1 #include <linux/bitops.h>
2 #include <linux/slab.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
17 #include "btrfs_inode.h"
19 #include "check-integrity.h"
21 #include "rcu-string.h"
24 static struct kmem_cache
*extent_state_cache
;
25 static struct kmem_cache
*extent_buffer_cache
;
26 static struct bio_set
*btrfs_bioset
;
28 #ifdef CONFIG_BTRFS_DEBUG
29 static LIST_HEAD(buffers
);
30 static LIST_HEAD(states
);
32 static DEFINE_SPINLOCK(leak_lock
);
35 void btrfs_leak_debug_add(struct list_head
*new, struct list_head
*head
)
39 spin_lock_irqsave(&leak_lock
, flags
);
41 spin_unlock_irqrestore(&leak_lock
, flags
);
45 void btrfs_leak_debug_del(struct list_head
*entry
)
49 spin_lock_irqsave(&leak_lock
, flags
);
51 spin_unlock_irqrestore(&leak_lock
, flags
);
55 void btrfs_leak_debug_check(void)
57 struct extent_state
*state
;
58 struct extent_buffer
*eb
;
60 while (!list_empty(&states
)) {
61 state
= list_entry(states
.next
, struct extent_state
, leak_list
);
62 printk(KERN_ERR
"BTRFS: state leak: start %llu end %llu "
63 "state %lu in tree %p refs %d\n",
64 state
->start
, state
->end
, state
->state
, state
->tree
,
65 atomic_read(&state
->refs
));
66 list_del(&state
->leak_list
);
67 kmem_cache_free(extent_state_cache
, state
);
70 while (!list_empty(&buffers
)) {
71 eb
= list_entry(buffers
.next
, struct extent_buffer
, leak_list
);
72 printk(KERN_ERR
"BTRFS: buffer leak start %llu len %lu "
74 eb
->start
, eb
->len
, atomic_read(&eb
->refs
));
75 list_del(&eb
->leak_list
);
76 kmem_cache_free(extent_buffer_cache
, eb
);
80 #define btrfs_debug_check_extent_io_range(tree, start, end) \
81 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
82 static inline void __btrfs_debug_check_extent_io_range(const char *caller
,
83 struct extent_io_tree
*tree
, u64 start
, u64 end
)
91 inode
= tree
->mapping
->host
;
92 isize
= i_size_read(inode
);
93 if (end
>= PAGE_SIZE
&& (end
% 2) == 0 && end
!= isize
- 1) {
94 printk_ratelimited(KERN_DEBUG
95 "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
96 caller
, btrfs_ino(inode
), isize
, start
, end
);
100 #define btrfs_leak_debug_add(new, head) do {} while (0)
101 #define btrfs_leak_debug_del(entry) do {} while (0)
102 #define btrfs_leak_debug_check() do {} while (0)
103 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
106 #define BUFFER_LRU_MAX 64
111 struct rb_node rb_node
;
114 struct extent_page_data
{
116 struct extent_io_tree
*tree
;
117 get_extent_t
*get_extent
;
118 unsigned long bio_flags
;
120 /* tells writepage not to lock the state bits for this range
121 * it still does the unlocking
123 unsigned int extent_locked
:1;
125 /* tells the submit_bio code to use a WRITE_SYNC */
126 unsigned int sync_io
:1;
129 static noinline
void flush_write_bio(void *data
);
130 static inline struct btrfs_fs_info
*
131 tree_fs_info(struct extent_io_tree
*tree
)
135 return btrfs_sb(tree
->mapping
->host
->i_sb
);
138 int __init
extent_io_init(void)
140 extent_state_cache
= kmem_cache_create("btrfs_extent_state",
141 sizeof(struct extent_state
), 0,
142 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
143 if (!extent_state_cache
)
146 extent_buffer_cache
= kmem_cache_create("btrfs_extent_buffer",
147 sizeof(struct extent_buffer
), 0,
148 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
149 if (!extent_buffer_cache
)
150 goto free_state_cache
;
152 btrfs_bioset
= bioset_create(BIO_POOL_SIZE
,
153 offsetof(struct btrfs_io_bio
, bio
));
155 goto free_buffer_cache
;
157 if (bioset_integrity_create(btrfs_bioset
, BIO_POOL_SIZE
))
163 bioset_free(btrfs_bioset
);
167 kmem_cache_destroy(extent_buffer_cache
);
168 extent_buffer_cache
= NULL
;
171 kmem_cache_destroy(extent_state_cache
);
172 extent_state_cache
= NULL
;
176 void extent_io_exit(void)
178 btrfs_leak_debug_check();
181 * Make sure all delayed rcu free are flushed before we
185 if (extent_state_cache
)
186 kmem_cache_destroy(extent_state_cache
);
187 if (extent_buffer_cache
)
188 kmem_cache_destroy(extent_buffer_cache
);
190 bioset_free(btrfs_bioset
);
193 void extent_io_tree_init(struct extent_io_tree
*tree
,
194 struct address_space
*mapping
)
196 tree
->state
= RB_ROOT
;
198 tree
->dirty_bytes
= 0;
199 spin_lock_init(&tree
->lock
);
200 tree
->mapping
= mapping
;
203 static struct extent_state
*alloc_extent_state(gfp_t mask
)
205 struct extent_state
*state
;
207 state
= kmem_cache_alloc(extent_state_cache
, mask
);
213 btrfs_leak_debug_add(&state
->leak_list
, &states
);
214 atomic_set(&state
->refs
, 1);
215 init_waitqueue_head(&state
->wq
);
216 trace_alloc_extent_state(state
, mask
, _RET_IP_
);
220 void free_extent_state(struct extent_state
*state
)
224 if (atomic_dec_and_test(&state
->refs
)) {
225 WARN_ON(state
->tree
);
226 btrfs_leak_debug_del(&state
->leak_list
);
227 trace_free_extent_state(state
, _RET_IP_
);
228 kmem_cache_free(extent_state_cache
, state
);
232 static struct rb_node
*tree_insert(struct rb_root
*root
, u64 offset
,
233 struct rb_node
*node
,
234 struct rb_node
***p_in
,
235 struct rb_node
**parent_in
)
237 struct rb_node
**p
= &root
->rb_node
;
238 struct rb_node
*parent
= NULL
;
239 struct tree_entry
*entry
;
241 if (p_in
&& parent_in
) {
249 entry
= rb_entry(parent
, struct tree_entry
, rb_node
);
251 if (offset
< entry
->start
)
253 else if (offset
> entry
->end
)
260 rb_link_node(node
, parent
, p
);
261 rb_insert_color(node
, root
);
265 static struct rb_node
*__etree_search(struct extent_io_tree
*tree
, u64 offset
,
266 struct rb_node
**prev_ret
,
267 struct rb_node
**next_ret
,
268 struct rb_node
***p_ret
,
269 struct rb_node
**parent_ret
)
271 struct rb_root
*root
= &tree
->state
;
272 struct rb_node
**n
= &root
->rb_node
;
273 struct rb_node
*prev
= NULL
;
274 struct rb_node
*orig_prev
= NULL
;
275 struct tree_entry
*entry
;
276 struct tree_entry
*prev_entry
= NULL
;
280 entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
283 if (offset
< entry
->start
)
285 else if (offset
> entry
->end
)
298 while (prev
&& offset
> prev_entry
->end
) {
299 prev
= rb_next(prev
);
300 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
307 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
308 while (prev
&& offset
< prev_entry
->start
) {
309 prev
= rb_prev(prev
);
310 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
317 static inline struct rb_node
*
318 tree_search_for_insert(struct extent_io_tree
*tree
,
320 struct rb_node
***p_ret
,
321 struct rb_node
**parent_ret
)
323 struct rb_node
*prev
= NULL
;
326 ret
= __etree_search(tree
, offset
, &prev
, NULL
, p_ret
, parent_ret
);
332 static inline struct rb_node
*tree_search(struct extent_io_tree
*tree
,
335 return tree_search_for_insert(tree
, offset
, NULL
, NULL
);
338 static void merge_cb(struct extent_io_tree
*tree
, struct extent_state
*new,
339 struct extent_state
*other
)
341 if (tree
->ops
&& tree
->ops
->merge_extent_hook
)
342 tree
->ops
->merge_extent_hook(tree
->mapping
->host
, new,
347 * utility function to look for merge candidates inside a given range.
348 * Any extents with matching state are merged together into a single
349 * extent in the tree. Extents with EXTENT_IO in their state field
350 * are not merged because the end_io handlers need to be able to do
351 * operations on them without sleeping (or doing allocations/splits).
353 * This should be called with the tree lock held.
355 static void merge_state(struct extent_io_tree
*tree
,
356 struct extent_state
*state
)
358 struct extent_state
*other
;
359 struct rb_node
*other_node
;
361 if (state
->state
& (EXTENT_IOBITS
| EXTENT_BOUNDARY
))
364 other_node
= rb_prev(&state
->rb_node
);
366 other
= rb_entry(other_node
, struct extent_state
, rb_node
);
367 if (other
->end
== state
->start
- 1 &&
368 other
->state
== state
->state
) {
369 merge_cb(tree
, state
, other
);
370 state
->start
= other
->start
;
372 rb_erase(&other
->rb_node
, &tree
->state
);
373 free_extent_state(other
);
376 other_node
= rb_next(&state
->rb_node
);
378 other
= rb_entry(other_node
, struct extent_state
, rb_node
);
379 if (other
->start
== state
->end
+ 1 &&
380 other
->state
== state
->state
) {
381 merge_cb(tree
, state
, other
);
382 state
->end
= other
->end
;
384 rb_erase(&other
->rb_node
, &tree
->state
);
385 free_extent_state(other
);
390 static void set_state_cb(struct extent_io_tree
*tree
,
391 struct extent_state
*state
, unsigned long *bits
)
393 if (tree
->ops
&& tree
->ops
->set_bit_hook
)
394 tree
->ops
->set_bit_hook(tree
->mapping
->host
, state
, bits
);
397 static void clear_state_cb(struct extent_io_tree
*tree
,
398 struct extent_state
*state
, unsigned long *bits
)
400 if (tree
->ops
&& tree
->ops
->clear_bit_hook
)
401 tree
->ops
->clear_bit_hook(tree
->mapping
->host
, state
, bits
);
404 static void set_state_bits(struct extent_io_tree
*tree
,
405 struct extent_state
*state
, unsigned long *bits
);
408 * insert an extent_state struct into the tree. 'bits' are set on the
409 * struct before it is inserted.
411 * This may return -EEXIST if the extent is already there, in which case the
412 * state struct is freed.
414 * The tree lock is not taken internally. This is a utility function and
415 * probably isn't what you want to call (see set/clear_extent_bit).
417 static int insert_state(struct extent_io_tree
*tree
,
418 struct extent_state
*state
, u64 start
, u64 end
,
420 struct rb_node
**parent
,
423 struct rb_node
*node
;
426 WARN(1, KERN_ERR
"BTRFS: end < start %llu %llu\n",
428 state
->start
= start
;
431 set_state_bits(tree
, state
, bits
);
433 node
= tree_insert(&tree
->state
, end
, &state
->rb_node
, p
, parent
);
435 struct extent_state
*found
;
436 found
= rb_entry(node
, struct extent_state
, rb_node
);
437 printk(KERN_ERR
"BTRFS: found node %llu %llu on insert of "
439 found
->start
, found
->end
, start
, end
);
443 merge_state(tree
, state
);
447 static void split_cb(struct extent_io_tree
*tree
, struct extent_state
*orig
,
450 if (tree
->ops
&& tree
->ops
->split_extent_hook
)
451 tree
->ops
->split_extent_hook(tree
->mapping
->host
, orig
, split
);
455 * split a given extent state struct in two, inserting the preallocated
456 * struct 'prealloc' as the newly created second half. 'split' indicates an
457 * offset inside 'orig' where it should be split.
460 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
461 * are two extent state structs in the tree:
462 * prealloc: [orig->start, split - 1]
463 * orig: [ split, orig->end ]
465 * The tree locks are not taken by this function. They need to be held
468 static int split_state(struct extent_io_tree
*tree
, struct extent_state
*orig
,
469 struct extent_state
*prealloc
, u64 split
)
471 struct rb_node
*node
;
473 split_cb(tree
, orig
, split
);
475 prealloc
->start
= orig
->start
;
476 prealloc
->end
= split
- 1;
477 prealloc
->state
= orig
->state
;
480 node
= tree_insert(&tree
->state
, prealloc
->end
, &prealloc
->rb_node
,
483 free_extent_state(prealloc
);
486 prealloc
->tree
= tree
;
490 static struct extent_state
*next_state(struct extent_state
*state
)
492 struct rb_node
*next
= rb_next(&state
->rb_node
);
494 return rb_entry(next
, struct extent_state
, rb_node
);
500 * utility function to clear some bits in an extent state struct.
501 * it will optionally wake up any one waiting on this state (wake == 1).
503 * If no bits are set on the state struct after clearing things, the
504 * struct is freed and removed from the tree
506 static struct extent_state
*clear_state_bit(struct extent_io_tree
*tree
,
507 struct extent_state
*state
,
508 unsigned long *bits
, int wake
)
510 struct extent_state
*next
;
511 unsigned long bits_to_clear
= *bits
& ~EXTENT_CTLBITS
;
513 if ((bits_to_clear
& EXTENT_DIRTY
) && (state
->state
& EXTENT_DIRTY
)) {
514 u64 range
= state
->end
- state
->start
+ 1;
515 WARN_ON(range
> tree
->dirty_bytes
);
516 tree
->dirty_bytes
-= range
;
518 clear_state_cb(tree
, state
, bits
);
519 state
->state
&= ~bits_to_clear
;
522 if (state
->state
== 0) {
523 next
= next_state(state
);
525 rb_erase(&state
->rb_node
, &tree
->state
);
527 free_extent_state(state
);
532 merge_state(tree
, state
);
533 next
= next_state(state
);
538 static struct extent_state
*
539 alloc_extent_state_atomic(struct extent_state
*prealloc
)
542 prealloc
= alloc_extent_state(GFP_ATOMIC
);
547 static void extent_io_tree_panic(struct extent_io_tree
*tree
, int err
)
549 btrfs_panic(tree_fs_info(tree
), err
, "Locking error: "
550 "Extent tree was modified by another "
551 "thread while locked.");
555 * clear some bits on a range in the tree. This may require splitting
556 * or inserting elements in the tree, so the gfp mask is used to
557 * indicate which allocations or sleeping are allowed.
559 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
560 * the given range from the tree regardless of state (ie for truncate).
562 * the range [start, end] is inclusive.
564 * This takes the tree lock, and returns 0 on success and < 0 on error.
566 int clear_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
567 unsigned long bits
, int wake
, int delete,
568 struct extent_state
**cached_state
,
571 struct extent_state
*state
;
572 struct extent_state
*cached
;
573 struct extent_state
*prealloc
= NULL
;
574 struct rb_node
*node
;
579 btrfs_debug_check_extent_io_range(tree
, start
, end
);
581 if (bits
& EXTENT_DELALLOC
)
582 bits
|= EXTENT_NORESERVE
;
585 bits
|= ~EXTENT_CTLBITS
;
586 bits
|= EXTENT_FIRST_DELALLOC
;
588 if (bits
& (EXTENT_IOBITS
| EXTENT_BOUNDARY
))
591 if (!prealloc
&& (mask
& __GFP_WAIT
)) {
592 prealloc
= alloc_extent_state(mask
);
597 spin_lock(&tree
->lock
);
599 cached
= *cached_state
;
602 *cached_state
= NULL
;
606 if (cached
&& cached
->tree
&& cached
->start
<= start
&&
607 cached
->end
> start
) {
609 atomic_dec(&cached
->refs
);
614 free_extent_state(cached
);
617 * this search will find the extents that end after
620 node
= tree_search(tree
, start
);
623 state
= rb_entry(node
, struct extent_state
, rb_node
);
625 if (state
->start
> end
)
627 WARN_ON(state
->end
< start
);
628 last_end
= state
->end
;
630 /* the state doesn't have the wanted bits, go ahead */
631 if (!(state
->state
& bits
)) {
632 state
= next_state(state
);
637 * | ---- desired range ---- |
639 * | ------------- state -------------- |
641 * We need to split the extent we found, and may flip
642 * bits on second half.
644 * If the extent we found extends past our range, we
645 * just split and search again. It'll get split again
646 * the next time though.
648 * If the extent we found is inside our range, we clear
649 * the desired bit on it.
652 if (state
->start
< start
) {
653 prealloc
= alloc_extent_state_atomic(prealloc
);
655 err
= split_state(tree
, state
, prealloc
, start
);
657 extent_io_tree_panic(tree
, err
);
662 if (state
->end
<= end
) {
663 state
= clear_state_bit(tree
, state
, &bits
, wake
);
669 * | ---- desired range ---- |
671 * We need to split the extent, and clear the bit
674 if (state
->start
<= end
&& state
->end
> end
) {
675 prealloc
= alloc_extent_state_atomic(prealloc
);
677 err
= split_state(tree
, state
, prealloc
, end
+ 1);
679 extent_io_tree_panic(tree
, err
);
684 clear_state_bit(tree
, prealloc
, &bits
, wake
);
690 state
= clear_state_bit(tree
, state
, &bits
, wake
);
692 if (last_end
== (u64
)-1)
694 start
= last_end
+ 1;
695 if (start
<= end
&& state
&& !need_resched())
700 spin_unlock(&tree
->lock
);
702 free_extent_state(prealloc
);
709 spin_unlock(&tree
->lock
);
710 if (mask
& __GFP_WAIT
)
715 static void wait_on_state(struct extent_io_tree
*tree
,
716 struct extent_state
*state
)
717 __releases(tree
->lock
)
718 __acquires(tree
->lock
)
721 prepare_to_wait(&state
->wq
, &wait
, TASK_UNINTERRUPTIBLE
);
722 spin_unlock(&tree
->lock
);
724 spin_lock(&tree
->lock
);
725 finish_wait(&state
->wq
, &wait
);
729 * waits for one or more bits to clear on a range in the state tree.
730 * The range [start, end] is inclusive.
731 * The tree lock is taken by this function
733 static void wait_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
736 struct extent_state
*state
;
737 struct rb_node
*node
;
739 btrfs_debug_check_extent_io_range(tree
, start
, end
);
741 spin_lock(&tree
->lock
);
745 * this search will find all the extents that end after
748 node
= tree_search(tree
, start
);
752 state
= rb_entry(node
, struct extent_state
, rb_node
);
754 if (state
->start
> end
)
757 if (state
->state
& bits
) {
758 start
= state
->start
;
759 atomic_inc(&state
->refs
);
760 wait_on_state(tree
, state
);
761 free_extent_state(state
);
764 start
= state
->end
+ 1;
769 cond_resched_lock(&tree
->lock
);
772 spin_unlock(&tree
->lock
);
775 static void set_state_bits(struct extent_io_tree
*tree
,
776 struct extent_state
*state
,
779 unsigned long bits_to_set
= *bits
& ~EXTENT_CTLBITS
;
781 set_state_cb(tree
, state
, bits
);
782 if ((bits_to_set
& EXTENT_DIRTY
) && !(state
->state
& EXTENT_DIRTY
)) {
783 u64 range
= state
->end
- state
->start
+ 1;
784 tree
->dirty_bytes
+= range
;
786 state
->state
|= bits_to_set
;
789 static void cache_state(struct extent_state
*state
,
790 struct extent_state
**cached_ptr
)
792 if (cached_ptr
&& !(*cached_ptr
)) {
793 if (state
->state
& (EXTENT_IOBITS
| EXTENT_BOUNDARY
)) {
795 atomic_inc(&state
->refs
);
801 * set some bits on a range in the tree. This may require allocations or
802 * sleeping, so the gfp mask is used to indicate what is allowed.
804 * If any of the exclusive bits are set, this will fail with -EEXIST if some
805 * part of the range already has the desired bits set. The start of the
806 * existing range is returned in failed_start in this case.
808 * [start, end] is inclusive This takes the tree lock.
811 static int __must_check
812 __set_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
813 unsigned long bits
, unsigned long exclusive_bits
,
814 u64
*failed_start
, struct extent_state
**cached_state
,
817 struct extent_state
*state
;
818 struct extent_state
*prealloc
= NULL
;
819 struct rb_node
*node
;
821 struct rb_node
*parent
;
826 btrfs_debug_check_extent_io_range(tree
, start
, end
);
828 bits
|= EXTENT_FIRST_DELALLOC
;
830 if (!prealloc
&& (mask
& __GFP_WAIT
)) {
831 prealloc
= alloc_extent_state(mask
);
835 spin_lock(&tree
->lock
);
836 if (cached_state
&& *cached_state
) {
837 state
= *cached_state
;
838 if (state
->start
<= start
&& state
->end
> start
&&
840 node
= &state
->rb_node
;
845 * this search will find all the extents that end after
848 node
= tree_search_for_insert(tree
, start
, &p
, &parent
);
850 prealloc
= alloc_extent_state_atomic(prealloc
);
852 err
= insert_state(tree
, prealloc
, start
, end
,
855 extent_io_tree_panic(tree
, err
);
857 cache_state(prealloc
, cached_state
);
861 state
= rb_entry(node
, struct extent_state
, rb_node
);
863 last_start
= state
->start
;
864 last_end
= state
->end
;
867 * | ---- desired range ---- |
870 * Just lock what we found and keep going
872 if (state
->start
== start
&& state
->end
<= end
) {
873 if (state
->state
& exclusive_bits
) {
874 *failed_start
= state
->start
;
879 set_state_bits(tree
, state
, &bits
);
880 cache_state(state
, cached_state
);
881 merge_state(tree
, state
);
882 if (last_end
== (u64
)-1)
884 start
= last_end
+ 1;
885 state
= next_state(state
);
886 if (start
< end
&& state
&& state
->start
== start
&&
893 * | ---- desired range ---- |
896 * | ------------- state -------------- |
898 * We need to split the extent we found, and may flip bits on
901 * If the extent we found extends past our
902 * range, we just split and search again. It'll get split
903 * again the next time though.
905 * If the extent we found is inside our range, we set the
908 if (state
->start
< start
) {
909 if (state
->state
& exclusive_bits
) {
910 *failed_start
= start
;
915 prealloc
= alloc_extent_state_atomic(prealloc
);
917 err
= split_state(tree
, state
, prealloc
, start
);
919 extent_io_tree_panic(tree
, err
);
924 if (state
->end
<= end
) {
925 set_state_bits(tree
, state
, &bits
);
926 cache_state(state
, cached_state
);
927 merge_state(tree
, state
);
928 if (last_end
== (u64
)-1)
930 start
= last_end
+ 1;
931 state
= next_state(state
);
932 if (start
< end
&& state
&& state
->start
== start
&&
939 * | ---- desired range ---- |
940 * | state | or | state |
942 * There's a hole, we need to insert something in it and
943 * ignore the extent we found.
945 if (state
->start
> start
) {
947 if (end
< last_start
)
950 this_end
= last_start
- 1;
952 prealloc
= alloc_extent_state_atomic(prealloc
);
956 * Avoid to free 'prealloc' if it can be merged with
959 err
= insert_state(tree
, prealloc
, start
, this_end
,
962 extent_io_tree_panic(tree
, err
);
964 cache_state(prealloc
, cached_state
);
966 start
= this_end
+ 1;
970 * | ---- desired range ---- |
972 * We need to split the extent, and set the bit
975 if (state
->start
<= end
&& state
->end
> end
) {
976 if (state
->state
& exclusive_bits
) {
977 *failed_start
= start
;
982 prealloc
= alloc_extent_state_atomic(prealloc
);
984 err
= split_state(tree
, state
, prealloc
, end
+ 1);
986 extent_io_tree_panic(tree
, err
);
988 set_state_bits(tree
, prealloc
, &bits
);
989 cache_state(prealloc
, cached_state
);
990 merge_state(tree
, prealloc
);
998 spin_unlock(&tree
->lock
);
1000 free_extent_state(prealloc
);
1007 spin_unlock(&tree
->lock
);
1008 if (mask
& __GFP_WAIT
)
1013 int set_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1014 unsigned long bits
, u64
* failed_start
,
1015 struct extent_state
**cached_state
, gfp_t mask
)
1017 return __set_extent_bit(tree
, start
, end
, bits
, 0, failed_start
,
1018 cached_state
, mask
);
1023 * convert_extent_bit - convert all bits in a given range from one bit to
1025 * @tree: the io tree to search
1026 * @start: the start offset in bytes
1027 * @end: the end offset in bytes (inclusive)
1028 * @bits: the bits to set in this range
1029 * @clear_bits: the bits to clear in this range
1030 * @cached_state: state that we're going to cache
1031 * @mask: the allocation mask
1033 * This will go through and set bits for the given range. If any states exist
1034 * already in this range they are set with the given bit and cleared of the
1035 * clear_bits. This is only meant to be used by things that are mergeable, ie
1036 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1037 * boundary bits like LOCK.
1039 int convert_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1040 unsigned long bits
, unsigned long clear_bits
,
1041 struct extent_state
**cached_state
, gfp_t mask
)
1043 struct extent_state
*state
;
1044 struct extent_state
*prealloc
= NULL
;
1045 struct rb_node
*node
;
1047 struct rb_node
*parent
;
1052 btrfs_debug_check_extent_io_range(tree
, start
, end
);
1055 if (!prealloc
&& (mask
& __GFP_WAIT
)) {
1056 prealloc
= alloc_extent_state(mask
);
1061 spin_lock(&tree
->lock
);
1062 if (cached_state
&& *cached_state
) {
1063 state
= *cached_state
;
1064 if (state
->start
<= start
&& state
->end
> start
&&
1066 node
= &state
->rb_node
;
1072 * this search will find all the extents that end after
1075 node
= tree_search_for_insert(tree
, start
, &p
, &parent
);
1077 prealloc
= alloc_extent_state_atomic(prealloc
);
1082 err
= insert_state(tree
, prealloc
, start
, end
,
1083 &p
, &parent
, &bits
);
1085 extent_io_tree_panic(tree
, err
);
1086 cache_state(prealloc
, cached_state
);
1090 state
= rb_entry(node
, struct extent_state
, rb_node
);
1092 last_start
= state
->start
;
1093 last_end
= state
->end
;
1096 * | ---- desired range ---- |
1099 * Just lock what we found and keep going
1101 if (state
->start
== start
&& state
->end
<= end
) {
1102 set_state_bits(tree
, state
, &bits
);
1103 cache_state(state
, cached_state
);
1104 state
= clear_state_bit(tree
, state
, &clear_bits
, 0);
1105 if (last_end
== (u64
)-1)
1107 start
= last_end
+ 1;
1108 if (start
< end
&& state
&& state
->start
== start
&&
1115 * | ---- desired range ---- |
1118 * | ------------- state -------------- |
1120 * We need to split the extent we found, and may flip bits on
1123 * If the extent we found extends past our
1124 * range, we just split and search again. It'll get split
1125 * again the next time though.
1127 * If the extent we found is inside our range, we set the
1128 * desired bit on it.
1130 if (state
->start
< start
) {
1131 prealloc
= alloc_extent_state_atomic(prealloc
);
1136 err
= split_state(tree
, state
, prealloc
, start
);
1138 extent_io_tree_panic(tree
, err
);
1142 if (state
->end
<= end
) {
1143 set_state_bits(tree
, state
, &bits
);
1144 cache_state(state
, cached_state
);
1145 state
= clear_state_bit(tree
, state
, &clear_bits
, 0);
1146 if (last_end
== (u64
)-1)
1148 start
= last_end
+ 1;
1149 if (start
< end
&& state
&& state
->start
== start
&&
1156 * | ---- desired range ---- |
1157 * | state | or | state |
1159 * There's a hole, we need to insert something in it and
1160 * ignore the extent we found.
1162 if (state
->start
> start
) {
1164 if (end
< last_start
)
1167 this_end
= last_start
- 1;
1169 prealloc
= alloc_extent_state_atomic(prealloc
);
1176 * Avoid to free 'prealloc' if it can be merged with
1179 err
= insert_state(tree
, prealloc
, start
, this_end
,
1182 extent_io_tree_panic(tree
, err
);
1183 cache_state(prealloc
, cached_state
);
1185 start
= this_end
+ 1;
1189 * | ---- desired range ---- |
1191 * We need to split the extent, and set the bit
1194 if (state
->start
<= end
&& state
->end
> end
) {
1195 prealloc
= alloc_extent_state_atomic(prealloc
);
1201 err
= split_state(tree
, state
, prealloc
, end
+ 1);
1203 extent_io_tree_panic(tree
, err
);
1205 set_state_bits(tree
, prealloc
, &bits
);
1206 cache_state(prealloc
, cached_state
);
1207 clear_state_bit(tree
, prealloc
, &clear_bits
, 0);
1215 spin_unlock(&tree
->lock
);
1217 free_extent_state(prealloc
);
1224 spin_unlock(&tree
->lock
);
1225 if (mask
& __GFP_WAIT
)
1230 /* wrappers around set/clear extent bit */
1231 int set_extent_dirty(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1234 return set_extent_bit(tree
, start
, end
, EXTENT_DIRTY
, NULL
,
1238 int set_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1239 unsigned long bits
, gfp_t mask
)
1241 return set_extent_bit(tree
, start
, end
, bits
, NULL
,
1245 int clear_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1246 unsigned long bits
, gfp_t mask
)
1248 return clear_extent_bit(tree
, start
, end
, bits
, 0, 0, NULL
, mask
);
1251 int set_extent_delalloc(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1252 struct extent_state
**cached_state
, gfp_t mask
)
1254 return set_extent_bit(tree
, start
, end
,
1255 EXTENT_DELALLOC
| EXTENT_UPTODATE
,
1256 NULL
, cached_state
, mask
);
1259 int set_extent_defrag(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1260 struct extent_state
**cached_state
, gfp_t mask
)
1262 return set_extent_bit(tree
, start
, end
,
1263 EXTENT_DELALLOC
| EXTENT_UPTODATE
| EXTENT_DEFRAG
,
1264 NULL
, cached_state
, mask
);
1267 int clear_extent_dirty(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1270 return clear_extent_bit(tree
, start
, end
,
1271 EXTENT_DIRTY
| EXTENT_DELALLOC
|
1272 EXTENT_DO_ACCOUNTING
, 0, 0, NULL
, mask
);
1275 int set_extent_new(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1278 return set_extent_bit(tree
, start
, end
, EXTENT_NEW
, NULL
,
1282 int set_extent_uptodate(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1283 struct extent_state
**cached_state
, gfp_t mask
)
1285 return set_extent_bit(tree
, start
, end
, EXTENT_UPTODATE
, NULL
,
1286 cached_state
, mask
);
1289 int clear_extent_uptodate(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1290 struct extent_state
**cached_state
, gfp_t mask
)
1292 return clear_extent_bit(tree
, start
, end
, EXTENT_UPTODATE
, 0, 0,
1293 cached_state
, mask
);
1297 * either insert or lock state struct between start and end use mask to tell
1298 * us if waiting is desired.
1300 int lock_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1301 unsigned long bits
, struct extent_state
**cached_state
)
1306 err
= __set_extent_bit(tree
, start
, end
, EXTENT_LOCKED
| bits
,
1307 EXTENT_LOCKED
, &failed_start
,
1308 cached_state
, GFP_NOFS
);
1309 if (err
== -EEXIST
) {
1310 wait_extent_bit(tree
, failed_start
, end
, EXTENT_LOCKED
);
1311 start
= failed_start
;
1314 WARN_ON(start
> end
);
1319 int lock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
)
1321 return lock_extent_bits(tree
, start
, end
, 0, NULL
);
1324 int try_lock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
)
1329 err
= __set_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, EXTENT_LOCKED
,
1330 &failed_start
, NULL
, GFP_NOFS
);
1331 if (err
== -EEXIST
) {
1332 if (failed_start
> start
)
1333 clear_extent_bit(tree
, start
, failed_start
- 1,
1334 EXTENT_LOCKED
, 1, 0, NULL
, GFP_NOFS
);
1340 int unlock_extent_cached(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1341 struct extent_state
**cached
, gfp_t mask
)
1343 return clear_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, 1, 0, cached
,
1347 int unlock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
)
1349 return clear_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, 1, 0, NULL
,
1353 int extent_range_clear_dirty_for_io(struct inode
*inode
, u64 start
, u64 end
)
1355 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1356 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1359 while (index
<= end_index
) {
1360 page
= find_get_page(inode
->i_mapping
, index
);
1361 BUG_ON(!page
); /* Pages should be in the extent_io_tree */
1362 clear_page_dirty_for_io(page
);
1363 page_cache_release(page
);
1369 int extent_range_redirty_for_io(struct inode
*inode
, u64 start
, u64 end
)
1371 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1372 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1375 while (index
<= end_index
) {
1376 page
= find_get_page(inode
->i_mapping
, index
);
1377 BUG_ON(!page
); /* Pages should be in the extent_io_tree */
1378 account_page_redirty(page
);
1379 __set_page_dirty_nobuffers(page
);
1380 page_cache_release(page
);
1387 * helper function to set both pages and extents in the tree writeback
1389 static int set_range_writeback(struct extent_io_tree
*tree
, u64 start
, u64 end
)
1391 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1392 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1395 while (index
<= end_index
) {
1396 page
= find_get_page(tree
->mapping
, index
);
1397 BUG_ON(!page
); /* Pages should be in the extent_io_tree */
1398 set_page_writeback(page
);
1399 page_cache_release(page
);
1405 /* find the first state struct with 'bits' set after 'start', and
1406 * return it. tree->lock must be held. NULL will returned if
1407 * nothing was found after 'start'
1409 static struct extent_state
*
1410 find_first_extent_bit_state(struct extent_io_tree
*tree
,
1411 u64 start
, unsigned long bits
)
1413 struct rb_node
*node
;
1414 struct extent_state
*state
;
1417 * this search will find all the extents that end after
1420 node
= tree_search(tree
, start
);
1425 state
= rb_entry(node
, struct extent_state
, rb_node
);
1426 if (state
->end
>= start
&& (state
->state
& bits
))
1429 node
= rb_next(node
);
1438 * find the first offset in the io tree with 'bits' set. zero is
1439 * returned if we find something, and *start_ret and *end_ret are
1440 * set to reflect the state struct that was found.
1442 * If nothing was found, 1 is returned. If found something, return 0.
1444 int find_first_extent_bit(struct extent_io_tree
*tree
, u64 start
,
1445 u64
*start_ret
, u64
*end_ret
, unsigned long bits
,
1446 struct extent_state
**cached_state
)
1448 struct extent_state
*state
;
1452 spin_lock(&tree
->lock
);
1453 if (cached_state
&& *cached_state
) {
1454 state
= *cached_state
;
1455 if (state
->end
== start
- 1 && state
->tree
) {
1456 n
= rb_next(&state
->rb_node
);
1458 state
= rb_entry(n
, struct extent_state
,
1460 if (state
->state
& bits
)
1464 free_extent_state(*cached_state
);
1465 *cached_state
= NULL
;
1468 free_extent_state(*cached_state
);
1469 *cached_state
= NULL
;
1472 state
= find_first_extent_bit_state(tree
, start
, bits
);
1475 cache_state(state
, cached_state
);
1476 *start_ret
= state
->start
;
1477 *end_ret
= state
->end
;
1481 spin_unlock(&tree
->lock
);
1486 * find a contiguous range of bytes in the file marked as delalloc, not
1487 * more than 'max_bytes'. start and end are used to return the range,
1489 * 1 is returned if we find something, 0 if nothing was in the tree
1491 static noinline u64
find_delalloc_range(struct extent_io_tree
*tree
,
1492 u64
*start
, u64
*end
, u64 max_bytes
,
1493 struct extent_state
**cached_state
)
1495 struct rb_node
*node
;
1496 struct extent_state
*state
;
1497 u64 cur_start
= *start
;
1499 u64 total_bytes
= 0;
1501 spin_lock(&tree
->lock
);
1504 * this search will find all the extents that end after
1507 node
= tree_search(tree
, cur_start
);
1515 state
= rb_entry(node
, struct extent_state
, rb_node
);
1516 if (found
&& (state
->start
!= cur_start
||
1517 (state
->state
& EXTENT_BOUNDARY
))) {
1520 if (!(state
->state
& EXTENT_DELALLOC
)) {
1526 *start
= state
->start
;
1527 *cached_state
= state
;
1528 atomic_inc(&state
->refs
);
1532 cur_start
= state
->end
+ 1;
1533 node
= rb_next(node
);
1534 total_bytes
+= state
->end
- state
->start
+ 1;
1535 if (total_bytes
>= max_bytes
)
1541 spin_unlock(&tree
->lock
);
1545 static noinline
void __unlock_for_delalloc(struct inode
*inode
,
1546 struct page
*locked_page
,
1550 struct page
*pages
[16];
1551 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1552 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1553 unsigned long nr_pages
= end_index
- index
+ 1;
1556 if (index
== locked_page
->index
&& end_index
== index
)
1559 while (nr_pages
> 0) {
1560 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
1561 min_t(unsigned long, nr_pages
,
1562 ARRAY_SIZE(pages
)), pages
);
1563 for (i
= 0; i
< ret
; i
++) {
1564 if (pages
[i
] != locked_page
)
1565 unlock_page(pages
[i
]);
1566 page_cache_release(pages
[i
]);
1574 static noinline
int lock_delalloc_pages(struct inode
*inode
,
1575 struct page
*locked_page
,
1579 unsigned long index
= delalloc_start
>> PAGE_CACHE_SHIFT
;
1580 unsigned long start_index
= index
;
1581 unsigned long end_index
= delalloc_end
>> PAGE_CACHE_SHIFT
;
1582 unsigned long pages_locked
= 0;
1583 struct page
*pages
[16];
1584 unsigned long nrpages
;
1588 /* the caller is responsible for locking the start index */
1589 if (index
== locked_page
->index
&& index
== end_index
)
1592 /* skip the page at the start index */
1593 nrpages
= end_index
- index
+ 1;
1594 while (nrpages
> 0) {
1595 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
1596 min_t(unsigned long,
1597 nrpages
, ARRAY_SIZE(pages
)), pages
);
1602 /* now we have an array of pages, lock them all */
1603 for (i
= 0; i
< ret
; i
++) {
1605 * the caller is taking responsibility for
1608 if (pages
[i
] != locked_page
) {
1609 lock_page(pages
[i
]);
1610 if (!PageDirty(pages
[i
]) ||
1611 pages
[i
]->mapping
!= inode
->i_mapping
) {
1613 unlock_page(pages
[i
]);
1614 page_cache_release(pages
[i
]);
1618 page_cache_release(pages
[i
]);
1627 if (ret
&& pages_locked
) {
1628 __unlock_for_delalloc(inode
, locked_page
,
1630 ((u64
)(start_index
+ pages_locked
- 1)) <<
1637 * find a contiguous range of bytes in the file marked as delalloc, not
1638 * more than 'max_bytes'. start and end are used to return the range,
1640 * 1 is returned if we find something, 0 if nothing was in the tree
1642 STATIC u64
find_lock_delalloc_range(struct inode
*inode
,
1643 struct extent_io_tree
*tree
,
1644 struct page
*locked_page
, u64
*start
,
1645 u64
*end
, u64 max_bytes
)
1650 struct extent_state
*cached_state
= NULL
;
1655 /* step one, find a bunch of delalloc bytes starting at start */
1656 delalloc_start
= *start
;
1658 found
= find_delalloc_range(tree
, &delalloc_start
, &delalloc_end
,
1659 max_bytes
, &cached_state
);
1660 if (!found
|| delalloc_end
<= *start
) {
1661 *start
= delalloc_start
;
1662 *end
= delalloc_end
;
1663 free_extent_state(cached_state
);
1668 * start comes from the offset of locked_page. We have to lock
1669 * pages in order, so we can't process delalloc bytes before
1672 if (delalloc_start
< *start
)
1673 delalloc_start
= *start
;
1676 * make sure to limit the number of pages we try to lock down
1678 if (delalloc_end
+ 1 - delalloc_start
> max_bytes
)
1679 delalloc_end
= delalloc_start
+ max_bytes
- 1;
1681 /* step two, lock all the pages after the page that has start */
1682 ret
= lock_delalloc_pages(inode
, locked_page
,
1683 delalloc_start
, delalloc_end
);
1684 if (ret
== -EAGAIN
) {
1685 /* some of the pages are gone, lets avoid looping by
1686 * shortening the size of the delalloc range we're searching
1688 free_extent_state(cached_state
);
1690 max_bytes
= PAGE_CACHE_SIZE
;
1698 BUG_ON(ret
); /* Only valid values are 0 and -EAGAIN */
1700 /* step three, lock the state bits for the whole range */
1701 lock_extent_bits(tree
, delalloc_start
, delalloc_end
, 0, &cached_state
);
1703 /* then test to make sure it is all still delalloc */
1704 ret
= test_range_bit(tree
, delalloc_start
, delalloc_end
,
1705 EXTENT_DELALLOC
, 1, cached_state
);
1707 unlock_extent_cached(tree
, delalloc_start
, delalloc_end
,
1708 &cached_state
, GFP_NOFS
);
1709 __unlock_for_delalloc(inode
, locked_page
,
1710 delalloc_start
, delalloc_end
);
1714 free_extent_state(cached_state
);
1715 *start
= delalloc_start
;
1716 *end
= delalloc_end
;
1721 int extent_clear_unlock_delalloc(struct inode
*inode
, u64 start
, u64 end
,
1722 struct page
*locked_page
,
1723 unsigned long clear_bits
,
1724 unsigned long page_ops
)
1726 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
1728 struct page
*pages
[16];
1729 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1730 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1731 unsigned long nr_pages
= end_index
- index
+ 1;
1734 clear_extent_bit(tree
, start
, end
, clear_bits
, 1, 0, NULL
, GFP_NOFS
);
1738 while (nr_pages
> 0) {
1739 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
1740 min_t(unsigned long,
1741 nr_pages
, ARRAY_SIZE(pages
)), pages
);
1742 for (i
= 0; i
< ret
; i
++) {
1744 if (page_ops
& PAGE_SET_PRIVATE2
)
1745 SetPagePrivate2(pages
[i
]);
1747 if (pages
[i
] == locked_page
) {
1748 page_cache_release(pages
[i
]);
1751 if (page_ops
& PAGE_CLEAR_DIRTY
)
1752 clear_page_dirty_for_io(pages
[i
]);
1753 if (page_ops
& PAGE_SET_WRITEBACK
)
1754 set_page_writeback(pages
[i
]);
1755 if (page_ops
& PAGE_END_WRITEBACK
)
1756 end_page_writeback(pages
[i
]);
1757 if (page_ops
& PAGE_UNLOCK
)
1758 unlock_page(pages
[i
]);
1759 page_cache_release(pages
[i
]);
1769 * count the number of bytes in the tree that have a given bit(s)
1770 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1771 * cached. The total number found is returned.
1773 u64
count_range_bits(struct extent_io_tree
*tree
,
1774 u64
*start
, u64 search_end
, u64 max_bytes
,
1775 unsigned long bits
, int contig
)
1777 struct rb_node
*node
;
1778 struct extent_state
*state
;
1779 u64 cur_start
= *start
;
1780 u64 total_bytes
= 0;
1784 if (WARN_ON(search_end
<= cur_start
))
1787 spin_lock(&tree
->lock
);
1788 if (cur_start
== 0 && bits
== EXTENT_DIRTY
) {
1789 total_bytes
= tree
->dirty_bytes
;
1793 * this search will find all the extents that end after
1796 node
= tree_search(tree
, cur_start
);
1801 state
= rb_entry(node
, struct extent_state
, rb_node
);
1802 if (state
->start
> search_end
)
1804 if (contig
&& found
&& state
->start
> last
+ 1)
1806 if (state
->end
>= cur_start
&& (state
->state
& bits
) == bits
) {
1807 total_bytes
+= min(search_end
, state
->end
) + 1 -
1808 max(cur_start
, state
->start
);
1809 if (total_bytes
>= max_bytes
)
1812 *start
= max(cur_start
, state
->start
);
1816 } else if (contig
&& found
) {
1819 node
= rb_next(node
);
1824 spin_unlock(&tree
->lock
);
1829 * set the private field for a given byte offset in the tree. If there isn't
1830 * an extent_state there already, this does nothing.
1832 static int set_state_private(struct extent_io_tree
*tree
, u64 start
, u64
private)
1834 struct rb_node
*node
;
1835 struct extent_state
*state
;
1838 spin_lock(&tree
->lock
);
1840 * this search will find all the extents that end after
1843 node
= tree_search(tree
, start
);
1848 state
= rb_entry(node
, struct extent_state
, rb_node
);
1849 if (state
->start
!= start
) {
1853 state
->private = private;
1855 spin_unlock(&tree
->lock
);
1859 int get_state_private(struct extent_io_tree
*tree
, u64 start
, u64
*private)
1861 struct rb_node
*node
;
1862 struct extent_state
*state
;
1865 spin_lock(&tree
->lock
);
1867 * this search will find all the extents that end after
1870 node
= tree_search(tree
, start
);
1875 state
= rb_entry(node
, struct extent_state
, rb_node
);
1876 if (state
->start
!= start
) {
1880 *private = state
->private;
1882 spin_unlock(&tree
->lock
);
1887 * searches a range in the state tree for a given mask.
1888 * If 'filled' == 1, this returns 1 only if every extent in the tree
1889 * has the bits set. Otherwise, 1 is returned if any bit in the
1890 * range is found set.
1892 int test_range_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1893 unsigned long bits
, int filled
, struct extent_state
*cached
)
1895 struct extent_state
*state
= NULL
;
1896 struct rb_node
*node
;
1899 spin_lock(&tree
->lock
);
1900 if (cached
&& cached
->tree
&& cached
->start
<= start
&&
1901 cached
->end
> start
)
1902 node
= &cached
->rb_node
;
1904 node
= tree_search(tree
, start
);
1905 while (node
&& start
<= end
) {
1906 state
= rb_entry(node
, struct extent_state
, rb_node
);
1908 if (filled
&& state
->start
> start
) {
1913 if (state
->start
> end
)
1916 if (state
->state
& bits
) {
1920 } else if (filled
) {
1925 if (state
->end
== (u64
)-1)
1928 start
= state
->end
+ 1;
1931 node
= rb_next(node
);
1938 spin_unlock(&tree
->lock
);
1943 * helper function to set a given page up to date if all the
1944 * extents in the tree for that page are up to date
1946 static void check_page_uptodate(struct extent_io_tree
*tree
, struct page
*page
)
1948 u64 start
= page_offset(page
);
1949 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
1950 if (test_range_bit(tree
, start
, end
, EXTENT_UPTODATE
, 1, NULL
))
1951 SetPageUptodate(page
);
1955 * When IO fails, either with EIO or csum verification fails, we
1956 * try other mirrors that might have a good copy of the data. This
1957 * io_failure_record is used to record state as we go through all the
1958 * mirrors. If another mirror has good data, the page is set up to date
1959 * and things continue. If a good mirror can't be found, the original
1960 * bio end_io callback is called to indicate things have failed.
1962 struct io_failure_record
{
1967 unsigned long bio_flags
;
1973 static int free_io_failure(struct inode
*inode
, struct io_failure_record
*rec
,
1978 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
1980 set_state_private(failure_tree
, rec
->start
, 0);
1981 ret
= clear_extent_bits(failure_tree
, rec
->start
,
1982 rec
->start
+ rec
->len
- 1,
1983 EXTENT_LOCKED
| EXTENT_DIRTY
, GFP_NOFS
);
1987 ret
= clear_extent_bits(&BTRFS_I(inode
)->io_tree
, rec
->start
,
1988 rec
->start
+ rec
->len
- 1,
1989 EXTENT_DAMAGED
, GFP_NOFS
);
1998 * this bypasses the standard btrfs submit functions deliberately, as
1999 * the standard behavior is to write all copies in a raid setup. here we only
2000 * want to write the one bad copy. so we do the mapping for ourselves and issue
2001 * submit_bio directly.
2002 * to avoid any synchronization issues, wait for the data after writing, which
2003 * actually prevents the read that triggered the error from finishing.
2004 * currently, there can be no more than two copies of every data bit. thus,
2005 * exactly one rewrite is required.
2007 int repair_io_failure(struct btrfs_fs_info
*fs_info
, u64 start
,
2008 u64 length
, u64 logical
, struct page
*page
,
2012 struct btrfs_device
*dev
;
2015 struct btrfs_bio
*bbio
= NULL
;
2016 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
2019 ASSERT(!(fs_info
->sb
->s_flags
& MS_RDONLY
));
2020 BUG_ON(!mirror_num
);
2022 /* we can't repair anything in raid56 yet */
2023 if (btrfs_is_parity_mirror(map_tree
, logical
, length
, mirror_num
))
2026 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 1);
2029 bio
->bi_iter
.bi_size
= 0;
2030 map_length
= length
;
2032 ret
= btrfs_map_block(fs_info
, WRITE
, logical
,
2033 &map_length
, &bbio
, mirror_num
);
2038 BUG_ON(mirror_num
!= bbio
->mirror_num
);
2039 sector
= bbio
->stripes
[mirror_num
-1].physical
>> 9;
2040 bio
->bi_iter
.bi_sector
= sector
;
2041 dev
= bbio
->stripes
[mirror_num
-1].dev
;
2043 if (!dev
|| !dev
->bdev
|| !dev
->writeable
) {
2047 bio
->bi_bdev
= dev
->bdev
;
2048 bio_add_page(bio
, page
, length
, start
- page_offset(page
));
2050 if (btrfsic_submit_bio_wait(WRITE_SYNC
, bio
)) {
2051 /* try to remap that extent elsewhere? */
2053 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_WRITE_ERRS
);
2057 printk_ratelimited_in_rcu(KERN_INFO
2058 "BTRFS: read error corrected: ino %lu off %llu "
2059 "(dev %s sector %llu)\n", page
->mapping
->host
->i_ino
,
2060 start
, rcu_str_deref(dev
->name
), sector
);
2066 int repair_eb_io_failure(struct btrfs_root
*root
, struct extent_buffer
*eb
,
2069 u64 start
= eb
->start
;
2070 unsigned long i
, num_pages
= num_extent_pages(eb
->start
, eb
->len
);
2073 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
2076 for (i
= 0; i
< num_pages
; i
++) {
2077 struct page
*p
= extent_buffer_page(eb
, i
);
2078 ret
= repair_io_failure(root
->fs_info
, start
, PAGE_CACHE_SIZE
,
2079 start
, p
, mirror_num
);
2082 start
+= PAGE_CACHE_SIZE
;
2089 * each time an IO finishes, we do a fast check in the IO failure tree
2090 * to see if we need to process or clean up an io_failure_record
2092 static int clean_io_failure(u64 start
, struct page
*page
)
2095 u64 private_failure
;
2096 struct io_failure_record
*failrec
;
2097 struct inode
*inode
= page
->mapping
->host
;
2098 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
2099 struct extent_state
*state
;
2105 ret
= count_range_bits(&BTRFS_I(inode
)->io_failure_tree
, &private,
2106 (u64
)-1, 1, EXTENT_DIRTY
, 0);
2110 ret
= get_state_private(&BTRFS_I(inode
)->io_failure_tree
, start
,
2115 failrec
= (struct io_failure_record
*)(unsigned long) private_failure
;
2116 BUG_ON(!failrec
->this_mirror
);
2118 if (failrec
->in_validation
) {
2119 /* there was no real error, just free the record */
2120 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2125 if (fs_info
->sb
->s_flags
& MS_RDONLY
)
2128 spin_lock(&BTRFS_I(inode
)->io_tree
.lock
);
2129 state
= find_first_extent_bit_state(&BTRFS_I(inode
)->io_tree
,
2132 spin_unlock(&BTRFS_I(inode
)->io_tree
.lock
);
2134 if (state
&& state
->start
<= failrec
->start
&&
2135 state
->end
>= failrec
->start
+ failrec
->len
- 1) {
2136 num_copies
= btrfs_num_copies(fs_info
, failrec
->logical
,
2138 if (num_copies
> 1) {
2139 ret
= repair_io_failure(fs_info
, start
, failrec
->len
,
2140 failrec
->logical
, page
,
2141 failrec
->failed_mirror
);
2149 ret
= free_io_failure(inode
, failrec
, did_repair
);
2155 * this is a generic handler for readpage errors (default
2156 * readpage_io_failed_hook). if other copies exist, read those and write back
2157 * good data to the failed position. does not investigate in remapping the
2158 * failed extent elsewhere, hoping the device will be smart enough to do this as
2162 static int bio_readpage_error(struct bio
*failed_bio
, u64 phy_offset
,
2163 struct page
*page
, u64 start
, u64 end
,
2166 struct io_failure_record
*failrec
= NULL
;
2168 struct extent_map
*em
;
2169 struct inode
*inode
= page
->mapping
->host
;
2170 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
2171 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
2172 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
2174 struct btrfs_io_bio
*btrfs_failed_bio
;
2175 struct btrfs_io_bio
*btrfs_bio
;
2181 BUG_ON(failed_bio
->bi_rw
& REQ_WRITE
);
2183 ret
= get_state_private(failure_tree
, start
, &private);
2185 failrec
= kzalloc(sizeof(*failrec
), GFP_NOFS
);
2188 failrec
->start
= start
;
2189 failrec
->len
= end
- start
+ 1;
2190 failrec
->this_mirror
= 0;
2191 failrec
->bio_flags
= 0;
2192 failrec
->in_validation
= 0;
2194 read_lock(&em_tree
->lock
);
2195 em
= lookup_extent_mapping(em_tree
, start
, failrec
->len
);
2197 read_unlock(&em_tree
->lock
);
2202 if (em
->start
> start
|| em
->start
+ em
->len
<= start
) {
2203 free_extent_map(em
);
2206 read_unlock(&em_tree
->lock
);
2212 logical
= start
- em
->start
;
2213 logical
= em
->block_start
+ logical
;
2214 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
2215 logical
= em
->block_start
;
2216 failrec
->bio_flags
= EXTENT_BIO_COMPRESSED
;
2217 extent_set_compress_type(&failrec
->bio_flags
,
2220 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2221 "len=%llu\n", logical
, start
, failrec
->len
);
2222 failrec
->logical
= logical
;
2223 free_extent_map(em
);
2225 /* set the bits in the private failure tree */
2226 ret
= set_extent_bits(failure_tree
, start
, end
,
2227 EXTENT_LOCKED
| EXTENT_DIRTY
, GFP_NOFS
);
2229 ret
= set_state_private(failure_tree
, start
,
2230 (u64
)(unsigned long)failrec
);
2231 /* set the bits in the inode's tree */
2233 ret
= set_extent_bits(tree
, start
, end
, EXTENT_DAMAGED
,
2240 failrec
= (struct io_failure_record
*)(unsigned long)private;
2241 pr_debug("bio_readpage_error: (found) logical=%llu, "
2242 "start=%llu, len=%llu, validation=%d\n",
2243 failrec
->logical
, failrec
->start
, failrec
->len
,
2244 failrec
->in_validation
);
2246 * when data can be on disk more than twice, add to failrec here
2247 * (e.g. with a list for failed_mirror) to make
2248 * clean_io_failure() clean all those errors at once.
2251 num_copies
= btrfs_num_copies(BTRFS_I(inode
)->root
->fs_info
,
2252 failrec
->logical
, failrec
->len
);
2253 if (num_copies
== 1) {
2255 * we only have a single copy of the data, so don't bother with
2256 * all the retry and error correction code that follows. no
2257 * matter what the error is, it is very likely to persist.
2259 pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2260 num_copies
, failrec
->this_mirror
, failed_mirror
);
2261 free_io_failure(inode
, failrec
, 0);
2266 * there are two premises:
2267 * a) deliver good data to the caller
2268 * b) correct the bad sectors on disk
2270 if (failed_bio
->bi_vcnt
> 1) {
2272 * to fulfill b), we need to know the exact failing sectors, as
2273 * we don't want to rewrite any more than the failed ones. thus,
2274 * we need separate read requests for the failed bio
2276 * if the following BUG_ON triggers, our validation request got
2277 * merged. we need separate requests for our algorithm to work.
2279 BUG_ON(failrec
->in_validation
);
2280 failrec
->in_validation
= 1;
2281 failrec
->this_mirror
= failed_mirror
;
2282 read_mode
= READ_SYNC
| REQ_FAILFAST_DEV
;
2285 * we're ready to fulfill a) and b) alongside. get a good copy
2286 * of the failed sector and if we succeed, we have setup
2287 * everything for repair_io_failure to do the rest for us.
2289 if (failrec
->in_validation
) {
2290 BUG_ON(failrec
->this_mirror
!= failed_mirror
);
2291 failrec
->in_validation
= 0;
2292 failrec
->this_mirror
= 0;
2294 failrec
->failed_mirror
= failed_mirror
;
2295 failrec
->this_mirror
++;
2296 if (failrec
->this_mirror
== failed_mirror
)
2297 failrec
->this_mirror
++;
2298 read_mode
= READ_SYNC
;
2301 if (failrec
->this_mirror
> num_copies
) {
2302 pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2303 num_copies
, failrec
->this_mirror
, failed_mirror
);
2304 free_io_failure(inode
, failrec
, 0);
2308 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 1);
2310 free_io_failure(inode
, failrec
, 0);
2313 bio
->bi_end_io
= failed_bio
->bi_end_io
;
2314 bio
->bi_iter
.bi_sector
= failrec
->logical
>> 9;
2315 bio
->bi_bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
2316 bio
->bi_iter
.bi_size
= 0;
2318 btrfs_failed_bio
= btrfs_io_bio(failed_bio
);
2319 if (btrfs_failed_bio
->csum
) {
2320 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
2321 u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
2323 btrfs_bio
= btrfs_io_bio(bio
);
2324 btrfs_bio
->csum
= btrfs_bio
->csum_inline
;
2325 phy_offset
>>= inode
->i_sb
->s_blocksize_bits
;
2326 phy_offset
*= csum_size
;
2327 memcpy(btrfs_bio
->csum
, btrfs_failed_bio
->csum
+ phy_offset
,
2331 bio_add_page(bio
, page
, failrec
->len
, start
- page_offset(page
));
2333 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2334 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode
,
2335 failrec
->this_mirror
, num_copies
, failrec
->in_validation
);
2337 ret
= tree
->ops
->submit_bio_hook(inode
, read_mode
, bio
,
2338 failrec
->this_mirror
,
2339 failrec
->bio_flags
, 0);
2343 /* lots and lots of room for performance fixes in the end_bio funcs */
2345 int end_extent_writepage(struct page
*page
, int err
, u64 start
, u64 end
)
2347 int uptodate
= (err
== 0);
2348 struct extent_io_tree
*tree
;
2351 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
2353 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
) {
2354 ret
= tree
->ops
->writepage_end_io_hook(page
, start
,
2355 end
, NULL
, uptodate
);
2361 ClearPageUptodate(page
);
2368 * after a writepage IO is done, we need to:
2369 * clear the uptodate bits on error
2370 * clear the writeback bits in the extent tree for this IO
2371 * end_page_writeback if the page has no more pending IO
2373 * Scheduling is not allowed, so the extent state tree is expected
2374 * to have one and only one object corresponding to this IO.
2376 static void end_bio_extent_writepage(struct bio
*bio
, int err
)
2378 struct bio_vec
*bvec
;
2383 bio_for_each_segment_all(bvec
, bio
, i
) {
2384 struct page
*page
= bvec
->bv_page
;
2386 /* We always issue full-page reads, but if some block
2387 * in a page fails to read, blk_update_request() will
2388 * advance bv_offset and adjust bv_len to compensate.
2389 * Print a warning for nonzero offsets, and an error
2390 * if they don't add up to a full page. */
2391 if (bvec
->bv_offset
|| bvec
->bv_len
!= PAGE_CACHE_SIZE
) {
2392 if (bvec
->bv_offset
+ bvec
->bv_len
!= PAGE_CACHE_SIZE
)
2393 btrfs_err(BTRFS_I(page
->mapping
->host
)->root
->fs_info
,
2394 "partial page write in btrfs with offset %u and length %u",
2395 bvec
->bv_offset
, bvec
->bv_len
);
2397 btrfs_info(BTRFS_I(page
->mapping
->host
)->root
->fs_info
,
2398 "incomplete page write in btrfs with offset %u and "
2400 bvec
->bv_offset
, bvec
->bv_len
);
2403 start
= page_offset(page
);
2404 end
= start
+ bvec
->bv_offset
+ bvec
->bv_len
- 1;
2406 if (end_extent_writepage(page
, err
, start
, end
))
2409 end_page_writeback(page
);
2416 endio_readpage_release_extent(struct extent_io_tree
*tree
, u64 start
, u64 len
,
2419 struct extent_state
*cached
= NULL
;
2420 u64 end
= start
+ len
- 1;
2422 if (uptodate
&& tree
->track_uptodate
)
2423 set_extent_uptodate(tree
, start
, end
, &cached
, GFP_ATOMIC
);
2424 unlock_extent_cached(tree
, start
, end
, &cached
, GFP_ATOMIC
);
2428 * after a readpage IO is done, we need to:
2429 * clear the uptodate bits on error
2430 * set the uptodate bits if things worked
2431 * set the page up to date if all extents in the tree are uptodate
2432 * clear the lock bit in the extent tree
2433 * unlock the page if there are no other extents locked for it
2435 * Scheduling is not allowed, so the extent state tree is expected
2436 * to have one and only one object corresponding to this IO.
2438 static void end_bio_extent_readpage(struct bio
*bio
, int err
)
2440 struct bio_vec
*bvec
;
2441 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
2442 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
2443 struct extent_io_tree
*tree
;
2448 u64 extent_start
= 0;
2457 bio_for_each_segment_all(bvec
, bio
, i
) {
2458 struct page
*page
= bvec
->bv_page
;
2459 struct inode
*inode
= page
->mapping
->host
;
2461 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2462 "mirror=%lu\n", (u64
)bio
->bi_iter
.bi_sector
, err
,
2463 io_bio
->mirror_num
);
2464 tree
= &BTRFS_I(inode
)->io_tree
;
2466 /* We always issue full-page reads, but if some block
2467 * in a page fails to read, blk_update_request() will
2468 * advance bv_offset and adjust bv_len to compensate.
2469 * Print a warning for nonzero offsets, and an error
2470 * if they don't add up to a full page. */
2471 if (bvec
->bv_offset
|| bvec
->bv_len
!= PAGE_CACHE_SIZE
) {
2472 if (bvec
->bv_offset
+ bvec
->bv_len
!= PAGE_CACHE_SIZE
)
2473 btrfs_err(BTRFS_I(page
->mapping
->host
)->root
->fs_info
,
2474 "partial page read in btrfs with offset %u and length %u",
2475 bvec
->bv_offset
, bvec
->bv_len
);
2477 btrfs_info(BTRFS_I(page
->mapping
->host
)->root
->fs_info
,
2478 "incomplete page read in btrfs with offset %u and "
2480 bvec
->bv_offset
, bvec
->bv_len
);
2483 start
= page_offset(page
);
2484 end
= start
+ bvec
->bv_offset
+ bvec
->bv_len
- 1;
2487 mirror
= io_bio
->mirror_num
;
2488 if (likely(uptodate
&& tree
->ops
&&
2489 tree
->ops
->readpage_end_io_hook
)) {
2490 ret
= tree
->ops
->readpage_end_io_hook(io_bio
, offset
,
2496 clean_io_failure(start
, page
);
2499 if (likely(uptodate
))
2502 if (tree
->ops
&& tree
->ops
->readpage_io_failed_hook
) {
2503 ret
= tree
->ops
->readpage_io_failed_hook(page
, mirror
);
2505 test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
2509 * The generic bio_readpage_error handles errors the
2510 * following way: If possible, new read requests are
2511 * created and submitted and will end up in
2512 * end_bio_extent_readpage as well (if we're lucky, not
2513 * in the !uptodate case). In that case it returns 0 and
2514 * we just go on with the next page in our bio. If it
2515 * can't handle the error it will return -EIO and we
2516 * remain responsible for that page.
2518 ret
= bio_readpage_error(bio
, offset
, page
, start
, end
,
2522 test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
2529 if (likely(uptodate
)) {
2530 loff_t i_size
= i_size_read(inode
);
2531 pgoff_t end_index
= i_size
>> PAGE_CACHE_SHIFT
;
2534 /* Zero out the end if this page straddles i_size */
2535 offset
= i_size
& (PAGE_CACHE_SIZE
-1);
2536 if (page
->index
== end_index
&& offset
)
2537 zero_user_segment(page
, offset
, PAGE_CACHE_SIZE
);
2538 SetPageUptodate(page
);
2540 ClearPageUptodate(page
);
2546 if (unlikely(!uptodate
)) {
2548 endio_readpage_release_extent(tree
,
2554 endio_readpage_release_extent(tree
, start
,
2555 end
- start
+ 1, 0);
2556 } else if (!extent_len
) {
2557 extent_start
= start
;
2558 extent_len
= end
+ 1 - start
;
2559 } else if (extent_start
+ extent_len
== start
) {
2560 extent_len
+= end
+ 1 - start
;
2562 endio_readpage_release_extent(tree
, extent_start
,
2563 extent_len
, uptodate
);
2564 extent_start
= start
;
2565 extent_len
= end
+ 1 - start
;
2570 endio_readpage_release_extent(tree
, extent_start
, extent_len
,
2573 io_bio
->end_io(io_bio
, err
);
2578 * this allocates from the btrfs_bioset. We're returning a bio right now
2579 * but you can call btrfs_io_bio for the appropriate container_of magic
2582 btrfs_bio_alloc(struct block_device
*bdev
, u64 first_sector
, int nr_vecs
,
2585 struct btrfs_io_bio
*btrfs_bio
;
2588 bio
= bio_alloc_bioset(gfp_flags
, nr_vecs
, btrfs_bioset
);
2590 if (bio
== NULL
&& (current
->flags
& PF_MEMALLOC
)) {
2591 while (!bio
&& (nr_vecs
/= 2)) {
2592 bio
= bio_alloc_bioset(gfp_flags
,
2593 nr_vecs
, btrfs_bioset
);
2598 bio
->bi_bdev
= bdev
;
2599 bio
->bi_iter
.bi_sector
= first_sector
;
2600 btrfs_bio
= btrfs_io_bio(bio
);
2601 btrfs_bio
->csum
= NULL
;
2602 btrfs_bio
->csum_allocated
= NULL
;
2603 btrfs_bio
->end_io
= NULL
;
2608 struct bio
*btrfs_bio_clone(struct bio
*bio
, gfp_t gfp_mask
)
2610 return bio_clone_bioset(bio
, gfp_mask
, btrfs_bioset
);
2614 /* this also allocates from the btrfs_bioset */
2615 struct bio
*btrfs_io_bio_alloc(gfp_t gfp_mask
, unsigned int nr_iovecs
)
2617 struct btrfs_io_bio
*btrfs_bio
;
2620 bio
= bio_alloc_bioset(gfp_mask
, nr_iovecs
, btrfs_bioset
);
2622 btrfs_bio
= btrfs_io_bio(bio
);
2623 btrfs_bio
->csum
= NULL
;
2624 btrfs_bio
->csum_allocated
= NULL
;
2625 btrfs_bio
->end_io
= NULL
;
2631 static int __must_check
submit_one_bio(int rw
, struct bio
*bio
,
2632 int mirror_num
, unsigned long bio_flags
)
2635 struct bio_vec
*bvec
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
2636 struct page
*page
= bvec
->bv_page
;
2637 struct extent_io_tree
*tree
= bio
->bi_private
;
2640 start
= page_offset(page
) + bvec
->bv_offset
;
2642 bio
->bi_private
= NULL
;
2646 if (tree
->ops
&& tree
->ops
->submit_bio_hook
)
2647 ret
= tree
->ops
->submit_bio_hook(page
->mapping
->host
, rw
, bio
,
2648 mirror_num
, bio_flags
, start
);
2650 btrfsic_submit_bio(rw
, bio
);
2652 if (bio_flagged(bio
, BIO_EOPNOTSUPP
))
2658 static int merge_bio(int rw
, struct extent_io_tree
*tree
, struct page
*page
,
2659 unsigned long offset
, size_t size
, struct bio
*bio
,
2660 unsigned long bio_flags
)
2663 if (tree
->ops
&& tree
->ops
->merge_bio_hook
)
2664 ret
= tree
->ops
->merge_bio_hook(rw
, page
, offset
, size
, bio
,
2671 static int submit_extent_page(int rw
, struct extent_io_tree
*tree
,
2672 struct page
*page
, sector_t sector
,
2673 size_t size
, unsigned long offset
,
2674 struct block_device
*bdev
,
2675 struct bio
**bio_ret
,
2676 unsigned long max_pages
,
2677 bio_end_io_t end_io_func
,
2679 unsigned long prev_bio_flags
,
2680 unsigned long bio_flags
)
2686 int this_compressed
= bio_flags
& EXTENT_BIO_COMPRESSED
;
2687 int old_compressed
= prev_bio_flags
& EXTENT_BIO_COMPRESSED
;
2688 size_t page_size
= min_t(size_t, size
, PAGE_CACHE_SIZE
);
2690 if (bio_ret
&& *bio_ret
) {
2693 contig
= bio
->bi_iter
.bi_sector
== sector
;
2695 contig
= bio_end_sector(bio
) == sector
;
2697 if (prev_bio_flags
!= bio_flags
|| !contig
||
2698 merge_bio(rw
, tree
, page
, offset
, page_size
, bio
, bio_flags
) ||
2699 bio_add_page(bio
, page
, page_size
, offset
) < page_size
) {
2700 ret
= submit_one_bio(rw
, bio
, mirror_num
,
2709 if (this_compressed
)
2712 nr
= bio_get_nr_vecs(bdev
);
2714 bio
= btrfs_bio_alloc(bdev
, sector
, nr
, GFP_NOFS
| __GFP_HIGH
);
2718 bio_add_page(bio
, page
, page_size
, offset
);
2719 bio
->bi_end_io
= end_io_func
;
2720 bio
->bi_private
= tree
;
2725 ret
= submit_one_bio(rw
, bio
, mirror_num
, bio_flags
);
2730 static void attach_extent_buffer_page(struct extent_buffer
*eb
,
2733 if (!PagePrivate(page
)) {
2734 SetPagePrivate(page
);
2735 page_cache_get(page
);
2736 set_page_private(page
, (unsigned long)eb
);
2738 WARN_ON(page
->private != (unsigned long)eb
);
2742 void set_page_extent_mapped(struct page
*page
)
2744 if (!PagePrivate(page
)) {
2745 SetPagePrivate(page
);
2746 page_cache_get(page
);
2747 set_page_private(page
, EXTENT_PAGE_PRIVATE
);
2751 static struct extent_map
*
2752 __get_extent_map(struct inode
*inode
, struct page
*page
, size_t pg_offset
,
2753 u64 start
, u64 len
, get_extent_t
*get_extent
,
2754 struct extent_map
**em_cached
)
2756 struct extent_map
*em
;
2758 if (em_cached
&& *em_cached
) {
2760 if (em
->in_tree
&& start
>= em
->start
&&
2761 start
< extent_map_end(em
)) {
2762 atomic_inc(&em
->refs
);
2766 free_extent_map(em
);
2770 em
= get_extent(inode
, page
, pg_offset
, start
, len
, 0);
2771 if (em_cached
&& !IS_ERR_OR_NULL(em
)) {
2773 atomic_inc(&em
->refs
);
2779 * basic readpage implementation. Locked extent state structs are inserted
2780 * into the tree that are removed when the IO is done (by the end_io
2782 * XXX JDM: This needs looking at to ensure proper page locking
2784 static int __do_readpage(struct extent_io_tree
*tree
,
2786 get_extent_t
*get_extent
,
2787 struct extent_map
**em_cached
,
2788 struct bio
**bio
, int mirror_num
,
2789 unsigned long *bio_flags
, int rw
)
2791 struct inode
*inode
= page
->mapping
->host
;
2792 u64 start
= page_offset(page
);
2793 u64 page_end
= start
+ PAGE_CACHE_SIZE
- 1;
2797 u64 last_byte
= i_size_read(inode
);
2801 struct extent_map
*em
;
2802 struct block_device
*bdev
;
2805 int parent_locked
= *bio_flags
& EXTENT_BIO_PARENT_LOCKED
;
2806 size_t pg_offset
= 0;
2808 size_t disk_io_size
;
2809 size_t blocksize
= inode
->i_sb
->s_blocksize
;
2810 unsigned long this_bio_flag
= *bio_flags
& EXTENT_BIO_PARENT_LOCKED
;
2812 set_page_extent_mapped(page
);
2815 if (!PageUptodate(page
)) {
2816 if (cleancache_get_page(page
) == 0) {
2817 BUG_ON(blocksize
!= PAGE_SIZE
);
2818 unlock_extent(tree
, start
, end
);
2823 if (page
->index
== last_byte
>> PAGE_CACHE_SHIFT
) {
2825 size_t zero_offset
= last_byte
& (PAGE_CACHE_SIZE
- 1);
2828 iosize
= PAGE_CACHE_SIZE
- zero_offset
;
2829 userpage
= kmap_atomic(page
);
2830 memset(userpage
+ zero_offset
, 0, iosize
);
2831 flush_dcache_page(page
);
2832 kunmap_atomic(userpage
);
2835 while (cur
<= end
) {
2836 unsigned long pnr
= (last_byte
>> PAGE_CACHE_SHIFT
) + 1;
2838 if (cur
>= last_byte
) {
2840 struct extent_state
*cached
= NULL
;
2842 iosize
= PAGE_CACHE_SIZE
- pg_offset
;
2843 userpage
= kmap_atomic(page
);
2844 memset(userpage
+ pg_offset
, 0, iosize
);
2845 flush_dcache_page(page
);
2846 kunmap_atomic(userpage
);
2847 set_extent_uptodate(tree
, cur
, cur
+ iosize
- 1,
2850 unlock_extent_cached(tree
, cur
,
2855 em
= __get_extent_map(inode
, page
, pg_offset
, cur
,
2856 end
- cur
+ 1, get_extent
, em_cached
);
2857 if (IS_ERR_OR_NULL(em
)) {
2860 unlock_extent(tree
, cur
, end
);
2863 extent_offset
= cur
- em
->start
;
2864 BUG_ON(extent_map_end(em
) <= cur
);
2867 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
2868 this_bio_flag
|= EXTENT_BIO_COMPRESSED
;
2869 extent_set_compress_type(&this_bio_flag
,
2873 iosize
= min(extent_map_end(em
) - cur
, end
- cur
+ 1);
2874 cur_end
= min(extent_map_end(em
) - 1, end
);
2875 iosize
= ALIGN(iosize
, blocksize
);
2876 if (this_bio_flag
& EXTENT_BIO_COMPRESSED
) {
2877 disk_io_size
= em
->block_len
;
2878 sector
= em
->block_start
>> 9;
2880 sector
= (em
->block_start
+ extent_offset
) >> 9;
2881 disk_io_size
= iosize
;
2884 block_start
= em
->block_start
;
2885 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
2886 block_start
= EXTENT_MAP_HOLE
;
2887 free_extent_map(em
);
2890 /* we've found a hole, just zero and go on */
2891 if (block_start
== EXTENT_MAP_HOLE
) {
2893 struct extent_state
*cached
= NULL
;
2895 userpage
= kmap_atomic(page
);
2896 memset(userpage
+ pg_offset
, 0, iosize
);
2897 flush_dcache_page(page
);
2898 kunmap_atomic(userpage
);
2900 set_extent_uptodate(tree
, cur
, cur
+ iosize
- 1,
2902 unlock_extent_cached(tree
, cur
, cur
+ iosize
- 1,
2905 pg_offset
+= iosize
;
2908 /* the get_extent function already copied into the page */
2909 if (test_range_bit(tree
, cur
, cur_end
,
2910 EXTENT_UPTODATE
, 1, NULL
)) {
2911 check_page_uptodate(tree
, page
);
2913 unlock_extent(tree
, cur
, cur
+ iosize
- 1);
2915 pg_offset
+= iosize
;
2918 /* we have an inline extent but it didn't get marked up
2919 * to date. Error out
2921 if (block_start
== EXTENT_MAP_INLINE
) {
2924 unlock_extent(tree
, cur
, cur
+ iosize
- 1);
2926 pg_offset
+= iosize
;
2931 ret
= submit_extent_page(rw
, tree
, page
,
2932 sector
, disk_io_size
, pg_offset
,
2934 end_bio_extent_readpage
, mirror_num
,
2939 *bio_flags
= this_bio_flag
;
2943 unlock_extent(tree
, cur
, cur
+ iosize
- 1);
2946 pg_offset
+= iosize
;
2950 if (!PageError(page
))
2951 SetPageUptodate(page
);
2957 static inline void __do_contiguous_readpages(struct extent_io_tree
*tree
,
2958 struct page
*pages
[], int nr_pages
,
2960 get_extent_t
*get_extent
,
2961 struct extent_map
**em_cached
,
2962 struct bio
**bio
, int mirror_num
,
2963 unsigned long *bio_flags
, int rw
)
2965 struct inode
*inode
;
2966 struct btrfs_ordered_extent
*ordered
;
2969 inode
= pages
[0]->mapping
->host
;
2971 lock_extent(tree
, start
, end
);
2972 ordered
= btrfs_lookup_ordered_range(inode
, start
,
2976 unlock_extent(tree
, start
, end
);
2977 btrfs_start_ordered_extent(inode
, ordered
, 1);
2978 btrfs_put_ordered_extent(ordered
);
2981 for (index
= 0; index
< nr_pages
; index
++) {
2982 __do_readpage(tree
, pages
[index
], get_extent
, em_cached
, bio
,
2983 mirror_num
, bio_flags
, rw
);
2984 page_cache_release(pages
[index
]);
2988 static void __extent_readpages(struct extent_io_tree
*tree
,
2989 struct page
*pages
[],
2990 int nr_pages
, get_extent_t
*get_extent
,
2991 struct extent_map
**em_cached
,
2992 struct bio
**bio
, int mirror_num
,
2993 unsigned long *bio_flags
, int rw
)
2999 int first_index
= 0;
3001 for (index
= 0; index
< nr_pages
; index
++) {
3002 page_start
= page_offset(pages
[index
]);
3005 end
= start
+ PAGE_CACHE_SIZE
- 1;
3006 first_index
= index
;
3007 } else if (end
+ 1 == page_start
) {
3008 end
+= PAGE_CACHE_SIZE
;
3010 __do_contiguous_readpages(tree
, &pages
[first_index
],
3011 index
- first_index
, start
,
3012 end
, get_extent
, em_cached
,
3013 bio
, mirror_num
, bio_flags
,
3016 end
= start
+ PAGE_CACHE_SIZE
- 1;
3017 first_index
= index
;
3022 __do_contiguous_readpages(tree
, &pages
[first_index
],
3023 index
- first_index
, start
,
3024 end
, get_extent
, em_cached
, bio
,
3025 mirror_num
, bio_flags
, rw
);
3028 static int __extent_read_full_page(struct extent_io_tree
*tree
,
3030 get_extent_t
*get_extent
,
3031 struct bio
**bio
, int mirror_num
,
3032 unsigned long *bio_flags
, int rw
)
3034 struct inode
*inode
= page
->mapping
->host
;
3035 struct btrfs_ordered_extent
*ordered
;
3036 u64 start
= page_offset(page
);
3037 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
3041 lock_extent(tree
, start
, end
);
3042 ordered
= btrfs_lookup_ordered_extent(inode
, start
);
3045 unlock_extent(tree
, start
, end
);
3046 btrfs_start_ordered_extent(inode
, ordered
, 1);
3047 btrfs_put_ordered_extent(ordered
);
3050 ret
= __do_readpage(tree
, page
, get_extent
, NULL
, bio
, mirror_num
,
3055 int extent_read_full_page(struct extent_io_tree
*tree
, struct page
*page
,
3056 get_extent_t
*get_extent
, int mirror_num
)
3058 struct bio
*bio
= NULL
;
3059 unsigned long bio_flags
= 0;
3062 ret
= __extent_read_full_page(tree
, page
, get_extent
, &bio
, mirror_num
,
3065 ret
= submit_one_bio(READ
, bio
, mirror_num
, bio_flags
);
3069 int extent_read_full_page_nolock(struct extent_io_tree
*tree
, struct page
*page
,
3070 get_extent_t
*get_extent
, int mirror_num
)
3072 struct bio
*bio
= NULL
;
3073 unsigned long bio_flags
= EXTENT_BIO_PARENT_LOCKED
;
3076 ret
= __do_readpage(tree
, page
, get_extent
, NULL
, &bio
, mirror_num
,
3079 ret
= submit_one_bio(READ
, bio
, mirror_num
, bio_flags
);
3083 static noinline
void update_nr_written(struct page
*page
,
3084 struct writeback_control
*wbc
,
3085 unsigned long nr_written
)
3087 wbc
->nr_to_write
-= nr_written
;
3088 if (wbc
->range_cyclic
|| (wbc
->nr_to_write
> 0 &&
3089 wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
))
3090 page
->mapping
->writeback_index
= page
->index
+ nr_written
;
3094 * the writepage semantics are similar to regular writepage. extent
3095 * records are inserted to lock ranges in the tree, and as dirty areas
3096 * are found, they are marked writeback. Then the lock bits are removed
3097 * and the end_io handler clears the writeback ranges
3099 static int __extent_writepage(struct page
*page
, struct writeback_control
*wbc
,
3102 struct inode
*inode
= page
->mapping
->host
;
3103 struct extent_page_data
*epd
= data
;
3104 struct extent_io_tree
*tree
= epd
->tree
;
3105 u64 start
= page_offset(page
);
3107 u64 page_end
= start
+ PAGE_CACHE_SIZE
- 1;
3111 u64 last_byte
= i_size_read(inode
);
3115 struct extent_state
*cached_state
= NULL
;
3116 struct extent_map
*em
;
3117 struct block_device
*bdev
;
3120 size_t pg_offset
= 0;
3122 loff_t i_size
= i_size_read(inode
);
3123 unsigned long end_index
= i_size
>> PAGE_CACHE_SHIFT
;
3129 unsigned long nr_written
= 0;
3130 bool fill_delalloc
= true;
3132 if (wbc
->sync_mode
== WB_SYNC_ALL
)
3133 write_flags
= WRITE_SYNC
;
3135 write_flags
= WRITE
;
3137 trace___extent_writepage(page
, inode
, wbc
);
3139 WARN_ON(!PageLocked(page
));
3141 ClearPageError(page
);
3143 pg_offset
= i_size
& (PAGE_CACHE_SIZE
- 1);
3144 if (page
->index
> end_index
||
3145 (page
->index
== end_index
&& !pg_offset
)) {
3146 page
->mapping
->a_ops
->invalidatepage(page
, 0, PAGE_CACHE_SIZE
);
3151 if (page
->index
== end_index
) {
3154 userpage
= kmap_atomic(page
);
3155 memset(userpage
+ pg_offset
, 0,
3156 PAGE_CACHE_SIZE
- pg_offset
);
3157 kunmap_atomic(userpage
);
3158 flush_dcache_page(page
);
3162 set_page_extent_mapped(page
);
3164 if (!tree
->ops
|| !tree
->ops
->fill_delalloc
)
3165 fill_delalloc
= false;
3167 delalloc_start
= start
;
3170 if (!epd
->extent_locked
&& fill_delalloc
) {
3171 u64 delalloc_to_write
= 0;
3173 * make sure the wbc mapping index is at least updated
3176 update_nr_written(page
, wbc
, 0);
3178 while (delalloc_end
< page_end
) {
3179 nr_delalloc
= find_lock_delalloc_range(inode
, tree
,
3184 if (nr_delalloc
== 0) {
3185 delalloc_start
= delalloc_end
+ 1;
3188 ret
= tree
->ops
->fill_delalloc(inode
, page
,
3193 /* File system has been set read-only */
3199 * delalloc_end is already one less than the total
3200 * length, so we don't subtract one from
3203 delalloc_to_write
+= (delalloc_end
- delalloc_start
+
3206 delalloc_start
= delalloc_end
+ 1;
3208 if (wbc
->nr_to_write
< delalloc_to_write
) {
3211 if (delalloc_to_write
< thresh
* 2)
3212 thresh
= delalloc_to_write
;
3213 wbc
->nr_to_write
= min_t(u64
, delalloc_to_write
,
3217 /* did the fill delalloc function already unlock and start
3223 * we've unlocked the page, so we can't update
3224 * the mapping's writeback index, just update
3227 wbc
->nr_to_write
-= nr_written
;
3231 if (tree
->ops
&& tree
->ops
->writepage_start_hook
) {
3232 ret
= tree
->ops
->writepage_start_hook(page
, start
,
3235 /* Fixup worker will requeue */
3237 wbc
->pages_skipped
++;
3239 redirty_page_for_writepage(wbc
, page
);
3240 update_nr_written(page
, wbc
, nr_written
);
3248 * we don't want to touch the inode after unlocking the page,
3249 * so we update the mapping writeback index now
3251 update_nr_written(page
, wbc
, nr_written
+ 1);
3254 if (last_byte
<= start
) {
3255 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
3256 tree
->ops
->writepage_end_io_hook(page
, start
,
3261 blocksize
= inode
->i_sb
->s_blocksize
;
3263 while (cur
<= end
) {
3264 if (cur
>= last_byte
) {
3265 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
3266 tree
->ops
->writepage_end_io_hook(page
, cur
,
3270 em
= epd
->get_extent(inode
, page
, pg_offset
, cur
,
3272 if (IS_ERR_OR_NULL(em
)) {
3277 extent_offset
= cur
- em
->start
;
3278 BUG_ON(extent_map_end(em
) <= cur
);
3280 iosize
= min(extent_map_end(em
) - cur
, end
- cur
+ 1);
3281 iosize
= ALIGN(iosize
, blocksize
);
3282 sector
= (em
->block_start
+ extent_offset
) >> 9;
3284 block_start
= em
->block_start
;
3285 compressed
= test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
3286 free_extent_map(em
);
3290 * compressed and inline extents are written through other
3293 if (compressed
|| block_start
== EXTENT_MAP_HOLE
||
3294 block_start
== EXTENT_MAP_INLINE
) {
3296 * end_io notification does not happen here for
3297 * compressed extents
3299 if (!compressed
&& tree
->ops
&&
3300 tree
->ops
->writepage_end_io_hook
)
3301 tree
->ops
->writepage_end_io_hook(page
, cur
,
3304 else if (compressed
) {
3305 /* we don't want to end_page_writeback on
3306 * a compressed extent. this happens
3313 pg_offset
+= iosize
;
3316 /* leave this out until we have a page_mkwrite call */
3317 if (0 && !test_range_bit(tree
, cur
, cur
+ iosize
- 1,
3318 EXTENT_DIRTY
, 0, NULL
)) {
3320 pg_offset
+= iosize
;
3324 if (tree
->ops
&& tree
->ops
->writepage_io_hook
) {
3325 ret
= tree
->ops
->writepage_io_hook(page
, cur
,
3333 unsigned long max_nr
= end_index
+ 1;
3335 set_range_writeback(tree
, cur
, cur
+ iosize
- 1);
3336 if (!PageWriteback(page
)) {
3337 btrfs_err(BTRFS_I(inode
)->root
->fs_info
,
3338 "page %lu not writeback, cur %llu end %llu",
3339 page
->index
, cur
, end
);
3342 ret
= submit_extent_page(write_flags
, tree
, page
,
3343 sector
, iosize
, pg_offset
,
3344 bdev
, &epd
->bio
, max_nr
,
3345 end_bio_extent_writepage
,
3351 pg_offset
+= iosize
;
3356 /* make sure the mapping tag for page dirty gets cleared */
3357 set_page_writeback(page
);
3358 end_page_writeback(page
);
3364 /* drop our reference on any cached states */
3365 free_extent_state(cached_state
);
3369 static int eb_wait(void *word
)
3375 void wait_on_extent_buffer_writeback(struct extent_buffer
*eb
)
3377 wait_on_bit(&eb
->bflags
, EXTENT_BUFFER_WRITEBACK
, eb_wait
,
3378 TASK_UNINTERRUPTIBLE
);
3381 static int lock_extent_buffer_for_io(struct extent_buffer
*eb
,
3382 struct btrfs_fs_info
*fs_info
,
3383 struct extent_page_data
*epd
)
3385 unsigned long i
, num_pages
;
3389 if (!btrfs_try_tree_write_lock(eb
)) {
3391 flush_write_bio(epd
);
3392 btrfs_tree_lock(eb
);
3395 if (test_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
)) {
3396 btrfs_tree_unlock(eb
);
3400 flush_write_bio(epd
);
3404 wait_on_extent_buffer_writeback(eb
);
3405 btrfs_tree_lock(eb
);
3406 if (!test_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
))
3408 btrfs_tree_unlock(eb
);
3413 * We need to do this to prevent races in people who check if the eb is
3414 * under IO since we can end up having no IO bits set for a short period
3417 spin_lock(&eb
->refs_lock
);
3418 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
)) {
3419 set_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
);
3420 spin_unlock(&eb
->refs_lock
);
3421 btrfs_set_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
);
3422 __percpu_counter_add(&fs_info
->dirty_metadata_bytes
,
3424 fs_info
->dirty_metadata_batch
);
3427 spin_unlock(&eb
->refs_lock
);
3430 btrfs_tree_unlock(eb
);
3435 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3436 for (i
= 0; i
< num_pages
; i
++) {
3437 struct page
*p
= extent_buffer_page(eb
, i
);
3439 if (!trylock_page(p
)) {
3441 flush_write_bio(epd
);
3451 static void end_extent_buffer_writeback(struct extent_buffer
*eb
)
3453 clear_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
);
3454 smp_mb__after_clear_bit();
3455 wake_up_bit(&eb
->bflags
, EXTENT_BUFFER_WRITEBACK
);
3458 static void end_bio_extent_buffer_writepage(struct bio
*bio
, int err
)
3460 struct bio_vec
*bvec
;
3461 struct extent_buffer
*eb
;
3464 bio_for_each_segment_all(bvec
, bio
, i
) {
3465 struct page
*page
= bvec
->bv_page
;
3467 eb
= (struct extent_buffer
*)page
->private;
3469 done
= atomic_dec_and_test(&eb
->io_pages
);
3471 if (err
|| test_bit(EXTENT_BUFFER_IOERR
, &eb
->bflags
)) {
3472 set_bit(EXTENT_BUFFER_IOERR
, &eb
->bflags
);
3473 ClearPageUptodate(page
);
3477 end_page_writeback(page
);
3482 end_extent_buffer_writeback(eb
);
3488 static int write_one_eb(struct extent_buffer
*eb
,
3489 struct btrfs_fs_info
*fs_info
,
3490 struct writeback_control
*wbc
,
3491 struct extent_page_data
*epd
)
3493 struct block_device
*bdev
= fs_info
->fs_devices
->latest_bdev
;
3494 struct extent_io_tree
*tree
= &BTRFS_I(fs_info
->btree_inode
)->io_tree
;
3495 u64 offset
= eb
->start
;
3496 unsigned long i
, num_pages
;
3497 unsigned long bio_flags
= 0;
3498 int rw
= (epd
->sync_io
? WRITE_SYNC
: WRITE
) | REQ_META
;
3501 clear_bit(EXTENT_BUFFER_IOERR
, &eb
->bflags
);
3502 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3503 atomic_set(&eb
->io_pages
, num_pages
);
3504 if (btrfs_header_owner(eb
) == BTRFS_TREE_LOG_OBJECTID
)
3505 bio_flags
= EXTENT_BIO_TREE_LOG
;
3507 for (i
= 0; i
< num_pages
; i
++) {
3508 struct page
*p
= extent_buffer_page(eb
, i
);
3510 clear_page_dirty_for_io(p
);
3511 set_page_writeback(p
);
3512 ret
= submit_extent_page(rw
, tree
, p
, offset
>> 9,
3513 PAGE_CACHE_SIZE
, 0, bdev
, &epd
->bio
,
3514 -1, end_bio_extent_buffer_writepage
,
3515 0, epd
->bio_flags
, bio_flags
);
3516 epd
->bio_flags
= bio_flags
;
3518 set_bit(EXTENT_BUFFER_IOERR
, &eb
->bflags
);
3520 if (atomic_sub_and_test(num_pages
- i
, &eb
->io_pages
))
3521 end_extent_buffer_writeback(eb
);
3525 offset
+= PAGE_CACHE_SIZE
;
3526 update_nr_written(p
, wbc
, 1);
3530 if (unlikely(ret
)) {
3531 for (; i
< num_pages
; i
++) {
3532 struct page
*p
= extent_buffer_page(eb
, i
);
3540 int btree_write_cache_pages(struct address_space
*mapping
,
3541 struct writeback_control
*wbc
)
3543 struct extent_io_tree
*tree
= &BTRFS_I(mapping
->host
)->io_tree
;
3544 struct btrfs_fs_info
*fs_info
= BTRFS_I(mapping
->host
)->root
->fs_info
;
3545 struct extent_buffer
*eb
, *prev_eb
= NULL
;
3546 struct extent_page_data epd
= {
3550 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
3555 int nr_to_write_done
= 0;
3556 struct pagevec pvec
;
3559 pgoff_t end
; /* Inclusive */
3563 pagevec_init(&pvec
, 0);
3564 if (wbc
->range_cyclic
) {
3565 index
= mapping
->writeback_index
; /* Start from prev offset */
3568 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
3569 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
3572 if (wbc
->sync_mode
== WB_SYNC_ALL
)
3573 tag
= PAGECACHE_TAG_TOWRITE
;
3575 tag
= PAGECACHE_TAG_DIRTY
;
3577 if (wbc
->sync_mode
== WB_SYNC_ALL
)
3578 tag_pages_for_writeback(mapping
, index
, end
);
3579 while (!done
&& !nr_to_write_done
&& (index
<= end
) &&
3580 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
3581 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1))) {
3585 for (i
= 0; i
< nr_pages
; i
++) {
3586 struct page
*page
= pvec
.pages
[i
];
3588 if (!PagePrivate(page
))
3591 if (!wbc
->range_cyclic
&& page
->index
> end
) {
3596 spin_lock(&mapping
->private_lock
);
3597 if (!PagePrivate(page
)) {
3598 spin_unlock(&mapping
->private_lock
);
3602 eb
= (struct extent_buffer
*)page
->private;
3605 * Shouldn't happen and normally this would be a BUG_ON
3606 * but no sense in crashing the users box for something
3607 * we can survive anyway.
3610 spin_unlock(&mapping
->private_lock
);
3614 if (eb
== prev_eb
) {
3615 spin_unlock(&mapping
->private_lock
);
3619 ret
= atomic_inc_not_zero(&eb
->refs
);
3620 spin_unlock(&mapping
->private_lock
);
3625 ret
= lock_extent_buffer_for_io(eb
, fs_info
, &epd
);
3627 free_extent_buffer(eb
);
3631 ret
= write_one_eb(eb
, fs_info
, wbc
, &epd
);
3634 free_extent_buffer(eb
);
3637 free_extent_buffer(eb
);
3640 * the filesystem may choose to bump up nr_to_write.
3641 * We have to make sure to honor the new nr_to_write
3644 nr_to_write_done
= wbc
->nr_to_write
<= 0;
3646 pagevec_release(&pvec
);
3649 if (!scanned
&& !done
) {
3651 * We hit the last page and there is more work to be done: wrap
3652 * back to the start of the file
3658 flush_write_bio(&epd
);
3663 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3664 * @mapping: address space structure to write
3665 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3666 * @writepage: function called for each page
3667 * @data: data passed to writepage function
3669 * If a page is already under I/O, write_cache_pages() skips it, even
3670 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3671 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3672 * and msync() need to guarantee that all the data which was dirty at the time
3673 * the call was made get new I/O started against them. If wbc->sync_mode is
3674 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3675 * existing IO to complete.
3677 static int extent_write_cache_pages(struct extent_io_tree
*tree
,
3678 struct address_space
*mapping
,
3679 struct writeback_control
*wbc
,
3680 writepage_t writepage
, void *data
,
3681 void (*flush_fn
)(void *))
3683 struct inode
*inode
= mapping
->host
;
3686 int nr_to_write_done
= 0;
3687 struct pagevec pvec
;
3690 pgoff_t end
; /* Inclusive */
3695 * We have to hold onto the inode so that ordered extents can do their
3696 * work when the IO finishes. The alternative to this is failing to add
3697 * an ordered extent if the igrab() fails there and that is a huge pain
3698 * to deal with, so instead just hold onto the inode throughout the
3699 * writepages operation. If it fails here we are freeing up the inode
3700 * anyway and we'd rather not waste our time writing out stuff that is
3701 * going to be truncated anyway.
3706 pagevec_init(&pvec
, 0);
3707 if (wbc
->range_cyclic
) {
3708 index
= mapping
->writeback_index
; /* Start from prev offset */
3711 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
3712 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
3715 if (wbc
->sync_mode
== WB_SYNC_ALL
)
3716 tag
= PAGECACHE_TAG_TOWRITE
;
3718 tag
= PAGECACHE_TAG_DIRTY
;
3720 if (wbc
->sync_mode
== WB_SYNC_ALL
)
3721 tag_pages_for_writeback(mapping
, index
, end
);
3722 while (!done
&& !nr_to_write_done
&& (index
<= end
) &&
3723 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
3724 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1))) {
3728 for (i
= 0; i
< nr_pages
; i
++) {
3729 struct page
*page
= pvec
.pages
[i
];
3732 * At this point we hold neither mapping->tree_lock nor
3733 * lock on the page itself: the page may be truncated or
3734 * invalidated (changing page->mapping to NULL), or even
3735 * swizzled back from swapper_space to tmpfs file
3738 if (!trylock_page(page
)) {
3743 if (unlikely(page
->mapping
!= mapping
)) {
3748 if (!wbc
->range_cyclic
&& page
->index
> end
) {
3754 if (wbc
->sync_mode
!= WB_SYNC_NONE
) {
3755 if (PageWriteback(page
))
3757 wait_on_page_writeback(page
);
3760 if (PageWriteback(page
) ||
3761 !clear_page_dirty_for_io(page
)) {
3766 ret
= (*writepage
)(page
, wbc
, data
);
3768 if (unlikely(ret
== AOP_WRITEPAGE_ACTIVATE
)) {
3776 * the filesystem may choose to bump up nr_to_write.
3777 * We have to make sure to honor the new nr_to_write
3780 nr_to_write_done
= wbc
->nr_to_write
<= 0;
3782 pagevec_release(&pvec
);
3785 if (!scanned
&& !done
) {
3787 * We hit the last page and there is more work to be done: wrap
3788 * back to the start of the file
3794 btrfs_add_delayed_iput(inode
);
3798 static void flush_epd_write_bio(struct extent_page_data
*epd
)
3807 ret
= submit_one_bio(rw
, epd
->bio
, 0, epd
->bio_flags
);
3808 BUG_ON(ret
< 0); /* -ENOMEM */
3813 static noinline
void flush_write_bio(void *data
)
3815 struct extent_page_data
*epd
= data
;
3816 flush_epd_write_bio(epd
);
3819 int extent_write_full_page(struct extent_io_tree
*tree
, struct page
*page
,
3820 get_extent_t
*get_extent
,
3821 struct writeback_control
*wbc
)
3824 struct extent_page_data epd
= {
3827 .get_extent
= get_extent
,
3829 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
3833 ret
= __extent_writepage(page
, wbc
, &epd
);
3835 flush_epd_write_bio(&epd
);
3839 int extent_write_locked_range(struct extent_io_tree
*tree
, struct inode
*inode
,
3840 u64 start
, u64 end
, get_extent_t
*get_extent
,
3844 struct address_space
*mapping
= inode
->i_mapping
;
3846 unsigned long nr_pages
= (end
- start
+ PAGE_CACHE_SIZE
) >>
3849 struct extent_page_data epd
= {
3852 .get_extent
= get_extent
,
3854 .sync_io
= mode
== WB_SYNC_ALL
,
3857 struct writeback_control wbc_writepages
= {
3859 .nr_to_write
= nr_pages
* 2,
3860 .range_start
= start
,
3861 .range_end
= end
+ 1,
3864 while (start
<= end
) {
3865 page
= find_get_page(mapping
, start
>> PAGE_CACHE_SHIFT
);
3866 if (clear_page_dirty_for_io(page
))
3867 ret
= __extent_writepage(page
, &wbc_writepages
, &epd
);
3869 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
3870 tree
->ops
->writepage_end_io_hook(page
, start
,
3871 start
+ PAGE_CACHE_SIZE
- 1,
3875 page_cache_release(page
);
3876 start
+= PAGE_CACHE_SIZE
;
3879 flush_epd_write_bio(&epd
);
3883 int extent_writepages(struct extent_io_tree
*tree
,
3884 struct address_space
*mapping
,
3885 get_extent_t
*get_extent
,
3886 struct writeback_control
*wbc
)
3889 struct extent_page_data epd
= {
3892 .get_extent
= get_extent
,
3894 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
3898 ret
= extent_write_cache_pages(tree
, mapping
, wbc
,
3899 __extent_writepage
, &epd
,
3901 flush_epd_write_bio(&epd
);
3905 int extent_readpages(struct extent_io_tree
*tree
,
3906 struct address_space
*mapping
,
3907 struct list_head
*pages
, unsigned nr_pages
,
3908 get_extent_t get_extent
)
3910 struct bio
*bio
= NULL
;
3912 unsigned long bio_flags
= 0;
3913 struct page
*pagepool
[16];
3915 struct extent_map
*em_cached
= NULL
;
3918 for (page_idx
= 0; page_idx
< nr_pages
; page_idx
++) {
3919 page
= list_entry(pages
->prev
, struct page
, lru
);
3921 prefetchw(&page
->flags
);
3922 list_del(&page
->lru
);
3923 if (add_to_page_cache_lru(page
, mapping
,
3924 page
->index
, GFP_NOFS
)) {
3925 page_cache_release(page
);
3929 pagepool
[nr
++] = page
;
3930 if (nr
< ARRAY_SIZE(pagepool
))
3932 __extent_readpages(tree
, pagepool
, nr
, get_extent
, &em_cached
,
3933 &bio
, 0, &bio_flags
, READ
);
3937 __extent_readpages(tree
, pagepool
, nr
, get_extent
, &em_cached
,
3938 &bio
, 0, &bio_flags
, READ
);
3941 free_extent_map(em_cached
);
3943 BUG_ON(!list_empty(pages
));
3945 return submit_one_bio(READ
, bio
, 0, bio_flags
);
3950 * basic invalidatepage code, this waits on any locked or writeback
3951 * ranges corresponding to the page, and then deletes any extent state
3952 * records from the tree
3954 int extent_invalidatepage(struct extent_io_tree
*tree
,
3955 struct page
*page
, unsigned long offset
)
3957 struct extent_state
*cached_state
= NULL
;
3958 u64 start
= page_offset(page
);
3959 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
3960 size_t blocksize
= page
->mapping
->host
->i_sb
->s_blocksize
;
3962 start
+= ALIGN(offset
, blocksize
);
3966 lock_extent_bits(tree
, start
, end
, 0, &cached_state
);
3967 wait_on_page_writeback(page
);
3968 clear_extent_bit(tree
, start
, end
,
3969 EXTENT_LOCKED
| EXTENT_DIRTY
| EXTENT_DELALLOC
|
3970 EXTENT_DO_ACCOUNTING
,
3971 1, 1, &cached_state
, GFP_NOFS
);
3976 * a helper for releasepage, this tests for areas of the page that
3977 * are locked or under IO and drops the related state bits if it is safe
3980 static int try_release_extent_state(struct extent_map_tree
*map
,
3981 struct extent_io_tree
*tree
,
3982 struct page
*page
, gfp_t mask
)
3984 u64 start
= page_offset(page
);
3985 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
3988 if (test_range_bit(tree
, start
, end
,
3989 EXTENT_IOBITS
, 0, NULL
))
3992 if ((mask
& GFP_NOFS
) == GFP_NOFS
)
3995 * at this point we can safely clear everything except the
3996 * locked bit and the nodatasum bit
3998 ret
= clear_extent_bit(tree
, start
, end
,
3999 ~(EXTENT_LOCKED
| EXTENT_NODATASUM
),
4002 /* if clear_extent_bit failed for enomem reasons,
4003 * we can't allow the release to continue.
4014 * a helper for releasepage. As long as there are no locked extents
4015 * in the range corresponding to the page, both state records and extent
4016 * map records are removed
4018 int try_release_extent_mapping(struct extent_map_tree
*map
,
4019 struct extent_io_tree
*tree
, struct page
*page
,
4022 struct extent_map
*em
;
4023 u64 start
= page_offset(page
);
4024 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
4026 if ((mask
& __GFP_WAIT
) &&
4027 page
->mapping
->host
->i_size
> 16 * 1024 * 1024) {
4029 while (start
<= end
) {
4030 len
= end
- start
+ 1;
4031 write_lock(&map
->lock
);
4032 em
= lookup_extent_mapping(map
, start
, len
);
4034 write_unlock(&map
->lock
);
4037 if (test_bit(EXTENT_FLAG_PINNED
, &em
->flags
) ||
4038 em
->start
!= start
) {
4039 write_unlock(&map
->lock
);
4040 free_extent_map(em
);
4043 if (!test_range_bit(tree
, em
->start
,
4044 extent_map_end(em
) - 1,
4045 EXTENT_LOCKED
| EXTENT_WRITEBACK
,
4047 remove_extent_mapping(map
, em
);
4048 /* once for the rb tree */
4049 free_extent_map(em
);
4051 start
= extent_map_end(em
);
4052 write_unlock(&map
->lock
);
4055 free_extent_map(em
);
4058 return try_release_extent_state(map
, tree
, page
, mask
);
4062 * helper function for fiemap, which doesn't want to see any holes.
4063 * This maps until we find something past 'last'
4065 static struct extent_map
*get_extent_skip_holes(struct inode
*inode
,
4068 get_extent_t
*get_extent
)
4070 u64 sectorsize
= BTRFS_I(inode
)->root
->sectorsize
;
4071 struct extent_map
*em
;
4078 len
= last
- offset
;
4081 len
= ALIGN(len
, sectorsize
);
4082 em
= get_extent(inode
, NULL
, 0, offset
, len
, 0);
4083 if (IS_ERR_OR_NULL(em
))
4086 /* if this isn't a hole return it */
4087 if (!test_bit(EXTENT_FLAG_VACANCY
, &em
->flags
) &&
4088 em
->block_start
!= EXTENT_MAP_HOLE
) {
4092 /* this is a hole, advance to the next extent */
4093 offset
= extent_map_end(em
);
4094 free_extent_map(em
);
4101 static noinline
int count_ext_ref(u64 inum
, u64 offset
, u64 root_id
, void *ctx
)
4103 unsigned long cnt
= *((unsigned long *)ctx
);
4106 *((unsigned long *)ctx
) = cnt
;
4108 /* Now we're sure that the extent is shared. */
4114 int extent_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
4115 __u64 start
, __u64 len
, get_extent_t
*get_extent
)
4119 u64 max
= start
+ len
;
4123 u64 last_for_get_extent
= 0;
4125 u64 isize
= i_size_read(inode
);
4126 struct btrfs_key found_key
;
4127 struct extent_map
*em
= NULL
;
4128 struct extent_state
*cached_state
= NULL
;
4129 struct btrfs_path
*path
;
4138 path
= btrfs_alloc_path();
4141 path
->leave_spinning
= 1;
4143 start
= ALIGN(start
, BTRFS_I(inode
)->root
->sectorsize
);
4144 len
= ALIGN(len
, BTRFS_I(inode
)->root
->sectorsize
);
4147 * lookup the last file extent. We're not using i_size here
4148 * because there might be preallocation past i_size
4150 ret
= btrfs_lookup_file_extent(NULL
, BTRFS_I(inode
)->root
,
4151 path
, btrfs_ino(inode
), -1, 0);
4153 btrfs_free_path(path
);
4158 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
, path
->slots
[0]);
4159 found_type
= btrfs_key_type(&found_key
);
4161 /* No extents, but there might be delalloc bits */
4162 if (found_key
.objectid
!= btrfs_ino(inode
) ||
4163 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
4164 /* have to trust i_size as the end */
4166 last_for_get_extent
= isize
;
4169 * remember the start of the last extent. There are a
4170 * bunch of different factors that go into the length of the
4171 * extent, so its much less complex to remember where it started
4173 last
= found_key
.offset
;
4174 last_for_get_extent
= last
+ 1;
4176 btrfs_release_path(path
);
4179 * we might have some extents allocated but more delalloc past those
4180 * extents. so, we trust isize unless the start of the last extent is
4185 last_for_get_extent
= isize
;
4188 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
- 1, 0,
4191 em
= get_extent_skip_holes(inode
, start
, last_for_get_extent
,
4201 u64 offset_in_extent
= 0;
4203 /* break if the extent we found is outside the range */
4204 if (em
->start
>= max
|| extent_map_end(em
) < off
)
4208 * get_extent may return an extent that starts before our
4209 * requested range. We have to make sure the ranges
4210 * we return to fiemap always move forward and don't
4211 * overlap, so adjust the offsets here
4213 em_start
= max(em
->start
, off
);
4216 * record the offset from the start of the extent
4217 * for adjusting the disk offset below. Only do this if the
4218 * extent isn't compressed since our in ram offset may be past
4219 * what we have actually allocated on disk.
4221 if (!test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
))
4222 offset_in_extent
= em_start
- em
->start
;
4223 em_end
= extent_map_end(em
);
4224 em_len
= em_end
- em_start
;
4229 * bump off for our next call to get_extent
4231 off
= extent_map_end(em
);
4235 if (em
->block_start
== EXTENT_MAP_LAST_BYTE
) {
4237 flags
|= FIEMAP_EXTENT_LAST
;
4238 } else if (em
->block_start
== EXTENT_MAP_INLINE
) {
4239 flags
|= (FIEMAP_EXTENT_DATA_INLINE
|
4240 FIEMAP_EXTENT_NOT_ALIGNED
);
4241 } else if (em
->block_start
== EXTENT_MAP_DELALLOC
) {
4242 flags
|= (FIEMAP_EXTENT_DELALLOC
|
4243 FIEMAP_EXTENT_UNKNOWN
);
4245 unsigned long ref_cnt
= 0;
4247 disko
= em
->block_start
+ offset_in_extent
;
4250 * As btrfs supports shared space, this information
4251 * can be exported to userspace tools via
4252 * flag FIEMAP_EXTENT_SHARED.
4254 ret
= iterate_inodes_from_logical(
4256 BTRFS_I(inode
)->root
->fs_info
,
4257 path
, count_ext_ref
, &ref_cnt
);
4258 if (ret
< 0 && ret
!= -ENOENT
)
4262 flags
|= FIEMAP_EXTENT_SHARED
;
4264 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
))
4265 flags
|= FIEMAP_EXTENT_ENCODED
;
4267 free_extent_map(em
);
4269 if ((em_start
>= last
) || em_len
== (u64
)-1 ||
4270 (last
== (u64
)-1 && isize
<= em_end
)) {
4271 flags
|= FIEMAP_EXTENT_LAST
;
4275 /* now scan forward to see if this is really the last extent. */
4276 em
= get_extent_skip_holes(inode
, off
, last_for_get_extent
,
4283 flags
|= FIEMAP_EXTENT_LAST
;
4286 ret
= fiemap_fill_next_extent(fieinfo
, em_start
, disko
,
4292 free_extent_map(em
);
4294 btrfs_free_path(path
);
4295 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
- 1,
4296 &cached_state
, GFP_NOFS
);
4300 static void __free_extent_buffer(struct extent_buffer
*eb
)
4302 btrfs_leak_debug_del(&eb
->leak_list
);
4303 kmem_cache_free(extent_buffer_cache
, eb
);
4306 static int extent_buffer_under_io(struct extent_buffer
*eb
)
4308 return (atomic_read(&eb
->io_pages
) ||
4309 test_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
) ||
4310 test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
4314 * Helper for releasing extent buffer page.
4316 static void btrfs_release_extent_buffer_page(struct extent_buffer
*eb
,
4317 unsigned long start_idx
)
4319 unsigned long index
;
4320 unsigned long num_pages
;
4322 int mapped
= !test_bit(EXTENT_BUFFER_DUMMY
, &eb
->bflags
);
4324 BUG_ON(extent_buffer_under_io(eb
));
4326 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
4327 index
= start_idx
+ num_pages
;
4328 if (start_idx
>= index
)
4333 page
= extent_buffer_page(eb
, index
);
4334 if (page
&& mapped
) {
4335 spin_lock(&page
->mapping
->private_lock
);
4337 * We do this since we'll remove the pages after we've
4338 * removed the eb from the radix tree, so we could race
4339 * and have this page now attached to the new eb. So
4340 * only clear page_private if it's still connected to
4343 if (PagePrivate(page
) &&
4344 page
->private == (unsigned long)eb
) {
4345 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
4346 BUG_ON(PageDirty(page
));
4347 BUG_ON(PageWriteback(page
));
4349 * We need to make sure we haven't be attached
4352 ClearPagePrivate(page
);
4353 set_page_private(page
, 0);
4354 /* One for the page private */
4355 page_cache_release(page
);
4357 spin_unlock(&page
->mapping
->private_lock
);
4361 /* One for when we alloced the page */
4362 page_cache_release(page
);
4364 } while (index
!= start_idx
);
4368 * Helper for releasing the extent buffer.
4370 static inline void btrfs_release_extent_buffer(struct extent_buffer
*eb
)
4372 btrfs_release_extent_buffer_page(eb
, 0);
4373 __free_extent_buffer(eb
);
4376 static struct extent_buffer
*
4377 __alloc_extent_buffer(struct btrfs_fs_info
*fs_info
, u64 start
,
4378 unsigned long len
, gfp_t mask
)
4380 struct extent_buffer
*eb
= NULL
;
4382 eb
= kmem_cache_zalloc(extent_buffer_cache
, mask
);
4387 eb
->fs_info
= fs_info
;
4389 rwlock_init(&eb
->lock
);
4390 atomic_set(&eb
->write_locks
, 0);
4391 atomic_set(&eb
->read_locks
, 0);
4392 atomic_set(&eb
->blocking_readers
, 0);
4393 atomic_set(&eb
->blocking_writers
, 0);
4394 atomic_set(&eb
->spinning_readers
, 0);
4395 atomic_set(&eb
->spinning_writers
, 0);
4396 eb
->lock_nested
= 0;
4397 init_waitqueue_head(&eb
->write_lock_wq
);
4398 init_waitqueue_head(&eb
->read_lock_wq
);
4400 btrfs_leak_debug_add(&eb
->leak_list
, &buffers
);
4402 spin_lock_init(&eb
->refs_lock
);
4403 atomic_set(&eb
->refs
, 1);
4404 atomic_set(&eb
->io_pages
, 0);
4407 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4409 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4410 > MAX_INLINE_EXTENT_BUFFER_SIZE
);
4411 BUG_ON(len
> MAX_INLINE_EXTENT_BUFFER_SIZE
);
4416 struct extent_buffer
*btrfs_clone_extent_buffer(struct extent_buffer
*src
)
4420 struct extent_buffer
*new;
4421 unsigned long num_pages
= num_extent_pages(src
->start
, src
->len
);
4423 new = __alloc_extent_buffer(NULL
, src
->start
, src
->len
, GFP_NOFS
);
4427 for (i
= 0; i
< num_pages
; i
++) {
4428 p
= alloc_page(GFP_NOFS
);
4430 btrfs_release_extent_buffer(new);
4433 attach_extent_buffer_page(new, p
);
4434 WARN_ON(PageDirty(p
));
4439 copy_extent_buffer(new, src
, 0, 0, src
->len
);
4440 set_bit(EXTENT_BUFFER_UPTODATE
, &new->bflags
);
4441 set_bit(EXTENT_BUFFER_DUMMY
, &new->bflags
);
4446 struct extent_buffer
*alloc_dummy_extent_buffer(u64 start
, unsigned long len
)
4448 struct extent_buffer
*eb
;
4449 unsigned long num_pages
= num_extent_pages(0, len
);
4452 eb
= __alloc_extent_buffer(NULL
, start
, len
, GFP_NOFS
);
4456 for (i
= 0; i
< num_pages
; i
++) {
4457 eb
->pages
[i
] = alloc_page(GFP_NOFS
);
4461 set_extent_buffer_uptodate(eb
);
4462 btrfs_set_header_nritems(eb
, 0);
4463 set_bit(EXTENT_BUFFER_DUMMY
, &eb
->bflags
);
4468 __free_page(eb
->pages
[i
- 1]);
4469 __free_extent_buffer(eb
);
4473 static void check_buffer_tree_ref(struct extent_buffer
*eb
)
4476 /* the ref bit is tricky. We have to make sure it is set
4477 * if we have the buffer dirty. Otherwise the
4478 * code to free a buffer can end up dropping a dirty
4481 * Once the ref bit is set, it won't go away while the
4482 * buffer is dirty or in writeback, and it also won't
4483 * go away while we have the reference count on the
4486 * We can't just set the ref bit without bumping the
4487 * ref on the eb because free_extent_buffer might
4488 * see the ref bit and try to clear it. If this happens
4489 * free_extent_buffer might end up dropping our original
4490 * ref by mistake and freeing the page before we are able
4491 * to add one more ref.
4493 * So bump the ref count first, then set the bit. If someone
4494 * beat us to it, drop the ref we added.
4496 refs
= atomic_read(&eb
->refs
);
4497 if (refs
>= 2 && test_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
4500 spin_lock(&eb
->refs_lock
);
4501 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
4502 atomic_inc(&eb
->refs
);
4503 spin_unlock(&eb
->refs_lock
);
4506 static void mark_extent_buffer_accessed(struct extent_buffer
*eb
)
4508 unsigned long num_pages
, i
;
4510 check_buffer_tree_ref(eb
);
4512 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
4513 for (i
= 0; i
< num_pages
; i
++) {
4514 struct page
*p
= extent_buffer_page(eb
, i
);
4515 mark_page_accessed(p
);
4519 struct extent_buffer
*find_extent_buffer(struct btrfs_fs_info
*fs_info
,
4522 struct extent_buffer
*eb
;
4525 eb
= radix_tree_lookup(&fs_info
->buffer_radix
,
4526 start
>> PAGE_CACHE_SHIFT
);
4527 if (eb
&& atomic_inc_not_zero(&eb
->refs
)) {
4529 mark_extent_buffer_accessed(eb
);
4537 struct extent_buffer
*alloc_extent_buffer(struct btrfs_fs_info
*fs_info
,
4538 u64 start
, unsigned long len
)
4540 unsigned long num_pages
= num_extent_pages(start
, len
);
4542 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
4543 struct extent_buffer
*eb
;
4544 struct extent_buffer
*exists
= NULL
;
4546 struct address_space
*mapping
= fs_info
->btree_inode
->i_mapping
;
4550 eb
= find_extent_buffer(fs_info
, start
);
4554 eb
= __alloc_extent_buffer(fs_info
, start
, len
, GFP_NOFS
);
4558 for (i
= 0; i
< num_pages
; i
++, index
++) {
4559 p
= find_or_create_page(mapping
, index
, GFP_NOFS
);
4563 spin_lock(&mapping
->private_lock
);
4564 if (PagePrivate(p
)) {
4566 * We could have already allocated an eb for this page
4567 * and attached one so lets see if we can get a ref on
4568 * the existing eb, and if we can we know it's good and
4569 * we can just return that one, else we know we can just
4570 * overwrite page->private.
4572 exists
= (struct extent_buffer
*)p
->private;
4573 if (atomic_inc_not_zero(&exists
->refs
)) {
4574 spin_unlock(&mapping
->private_lock
);
4576 page_cache_release(p
);
4577 mark_extent_buffer_accessed(exists
);
4582 * Do this so attach doesn't complain and we need to
4583 * drop the ref the old guy had.
4585 ClearPagePrivate(p
);
4586 WARN_ON(PageDirty(p
));
4587 page_cache_release(p
);
4589 attach_extent_buffer_page(eb
, p
);
4590 spin_unlock(&mapping
->private_lock
);
4591 WARN_ON(PageDirty(p
));
4592 mark_page_accessed(p
);
4594 if (!PageUptodate(p
))
4598 * see below about how we avoid a nasty race with release page
4599 * and why we unlock later
4603 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
4605 ret
= radix_tree_preload(GFP_NOFS
& ~__GFP_HIGHMEM
);
4609 spin_lock(&fs_info
->buffer_lock
);
4610 ret
= radix_tree_insert(&fs_info
->buffer_radix
,
4611 start
>> PAGE_CACHE_SHIFT
, eb
);
4612 spin_unlock(&fs_info
->buffer_lock
);
4613 radix_tree_preload_end();
4614 if (ret
== -EEXIST
) {
4615 exists
= find_extent_buffer(fs_info
, start
);
4621 /* add one reference for the tree */
4622 check_buffer_tree_ref(eb
);
4623 set_bit(EXTENT_BUFFER_IN_TREE
, &eb
->bflags
);
4626 * there is a race where release page may have
4627 * tried to find this extent buffer in the radix
4628 * but failed. It will tell the VM it is safe to
4629 * reclaim the, and it will clear the page private bit.
4630 * We must make sure to set the page private bit properly
4631 * after the extent buffer is in the radix tree so
4632 * it doesn't get lost
4634 SetPageChecked(eb
->pages
[0]);
4635 for (i
= 1; i
< num_pages
; i
++) {
4636 p
= extent_buffer_page(eb
, i
);
4637 ClearPageChecked(p
);
4640 unlock_page(eb
->pages
[0]);
4644 for (i
= 0; i
< num_pages
; i
++) {
4646 unlock_page(eb
->pages
[i
]);
4649 WARN_ON(!atomic_dec_and_test(&eb
->refs
));
4650 btrfs_release_extent_buffer(eb
);
4654 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head
*head
)
4656 struct extent_buffer
*eb
=
4657 container_of(head
, struct extent_buffer
, rcu_head
);
4659 __free_extent_buffer(eb
);
4662 /* Expects to have eb->eb_lock already held */
4663 static int release_extent_buffer(struct extent_buffer
*eb
)
4665 WARN_ON(atomic_read(&eb
->refs
) == 0);
4666 if (atomic_dec_and_test(&eb
->refs
)) {
4667 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE
, &eb
->bflags
)) {
4668 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
4670 spin_unlock(&eb
->refs_lock
);
4672 spin_lock(&fs_info
->buffer_lock
);
4673 radix_tree_delete(&fs_info
->buffer_radix
,
4674 eb
->start
>> PAGE_CACHE_SHIFT
);
4675 spin_unlock(&fs_info
->buffer_lock
);
4677 spin_unlock(&eb
->refs_lock
);
4680 /* Should be safe to release our pages at this point */
4681 btrfs_release_extent_buffer_page(eb
, 0);
4682 call_rcu(&eb
->rcu_head
, btrfs_release_extent_buffer_rcu
);
4685 spin_unlock(&eb
->refs_lock
);
4690 void free_extent_buffer(struct extent_buffer
*eb
)
4698 refs
= atomic_read(&eb
->refs
);
4701 old
= atomic_cmpxchg(&eb
->refs
, refs
, refs
- 1);
4706 spin_lock(&eb
->refs_lock
);
4707 if (atomic_read(&eb
->refs
) == 2 &&
4708 test_bit(EXTENT_BUFFER_DUMMY
, &eb
->bflags
))
4709 atomic_dec(&eb
->refs
);
4711 if (atomic_read(&eb
->refs
) == 2 &&
4712 test_bit(EXTENT_BUFFER_STALE
, &eb
->bflags
) &&
4713 !extent_buffer_under_io(eb
) &&
4714 test_and_clear_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
4715 atomic_dec(&eb
->refs
);
4718 * I know this is terrible, but it's temporary until we stop tracking
4719 * the uptodate bits and such for the extent buffers.
4721 release_extent_buffer(eb
);
4724 void free_extent_buffer_stale(struct extent_buffer
*eb
)
4729 spin_lock(&eb
->refs_lock
);
4730 set_bit(EXTENT_BUFFER_STALE
, &eb
->bflags
);
4732 if (atomic_read(&eb
->refs
) == 2 && !extent_buffer_under_io(eb
) &&
4733 test_and_clear_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
4734 atomic_dec(&eb
->refs
);
4735 release_extent_buffer(eb
);
4738 void clear_extent_buffer_dirty(struct extent_buffer
*eb
)
4741 unsigned long num_pages
;
4744 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
4746 for (i
= 0; i
< num_pages
; i
++) {
4747 page
= extent_buffer_page(eb
, i
);
4748 if (!PageDirty(page
))
4752 WARN_ON(!PagePrivate(page
));
4754 clear_page_dirty_for_io(page
);
4755 spin_lock_irq(&page
->mapping
->tree_lock
);
4756 if (!PageDirty(page
)) {
4757 radix_tree_tag_clear(&page
->mapping
->page_tree
,
4759 PAGECACHE_TAG_DIRTY
);
4761 spin_unlock_irq(&page
->mapping
->tree_lock
);
4762 ClearPageError(page
);
4765 WARN_ON(atomic_read(&eb
->refs
) == 0);
4768 int set_extent_buffer_dirty(struct extent_buffer
*eb
)
4771 unsigned long num_pages
;
4774 check_buffer_tree_ref(eb
);
4776 was_dirty
= test_and_set_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
);
4778 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
4779 WARN_ON(atomic_read(&eb
->refs
) == 0);
4780 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
));
4782 for (i
= 0; i
< num_pages
; i
++)
4783 set_page_dirty(extent_buffer_page(eb
, i
));
4787 int clear_extent_buffer_uptodate(struct extent_buffer
*eb
)
4791 unsigned long num_pages
;
4793 clear_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
4794 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
4795 for (i
= 0; i
< num_pages
; i
++) {
4796 page
= extent_buffer_page(eb
, i
);
4798 ClearPageUptodate(page
);
4803 int set_extent_buffer_uptodate(struct extent_buffer
*eb
)
4807 unsigned long num_pages
;
4809 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
4810 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
4811 for (i
= 0; i
< num_pages
; i
++) {
4812 page
= extent_buffer_page(eb
, i
);
4813 SetPageUptodate(page
);
4818 int extent_buffer_uptodate(struct extent_buffer
*eb
)
4820 return test_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
4823 int read_extent_buffer_pages(struct extent_io_tree
*tree
,
4824 struct extent_buffer
*eb
, u64 start
, int wait
,
4825 get_extent_t
*get_extent
, int mirror_num
)
4828 unsigned long start_i
;
4832 int locked_pages
= 0;
4833 int all_uptodate
= 1;
4834 unsigned long num_pages
;
4835 unsigned long num_reads
= 0;
4836 struct bio
*bio
= NULL
;
4837 unsigned long bio_flags
= 0;
4839 if (test_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
))
4843 WARN_ON(start
< eb
->start
);
4844 start_i
= (start
>> PAGE_CACHE_SHIFT
) -
4845 (eb
->start
>> PAGE_CACHE_SHIFT
);
4850 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
4851 for (i
= start_i
; i
< num_pages
; i
++) {
4852 page
= extent_buffer_page(eb
, i
);
4853 if (wait
== WAIT_NONE
) {
4854 if (!trylock_page(page
))
4860 if (!PageUptodate(page
)) {
4867 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
4871 clear_bit(EXTENT_BUFFER_IOERR
, &eb
->bflags
);
4872 eb
->read_mirror
= 0;
4873 atomic_set(&eb
->io_pages
, num_reads
);
4874 for (i
= start_i
; i
< num_pages
; i
++) {
4875 page
= extent_buffer_page(eb
, i
);
4876 if (!PageUptodate(page
)) {
4877 ClearPageError(page
);
4878 err
= __extent_read_full_page(tree
, page
,
4880 mirror_num
, &bio_flags
,
4890 err
= submit_one_bio(READ
| REQ_META
, bio
, mirror_num
,
4896 if (ret
|| wait
!= WAIT_COMPLETE
)
4899 for (i
= start_i
; i
< num_pages
; i
++) {
4900 page
= extent_buffer_page(eb
, i
);
4901 wait_on_page_locked(page
);
4902 if (!PageUptodate(page
))
4910 while (locked_pages
> 0) {
4911 page
= extent_buffer_page(eb
, i
);
4919 void read_extent_buffer(struct extent_buffer
*eb
, void *dstv
,
4920 unsigned long start
,
4927 char *dst
= (char *)dstv
;
4928 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
4929 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
4931 WARN_ON(start
> eb
->len
);
4932 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
4934 offset
= (start_offset
+ start
) & (PAGE_CACHE_SIZE
- 1);
4937 page
= extent_buffer_page(eb
, i
);
4939 cur
= min(len
, (PAGE_CACHE_SIZE
- offset
));
4940 kaddr
= page_address(page
);
4941 memcpy(dst
, kaddr
+ offset
, cur
);
4950 int map_private_extent_buffer(struct extent_buffer
*eb
, unsigned long start
,
4951 unsigned long min_len
, char **map
,
4952 unsigned long *map_start
,
4953 unsigned long *map_len
)
4955 size_t offset
= start
& (PAGE_CACHE_SIZE
- 1);
4958 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
4959 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
4960 unsigned long end_i
= (start_offset
+ start
+ min_len
- 1) >>
4967 offset
= start_offset
;
4971 *map_start
= ((u64
)i
<< PAGE_CACHE_SHIFT
) - start_offset
;
4974 if (start
+ min_len
> eb
->len
) {
4975 WARN(1, KERN_ERR
"btrfs bad mapping eb start %llu len %lu, "
4977 eb
->start
, eb
->len
, start
, min_len
);
4981 p
= extent_buffer_page(eb
, i
);
4982 kaddr
= page_address(p
);
4983 *map
= kaddr
+ offset
;
4984 *map_len
= PAGE_CACHE_SIZE
- offset
;
4988 int memcmp_extent_buffer(struct extent_buffer
*eb
, const void *ptrv
,
4989 unsigned long start
,
4996 char *ptr
= (char *)ptrv
;
4997 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
4998 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
5001 WARN_ON(start
> eb
->len
);
5002 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5004 offset
= (start_offset
+ start
) & (PAGE_CACHE_SIZE
- 1);
5007 page
= extent_buffer_page(eb
, i
);
5009 cur
= min(len
, (PAGE_CACHE_SIZE
- offset
));
5011 kaddr
= page_address(page
);
5012 ret
= memcmp(ptr
, kaddr
+ offset
, cur
);
5024 void write_extent_buffer(struct extent_buffer
*eb
, const void *srcv
,
5025 unsigned long start
, unsigned long len
)
5031 char *src
= (char *)srcv
;
5032 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
5033 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
5035 WARN_ON(start
> eb
->len
);
5036 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5038 offset
= (start_offset
+ start
) & (PAGE_CACHE_SIZE
- 1);
5041 page
= extent_buffer_page(eb
, i
);
5042 WARN_ON(!PageUptodate(page
));
5044 cur
= min(len
, PAGE_CACHE_SIZE
- offset
);
5045 kaddr
= page_address(page
);
5046 memcpy(kaddr
+ offset
, src
, cur
);
5055 void memset_extent_buffer(struct extent_buffer
*eb
, char c
,
5056 unsigned long start
, unsigned long len
)
5062 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
5063 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
5065 WARN_ON(start
> eb
->len
);
5066 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5068 offset
= (start_offset
+ start
) & (PAGE_CACHE_SIZE
- 1);
5071 page
= extent_buffer_page(eb
, i
);
5072 WARN_ON(!PageUptodate(page
));
5074 cur
= min(len
, PAGE_CACHE_SIZE
- offset
);
5075 kaddr
= page_address(page
);
5076 memset(kaddr
+ offset
, c
, cur
);
5084 void copy_extent_buffer(struct extent_buffer
*dst
, struct extent_buffer
*src
,
5085 unsigned long dst_offset
, unsigned long src_offset
,
5088 u64 dst_len
= dst
->len
;
5093 size_t start_offset
= dst
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
5094 unsigned long i
= (start_offset
+ dst_offset
) >> PAGE_CACHE_SHIFT
;
5096 WARN_ON(src
->len
!= dst_len
);
5098 offset
= (start_offset
+ dst_offset
) &
5099 (PAGE_CACHE_SIZE
- 1);
5102 page
= extent_buffer_page(dst
, i
);
5103 WARN_ON(!PageUptodate(page
));
5105 cur
= min(len
, (unsigned long)(PAGE_CACHE_SIZE
- offset
));
5107 kaddr
= page_address(page
);
5108 read_extent_buffer(src
, kaddr
+ offset
, src_offset
, cur
);
5117 static inline bool areas_overlap(unsigned long src
, unsigned long dst
, unsigned long len
)
5119 unsigned long distance
= (src
> dst
) ? src
- dst
: dst
- src
;
5120 return distance
< len
;
5123 static void copy_pages(struct page
*dst_page
, struct page
*src_page
,
5124 unsigned long dst_off
, unsigned long src_off
,
5127 char *dst_kaddr
= page_address(dst_page
);
5129 int must_memmove
= 0;
5131 if (dst_page
!= src_page
) {
5132 src_kaddr
= page_address(src_page
);
5134 src_kaddr
= dst_kaddr
;
5135 if (areas_overlap(src_off
, dst_off
, len
))
5140 memmove(dst_kaddr
+ dst_off
, src_kaddr
+ src_off
, len
);
5142 memcpy(dst_kaddr
+ dst_off
, src_kaddr
+ src_off
, len
);
5145 void memcpy_extent_buffer(struct extent_buffer
*dst
, unsigned long dst_offset
,
5146 unsigned long src_offset
, unsigned long len
)
5149 size_t dst_off_in_page
;
5150 size_t src_off_in_page
;
5151 size_t start_offset
= dst
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
5152 unsigned long dst_i
;
5153 unsigned long src_i
;
5155 if (src_offset
+ len
> dst
->len
) {
5156 printk(KERN_ERR
"BTRFS: memmove bogus src_offset %lu move "
5157 "len %lu dst len %lu\n", src_offset
, len
, dst
->len
);
5160 if (dst_offset
+ len
> dst
->len
) {
5161 printk(KERN_ERR
"BTRFS: memmove bogus dst_offset %lu move "
5162 "len %lu dst len %lu\n", dst_offset
, len
, dst
->len
);
5167 dst_off_in_page
= (start_offset
+ dst_offset
) &
5168 (PAGE_CACHE_SIZE
- 1);
5169 src_off_in_page
= (start_offset
+ src_offset
) &
5170 (PAGE_CACHE_SIZE
- 1);
5172 dst_i
= (start_offset
+ dst_offset
) >> PAGE_CACHE_SHIFT
;
5173 src_i
= (start_offset
+ src_offset
) >> PAGE_CACHE_SHIFT
;
5175 cur
= min(len
, (unsigned long)(PAGE_CACHE_SIZE
-
5177 cur
= min_t(unsigned long, cur
,
5178 (unsigned long)(PAGE_CACHE_SIZE
- dst_off_in_page
));
5180 copy_pages(extent_buffer_page(dst
, dst_i
),
5181 extent_buffer_page(dst
, src_i
),
5182 dst_off_in_page
, src_off_in_page
, cur
);
5190 void memmove_extent_buffer(struct extent_buffer
*dst
, unsigned long dst_offset
,
5191 unsigned long src_offset
, unsigned long len
)
5194 size_t dst_off_in_page
;
5195 size_t src_off_in_page
;
5196 unsigned long dst_end
= dst_offset
+ len
- 1;
5197 unsigned long src_end
= src_offset
+ len
- 1;
5198 size_t start_offset
= dst
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
5199 unsigned long dst_i
;
5200 unsigned long src_i
;
5202 if (src_offset
+ len
> dst
->len
) {
5203 printk(KERN_ERR
"BTRFS: memmove bogus src_offset %lu move "
5204 "len %lu len %lu\n", src_offset
, len
, dst
->len
);
5207 if (dst_offset
+ len
> dst
->len
) {
5208 printk(KERN_ERR
"BTRFS: memmove bogus dst_offset %lu move "
5209 "len %lu len %lu\n", dst_offset
, len
, dst
->len
);
5212 if (dst_offset
< src_offset
) {
5213 memcpy_extent_buffer(dst
, dst_offset
, src_offset
, len
);
5217 dst_i
= (start_offset
+ dst_end
) >> PAGE_CACHE_SHIFT
;
5218 src_i
= (start_offset
+ src_end
) >> PAGE_CACHE_SHIFT
;
5220 dst_off_in_page
= (start_offset
+ dst_end
) &
5221 (PAGE_CACHE_SIZE
- 1);
5222 src_off_in_page
= (start_offset
+ src_end
) &
5223 (PAGE_CACHE_SIZE
- 1);
5225 cur
= min_t(unsigned long, len
, src_off_in_page
+ 1);
5226 cur
= min(cur
, dst_off_in_page
+ 1);
5227 copy_pages(extent_buffer_page(dst
, dst_i
),
5228 extent_buffer_page(dst
, src_i
),
5229 dst_off_in_page
- cur
+ 1,
5230 src_off_in_page
- cur
+ 1, cur
);
5238 int try_release_extent_buffer(struct page
*page
)
5240 struct extent_buffer
*eb
;
5243 * We need to make sure noboody is attaching this page to an eb right
5246 spin_lock(&page
->mapping
->private_lock
);
5247 if (!PagePrivate(page
)) {
5248 spin_unlock(&page
->mapping
->private_lock
);
5252 eb
= (struct extent_buffer
*)page
->private;
5256 * This is a little awful but should be ok, we need to make sure that
5257 * the eb doesn't disappear out from under us while we're looking at
5260 spin_lock(&eb
->refs_lock
);
5261 if (atomic_read(&eb
->refs
) != 1 || extent_buffer_under_io(eb
)) {
5262 spin_unlock(&eb
->refs_lock
);
5263 spin_unlock(&page
->mapping
->private_lock
);
5266 spin_unlock(&page
->mapping
->private_lock
);
5269 * If tree ref isn't set then we know the ref on this eb is a real ref,
5270 * so just return, this page will likely be freed soon anyway.
5272 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
)) {
5273 spin_unlock(&eb
->refs_lock
);
5277 return release_extent_buffer(eb
);