if (ret == 0) {
2521 uptodate =
2522 test_bit(BIO_UPTODATE, &bio->bi_flags);
2523 if (err)
2524 uptodate = 0;
2525 continue;
2528 readpage_ok:
2529 if (likely(uptodate)) {
2530 loff_t i_size = i_size_read(inode);
2531 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2532 unsigned offset;
2534 /* Zero out the end if this page straddles i_size */
2535 offset = i_size & (PAGE_CACHE_SIZE-1);
2536 if (page->index == end_index && offset)
2537 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2538 SetPageUptodate(page);
2539 } else {
2540 ClearPageUptodate(page);
2541 SetPageError(page);
2543 unlock_page(page);
2544 offset += len;
2546 if (unlikely(!uptodate)) {
2547 if (extent_len) {
2548 endio_readpage_release_extent(tree,
2549 extent_start,
2550 extent_len, 1);
2551 extent_start = 0;
2552 extent_len = 0;
2554 endio_readpage_release_extent(tree, start,
2555 end - start + 1, 0);
2556 } else if (!extent_len) {
2557 extent_start = start;
2558 extent_len = end + 1 - start;
2559 } else if (extent_start + extent_len == start) {
2560 extent_len += end + 1 - start;
2561 } else {
2562 endio_readpage_release_extent(tree, extent_start,
2563 extent_len, uptodate);
2564 extent_start = start;
2565 extent_len = end + 1 - start;
2569 if (extent_len)
2570 endio_readpage_release_extent(tree, extent_start, extent_len,
2571 uptodate);
2572 if (io_bio->end_io)
2573 io_bio->end_io(io_bio, err);
2574 bio_put(bio);
2578 * this allocates from the btrfs_bioset. We're returning a bio right now
2579 * but you can call btrfs_io_bio for the appropriate container_of magic
2581 struct bio *
2582 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2583 gfp_t gfp_flags)
2585 struct btrfs_io_bio *btrfs_bio;
2586 struct bio *bio;
2588 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2590 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2591 while (!bio && (nr_vecs /= 2)) {
2592 bio = bio_alloc_bioset(gfp_flags,
2593 nr_vecs, btrfs_bioset);
2597 if (bio) {
2598 bio->bi_bdev = bdev;
2599 bio->bi_iter.bi_sector = first_sector;
2600 btrfs_bio = btrfs_io_bio(bio);
2601 btrfs_bio->csum = NULL;
2602 btrfs_bio->csum_allocated = NULL;
2603 btrfs_bio->end_io = NULL;
2605 return bio;
2608 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2610 return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2614 /* this also allocates from the btrfs_bioset */
2615 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2617 struct btrfs_io_bio *btrfs_bio;
2618 struct bio *bio;
2620 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2621 if (bio) {
2622 btrfs_bio = btrfs_io_bio(bio);
2623 btrfs_bio->csum = NULL;
2624 btrfs_bio->csum_allocated = NULL;
2625 btrfs_bio->end_io = NULL;
2627 return bio;
2631 static int __must_check submit_one_bio(int rw, struct bio *bio,
2632 int mirror_num, unsigned long bio_flags)
2634 int ret = 0;
2635 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2636 struct page *page = bvec->bv_page;
2637 struct extent_io_tree *tree = bio->bi_private;
2638 u64 start;
2640 start = page_offset(page) + bvec->bv_offset;
2642 bio->bi_private = NULL;
2644 bio_get(bio);
2646 if (tree->ops && tree->ops->submit_bio_hook)
2647 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2648 mirror_num, bio_flags, start);
2649 else
2650 btrfsic_submit_bio(rw, bio);
2652 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2653 ret = -EOPNOTSUPP;
2654 bio_put(bio);
2655 return ret;
2658 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2659 unsigned long offset, size_t size, struct bio *bio,
2660 unsigned long bio_flags)
2662 int ret = 0;
2663 if (tree->ops && tree->ops->merge_bio_hook)
2664 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2665 bio_flags);
2666 BUG_ON(ret < 0);
2667 return ret;
2671 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2672 struct page *page, sector_t sector,
2673 size_t size, unsigned long offset,
2674 struct block_device *bdev,
2675 struct bio **bio_ret,
2676 unsigned long max_pages,
2677 bio_end_io_t end_io_func,
2678 int mirror_num,
2679 unsigned long prev_bio_flags,
2680 unsigned long bio_flags)
2682 int ret = 0;
2683 struct bio *bio;
2684 int nr;
2685 int contig = 0;
2686 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2687 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2688 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2690 if (bio_ret && *bio_ret) {
2691 bio = *bio_ret;
2692 if (old_compressed)
2693 contig = bio->bi_iter.bi_sector == sector;
2694 else
2695 contig = bio_end_sector(bio) == sector;
2697 if (prev_bio_flags != bio_flags || !contig ||
2698 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2699 bio_add_page(bio, page, page_size, offset) < page_size) {
2700 ret = submit_one_bio(rw, bio, mirror_num,
2701 prev_bio_flags);
2702 if (ret < 0)
2703 return ret;
2704 bio = NULL;
2705 } else {
2706 return 0;
2709 if (this_compressed)
2710 nr = BIO_MAX_PAGES;
2711 else
2712 nr = bio_get_nr_vecs(bdev);
2714 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2715 if (!bio)
2716 return -ENOMEM;
2718 bio_add_page(bio, page, page_size, offset);
2719 bio->bi_end_io = end_io_func;
2720 bio->bi_private = tree;
2722 if (bio_ret)
2723 *bio_ret = bio;
2724 else
2725 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2727 return ret;
2730 static void attach_extent_buffer_page(struct extent_buffer *eb,
2731 struct page *page)
2733 if (!PagePrivate(page)) {
2734 SetPagePrivate(page);
2735 page_cache_get(page);
2736 set_page_private(page, (unsigned long)eb);
2737 } else {
2738 WARN_ON(page->private != (unsigned long)eb);
2742 void set_page_extent_mapped(struct page *page)
2744 if (!PagePrivate(page)) {
2745 SetPagePrivate(page);
2746 page_cache_get(page);
2747 set_page_private(page, EXTENT_PAGE_PRIVATE);
2751 static struct extent_map *
2752 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2753 u64 start, u64 len, get_extent_t *get_extent,
2754 struct extent_map **em_cached)
2756 struct extent_map *em;
2758 if (em_cached && *em_cached) {
2759 em = *em_cached;
2760 if (em->in_tree && start >= em->start &&
2761 start < extent_map_end(em)) {
2762 atomic_inc(&em->refs);
2763 return em;
2766 free_extent_map(em);
2767 *em_cached = NULL;
2770 em = get_extent(inode, page, pg_offset, start, len, 0);
2771 if (em_cached && !IS_ERR_OR_NULL(em)) {
2772 BUG_ON(*em_cached);
2773 atomic_inc(&em->refs);
2774 *em_cached = em;
2776 return em;
2779 * basic readpage implementation. Locked extent state structs are inserted
2780 * into the tree that are removed when the IO is done (by the end_io
2781 * handlers)
2782 * XXX JDM: This needs looking at to ensure proper page locking
2784 static int __do_readpage(struct extent_io_tree *tree,
2785 struct page *page,
2786 get_extent_t *get_extent,
2787 struct extent_map **em_cached,
2788 struct bio **bio, int mirror_num,
2789 unsigned long *bio_flags, int rw)
2791 struct inode *inode = page->mapping->host;
2792 u64 start = page_offset(page);
2793 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2794 u64 end;
2795 u64 cur = start;
2796 u64 extent_offset;
2797 u64 last_byte = i_size_read(inode);
2798 u64 block_start;
2799 u64 cur_end;
2800 sector_t sector;
2801 struct extent_map *em;
2802 struct block_device *bdev;
2803 int ret;
2804 int nr = 0;
2805 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2806 size_t pg_offset = 0;
2807 size_t iosize;
2808 size_t disk_io_size;
2809 size_t blocksize = inode->i_sb->s_blocksize;
2810 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2812 set_page_extent_mapped(page);
2814 end = page_end;
2815 if (!PageUptodate(page)) {
2816 if (cleancache_get_page(page) == 0) {
2817 BUG_ON(blocksize != PAGE_SIZE);
2818 unlock_extent(tree, start, end);
2819 goto out;
2823 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2824 char *userpage;
2825 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2827 if (zero_offset) {
2828 iosize = PAGE_CACHE_SIZE - zero_offset;
2829 userpage = kmap_atomic(page);
2830 memset(userpage + zero_offset, 0, iosize);
2831 flush_dcache_page(page);
2832 kunmap_atomic(userpage);
2835 while (cur <= end) {
2836 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2838 if (cur >= last_byte) {
2839 char *userpage;
2840 struct extent_state *cached = NULL;
2842 iosize = PAGE_CACHE_SIZE - pg_offset;
2843 userpage = kmap_atomic(page);
2844 memset(userpage + pg_offset, 0, iosize);
2845 flush_dcache_page(page);
2846 kunmap_atomic(userpage);
2847 set_extent_uptodate(tree, cur, cur + iosize - 1,
2848 &cached, GFP_NOFS);
2849 if (!parent_locked)
2850 unlock_extent_cached(tree, cur,
2851 cur + iosize - 1,
2852 &cached, GFP_NOFS);
2853 break;
2855 em = __get_extent_map(inode, page, pg_offset, cur,
2856 end - cur + 1, get_extent, em_cached);
2857 if (IS_ERR_OR_NULL(em)) {
2858 SetPageError(page);
2859 if (!parent_locked)
2860 unlock_extent(tree, cur, end);
2861 break;
2863 extent_offset = cur - em->start;
2864 BUG_ON(extent_map_end(em) <= cur);
2865 BUG_ON(end < cur);
2867 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2868 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2869 extent_set_compress_type(&this_bio_flag,
2870 em->compress_type);
2873 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2874 cur_end = min(extent_map_end(em) - 1, end);
2875 iosize = ALIGN(iosize, blocksize);
2876 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2877 disk_io_size = em->block_len;
2878 sector = em->block_start >> 9;
2879 } else {
2880 sector = (em->block_start + extent_offset) >> 9;
2881 disk_io_size = iosize;
2883 bdev = em->bdev;
2884 block_start = em->block_start;
2885 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2886 block_start = EXTENT_MAP_HOLE;
2887 free_extent_map(em);
2888 em = NULL;
2890 /* we've found a hole, just zero and go on */
2891 if (block_start == EXTENT_MAP_HOLE) {
2892 char *userpage;
2893 struct extent_state *cached = NULL;
2895 userpage = kmap_atomic(page);
2896 memset(userpage + pg_offset, 0, iosize);
2897 flush_dcache_page(page);
2898 kunmap_atomic(userpage);
2900 set_extent_uptodate(tree, cur, cur + iosize - 1,
2901 &cached, GFP_NOFS);
2902 unlock_extent_cached(tree, cur, cur + iosize - 1,
2903 &cached, GFP_NOFS);
2904 cur = cur + iosize;
2905 pg_offset += iosize;
2906 continue;
2908 /* the get_extent function already copied into the page */
2909 if (test_range_bit(tree, cur, cur_end,
2910 EXTENT_UPTODATE, 1, NULL)) {
2911 check_page_uptodate(tree, page);
2912 if (!parent_locked)
2913 unlock_extent(tree, cur, cur + iosize - 1);
2914 cur = cur + iosize;
2915 pg_offset += iosize;
2916 continue;
2918 /* we have an inline extent but it didn't get marked up
2919 * to date. Error out
2921 if (block_start == EXTENT_MAP_INLINE) {
2922 SetPageError(page);
2923 if (!parent_locked)
2924 unlock_extent(tree, cur, cur + iosize - 1);
2925 cur = cur + iosize;
2926 pg_offset += iosize;
2927 continue;
2930 pnr -= page->index;
2931 ret = submit_extent_page(rw, tree, page,
2932 sector, disk_io_size, pg_offset,
2933 bdev, bio, pnr,
2934 end_bio_extent_readpage, mirror_num,
2935 *bio_flags,
2936 this_bio_flag);
2937 if (!ret) {
2938 nr++;
2939 *bio_flags = this_bio_flag;
2940 } else {
2941 SetPageError(page);
2942 if (!parent_locked)
2943 unlock_extent(tree, cur, cur + iosize - 1);
2945 cur = cur + iosize;
2946 pg_offset += iosize;
2948 out:
2949 if (!nr) {
2950 if (!PageError(page))
2951 SetPageUptodate(page);
2952 unlock_page(page);
2954 return 0;
2957 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
2958 struct page *pages[], int nr_pages,
2959 u64 start, u64 end,
2960 get_extent_t *get_extent,
2961 struct extent_map **em_cached,
2962 struct bio **bio, int mirror_num,
2963 unsigned long *bio_flags, int rw)
2965 struct inode *inode;
2966 struct btrfs_ordered_extent *ordered;
2967 int index;
2969 inode = pages[0]->mapping->host;
2970 while (1) {
2971 lock_extent(tree, start, end);
2972 ordered = btrfs_lookup_ordered_range(inode, start,
2973 end - start + 1);
2974 if (!ordered)
2975 break;
2976 unlock_extent(tree, start, end);
2977 btrfs_start_ordered_extent(inode, ordered, 1);
2978 btrfs_put_ordered_extent(ordered);
2981 for (index = 0; index < nr_pages; index++) {
2982 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
2983 mirror_num, bio_flags, rw);
2984 page_cache_release(pages[index]);
2988 static void __extent_readpages(struct extent_io_tree *tree,
2989 struct page *pages[],
2990 int nr_pages, get_extent_t *get_extent,
2991 struct extent_map **em_cached,
2992 struct bio **bio, int mirror_num,
2993 unsigned long *bio_flags, int rw)
2995 u64 start = 0;
2996 u64 end = 0;
2997 u64 page_start;
2998 int index;
2999 int first_index = 0;
3001 for (index = 0; index < nr_pages; index++) {
3002 page_start = page_offset(pages[index]);
3003 if (!end) {
3004 start = page_start;
3005 end = start + PAGE_CACHE_SIZE - 1;
3006 first_index = index;
3007 } else if (end + 1 == page_start) {
3008 end += PAGE_CACHE_SIZE;
3009 } else {
3010 __do_contiguous_readpages(tree, &pages[first_index],
3011 index - first_index, start,
3012 end, get_extent, em_cached,
3013 bio, mirror_num, bio_flags,
3014 rw);
3015 start = page_start;
3016 end = start + PAGE_CACHE_SIZE - 1;
3017 first_index = index;
3021 if (end)
3022 __do_contiguous_readpages(tree, &pages[first_index],
3023 index - first_index, start,
3024 end, get_extent, em_cached, bio,
3025 mirror_num, bio_flags, rw);
3028 static int __extent_read_full_page(struct extent_io_tree *tree,
3029 struct page *page,
3030 get_extent_t *get_extent,
3031 struct bio **bio, int mirror_num,
3032 unsigned long *bio_flags, int rw)
3034 struct inode *inode = page->mapping->host;
3035 struct btrfs_ordered_extent *ordered;
3036 u64 start = page_offset(page);
3037 u64 end = start + PAGE_CACHE_SIZE - 1;
3038 int ret;
3040 while (1) {
3041 lock_extent(tree, start, end);
3042 ordered = btrfs_lookup_ordered_extent(inode, start);
3043 if (!ordered)
3044 break;
3045 unlock_extent(tree, start, end);
3046 btrfs_start_ordered_extent(inode, ordered, 1);
3047 btrfs_put_ordered_extent(ordered);
3050 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3051 bio_flags, rw);
3052 return ret;
3055 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3056 get_extent_t *get_extent, int mirror_num)
3058 struct bio *bio = NULL;
3059 unsigned long bio_flags = 0;
3060 int ret;
3062 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3063 &bio_flags, READ);
3064 if (bio)
3065 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3066 return ret;
3069 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3070 get_extent_t *get_extent, int mirror_num)
3072 struct bio *bio = NULL;
3073 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3074 int ret;
3076 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3077 &bio_flags, READ);
3078 if (bio)
3079 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3080 return ret;
3083 static noinline void update_nr_written(struct page *page,
3084 struct writeback_control *wbc,
3085 unsigned long nr_written)
3087 wbc->nr_to_write -= nr_written;
3088 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3089 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3090 page->mapping->writeback_index = page->index + nr_written;
3094 * the writepage semantics are similar to regular writepage. extent
3095 * records are inserted to lock ranges in the tree, and as dirty areas
3096 * are found, they are marked writeback. Then the lock bits are removed
3097 * and the end_io handler clears the writeback ranges
3099 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3100 void *data)
3102 struct inode *inode = page->mapping->host;
3103 struct extent_page_data *epd = data;
3104 struct extent_io_tree *tree = epd->tree;
3105 u64 start = page_offset(page);
3106 u64 delalloc_start;
3107 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3108 u64 end;
3109 u64 cur = start;
3110 u64 extent_offset;
3111 u64 last_byte = i_size_read(inode);
3112 u64 block_start;
3113 u64 iosize;
3114 sector_t sector;
3115 struct extent_state *cached_state = NULL;
3116 struct extent_map *em;
3117 struct block_device *bdev;
3118 int ret;
3119 int nr = 0;
3120 size_t pg_offset = 0;
3121 size_t blocksize;
3122 loff_t i_size = i_size_read(inode);
3123 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3124 u64 nr_delalloc;
3125 u64 delalloc_end;
3126 int page_started;
3127 int compressed;
3128 int write_flags;
3129 unsigned long nr_written = 0;
3130 bool fill_delalloc = true;
3132 if (wbc->sync_mode == WB_SYNC_ALL)
3133 write_flags = WRITE_SYNC;
3134 else
3135 write_flags = WRITE;
3137 trace___extent_writepage(page, inode, wbc);
3139 WARN_ON(!PageLocked(page));
3141 ClearPageError(page);
3143 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3144 if (page->index > end_index ||
3145 (page->index == end_index && !pg_offset)) {
3146 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3147 unlock_page(page);
3148 return 0;
3151 if (page->index == end_index) {
3152 char *userpage;
3154 userpage = kmap_atomic(page);
3155 memset(userpage + pg_offset, 0,
3156 PAGE_CACHE_SIZE - pg_offset);
3157 kunmap_atomic(userpage);
3158 flush_dcache_page(page);
3160 pg_offset = 0;
3162 set_page_extent_mapped(page);
3164 if (!tree->ops || !tree->ops->fill_delalloc)
3165 fill_delalloc = false;
3167 delalloc_start = start;
3168 delalloc_end = 0;
3169 page_started = 0;
3170 if (!epd->extent_locked && fill_delalloc) {
3171 u64 delalloc_to_write = 0;
3173 * make sure the wbc mapping index is at least updated
3174 * to this page.
3176 update_nr_written(page, wbc, 0);
3178 while (delalloc_end < page_end) {
3179 nr_delalloc = find_lock_delalloc_range(inode, tree,
3180 page,
3181 &delalloc_start,
3182 &delalloc_end,
3183 128 * 1024 * 1024);
3184 if (nr_delalloc == 0) {
3185 delalloc_start = delalloc_end + 1;
3186 continue;
3188 ret = tree->ops->fill_delalloc(inode, page,
3189 delalloc_start,
3190 delalloc_end,
3191 &page_started,
3192 &nr_written);
3193 /* File system has been set read-only */
3194 if (ret) {
3195 SetPageError(page);
3196 goto done;
3199 * delalloc_end is already one less than the total
3200 * length, so we don't subtract one from
3201 * PAGE_CACHE_SIZE
3203 delalloc_to_write += (delalloc_end - delalloc_start +
3204 PAGE_CACHE_SIZE) >>
3205 PAGE_CACHE_SHIFT;
3206 delalloc_start = delalloc_end + 1;
3208 if (wbc->nr_to_write < delalloc_to_write) {
3209 int thresh = 8192;
3211 if (delalloc_to_write < thresh * 2)
3212 thresh = delalloc_to_write;
3213 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3214 thresh);
3217 /* did the fill delalloc function already unlock and start
3218 * the IO?
3220 if (page_started) {
3221 ret = 0;
3223 * we've unlocked the page, so we can't update
3224 * the mapping's writeback index, just update
3225 * nr_to_write.
3227 wbc->nr_to_write -= nr_written;
3228 goto done_unlocked;
3231 if (tree->ops && tree->ops->writepage_start_hook) {
3232 ret = tree->ops->writepage_start_hook(page, start,
3233 page_end);
3234 if (ret) {
3235 /* Fixup worker will requeue */
3236 if (ret == -EBUSY)
3237 wbc->pages_skipped++;
3238 else
3239 redirty_page_for_writepage(wbc, page);
3240 update_nr_written(page, wbc, nr_written);
3241 unlock_page(page);
3242 ret = 0;
3243 goto done_unlocked;
3248 * we don't want to touch the inode after unlocking the page,
3249 * so we update the mapping writeback index now
3251 update_nr_written(page, wbc, nr_written + 1);
3253 end = page_end;
3254 if (last_byte <= start) {
3255 if (tree->ops && tree->ops->writepage_end_io_hook)
3256 tree->ops->writepage_end_io_hook(page, start,
3257 page_end, NULL, 1);
3258 goto done;
3261 blocksize = inode->i_sb->s_blocksize;
3263 while (cur <= end) {
3264 if (cur >= last_byte) {
3265 if (tree->ops && tree->ops->writepage_end_io_hook)
3266 tree->ops->writepage_end_io_hook(page, cur,
3267 page_end, NULL, 1);
3268 break;
3270 em = epd->get_extent(inode, page, pg_offset, cur,
3271 end - cur + 1, 1);
3272 if (IS_ERR_OR_NULL(em)) {
3273 SetPageError(page);
3274 break;
3277 extent_offset = cur - em->start;
3278 BUG_ON(extent_map_end(em) <= cur);
3279 BUG_ON(end < cur);
3280 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3281 iosize = ALIGN(iosize, blocksize);
3282 sector = (em->block_start + extent_offset) >> 9;
3283 bdev = em->bdev;
3284 block_start = em->block_start;
3285 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3286 free_extent_map(em);
3287 em = NULL;
3290 * compressed and inline extents are written through other
3291 * paths in the FS
3293 if (compressed || block_start == EXTENT_MAP_HOLE ||
3294 block_start == EXTENT_MAP_INLINE) {
3296 * end_io notification does not happen here for
3297 * compressed extents
3299 if (!compressed && tree->ops &&
3300 tree->ops->writepage_end_io_hook)
3301 tree->ops->writepage_end_io_hook(page, cur,
3302 cur + iosize - 1,
3303 NULL, 1);
3304 else if (compressed) {
3305 /* we don't want to end_page_writeback on
3306 * a compressed extent. this happens
3307 * elsewhere
3309 nr++;
3312 cur += iosize;
3313 pg_offset += iosize;
3314 continue;
3316 /* leave this out until we have a page_mkwrite call */
3317 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
3318 EXTENT_DIRTY, 0, NULL)) {
3319 cur = cur + iosize;
3320 pg_offset += iosize;
3321 continue;
3324 if (tree->ops && tree->ops->writepage_io_hook) {
3325 ret = tree->ops->writepage_io_hook(page, cur,
3326 cur + iosize - 1);
3327 } else {
3328 ret = 0;
3330 if (ret) {
3331 SetPageError(page);
3332 } else {
3333 unsigned long max_nr = end_index + 1;
3335 set_range_writeback(tree, cur, cur + iosize - 1);
3336 if (!PageWriteback(page)) {
3337 btrfs_err(BTRFS_I(inode)->root->fs_info,
3338 "page %lu not writeback, cur %llu end %llu",
3339 page->index, cur, end);
3342 ret = submit_extent_page(write_flags, tree, page,
3343 sector, iosize, pg_offset,
3344 bdev, &epd->bio, max_nr,
3345 end_bio_extent_writepage,
3346 0, 0, 0);
3347 if (ret)
3348 SetPageError(page);
3350 cur = cur + iosize;
3351 pg_offset += iosize;
3352 nr++;
3354 done:
3355 if (nr == 0) {
3356 /* make sure the mapping tag for page dirty gets cleared */
3357 set_page_writeback(page);
3358 end_page_writeback(page);
3360 unlock_page(page);
3362 done_unlocked:
3364 /* drop our reference on any cached states */
3365 free_extent_state(cached_state);
3366 return 0;
3369 static int eb_wait(void *word)
3371 io_schedule();
3372 return 0;
3375 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3377 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3378 TASK_UNINTERRUPTIBLE);
3381 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3382 struct btrfs_fs_info *fs_info,
3383 struct extent_page_data *epd)
3385 unsigned long i, num_pages;
3386 int flush = 0;
3387 int ret = 0;
3389 if (!btrfs_try_tree_write_lock(eb)) {
3390 flush = 1;
3391 flush_write_bio(epd);
3392 btrfs_tree_lock(eb);
3395 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3396 btrfs_tree_unlock(eb);
3397 if (!epd->sync_io)
3398 return 0;
3399 if (!flush) {
3400 flush_write_bio(epd);
3401 flush = 1;
3403 while (1) {
3404 wait_on_extent_buffer_writeback(eb);
3405 btrfs_tree_lock(eb);
3406 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3407 break;
3408 btrfs_tree_unlock(eb);
3413 * We need to do this to prevent races in people who check if the eb is
3414 * under IO since we can end up having no IO bits set for a short period
3415 * of time.
3417 spin_lock(&eb->refs_lock);
3418 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3419 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3420 spin_unlock(&eb->refs_lock);
3421 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3422 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3423 -eb->len,
3424 fs_info->dirty_metadata_batch);
3425 ret = 1;
3426 } else {
3427 spin_unlock(&eb->refs_lock);
3430 btrfs_tree_unlock(eb);
3432 if (!ret)
3433 return ret;
3435 num_pages = num_extent_pages(eb->start, eb->len);
3436 for (i = 0; i < num_pages; i++) {
3437 struct page *p = extent_buffer_page(eb, i);
3439 if (!trylock_page(p)) {
3440 if (!flush) {
3441 flush_write_bio(epd);
3442 flush = 1;
3444 lock_page(p);
3448 return ret;
3451 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3453 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3454 smp_mb__after_clear_bit();
3455 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3458 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3460 struct bio_vec *bvec;
3461 struct extent_buffer *eb;
3462 int i, done;
3464 bio_for_each_segment_all(bvec, bio, i) {
3465 struct page *page = bvec->bv_page;
3467 eb = (struct extent_buffer *)page->private;
3468 BUG_ON(!eb);
3469 done = atomic_dec_and_test(&eb->io_pages);
3471 if (err || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3472 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3473 ClearPageUptodate(page);
3474 SetPageError(page);
3477 end_page_writeback(page);
3479 if (!done)
3480 continue;
3482 end_extent_buffer_writeback(eb);
3485 bio_put(bio);
3488 static int write_one_eb(struct extent_buffer *eb,
3489 struct btrfs_fs_info *fs_info,
3490 struct writeback_control *wbc,
3491 struct extent_page_data *epd)
3493 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3494 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3495 u64 offset = eb->start;
3496 unsigned long i, num_pages;
3497 unsigned long bio_flags = 0;
3498 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3499 int ret = 0;
3501 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3502 num_pages = num_extent_pages(eb->start, eb->len);
3503 atomic_set(&eb->io_pages, num_pages);
3504 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3505 bio_flags = EXTENT_BIO_TREE_LOG;
3507 for (i = 0; i < num_pages; i++) {
3508 struct page *p = extent_buffer_page(eb, i);
3510 clear_page_dirty_for_io(p);
3511 set_page_writeback(p);
3512 ret = submit_extent_page(rw, tree, p, offset >> 9,
3513 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3514 -1, end_bio_extent_buffer_writepage,
3515 0, epd->bio_flags, bio_flags);
3516 epd->bio_flags = bio_flags;
3517 if (ret) {
3518 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3519 SetPageError(p);
3520 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3521 end_extent_buffer_writeback(eb);
3522 ret = -EIO;
3523 break;
3525 offset += PAGE_CACHE_SIZE;
3526 update_nr_written(p, wbc, 1);
3527 unlock_page(p);
3530 if (unlikely(ret)) {
3531 for (; i < num_pages; i++) {
3532 struct page *p = extent_buffer_page(eb, i);
3533 unlock_page(p);
3537 return ret;
3540 int btree_write_cache_pages(struct address_space *mapping,
3541 struct writeback_control *wbc)
3543 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3544 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3545 struct extent_buffer *eb, *prev_eb = NULL;
3546 struct extent_page_data epd = {
3547 .bio = NULL,
3548 .tree = tree,
3549 .extent_locked = 0,
3550 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3551 .bio_flags = 0,
3553 int ret = 0;
3554 int done = 0;
3555 int nr_to_write_done = 0;
3556 struct pagevec pvec;
3557 int nr_pages;
3558 pgoff_t index;
3559 pgoff_t end; /* Inclusive */
3560 int scanned = 0;
3561 int tag;
3563 pagevec_init(&pvec, 0);
3564 if (wbc->range_cyclic) {
3565 index = mapping->writeback_index; /* Start from prev offset */
3566 end = -1;
3567 } else {
3568 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3569 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3570 scanned = 1;
3572 if (wbc->sync_mode == WB_SYNC_ALL)
3573 tag = PAGECACHE_TAG_TOWRITE;
3574 else
3575 tag = PAGECACHE_TAG_DIRTY;
3576 retry:
3577 if (wbc->sync_mode == WB_SYNC_ALL)
3578 tag_pages_for_writeback(mapping, index, end);
3579 while (!done && !nr_to_write_done && (index <= end) &&
3580 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3581 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3582 unsigned i;
3584 scanned = 1;
3585 for (i = 0; i < nr_pages; i++) {
3586 struct page *page = pvec.pages[i];
3588 if (!PagePrivate(page))
3589 continue;
3591 if (!wbc->range_cyclic && page->index > end) {
3592 done = 1;
3593 break;
3596 spin_lock(&mapping->private_lock);
3597 if (!PagePrivate(page)) {
3598 spin_unlock(&mapping->private_lock);
3599 continue;
3602 eb = (struct extent_buffer *)page->private;
3605 * Shouldn't happen and normally this would be a BUG_ON
3606 * but no sense in crashing the users box for something
3607 * we can survive anyway.
3609 if (WARN_ON(!eb)) {
3610 spin_unlock(&mapping->private_lock);
3611 continue;
3614 if (eb == prev_eb) {
3615 spin_unlock(&mapping->private_lock);
3616 continue;
3619 ret = atomic_inc_not_zero(&eb->refs);
3620 spin_unlock(&mapping->private_lock);
3621 if (!ret)
3622 continue;
3624 prev_eb = eb;
3625 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3626 if (!ret) {
3627 free_extent_buffer(eb);
3628 continue;
3631 ret = write_one_eb(eb, fs_info, wbc, &epd);
3632 if (ret) {
3633 done = 1;
3634 free_extent_buffer(eb);
3635 break;
3637 free_extent_buffer(eb);
3640 * the filesystem may choose to bump up nr_to_write.
3641 * We have to make sure to honor the new nr_to_write
3642 * at any time
3644 nr_to_write_done = wbc->nr_to_write <= 0;
3646 pagevec_release(&pvec);
3647 cond_resched();
3649 if (!scanned && !done) {
3651 * We hit the last page and there is more work to be done: wrap
3652 * back to the start of the file
3654 scanned = 1;
3655 index = 0;
3656 goto retry;
3658 flush_write_bio(&epd);
3659 return ret;
3663 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3664 * @mapping: address space structure to write
3665 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3666 * @writepage: function called for each page
3667 * @data: data passed to writepage function
3669 * If a page is already under I/O, write_cache_pages() skips it, even
3670 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3671 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3672 * and msync() need to guarantee that all the data which was dirty at the time
3673 * the call was made get new I/O started against them. If wbc->sync_mode is
3674 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3675 * existing IO to complete.
3677 static int extent_write_cache_pages(struct extent_io_tree *tree,
3678 struct address_space *mapping,
3679 struct writeback_control *wbc,
3680 writepage_t writepage, void *data,
3681 void (*flush_fn)(void *))
3683 struct inode *inode = mapping->host;
3684 int ret = 0;
3685 int done = 0;
3686 int nr_to_write_done = 0;
3687 struct pagevec pvec;
3688 int nr_pages;
3689 pgoff_t index;
3690 pgoff_t end; /* Inclusive */
3691 int scanned = 0;
3692 int tag;
3695 * We have to hold onto the inode so that ordered extents can do their
3696 * work when the IO finishes. The alternative to this is failing to add
3697 * an ordered extent if the igrab() fails there and that is a huge pain
3698 * to deal with, so instead just hold onto the inode throughout the
3699 * writepages operation. If it fails here we are freeing up the inode
3700 * anyway and we'd rather not waste our time writing out stuff that is
3701 * going to be truncated anyway.
3703 if (!igrab(inode))
3704 return 0;
3706 pagevec_init(&pvec, 0);
3707 if (wbc->range_cyclic) {
3708 index = mapping->writeback_index; /* Start from prev offset */
3709 end = -1;
3710 } else {
3711 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3712 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3713 scanned = 1;
3715 if (wbc->sync_mode == WB_SYNC_ALL)
3716 tag = PAGECACHE_TAG_TOWRITE;
3717 else
3718 tag = PAGECACHE_TAG_DIRTY;
3719 retry:
3720 if (wbc->sync_mode == WB_SYNC_ALL)
3721 tag_pages_for_writeback(mapping, index, end);
3722 while (!done && !nr_to_write_done && (index <= end) &&
3723 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3724 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3725 unsigned i;
3727 scanned = 1;
3728 for (i = 0; i < nr_pages; i++) {
3729 struct page *page = pvec.pages[i];
3732 * At this point we hold neither mapping->tree_lock nor
3733 * lock on the page itself: the page may be truncated or
3734 * invalidated (changing page->mapping to NULL), or even
3735 * swizzled back from swapper_space to tmpfs file
3736 * mapping
3738 if (!trylock_page(page)) {
3739 flush_fn(data);
3740 lock_page(page);
3743 if (unlikely(page->mapping != mapping)) {
3744 unlock_page(page);
3745 continue;
3748 if (!wbc->range_cyclic && page->index > end) {
3749 done = 1;
3750 unlock_page(page);
3751 continue;
3754 if (wbc->sync_mode != WB_SYNC_NONE) {
3755 if (PageWriteback(page))
3756 flush_fn(data);
3757 wait_on_page_writeback(page);
3760 if (PageWriteback(page) ||
3761 !clear_page_dirty_for_io(page)) {
3762 unlock_page(page);
3763 continue;
3766 ret = (*writepage)(page, wbc, data);
3768 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3769 unlock_page(page);
3770 ret = 0;
3772 if (ret)
3773 done = 1;
3776 * the filesystem may choose to bump up nr_to_write.
3777 * We have to make sure to honor the new nr_to_write
3778 * at any time
3780 nr_to_write_done = wbc->nr_to_write <= 0;
3782 pagevec_release(&pvec);
3783 cond_resched();
3785 if (!scanned && !done) {
3787 * We hit the last page and there is more work to be done: wrap
3788 * back to the start of the file
3790 scanned = 1;
3791 index = 0;
3792 goto retry;
3794 btrfs_add_delayed_iput(inode);
3795 return ret;
3798 static void flush_epd_write_bio(struct extent_page_data *epd)
3800 if (epd->bio) {
3801 int rw = WRITE;
3802 int ret;
3804 if (epd->sync_io)
3805 rw = WRITE_SYNC;
3807 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3808 BUG_ON(ret < 0); /* -ENOMEM */
3809 epd->bio = NULL;
3813 static noinline void flush_write_bio(void *data)
3815 struct extent_page_data *epd = data;
3816 flush_epd_write_bio(epd);
3819 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3820 get_extent_t *get_extent,
3821 struct writeback_control *wbc)
3823 int ret;
3824 struct extent_page_data epd = {
3825 .bio = NULL,
3826 .tree = tree,
3827 .get_extent = get_extent,
3828 .extent_locked = 0,
3829 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3830 .bio_flags = 0,
3833 ret = __extent_writepage(page, wbc, &epd);
3835 flush_epd_write_bio(&epd);
3836 return ret;
3839 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3840 u64 start, u64 end, get_extent_t *get_extent,
3841 int mode)
3843 int ret = 0;
3844 struct address_space *mapping = inode->i_mapping;
3845 struct page *page;
3846 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3847 PAGE_CACHE_SHIFT;
3849 struct extent_page_data epd = {
3850 .bio = NULL,
3851 .tree = tree,
3852 .get_extent = get_extent,
3853 .extent_locked = 1,
3854 .sync_io = mode == WB_SYNC_ALL,
3855 .bio_flags = 0,
3857 struct writeback_control wbc_writepages = {
3858 .sync_mode = mode,
3859 .nr_to_write = nr_pages * 2,
3860 .range_start = start,
3861 .range_end = end + 1,
3864 while (start <= end) {
3865 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3866 if (clear_page_dirty_for_io(page))
3867 ret = __extent_writepage(page, &wbc_writepages, &epd);
3868 else {
3869 if (tree->ops && tree->ops->writepage_end_io_hook)
3870 tree->ops->writepage_end_io_hook(page, start,
3871 start + PAGE_CACHE_SIZE - 1,
3872 NULL, 1);
3873 unlock_page(page);
3875 page_cache_release(page);
3876 start += PAGE_CACHE_SIZE;
3879 flush_epd_write_bio(&epd);
3880 return ret;
3883 int extent_writepages(struct extent_io_tree *tree,
3884 struct address_space *mapping,
3885 get_extent_t *get_extent,
3886 struct writeback_control *wbc)
3888 int ret = 0;
3889 struct extent_page_data epd = {
3890 .bio = NULL,
3891 .tree = tree,
3892 .get_extent = get_extent,
3893 .extent_locked = 0,
3894 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3895 .bio_flags = 0,
3898 ret = extent_write_cache_pages(tree, mapping, wbc,
3899 __extent_writepage, &epd,
3900 flush_write_bio);
3901 flush_epd_write_bio(&epd);
3902 return ret;
3905 int extent_readpages(struct extent_io_tree *tree,
3906 struct address_space *mapping,
3907 struct list_head *pages, unsigned nr_pages,
3908 get_extent_t get_extent)
3910 struct bio *bio = NULL;
3911 unsigned page_idx;
3912 unsigned long bio_flags = 0;
3913 struct page *pagepool[16];
3914 struct page *page;
3915 struct extent_map *em_cached = NULL;
3916 int nr = 0;
3918 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3919 page = list_entry(pages->prev, struct page, lru);
3921 prefetchw(&page->flags);
3922 list_del(&page->lru);
3923 if (add_to_page_cache_lru(page, mapping,
3924 page->index, GFP_NOFS)) {
3925 page_cache_release(page);
3926 continue;
3929 pagepool[nr++] = page;
3930 if (nr < ARRAY_SIZE(pagepool))
3931 continue;
3932 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
3933 &bio, 0, &bio_flags, READ);
3934 nr = 0;
3936 if (nr)
3937 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
3938 &bio, 0, &bio_flags, READ);
3940 if (em_cached)
3941 free_extent_map(em_cached);
3943 BUG_ON(!list_empty(pages));
3944 if (bio)
3945 return submit_one_bio(READ, bio, 0, bio_flags);
3946 return 0;
3950 * basic invalidatepage code, this waits on any locked or writeback
3951 * ranges corresponding to the page, and then deletes any extent state
3952 * records from the tree
3954 int extent_invalidatepage(struct extent_io_tree *tree,
3955 struct page *page, unsigned long offset)
3957 struct extent_state *cached_state = NULL;
3958 u64 start = page_offset(page);
3959 u64 end = start + PAGE_CACHE_SIZE - 1;
3960 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3962 start += ALIGN(offset, blocksize);
3963 if (start > end)
3964 return 0;
3966 lock_extent_bits(tree, start, end, 0, &cached_state);
3967 wait_on_page_writeback(page);
3968 clear_extent_bit(tree, start, end,
3969 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3970 EXTENT_DO_ACCOUNTING,
3971 1, 1, &cached_state, GFP_NOFS);
3972 return 0;
3976 * a helper for releasepage, this tests for areas of the page that
3977 * are locked or under IO and drops the related state bits if it is safe
3978 * to drop the page.
3980 static int try_release_extent_state(struct extent_map_tree *map,
3981 struct extent_io_tree *tree,
3982 struct page *page, gfp_t mask)
3984 u64 start = page_offset(page);
3985 u64 end = start + PAGE_CACHE_SIZE - 1;
3986 int ret = 1;
3988 if (test_range_bit(tree, start, end,
3989 EXTENT_IOBITS, 0, NULL))
3990 ret = 0;
3991 else {
3992 if ((mask & GFP_NOFS) == GFP_NOFS)
3993 mask = GFP_NOFS;
3995 * at this point we can safely clear everything except the
3996 * locked bit and the nodatasum bit
3998 ret = clear_extent_bit(tree, start, end,
3999 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4000 0, 0, NULL, mask);
4002 /* if clear_extent_bit failed for enomem reasons,
4003 * we can't allow the release to continue.
4005 if (ret < 0)
4006 ret = 0;
4007 else
4008 ret = 1;
4010 return ret;
4014 * a helper for releasepage. As long as there are no locked extents
4015 * in the range corresponding to the page, both state records and extent
4016 * map records are removed
4018 int try_release_extent_mapping(struct extent_map_tree *map,
4019 struct extent_io_tree *tree, struct page *page,
4020 gfp_t mask)
4022 struct extent_map *em;
4023 u64 start = page_offset(page);
4024 u64 end = start + PAGE_CACHE_SIZE - 1;
4026 if ((mask & __GFP_WAIT) &&
4027 page->mapping->host->i_size > 16 * 1024 * 1024) {
4028 u64 len;
4029 while (start <= end) {
4030 len = end - start + 1;
4031 write_lock(&map->lock);
4032 em = lookup_extent_mapping(map, start, len);
4033 if (!em) {
4034 write_unlock(&map->lock);
4035 break;
4037 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4038 em->start != start) {
4039 write_unlock(&map->lock);
4040 free_extent_map(em);
4041 break;
4043 if (!test_range_bit(tree, em->start,
4044 extent_map_end(em) - 1,
4045 EXTENT_LOCKED | EXTENT_WRITEBACK,
4046 0, NULL)) {
4047 remove_extent_mapping(map, em);
4048 /* once for the rb tree */
4049 free_extent_map(em);
4051 start = extent_map_end(em);
4052 write_unlock(&map->lock);
4054 /* once for us */
4055 free_extent_map(em);
4058 return try_release_extent_state(map, tree, page, mask);
4062 * helper function for fiemap, which doesn't want to see any holes.
4063 * This maps until we find something past 'last'
4065 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4066 u64 offset,
4067 u64 last,
4068 get_extent_t *get_extent)
4070 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4071 struct extent_map *em;
4072 u64 len;
4074 if (offset >= last)
4075 return NULL;
4077 while (1) {
4078 len = last - offset;
4079 if (len == 0)
4080 break;
4081 len = ALIGN(len, sectorsize);
4082 em = get_extent(inode, NULL, 0, offset, len, 0);
4083 if (IS_ERR_OR_NULL(em))
4084 return em;
4086 /* if this isn't a hole return it */
4087 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4088 em->block_start != EXTENT_MAP_HOLE) {
4089 return em;
4092 /* this is a hole, advance to the next extent */
4093 offset = extent_map_end(em);
4094 free_extent_map(em);
4095 if (offset >= last)
4096 break;
4098 return NULL;
4101 static noinline int count_ext_ref(u64 inum, u64 offset, u64 root_id, void *ctx)
4103 unsigned long cnt = *((unsigned long *)ctx);
4105 cnt++;
4106 *((unsigned long *)ctx) = cnt;
4108 /* Now we're sure that the extent is shared. */
4109 if (cnt > 1)
4110 return 1;
4111 return 0;
4114 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4115 __u64 start, __u64 len, get_extent_t *get_extent)
4117 int ret = 0;
4118 u64 off = start;
4119 u64 max = start + len;
4120 u32 flags = 0;
4121 u32 found_type;
4122 u64 last;
4123 u64 last_for_get_extent = 0;
4124 u64 disko = 0;
4125 u64 isize = i_size_read(inode);
4126 struct btrfs_key found_key;
4127 struct extent_map *em = NULL;
4128 struct extent_state *cached_state = NULL;
4129 struct btrfs_path *path;
4130 int end = 0;
4131 u64 em_start = 0;
4132 u64 em_len = 0;
4133 u64 em_end = 0;
4135 if (len == 0)
4136 return -EINVAL;
4138 path = btrfs_alloc_path();
4139 if (!path)
4140 return -ENOMEM;
4141 path->leave_spinning = 1;
4143 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
4144 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
4147 * lookup the last file extent. We're not using i_size here
4148 * because there might be preallocation past i_size
4150 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
4151 path, btrfs_ino(inode), -1, 0);
4152 if (ret < 0) {
4153 btrfs_free_path(path);
4154 return ret;
4156 WARN_ON(!ret);
4157 path->slots[0]--;
4158 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4159 found_type = btrfs_key_type(&found_key);
4161 /* No extents, but there might be delalloc bits */
4162 if (found_key.objectid != btrfs_ino(inode) ||
4163 found_type != BTRFS_EXTENT_DATA_KEY) {
4164 /* have to trust i_size as the end */
4165 last = (u64)-1;
4166 last_for_get_extent = isize;
4167 } else {
4169 * remember the start of the last extent. There are a
4170 * bunch of different factors that go into the length of the
4171 * extent, so its much less complex to remember where it started
4173 last = found_key.offset;
4174 last_for_get_extent = last + 1;
4176 btrfs_release_path(path);
4179 * we might have some extents allocated but more delalloc past those
4180 * extents. so, we trust isize unless the start of the last extent is
4181 * beyond isize
4183 if (last < isize) {
4184 last = (u64)-1;
4185 last_for_get_extent = isize;
4188 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4189 &cached_state);
4191 em = get_extent_skip_holes(inode, start, last_for_get_extent,
4192 get_extent);
4193 if (!em)
4194 goto out;
4195 if (IS_ERR(em)) {
4196 ret = PTR_ERR(em);
4197 goto out;
4200 while (!end) {
4201 u64 offset_in_extent = 0;
4203 /* break if the extent we found is outside the range */
4204 if (em->start >= max || extent_map_end(em) < off)
4205 break;
4208 * get_extent may return an extent that starts before our
4209 * requested range. We have to make sure the ranges
4210 * we return to fiemap always move forward and don't
4211 * overlap, so adjust the offsets here
4213 em_start = max(em->start, off);
4216 * record the offset from the start of the extent
4217 * for adjusting the disk offset below. Only do this if the
4218 * extent isn't compressed since our in ram offset may be past
4219 * what we have actually allocated on disk.
4221 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4222 offset_in_extent = em_start - em->start;
4223 em_end = extent_map_end(em);
4224 em_len = em_end - em_start;
4225 disko = 0;
4226 flags = 0;
4229 * bump off for our next call to get_extent
4231 off = extent_map_end(em);
4232 if (off >= max)
4233 end = 1;
4235 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4236 end = 1;
4237 flags |= FIEMAP_EXTENT_LAST;
4238 } else if (em->block_start == EXTENT_MAP_INLINE) {
4239 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4240 FIEMAP_EXTENT_NOT_ALIGNED);
4241 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4242 flags |= (FIEMAP_EXTENT_DELALLOC |
4243 FIEMAP_EXTENT_UNKNOWN);
4244 } else {
4245 unsigned long ref_cnt = 0;
4247 disko = em->block_start + offset_in_extent;
4250 * As btrfs supports shared space, this information
4251 * can be exported to userspace tools via
4252 * flag FIEMAP_EXTENT_SHARED.
4254 ret = iterate_inodes_from_logical(
4255 em->block_start,
4256 BTRFS_I(inode)->root->fs_info,
4257 path, count_ext_ref, &ref_cnt);
4258 if (ret < 0 && ret != -ENOENT)
4259 goto out_free;
4261 if (ref_cnt > 1)
4262 flags |= FIEMAP_EXTENT_SHARED;
4264 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4265 flags |= FIEMAP_EXTENT_ENCODED;
4267 free_extent_map(em);
4268 em = NULL;
4269 if ((em_start >= last) || em_len == (u64)-1 ||
4270 (last == (u64)-1 && isize <= em_end)) {
4271 flags |= FIEMAP_EXTENT_LAST;
4272 end = 1;
4275 /* now scan forward to see if this is really the last extent. */
4276 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4277 get_extent);
4278 if (IS_ERR(em)) {
4279 ret = PTR_ERR(em);
4280 goto out;
4282 if (!em) {
4283 flags |= FIEMAP_EXTENT_LAST;
4284 end = 1;
4286 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4287 em_len, flags);
4288 if (ret)
4289 goto out_free;
4291 out_free:
4292 free_extent_map(em);
4293 out:
4294 btrfs_free_path(path);
4295 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4296 &cached_state, GFP_NOFS);
4297 return ret;
4300 static void __free_extent_buffer(struct extent_buffer *eb)
4302 btrfs_leak_debug_del(&eb->leak_list);
4303 kmem_cache_free(extent_buffer_cache, eb);
4306 static int extent_buffer_under_io(struct extent_buffer *eb)
4308 return (atomic_read(&eb->io_pages) ||
4309 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4310 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4314 * Helper for releasing extent buffer page.
4316 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4317 unsigned long start_idx)
4319 unsigned long index;
4320 unsigned long num_pages;
4321 struct page *page;
4322 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4324 BUG_ON(extent_buffer_under_io(eb));
4326 num_pages = num_extent_pages(eb->start, eb->len);
4327 index = start_idx + num_pages;
4328 if (start_idx >= index)
4329 return;
4331 do {
4332 index--;
4333 page = extent_buffer_page(eb, index);
4334 if (page && mapped) {
4335 spin_lock(&page->mapping->private_lock);
4337 * We do this since we'll remove the pages after we've
4338 * removed the eb from the radix tree, so we could race
4339 * and have this page now attached to the new eb. So
4340 * only clear page_private if it's still connected to
4341 * this eb.
4343 if (PagePrivate(page) &&
4344 page->private == (unsigned long)eb) {
4345 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4346 BUG_ON(PageDirty(page));
4347 BUG_ON(PageWriteback(page));
4349 * We need to make sure we haven't be attached
4350 * to a new eb.
4352 ClearPagePrivate(page);
4353 set_page_private(page, 0);
4354 /* One for the page private */
4355 page_cache_release(page);
4357 spin_unlock(&page->mapping->private_lock);
4360 if (page) {
4361 /* One for when we alloced the page */
4362 page_cache_release(page);
4364 } while (index != start_idx);
4368 * Helper for releasing the extent buffer.
4370 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4372 btrfs_release_extent_buffer_page(eb, 0);
4373 __free_extent_buffer(eb);
4376 static struct extent_buffer *
4377 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4378 unsigned long len, gfp_t mask)
4380 struct extent_buffer *eb = NULL;
4382 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4383 if (eb == NULL)
4384 return NULL;
4385 eb->start = start;
4386 eb->len = len;
4387 eb->fs_info = fs_info;
4388 eb->bflags = 0;
4389 rwlock_init(&eb->lock);
4390 atomic_set(&eb->write_locks, 0);
4391 atomic_set(&eb->read_locks, 0);
4392 atomic_set(&eb->blocking_readers, 0);
4393 atomic_set(&eb->blocking_writers, 0);
4394 atomic_set(&eb->spinning_readers, 0);
4395 atomic_set(&eb->spinning_writers, 0);
4396 eb->lock_nested = 0;
4397 init_waitqueue_head(&eb->write_lock_wq);
4398 init_waitqueue_head(&eb->read_lock_wq);
4400 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4402 spin_lock_init(&eb->refs_lock);
4403 atomic_set(&eb->refs, 1);
4404 atomic_set(&eb->io_pages, 0);
4407 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4409 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4410 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4411 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4413 return eb;
4416 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4418 unsigned long i;
4419 struct page *p;
4420 struct extent_buffer *new;
4421 unsigned long num_pages = num_extent_pages(src->start, src->len);
4423 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS);
4424 if (new == NULL)
4425 return NULL;
4427 for (i = 0; i < num_pages; i++) {
4428 p = alloc_page(GFP_NOFS);
4429 if (!p) {
4430 btrfs_release_extent_buffer(new);
4431 return NULL;
4433 attach_extent_buffer_page(new, p);
4434 WARN_ON(PageDirty(p));
4435 SetPageUptodate(p);
4436 new->pages[i] = p;
4439 copy_extent_buffer(new, src, 0, 0, src->len);
4440 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4441 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4443 return new;
4446 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4448 struct extent_buffer *eb;
4449 unsigned long num_pages = num_extent_pages(0, len);
4450 unsigned long i;
4452 eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS);
4453 if (!eb)
4454 return NULL;
4456 for (i = 0; i < num_pages; i++) {
4457 eb->pages[i] = alloc_page(GFP_NOFS);
4458 if (!eb->pages[i])
4459 goto err;
4461 set_extent_buffer_uptodate(eb);
4462 btrfs_set_header_nritems(eb, 0);
4463 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4465 return eb;
4466 err:
4467 for (; i > 0; i--)
4468 __free_page(eb->pages[i - 1]);
4469 __free_extent_buffer(eb);
4470 return NULL;
4473 static void check_buffer_tree_ref(struct extent_buffer *eb)
4475 int refs;
4476 /* the ref bit is tricky. We have to make sure it is set
4477 * if we have the buffer dirty. Otherwise the
4478 * code to free a buffer can end up dropping a dirty
4479 * page
4481 * Once the ref bit is set, it won't go away while the
4482 * buffer is dirty or in writeback, and it also won't
4483 * go away while we have the reference count on the
4484 * eb bumped.
4486 * We can't just set the ref bit without bumping the
4487 * ref on the eb because free_extent_buffer might
4488 * see the ref bit and try to clear it. If this happens
4489 * free_extent_buffer might end up dropping our original
4490 * ref by mistake and freeing the page before we are able
4491 * to add one more ref.
4493 * So bump the ref count first, then set the bit. If someone
4494 * beat us to it, drop the ref we added.
4496 refs = atomic_read(&eb->refs);
4497 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4498 return;
4500 spin_lock(&eb->refs_lock);
4501 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4502 atomic_inc(&eb->refs);
4503 spin_unlock(&eb->refs_lock);
4506 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4508 unsigned long num_pages, i;
4510 check_buffer_tree_ref(eb);
4512 num_pages = num_extent_pages(eb->start, eb->len);
4513 for (i = 0; i < num_pages; i++) {
4514 struct page *p = extent_buffer_page(eb, i);
4515 mark_page_accessed(p);
4519 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4520 u64 start)
4522 struct extent_buffer *eb;
4524 rcu_read_lock();
4525 eb = radix_tree_lookup(&fs_info->buffer_radix,
4526 start >> PAGE_CACHE_SHIFT);
4527 if (eb && atomic_inc_not_zero(&eb->refs)) {
4528 rcu_read_unlock();
4529 mark_extent_buffer_accessed(eb);
4530 return eb;
4532 rcu_read_unlock();
4534 return NULL;
4537 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4538 u64 start, unsigned long len)
4540 unsigned long num_pages = num_extent_pages(start, len);
4541 unsigned long i;
4542 unsigned long index = start >> PAGE_CACHE_SHIFT;
4543 struct extent_buffer *eb;
4544 struct extent_buffer *exists = NULL;
4545 struct page *p;
4546 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4547 int uptodate = 1;
4548 int ret;
4550 eb = find_extent_buffer(fs_info, start);
4551 if (eb)
4552 return eb;
4554 eb = __alloc_extent_buffer(fs_info, start, len, GFP_NOFS);
4555 if (!eb)
4556 return NULL;
4558 for (i = 0; i < num_pages; i++, index++) {
4559 p = find_or_create_page(mapping, index, GFP_NOFS);
4560 if (!p)
4561 goto free_eb;
4563 spin_lock(&mapping->private_lock);
4564 if (PagePrivate(p)) {
4566 * We could have already allocated an eb for this page
4567 * and attached one so lets see if we can get a ref on
4568 * the existing eb, and if we can we know it's good and
4569 * we can just return that one, else we know we can just
4570 * overwrite page->private.
4572 exists = (struct extent_buffer *)p->private;
4573 if (atomic_inc_not_zero(&exists->refs)) {
4574 spin_unlock(&mapping->private_lock);
4575 unlock_page(p);
4576 page_cache_release(p);
4577 mark_extent_buffer_accessed(exists);
4578 goto free_eb;
4582 * Do this so attach doesn't complain and we need to
4583 * drop the ref the old guy had.
4585 ClearPagePrivate(p);
4586 WARN_ON(PageDirty(p));
4587 page_cache_release(p);
4589 attach_extent_buffer_page(eb, p);
4590 spin_unlock(&mapping->private_lock);
4591 WARN_ON(PageDirty(p));
4592 mark_page_accessed(p);
4593 eb->pages[i] = p;
4594 if (!PageUptodate(p))
4595 uptodate = 0;
4598 * see below about how we avoid a nasty race with release page
4599 * and why we unlock later
4602 if (uptodate)
4603 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4604 again:
4605 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4606 if (ret)
4607 goto free_eb;
4609 spin_lock(&fs_info->buffer_lock);
4610 ret = radix_tree_insert(&fs_info->buffer_radix,
4611 start >> PAGE_CACHE_SHIFT, eb);
4612 spin_unlock(&fs_info->buffer_lock);
4613 radix_tree_preload_end();
4614 if (ret == -EEXIST) {
4615 exists = find_extent_buffer(fs_info, start);
4616 if (exists)
4617 goto free_eb;
4618 else
4619 goto again;
4621 /* add one reference for the tree */
4622 check_buffer_tree_ref(eb);
4623 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4626 * there is a race where release page may have
4627 * tried to find this extent buffer in the radix
4628 * but failed. It will tell the VM it is safe to
4629 * reclaim the, and it will clear the page private bit.
4630 * We must make sure to set the page private bit properly
4631 * after the extent buffer is in the radix tree so
4632 * it doesn't get lost
4634 SetPageChecked(eb->pages[0]);
4635 for (i = 1; i < num_pages; i++) {
4636 p = extent_buffer_page(eb, i);
4637 ClearPageChecked(p);
4638 unlock_page(p);
4640 unlock_page(eb->pages[0]);
4641 return eb;
4643 free_eb:
4644 for (i = 0; i < num_pages; i++) {
4645 if (eb->pages[i])
4646 unlock_page(eb->pages[i]);
4649 WARN_ON(!atomic_dec_and_test(&eb->refs));
4650 btrfs_release_extent_buffer(eb);
4651 return exists;
4654 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4656 struct extent_buffer *eb =
4657 container_of(head, struct extent_buffer, rcu_head);
4659 __free_extent_buffer(eb);
4662 /* Expects to have eb->eb_lock already held */
4663 static int release_extent_buffer(struct extent_buffer *eb)
4665 WARN_ON(atomic_read(&eb->refs) == 0);
4666 if (atomic_dec_and_test(&eb->refs)) {
4667 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
4668 struct btrfs_fs_info *fs_info = eb->fs_info;
4670 spin_unlock(&eb->refs_lock);
4672 spin_lock(&fs_info->buffer_lock);
4673 radix_tree_delete(&fs_info->buffer_radix,
4674 eb->start >> PAGE_CACHE_SHIFT);
4675 spin_unlock(&fs_info->buffer_lock);
4676 } else {
4677 spin_unlock(&eb->refs_lock);
4680 /* Should be safe to release our pages at this point */
4681 btrfs_release_extent_buffer_page(eb, 0);
4682 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4683 return 1;
4685 spin_unlock(&eb->refs_lock);
4687 return 0;
4690 void free_extent_buffer(struct extent_buffer *eb)
4692 int refs;
4693 int old;
4694 if (!eb)
4695 return;
4697 while (1) {
4698 refs = atomic_read(&eb->refs);
4699 if (refs <= 3)
4700 break;
4701 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4702 if (old == refs)
4703 return;
4706 spin_lock(&eb->refs_lock);
4707 if (atomic_read(&eb->refs) == 2 &&
4708 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4709 atomic_dec(&eb->refs);
4711 if (atomic_read(&eb->refs) == 2 &&
4712 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4713 !extent_buffer_under_io(eb) &&
4714 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4715 atomic_dec(&eb->refs);
4718 * I know this is terrible, but it's temporary until we stop tracking
4719 * the uptodate bits and such for the extent buffers.
4721 release_extent_buffer(eb);
4724 void free_extent_buffer_stale(struct extent_buffer *eb)
4726 if (!eb)
4727 return;
4729 spin_lock(&eb->refs_lock);
4730 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4732 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4733 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4734 atomic_dec(&eb->refs);
4735 release_extent_buffer(eb);
4738 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4740 unsigned long i;
4741 unsigned long num_pages;
4742 struct page *page;
4744 num_pages = num_extent_pages(eb->start, eb->len);
4746 for (i = 0; i < num_pages; i++) {
4747 page = extent_buffer_page(eb, i);
4748 if (!PageDirty(page))
4749 continue;
4751 lock_page(page);
4752 WARN_ON(!PagePrivate(page));
4754 clear_page_dirty_for_io(page);
4755 spin_lock_irq(&page->mapping->tree_lock);
4756 if (!PageDirty(page)) {
4757 radix_tree_tag_clear(&page->mapping->page_tree,
4758 page_index(page),
4759 PAGECACHE_TAG_DIRTY);
4761 spin_unlock_irq(&page->mapping->tree_lock);
4762 ClearPageError(page);
4763 unlock_page(page);
4765 WARN_ON(atomic_read(&eb->refs) == 0);
4768 int set_extent_buffer_dirty(struct extent_buffer *eb)
4770 unsigned long i;
4771 unsigned long num_pages;
4772 int was_dirty = 0;
4774 check_buffer_tree_ref(eb);
4776 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4778 num_pages = num_extent_pages(eb->start, eb->len);
4779 WARN_ON(atomic_read(&eb->refs) == 0);
4780 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4782 for (i = 0; i < num_pages; i++)
4783 set_page_dirty(extent_buffer_page(eb, i));
4784 return was_dirty;
4787 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4789 unsigned long i;
4790 struct page *page;
4791 unsigned long num_pages;
4793 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4794 num_pages = num_extent_pages(eb->start, eb->len);
4795 for (i = 0; i < num_pages; i++) {
4796 page = extent_buffer_page(eb, i);
4797 if (page)
4798 ClearPageUptodate(page);
4800 return 0;
4803 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4805 unsigned long i;
4806 struct page *page;
4807 unsigned long num_pages;
4809 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4810 num_pages = num_extent_pages(eb->start, eb->len);
4811 for (i = 0; i < num_pages; i++) {
4812 page = extent_buffer_page(eb, i);
4813 SetPageUptodate(page);
4815 return 0;
4818 int extent_buffer_uptodate(struct extent_buffer *eb)
4820 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4823 int read_extent_buffer_pages(struct extent_io_tree *tree,
4824 struct extent_buffer *eb, u64 start, int wait,
4825 get_extent_t *get_extent, int mirror_num)
4827 unsigned long i;
4828 unsigned long start_i;
4829 struct page *page;
4830 int err;
4831 int ret = 0;
4832 int locked_pages = 0;
4833 int all_uptodate = 1;
4834 unsigned long num_pages;
4835 unsigned long num_reads = 0;
4836 struct bio *bio = NULL;
4837 unsigned long bio_flags = 0;
4839 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4840 return 0;
4842 if (start) {
4843 WARN_ON(start < eb->start);
4844 start_i = (start >> PAGE_CACHE_SHIFT) -
4845 (eb->start >> PAGE_CACHE_SHIFT);
4846 } else {
4847 start_i = 0;
4850 num_pages = num_extent_pages(eb->start, eb->len);
4851 for (i = start_i; i < num_pages; i++) {
4852 page = extent_buffer_page(eb, i);
4853 if (wait == WAIT_NONE) {
4854 if (!trylock_page(page))
4855 goto unlock_exit;
4856 } else {
4857 lock_page(page);
4859 locked_pages++;
4860 if (!PageUptodate(page)) {
4861 num_reads++;
4862 all_uptodate = 0;
4865 if (all_uptodate) {
4866 if (start_i == 0)
4867 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4868 goto unlock_exit;
4871 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4872 eb->read_mirror = 0;
4873 atomic_set(&eb->io_pages, num_reads);
4874 for (i = start_i; i < num_pages; i++) {
4875 page = extent_buffer_page(eb, i);
4876 if (!PageUptodate(page)) {
4877 ClearPageError(page);
4878 err = __extent_read_full_page(tree, page,
4879 get_extent, &bio,
4880 mirror_num, &bio_flags,
4881 READ | REQ_META);
4882 if (err)
4883 ret = err;
4884 } else {
4885 unlock_page(page);
4889 if (bio) {
4890 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
4891 bio_flags);
4892 if (err)
4893 return err;
4896 if (ret || wait != WAIT_COMPLETE)
4897 return ret;
4899 for (i = start_i; i < num_pages; i++) {
4900 page = extent_buffer_page(eb, i);
4901 wait_on_page_locked(page);
4902 if (!PageUptodate(page))
4903 ret = -EIO;
4906 return ret;
4908 unlock_exit:
4909 i = start_i;
4910 while (locked_pages > 0) {
4911 page = extent_buffer_page(eb, i);
4912 i++;
4913 unlock_page(page);
4914 locked_pages--;
4916 return ret;
4919 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4920 unsigned long start,
4921 unsigned long len)
4923 size_t cur;
4924 size_t offset;
4925 struct page *page;
4926 char *kaddr;
4927 char *dst = (char *)dstv;
4928 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4929 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4931 WARN_ON(start > eb->len);
4932 WARN_ON(start + len > eb->start + eb->len);
4934 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
4936 while (len > 0) {
4937 page = extent_buffer_page(eb, i);
4939 cur = min(len, (PAGE_CACHE_SIZE - offset));
4940 kaddr = page_address(page);
4941 memcpy(dst, kaddr + offset, cur);
4943 dst += cur;
4944 len -= cur;
4945 offset = 0;
4946 i++;
4950 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4951 unsigned long min_len, char **map,
4952 unsigned long *map_start,
4953 unsigned long *map_len)
4955 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4956 char *kaddr;
4957 struct page *p;
4958 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4959 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4960 unsigned long end_i = (start_offset + start + min_len - 1) >>
4961 PAGE_CACHE_SHIFT;
4963 if (i != end_i)
4964 return -EINVAL;
4966 if (i == 0) {
4967 offset = start_offset;
4968 *map_start = 0;
4969 } else {
4970 offset = 0;
4971 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4974 if (start + min_len > eb->len) {
4975 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4976 "wanted %lu %lu\n",
4977 eb->start, eb->len, start, min_len);
4978 return -EINVAL;
4981 p = extent_buffer_page(eb, i);
4982 kaddr = page_address(p);
4983 *map = kaddr + offset;
4984 *map_len = PAGE_CACHE_SIZE - offset;
4985 return 0;
4988 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4989 unsigned long start,
4990 unsigned long len)
4992 size_t cur;
4993 size_t offset;
4994 struct page *page;
4995 char *kaddr;
4996 char *ptr = (char *)ptrv;
4997 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4998 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4999 int ret = 0;
5001 WARN_ON(start > eb->len);
5002 WARN_ON(start + len > eb->start + eb->len);
5004 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5006 while (len > 0) {
5007 page = extent_buffer_page(eb, i);
5009 cur = min(len, (PAGE_CACHE_SIZE - offset));
5011 kaddr = page_address(page);
5012 ret = memcmp(ptr, kaddr + offset, cur);
5013 if (ret)
5014 break;
5016 ptr += cur;
5017 len -= cur;
5018 offset = 0;
5019 i++;
5021 return ret;
5024 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5025 unsigned long start, unsigned long len)
5027 size_t cur;
5028 size_t offset;
5029 struct page *page;
5030 char *kaddr;
5031 char *src = (char *)srcv;
5032 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5033 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5035 WARN_ON(start > eb->len);
5036 WARN_ON(start + len > eb->start + eb->len);
5038 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5040 while (len > 0) {
5041 page = extent_buffer_page(eb, i);
5042 WARN_ON(!PageUptodate(page));
5044 cur = min(len, PAGE_CACHE_SIZE - offset);
5045 kaddr = page_address(page);
5046 memcpy(kaddr + offset, src, cur);
5048 src += cur;
5049 len -= cur;
5050 offset = 0;
5051 i++;
5055 void memset_extent_buffer(struct extent_buffer *eb, char c,
5056 unsigned long start, unsigned long len)
5058 size_t cur;
5059 size_t offset;
5060 struct page *page;
5061 char *kaddr;
5062 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5063 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5065 WARN_ON(start > eb->len);
5066 WARN_ON(start + len > eb->start + eb->len);
5068 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5070 while (len > 0) {
5071 page = extent_buffer_page(eb, i);
5072 WARN_ON(!PageUptodate(page));
5074 cur = min(len, PAGE_CACHE_SIZE - offset);
5075 kaddr = page_address(page);
5076 memset(kaddr + offset, c, cur);
5078 len -= cur;
5079 offset = 0;
5080 i++;
5084 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5085 unsigned long dst_offset, unsigned long src_offset,
5086 unsigned long len)
5088 u64 dst_len = dst->len;
5089 size_t cur;
5090 size_t offset;
5091 struct page *page;
5092 char *kaddr;
5093 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5094 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5096 WARN_ON(src->len != dst_len);
5098 offset = (start_offset + dst_offset) &
5099 (PAGE_CACHE_SIZE - 1);
5101 while (len > 0) {
5102 page = extent_buffer_page(dst, i);
5103 WARN_ON(!PageUptodate(page));
5105 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5107 kaddr = page_address(page);
5108 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5110 src_offset += cur;
5111 len -= cur;
5112 offset = 0;
5113 i++;
5117 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5119 unsigned long distance = (src > dst) ? src - dst : dst - src;
5120 return distance < len;
5123 static void copy_pages(struct page *dst_page, struct page *src_page,
5124 unsigned long dst_off, unsigned long src_off,
5125 unsigned long len)
5127 char *dst_kaddr = page_address(dst_page);
5128 char *src_kaddr;
5129 int must_memmove = 0;
5131 if (dst_page != src_page) {
5132 src_kaddr = page_address(src_page);
5133 } else {
5134 src_kaddr = dst_kaddr;
5135 if (areas_overlap(src_off, dst_off, len))
5136 must_memmove = 1;
5139 if (must_memmove)
5140 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5141 else
5142 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5145 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5146 unsigned long src_offset, unsigned long len)
5148 size_t cur;
5149 size_t dst_off_in_page;
5150 size_t src_off_in_page;
5151 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5152 unsigned long dst_i;
5153 unsigned long src_i;
5155 if (src_offset + len > dst->len) {
5156 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5157 "len %lu dst len %lu\n", src_offset, len, dst->len);
5158 BUG_ON(1);
5160 if (dst_offset + len > dst->len) {
5161 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5162 "len %lu dst len %lu\n", dst_offset, len, dst->len);
5163 BUG_ON(1);
5166 while (len > 0) {
5167 dst_off_in_page = (start_offset + dst_offset) &
5168 (PAGE_CACHE_SIZE - 1);
5169 src_off_in_page = (start_offset + src_offset) &
5170 (PAGE_CACHE_SIZE - 1);
5172 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5173 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5175 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5176 src_off_in_page));
5177 cur = min_t(unsigned long, cur,
5178 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5180 copy_pages(extent_buffer_page(dst, dst_i),
5181 extent_buffer_page(dst, src_i),
5182 dst_off_in_page, src_off_in_page, cur);
5184 src_offset += cur;
5185 dst_offset += cur;
5186 len -= cur;
5190 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5191 unsigned long src_offset, unsigned long len)
5193 size_t cur;
5194 size_t dst_off_in_page;
5195 size_t src_off_in_page;
5196 unsigned long dst_end = dst_offset + len - 1;
5197 unsigned long src_end = src_offset + len - 1;
5198 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5199 unsigned long dst_i;
5200 unsigned long src_i;
5202 if (src_offset + len > dst->len) {
5203 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5204 "len %lu len %lu\n", src_offset, len, dst->len);
5205 BUG_ON(1);
5207 if (dst_offset + len > dst->len) {
5208 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5209 "len %lu len %lu\n", dst_offset, len, dst->len);
5210 BUG_ON(1);
5212 if (dst_offset < src_offset) {
5213 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5214 return;
5216 while (len > 0) {
5217 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5218 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5220 dst_off_in_page = (start_offset + dst_end) &
5221 (PAGE_CACHE_SIZE - 1);
5222 src_off_in_page = (start_offset + src_end) &
5223 (PAGE_CACHE_SIZE - 1);
5225 cur = min_t(unsigned long, len, src_off_in_page + 1);
5226 cur = min(cur, dst_off_in_page + 1);
5227 copy_pages(extent_buffer_page(dst, dst_i),
5228 extent_buffer_page(dst, src_i),
5229 dst_off_in_page - cur + 1,
5230 src_off_in_page - cur + 1, cur);
5232 dst_end -= cur;
5233 src_end -= cur;
5234 len -= cur;
5238 int try_release_extent_buffer(struct page *page)
5240 struct extent_buffer *eb;
5243 * We need to make sure noboody is attaching this page to an eb right
5244 * now.
5246 spin_lock(&page->mapping->private_lock);
5247 if (!PagePrivate(page)) {
5248 spin_unlock(&page->mapping->private_lock);
5249 return 1;
5252 eb = (struct extent_buffer *)page->private;
5253 BUG_ON(!eb);
5256 * This is a little awful but should be ok, we need to make sure that
5257 * the eb doesn't disappear out from under us while we're looking at
5258 * this page.
5260 spin_lock(&eb->refs_lock);
5261 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5262 spin_unlock(&eb->refs_lock);
5263 spin_unlock(&page->mapping->private_lock);
5264 return 0;
5266 spin_unlock(&page->mapping->private_lock);
5269 * If tree ref isn't set then we know the ref on this eb is a real ref,
5270 * so just return, this page will likely be freed soon anyway.
5272 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5273 spin_unlock(&eb->refs_lock);
5274 return 0;
5277 return release_extent_buffer(eb);