2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/aio.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
40 #include <linux/slab.h>
41 #include <linux/ratelimit.h>
42 #include <linux/mount.h>
43 #include <linux/btrfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/posix_acl_xattr.h>
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
55 #include "compression.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
63 struct btrfs_iget_args
{
64 struct btrfs_key
*location
;
65 struct btrfs_root
*root
;
68 static const struct inode_operations btrfs_dir_inode_operations
;
69 static const struct inode_operations btrfs_symlink_inode_operations
;
70 static const struct inode_operations btrfs_dir_ro_inode_operations
;
71 static const struct inode_operations btrfs_special_inode_operations
;
72 static const struct inode_operations btrfs_file_inode_operations
;
73 static const struct address_space_operations btrfs_aops
;
74 static const struct address_space_operations btrfs_symlink_aops
;
75 static const struct file_operations btrfs_dir_file_operations
;
76 static struct extent_io_ops btrfs_extent_io_ops
;
78 static struct kmem_cache
*btrfs_inode_cachep
;
79 static struct kmem_cache
*btrfs_delalloc_work_cachep
;
80 struct kmem_cache
*btrfs_trans_handle_cachep
;
81 struct kmem_cache
*btrfs_transaction_cachep
;
82 struct kmem_cache
*btrfs_path_cachep
;
83 struct kmem_cache
*btrfs_free_space_cachep
;
86 static unsigned char btrfs_type_by_mode
[S_IFMT
>> S_SHIFT
] = {
87 [S_IFREG
>> S_SHIFT
] = BTRFS_FT_REG_FILE
,
88 [S_IFDIR
>> S_SHIFT
] = BTRFS_FT_DIR
,
89 [S_IFCHR
>> S_SHIFT
] = BTRFS_FT_CHRDEV
,
90 [S_IFBLK
>> S_SHIFT
] = BTRFS_FT_BLKDEV
,
91 [S_IFIFO
>> S_SHIFT
] = BTRFS_FT_FIFO
,
92 [S_IFSOCK
>> S_SHIFT
] = BTRFS_FT_SOCK
,
93 [S_IFLNK
>> S_SHIFT
] = BTRFS_FT_SYMLINK
,
96 static int btrfs_setsize(struct inode
*inode
, struct iattr
*attr
);
97 static int btrfs_truncate(struct inode
*inode
);
98 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
);
99 static noinline
int cow_file_range(struct inode
*inode
,
100 struct page
*locked_page
,
101 u64 start
, u64 end
, int *page_started
,
102 unsigned long *nr_written
, int unlock
);
103 static struct extent_map
*create_pinned_em(struct inode
*inode
, u64 start
,
104 u64 len
, u64 orig_start
,
105 u64 block_start
, u64 block_len
,
106 u64 orig_block_len
, u64 ram_bytes
,
109 static int btrfs_dirty_inode(struct inode
*inode
);
111 static int btrfs_init_inode_security(struct btrfs_trans_handle
*trans
,
112 struct inode
*inode
, struct inode
*dir
,
113 const struct qstr
*qstr
)
117 err
= btrfs_init_acl(trans
, inode
, dir
);
119 err
= btrfs_xattr_security_init(trans
, inode
, dir
, qstr
);
124 * this does all the hard work for inserting an inline extent into
125 * the btree. The caller should have done a btrfs_drop_extents so that
126 * no overlapping inline items exist in the btree
128 static noinline
int insert_inline_extent(struct btrfs_trans_handle
*trans
,
129 struct btrfs_path
*path
, int extent_inserted
,
130 struct btrfs_root
*root
, struct inode
*inode
,
131 u64 start
, size_t size
, size_t compressed_size
,
133 struct page
**compressed_pages
)
135 struct extent_buffer
*leaf
;
136 struct page
*page
= NULL
;
139 struct btrfs_file_extent_item
*ei
;
142 size_t cur_size
= size
;
143 unsigned long offset
;
145 if (compressed_size
&& compressed_pages
)
146 cur_size
= compressed_size
;
148 inode_add_bytes(inode
, size
);
150 if (!extent_inserted
) {
151 struct btrfs_key key
;
154 key
.objectid
= btrfs_ino(inode
);
156 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
158 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
159 path
->leave_spinning
= 1;
160 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
167 leaf
= path
->nodes
[0];
168 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
169 struct btrfs_file_extent_item
);
170 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
171 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
172 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
173 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
174 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
175 ptr
= btrfs_file_extent_inline_start(ei
);
177 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
180 while (compressed_size
> 0) {
181 cpage
= compressed_pages
[i
];
182 cur_size
= min_t(unsigned long, compressed_size
,
185 kaddr
= kmap_atomic(cpage
);
186 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
187 kunmap_atomic(kaddr
);
191 compressed_size
-= cur_size
;
193 btrfs_set_file_extent_compression(leaf
, ei
,
196 page
= find_get_page(inode
->i_mapping
,
197 start
>> PAGE_CACHE_SHIFT
);
198 btrfs_set_file_extent_compression(leaf
, ei
, 0);
199 kaddr
= kmap_atomic(page
);
200 offset
= start
& (PAGE_CACHE_SIZE
- 1);
201 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
202 kunmap_atomic(kaddr
);
203 page_cache_release(page
);
205 btrfs_mark_buffer_dirty(leaf
);
206 btrfs_release_path(path
);
209 * we're an inline extent, so nobody can
210 * extend the file past i_size without locking
211 * a page we already have locked.
213 * We must do any isize and inode updates
214 * before we unlock the pages. Otherwise we
215 * could end up racing with unlink.
217 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
218 ret
= btrfs_update_inode(trans
, root
, inode
);
227 * conditionally insert an inline extent into the file. This
228 * does the checks required to make sure the data is small enough
229 * to fit as an inline extent.
231 static noinline
int cow_file_range_inline(struct btrfs_root
*root
,
232 struct inode
*inode
, u64 start
,
233 u64 end
, size_t compressed_size
,
235 struct page
**compressed_pages
)
237 struct btrfs_trans_handle
*trans
;
238 u64 isize
= i_size_read(inode
);
239 u64 actual_end
= min(end
+ 1, isize
);
240 u64 inline_len
= actual_end
- start
;
241 u64 aligned_end
= ALIGN(end
, root
->sectorsize
);
242 u64 data_len
= inline_len
;
244 struct btrfs_path
*path
;
245 int extent_inserted
= 0;
246 u32 extent_item_size
;
249 data_len
= compressed_size
;
252 actual_end
>= PAGE_CACHE_SIZE
||
253 data_len
>= BTRFS_MAX_INLINE_DATA_SIZE(root
) ||
255 (actual_end
& (root
->sectorsize
- 1)) == 0) ||
257 data_len
> root
->fs_info
->max_inline
) {
261 path
= btrfs_alloc_path();
265 trans
= btrfs_join_transaction(root
);
267 btrfs_free_path(path
);
268 return PTR_ERR(trans
);
270 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
272 if (compressed_size
&& compressed_pages
)
273 extent_item_size
= btrfs_file_extent_calc_inline_size(
276 extent_item_size
= btrfs_file_extent_calc_inline_size(
279 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
,
280 start
, aligned_end
, NULL
,
281 1, 1, extent_item_size
, &extent_inserted
);
283 btrfs_abort_transaction(trans
, root
, ret
);
287 if (isize
> actual_end
)
288 inline_len
= min_t(u64
, isize
, actual_end
);
289 ret
= insert_inline_extent(trans
, path
, extent_inserted
,
291 inline_len
, compressed_size
,
292 compress_type
, compressed_pages
);
293 if (ret
&& ret
!= -ENOSPC
) {
294 btrfs_abort_transaction(trans
, root
, ret
);
296 } else if (ret
== -ENOSPC
) {
301 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
302 btrfs_delalloc_release_metadata(inode
, end
+ 1 - start
);
303 btrfs_drop_extent_cache(inode
, start
, aligned_end
- 1, 0);
305 btrfs_free_path(path
);
306 btrfs_end_transaction(trans
, root
);
310 struct async_extent
{
315 unsigned long nr_pages
;
317 struct list_head list
;
322 struct btrfs_root
*root
;
323 struct page
*locked_page
;
326 struct list_head extents
;
327 struct btrfs_work work
;
330 static noinline
int add_async_extent(struct async_cow
*cow
,
331 u64 start
, u64 ram_size
,
334 unsigned long nr_pages
,
337 struct async_extent
*async_extent
;
339 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
340 BUG_ON(!async_extent
); /* -ENOMEM */
341 async_extent
->start
= start
;
342 async_extent
->ram_size
= ram_size
;
343 async_extent
->compressed_size
= compressed_size
;
344 async_extent
->pages
= pages
;
345 async_extent
->nr_pages
= nr_pages
;
346 async_extent
->compress_type
= compress_type
;
347 list_add_tail(&async_extent
->list
, &cow
->extents
);
352 * we create compressed extents in two phases. The first
353 * phase compresses a range of pages that have already been
354 * locked (both pages and state bits are locked).
356 * This is done inside an ordered work queue, and the compression
357 * is spread across many cpus. The actual IO submission is step
358 * two, and the ordered work queue takes care of making sure that
359 * happens in the same order things were put onto the queue by
360 * writepages and friends.
362 * If this code finds it can't get good compression, it puts an
363 * entry onto the work queue to write the uncompressed bytes. This
364 * makes sure that both compressed inodes and uncompressed inodes
365 * are written in the same order that the flusher thread sent them
368 static noinline
int compress_file_range(struct inode
*inode
,
369 struct page
*locked_page
,
371 struct async_cow
*async_cow
,
374 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
376 u64 blocksize
= root
->sectorsize
;
378 u64 isize
= i_size_read(inode
);
380 struct page
**pages
= NULL
;
381 unsigned long nr_pages
;
382 unsigned long nr_pages_ret
= 0;
383 unsigned long total_compressed
= 0;
384 unsigned long total_in
= 0;
385 unsigned long max_compressed
= 128 * 1024;
386 unsigned long max_uncompressed
= 128 * 1024;
389 int compress_type
= root
->fs_info
->compress_type
;
392 /* if this is a small write inside eof, kick off a defrag */
393 if ((end
- start
+ 1) < 16 * 1024 &&
394 (start
> 0 || end
+ 1 < BTRFS_I(inode
)->disk_i_size
))
395 btrfs_add_inode_defrag(NULL
, inode
);
397 actual_end
= min_t(u64
, isize
, end
+ 1);
400 nr_pages
= (end
>> PAGE_CACHE_SHIFT
) - (start
>> PAGE_CACHE_SHIFT
) + 1;
401 nr_pages
= min(nr_pages
, (128 * 1024UL) / PAGE_CACHE_SIZE
);
404 * we don't want to send crud past the end of i_size through
405 * compression, that's just a waste of CPU time. So, if the
406 * end of the file is before the start of our current
407 * requested range of bytes, we bail out to the uncompressed
408 * cleanup code that can deal with all of this.
410 * It isn't really the fastest way to fix things, but this is a
411 * very uncommon corner.
413 if (actual_end
<= start
)
414 goto cleanup_and_bail_uncompressed
;
416 total_compressed
= actual_end
- start
;
418 /* we want to make sure that amount of ram required to uncompress
419 * an extent is reasonable, so we limit the total size in ram
420 * of a compressed extent to 128k. This is a crucial number
421 * because it also controls how easily we can spread reads across
422 * cpus for decompression.
424 * We also want to make sure the amount of IO required to do
425 * a random read is reasonably small, so we limit the size of
426 * a compressed extent to 128k.
428 total_compressed
= min(total_compressed
, max_uncompressed
);
429 num_bytes
= ALIGN(end
- start
+ 1, blocksize
);
430 num_bytes
= max(blocksize
, num_bytes
);
435 * we do compression for mount -o compress and when the
436 * inode has not been flagged as nocompress. This flag can
437 * change at any time if we discover bad compression ratios.
439 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
) &&
440 (btrfs_test_opt(root
, COMPRESS
) ||
441 (BTRFS_I(inode
)->force_compress
) ||
442 (BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
))) {
444 pages
= kzalloc(sizeof(struct page
*) * nr_pages
, GFP_NOFS
);
446 /* just bail out to the uncompressed code */
450 if (BTRFS_I(inode
)->force_compress
)
451 compress_type
= BTRFS_I(inode
)->force_compress
;
454 * we need to call clear_page_dirty_for_io on each
455 * page in the range. Otherwise applications with the file
456 * mmap'd can wander in and change the page contents while
457 * we are compressing them.
459 * If the compression fails for any reason, we set the pages
460 * dirty again later on.
462 extent_range_clear_dirty_for_io(inode
, start
, end
);
464 ret
= btrfs_compress_pages(compress_type
,
465 inode
->i_mapping
, start
,
466 total_compressed
, pages
,
467 nr_pages
, &nr_pages_ret
,
473 unsigned long offset
= total_compressed
&
474 (PAGE_CACHE_SIZE
- 1);
475 struct page
*page
= pages
[nr_pages_ret
- 1];
478 /* zero the tail end of the last page, we might be
479 * sending it down to disk
482 kaddr
= kmap_atomic(page
);
483 memset(kaddr
+ offset
, 0,
484 PAGE_CACHE_SIZE
- offset
);
485 kunmap_atomic(kaddr
);
492 /* lets try to make an inline extent */
493 if (ret
|| total_in
< (actual_end
- start
)) {
494 /* we didn't compress the entire range, try
495 * to make an uncompressed inline extent.
497 ret
= cow_file_range_inline(root
, inode
, start
, end
,
500 /* try making a compressed inline extent */
501 ret
= cow_file_range_inline(root
, inode
, start
, end
,
503 compress_type
, pages
);
506 unsigned long clear_flags
= EXTENT_DELALLOC
|
508 clear_flags
|= (ret
< 0) ? EXTENT_DO_ACCOUNTING
: 0;
511 * inline extent creation worked or returned error,
512 * we don't need to create any more async work items.
513 * Unlock and free up our temp pages.
515 extent_clear_unlock_delalloc(inode
, start
, end
, NULL
,
516 clear_flags
, PAGE_UNLOCK
|
526 * we aren't doing an inline extent round the compressed size
527 * up to a block size boundary so the allocator does sane
530 total_compressed
= ALIGN(total_compressed
, blocksize
);
533 * one last check to make sure the compression is really a
534 * win, compare the page count read with the blocks on disk
536 total_in
= ALIGN(total_in
, PAGE_CACHE_SIZE
);
537 if (total_compressed
>= total_in
) {
540 num_bytes
= total_in
;
543 if (!will_compress
&& pages
) {
545 * the compression code ran but failed to make things smaller,
546 * free any pages it allocated and our page pointer array
548 for (i
= 0; i
< nr_pages_ret
; i
++) {
549 WARN_ON(pages
[i
]->mapping
);
550 page_cache_release(pages
[i
]);
554 total_compressed
= 0;
557 /* flag the file so we don't compress in the future */
558 if (!btrfs_test_opt(root
, FORCE_COMPRESS
) &&
559 !(BTRFS_I(inode
)->force_compress
)) {
560 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
566 /* the async work queues will take care of doing actual
567 * allocation on disk for these compressed pages,
568 * and will submit them to the elevator.
570 add_async_extent(async_cow
, start
, num_bytes
,
571 total_compressed
, pages
, nr_pages_ret
,
574 if (start
+ num_bytes
< end
) {
581 cleanup_and_bail_uncompressed
:
583 * No compression, but we still need to write the pages in
584 * the file we've been given so far. redirty the locked
585 * page if it corresponds to our extent and set things up
586 * for the async work queue to run cow_file_range to do
587 * the normal delalloc dance
589 if (page_offset(locked_page
) >= start
&&
590 page_offset(locked_page
) <= end
) {
591 __set_page_dirty_nobuffers(locked_page
);
592 /* unlocked later on in the async handlers */
595 extent_range_redirty_for_io(inode
, start
, end
);
596 add_async_extent(async_cow
, start
, end
- start
+ 1,
597 0, NULL
, 0, BTRFS_COMPRESS_NONE
);
605 for (i
= 0; i
< nr_pages_ret
; i
++) {
606 WARN_ON(pages
[i
]->mapping
);
607 page_cache_release(pages
[i
]);
615 * phase two of compressed writeback. This is the ordered portion
616 * of the code, which only gets called in the order the work was
617 * queued. We walk all the async extents created by compress_file_range
618 * and send them down to the disk.
620 static noinline
int submit_compressed_extents(struct inode
*inode
,
621 struct async_cow
*async_cow
)
623 struct async_extent
*async_extent
;
625 struct btrfs_key ins
;
626 struct extent_map
*em
;
627 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
628 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
629 struct extent_io_tree
*io_tree
;
632 if (list_empty(&async_cow
->extents
))
636 while (!list_empty(&async_cow
->extents
)) {
637 async_extent
= list_entry(async_cow
->extents
.next
,
638 struct async_extent
, list
);
639 list_del(&async_extent
->list
);
641 io_tree
= &BTRFS_I(inode
)->io_tree
;
644 /* did the compression code fall back to uncompressed IO? */
645 if (!async_extent
->pages
) {
646 int page_started
= 0;
647 unsigned long nr_written
= 0;
649 lock_extent(io_tree
, async_extent
->start
,
650 async_extent
->start
+
651 async_extent
->ram_size
- 1);
653 /* allocate blocks */
654 ret
= cow_file_range(inode
, async_cow
->locked_page
,
656 async_extent
->start
+
657 async_extent
->ram_size
- 1,
658 &page_started
, &nr_written
, 0);
663 * if page_started, cow_file_range inserted an
664 * inline extent and took care of all the unlocking
665 * and IO for us. Otherwise, we need to submit
666 * all those pages down to the drive.
668 if (!page_started
&& !ret
)
669 extent_write_locked_range(io_tree
,
670 inode
, async_extent
->start
,
671 async_extent
->start
+
672 async_extent
->ram_size
- 1,
676 unlock_page(async_cow
->locked_page
);
682 lock_extent(io_tree
, async_extent
->start
,
683 async_extent
->start
+ async_extent
->ram_size
- 1);
685 ret
= btrfs_reserve_extent(root
,
686 async_extent
->compressed_size
,
687 async_extent
->compressed_size
,
688 0, alloc_hint
, &ins
, 1);
692 for (i
= 0; i
< async_extent
->nr_pages
; i
++) {
693 WARN_ON(async_extent
->pages
[i
]->mapping
);
694 page_cache_release(async_extent
->pages
[i
]);
696 kfree(async_extent
->pages
);
697 async_extent
->nr_pages
= 0;
698 async_extent
->pages
= NULL
;
700 if (ret
== -ENOSPC
) {
701 unlock_extent(io_tree
, async_extent
->start
,
702 async_extent
->start
+
703 async_extent
->ram_size
- 1);
710 * here we're doing allocation and writeback of the
713 btrfs_drop_extent_cache(inode
, async_extent
->start
,
714 async_extent
->start
+
715 async_extent
->ram_size
- 1, 0);
717 em
= alloc_extent_map();
720 goto out_free_reserve
;
722 em
->start
= async_extent
->start
;
723 em
->len
= async_extent
->ram_size
;
724 em
->orig_start
= em
->start
;
725 em
->mod_start
= em
->start
;
726 em
->mod_len
= em
->len
;
728 em
->block_start
= ins
.objectid
;
729 em
->block_len
= ins
.offset
;
730 em
->orig_block_len
= ins
.offset
;
731 em
->ram_bytes
= async_extent
->ram_size
;
732 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
733 em
->compress_type
= async_extent
->compress_type
;
734 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
735 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
739 write_lock(&em_tree
->lock
);
740 ret
= add_extent_mapping(em_tree
, em
, 1);
741 write_unlock(&em_tree
->lock
);
742 if (ret
!= -EEXIST
) {
746 btrfs_drop_extent_cache(inode
, async_extent
->start
,
747 async_extent
->start
+
748 async_extent
->ram_size
- 1, 0);
752 goto out_free_reserve
;
754 ret
= btrfs_add_ordered_extent_compress(inode
,
757 async_extent
->ram_size
,
759 BTRFS_ORDERED_COMPRESSED
,
760 async_extent
->compress_type
);
762 goto out_free_reserve
;
765 * clear dirty, set writeback and unlock the pages.
767 extent_clear_unlock_delalloc(inode
, async_extent
->start
,
768 async_extent
->start
+
769 async_extent
->ram_size
- 1,
770 NULL
, EXTENT_LOCKED
| EXTENT_DELALLOC
,
771 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
773 ret
= btrfs_submit_compressed_write(inode
,
775 async_extent
->ram_size
,
777 ins
.offset
, async_extent
->pages
,
778 async_extent
->nr_pages
);
779 alloc_hint
= ins
.objectid
+ ins
.offset
;
789 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
);
791 extent_clear_unlock_delalloc(inode
, async_extent
->start
,
792 async_extent
->start
+
793 async_extent
->ram_size
- 1,
794 NULL
, EXTENT_LOCKED
| EXTENT_DELALLOC
|
795 EXTENT_DEFRAG
| EXTENT_DO_ACCOUNTING
,
796 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
797 PAGE_SET_WRITEBACK
| PAGE_END_WRITEBACK
);
802 static u64
get_extent_allocation_hint(struct inode
*inode
, u64 start
,
805 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
806 struct extent_map
*em
;
809 read_lock(&em_tree
->lock
);
810 em
= search_extent_mapping(em_tree
, start
, num_bytes
);
813 * if block start isn't an actual block number then find the
814 * first block in this inode and use that as a hint. If that
815 * block is also bogus then just don't worry about it.
817 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
819 em
= search_extent_mapping(em_tree
, 0, 0);
820 if (em
&& em
->block_start
< EXTENT_MAP_LAST_BYTE
)
821 alloc_hint
= em
->block_start
;
825 alloc_hint
= em
->block_start
;
829 read_unlock(&em_tree
->lock
);
835 * when extent_io.c finds a delayed allocation range in the file,
836 * the call backs end up in this code. The basic idea is to
837 * allocate extents on disk for the range, and create ordered data structs
838 * in ram to track those extents.
840 * locked_page is the page that writepage had locked already. We use
841 * it to make sure we don't do extra locks or unlocks.
843 * *page_started is set to one if we unlock locked_page and do everything
844 * required to start IO on it. It may be clean and already done with
847 static noinline
int cow_file_range(struct inode
*inode
,
848 struct page
*locked_page
,
849 u64 start
, u64 end
, int *page_started
,
850 unsigned long *nr_written
,
853 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
856 unsigned long ram_size
;
859 u64 blocksize
= root
->sectorsize
;
860 struct btrfs_key ins
;
861 struct extent_map
*em
;
862 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
865 if (btrfs_is_free_space_inode(inode
)) {
870 num_bytes
= ALIGN(end
- start
+ 1, blocksize
);
871 num_bytes
= max(blocksize
, num_bytes
);
872 disk_num_bytes
= num_bytes
;
874 /* if this is a small write inside eof, kick off defrag */
875 if (num_bytes
< 64 * 1024 &&
876 (start
> 0 || end
+ 1 < BTRFS_I(inode
)->disk_i_size
))
877 btrfs_add_inode_defrag(NULL
, inode
);
880 /* lets try to make an inline extent */
881 ret
= cow_file_range_inline(root
, inode
, start
, end
, 0, 0,
884 extent_clear_unlock_delalloc(inode
, start
, end
, NULL
,
885 EXTENT_LOCKED
| EXTENT_DELALLOC
|
886 EXTENT_DEFRAG
, PAGE_UNLOCK
|
887 PAGE_CLEAR_DIRTY
| PAGE_SET_WRITEBACK
|
890 *nr_written
= *nr_written
+
891 (end
- start
+ PAGE_CACHE_SIZE
) / PAGE_CACHE_SIZE
;
894 } else if (ret
< 0) {
899 BUG_ON(disk_num_bytes
>
900 btrfs_super_total_bytes(root
->fs_info
->super_copy
));
902 alloc_hint
= get_extent_allocation_hint(inode
, start
, num_bytes
);
903 btrfs_drop_extent_cache(inode
, start
, start
+ num_bytes
- 1, 0);
905 while (disk_num_bytes
> 0) {
908 cur_alloc_size
= disk_num_bytes
;
909 ret
= btrfs_reserve_extent(root
, cur_alloc_size
,
910 root
->sectorsize
, 0, alloc_hint
,
915 em
= alloc_extent_map();
921 em
->orig_start
= em
->start
;
922 ram_size
= ins
.offset
;
923 em
->len
= ins
.offset
;
924 em
->mod_start
= em
->start
;
925 em
->mod_len
= em
->len
;
927 em
->block_start
= ins
.objectid
;
928 em
->block_len
= ins
.offset
;
929 em
->orig_block_len
= ins
.offset
;
930 em
->ram_bytes
= ram_size
;
931 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
932 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
936 write_lock(&em_tree
->lock
);
937 ret
= add_extent_mapping(em_tree
, em
, 1);
938 write_unlock(&em_tree
->lock
);
939 if (ret
!= -EEXIST
) {
943 btrfs_drop_extent_cache(inode
, start
,
944 start
+ ram_size
- 1, 0);
949 cur_alloc_size
= ins
.offset
;
950 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
951 ram_size
, cur_alloc_size
, 0);
955 if (root
->root_key
.objectid
==
956 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
957 ret
= btrfs_reloc_clone_csums(inode
, start
,
963 if (disk_num_bytes
< cur_alloc_size
)
966 /* we're not doing compressed IO, don't unlock the first
967 * page (which the caller expects to stay locked), don't
968 * clear any dirty bits and don't set any writeback bits
970 * Do set the Private2 bit so we know this page was properly
971 * setup for writepage
973 op
= unlock
? PAGE_UNLOCK
: 0;
974 op
|= PAGE_SET_PRIVATE2
;
976 extent_clear_unlock_delalloc(inode
, start
,
977 start
+ ram_size
- 1, locked_page
,
978 EXTENT_LOCKED
| EXTENT_DELALLOC
,
980 disk_num_bytes
-= cur_alloc_size
;
981 num_bytes
-= cur_alloc_size
;
982 alloc_hint
= ins
.objectid
+ ins
.offset
;
983 start
+= cur_alloc_size
;
989 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
);
991 extent_clear_unlock_delalloc(inode
, start
, end
, locked_page
,
992 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
|
993 EXTENT_DELALLOC
| EXTENT_DEFRAG
,
994 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
995 PAGE_SET_WRITEBACK
| PAGE_END_WRITEBACK
);
1000 * work queue call back to started compression on a file and pages
1002 static noinline
void async_cow_start(struct btrfs_work
*work
)
1004 struct async_cow
*async_cow
;
1006 async_cow
= container_of(work
, struct async_cow
, work
);
1008 compress_file_range(async_cow
->inode
, async_cow
->locked_page
,
1009 async_cow
->start
, async_cow
->end
, async_cow
,
1011 if (num_added
== 0) {
1012 btrfs_add_delayed_iput(async_cow
->inode
);
1013 async_cow
->inode
= NULL
;
1018 * work queue call back to submit previously compressed pages
1020 static noinline
void async_cow_submit(struct btrfs_work
*work
)
1022 struct async_cow
*async_cow
;
1023 struct btrfs_root
*root
;
1024 unsigned long nr_pages
;
1026 async_cow
= container_of(work
, struct async_cow
, work
);
1028 root
= async_cow
->root
;
1029 nr_pages
= (async_cow
->end
- async_cow
->start
+ PAGE_CACHE_SIZE
) >>
1032 if (atomic_sub_return(nr_pages
, &root
->fs_info
->async_delalloc_pages
) <
1034 waitqueue_active(&root
->fs_info
->async_submit_wait
))
1035 wake_up(&root
->fs_info
->async_submit_wait
);
1037 if (async_cow
->inode
)
1038 submit_compressed_extents(async_cow
->inode
, async_cow
);
1041 static noinline
void async_cow_free(struct btrfs_work
*work
)
1043 struct async_cow
*async_cow
;
1044 async_cow
= container_of(work
, struct async_cow
, work
);
1045 if (async_cow
->inode
)
1046 btrfs_add_delayed_iput(async_cow
->inode
);
1050 static int cow_file_range_async(struct inode
*inode
, struct page
*locked_page
,
1051 u64 start
, u64 end
, int *page_started
,
1052 unsigned long *nr_written
)
1054 struct async_cow
*async_cow
;
1055 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1056 unsigned long nr_pages
;
1058 int limit
= 10 * 1024 * 1024;
1060 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, EXTENT_LOCKED
,
1061 1, 0, NULL
, GFP_NOFS
);
1062 while (start
< end
) {
1063 async_cow
= kmalloc(sizeof(*async_cow
), GFP_NOFS
);
1064 BUG_ON(!async_cow
); /* -ENOMEM */
1065 async_cow
->inode
= igrab(inode
);
1066 async_cow
->root
= root
;
1067 async_cow
->locked_page
= locked_page
;
1068 async_cow
->start
= start
;
1070 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
)
1073 cur_end
= min(end
, start
+ 512 * 1024 - 1);
1075 async_cow
->end
= cur_end
;
1076 INIT_LIST_HEAD(&async_cow
->extents
);
1078 async_cow
->work
.func
= async_cow_start
;
1079 async_cow
->work
.ordered_func
= async_cow_submit
;
1080 async_cow
->work
.ordered_free
= async_cow_free
;
1081 async_cow
->work
.flags
= 0;
1083 nr_pages
= (cur_end
- start
+ PAGE_CACHE_SIZE
) >>
1085 atomic_add(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
1087 btrfs_queue_worker(&root
->fs_info
->delalloc_workers
,
1090 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) > limit
) {
1091 wait_event(root
->fs_info
->async_submit_wait
,
1092 (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
1096 while (atomic_read(&root
->fs_info
->async_submit_draining
) &&
1097 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
1098 wait_event(root
->fs_info
->async_submit_wait
,
1099 (atomic_read(&root
->fs_info
->async_delalloc_pages
) ==
1103 *nr_written
+= nr_pages
;
1104 start
= cur_end
+ 1;
1110 static noinline
int csum_exist_in_range(struct btrfs_root
*root
,
1111 u64 bytenr
, u64 num_bytes
)
1114 struct btrfs_ordered_sum
*sums
;
1117 ret
= btrfs_lookup_csums_range(root
->fs_info
->csum_root
, bytenr
,
1118 bytenr
+ num_bytes
- 1, &list
, 0);
1119 if (ret
== 0 && list_empty(&list
))
1122 while (!list_empty(&list
)) {
1123 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
1124 list_del(&sums
->list
);
1131 * when nowcow writeback call back. This checks for snapshots or COW copies
1132 * of the extents that exist in the file, and COWs the file as required.
1134 * If no cow copies or snapshots exist, we write directly to the existing
1137 static noinline
int run_delalloc_nocow(struct inode
*inode
,
1138 struct page
*locked_page
,
1139 u64 start
, u64 end
, int *page_started
, int force
,
1140 unsigned long *nr_written
)
1142 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1143 struct btrfs_trans_handle
*trans
;
1144 struct extent_buffer
*leaf
;
1145 struct btrfs_path
*path
;
1146 struct btrfs_file_extent_item
*fi
;
1147 struct btrfs_key found_key
;
1162 u64 ino
= btrfs_ino(inode
);
1164 path
= btrfs_alloc_path();
1166 extent_clear_unlock_delalloc(inode
, start
, end
, locked_page
,
1167 EXTENT_LOCKED
| EXTENT_DELALLOC
|
1168 EXTENT_DO_ACCOUNTING
|
1169 EXTENT_DEFRAG
, PAGE_UNLOCK
|
1171 PAGE_SET_WRITEBACK
|
1172 PAGE_END_WRITEBACK
);
1176 nolock
= btrfs_is_free_space_inode(inode
);
1179 trans
= btrfs_join_transaction_nolock(root
);
1181 trans
= btrfs_join_transaction(root
);
1183 if (IS_ERR(trans
)) {
1184 extent_clear_unlock_delalloc(inode
, start
, end
, locked_page
,
1185 EXTENT_LOCKED
| EXTENT_DELALLOC
|
1186 EXTENT_DO_ACCOUNTING
|
1187 EXTENT_DEFRAG
, PAGE_UNLOCK
|
1189 PAGE_SET_WRITEBACK
|
1190 PAGE_END_WRITEBACK
);
1191 btrfs_free_path(path
);
1192 return PTR_ERR(trans
);
1195 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1197 cow_start
= (u64
)-1;
1200 ret
= btrfs_lookup_file_extent(trans
, root
, path
, ino
,
1204 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
1205 leaf
= path
->nodes
[0];
1206 btrfs_item_key_to_cpu(leaf
, &found_key
,
1207 path
->slots
[0] - 1);
1208 if (found_key
.objectid
== ino
&&
1209 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
1214 leaf
= path
->nodes
[0];
1215 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1216 ret
= btrfs_next_leaf(root
, path
);
1221 leaf
= path
->nodes
[0];
1227 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1229 if (found_key
.objectid
> ino
||
1230 found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
1231 found_key
.offset
> end
)
1234 if (found_key
.offset
> cur_offset
) {
1235 extent_end
= found_key
.offset
;
1240 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1241 struct btrfs_file_extent_item
);
1242 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1244 ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
1245 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1246 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1247 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1248 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
1249 extent_end
= found_key
.offset
+
1250 btrfs_file_extent_num_bytes(leaf
, fi
);
1252 btrfs_file_extent_disk_num_bytes(leaf
, fi
);
1253 if (extent_end
<= start
) {
1257 if (disk_bytenr
== 0)
1259 if (btrfs_file_extent_compression(leaf
, fi
) ||
1260 btrfs_file_extent_encryption(leaf
, fi
) ||
1261 btrfs_file_extent_other_encoding(leaf
, fi
))
1263 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1265 if (btrfs_extent_readonly(root
, disk_bytenr
))
1267 if (btrfs_cross_ref_exist(trans
, root
, ino
,
1269 extent_offset
, disk_bytenr
))
1271 disk_bytenr
+= extent_offset
;
1272 disk_bytenr
+= cur_offset
- found_key
.offset
;
1273 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1275 * force cow if csum exists in the range.
1276 * this ensure that csum for a given extent are
1277 * either valid or do not exist.
1279 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
1282 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1283 extent_end
= found_key
.offset
+
1284 btrfs_file_extent_inline_len(leaf
,
1285 path
->slots
[0], fi
);
1286 extent_end
= ALIGN(extent_end
, root
->sectorsize
);
1291 if (extent_end
<= start
) {
1296 if (cow_start
== (u64
)-1)
1297 cow_start
= cur_offset
;
1298 cur_offset
= extent_end
;
1299 if (cur_offset
> end
)
1305 btrfs_release_path(path
);
1306 if (cow_start
!= (u64
)-1) {
1307 ret
= cow_file_range(inode
, locked_page
,
1308 cow_start
, found_key
.offset
- 1,
1309 page_started
, nr_written
, 1);
1312 cow_start
= (u64
)-1;
1315 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1316 struct extent_map
*em
;
1317 struct extent_map_tree
*em_tree
;
1318 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1319 em
= alloc_extent_map();
1320 BUG_ON(!em
); /* -ENOMEM */
1321 em
->start
= cur_offset
;
1322 em
->orig_start
= found_key
.offset
- extent_offset
;
1323 em
->len
= num_bytes
;
1324 em
->block_len
= num_bytes
;
1325 em
->block_start
= disk_bytenr
;
1326 em
->orig_block_len
= disk_num_bytes
;
1327 em
->ram_bytes
= ram_bytes
;
1328 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
1329 em
->mod_start
= em
->start
;
1330 em
->mod_len
= em
->len
;
1331 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
1332 set_bit(EXTENT_FLAG_FILLING
, &em
->flags
);
1333 em
->generation
= -1;
1335 write_lock(&em_tree
->lock
);
1336 ret
= add_extent_mapping(em_tree
, em
, 1);
1337 write_unlock(&em_tree
->lock
);
1338 if (ret
!= -EEXIST
) {
1339 free_extent_map(em
);
1342 btrfs_drop_extent_cache(inode
, em
->start
,
1343 em
->start
+ em
->len
- 1, 0);
1345 type
= BTRFS_ORDERED_PREALLOC
;
1347 type
= BTRFS_ORDERED_NOCOW
;
1350 ret
= btrfs_add_ordered_extent(inode
, cur_offset
, disk_bytenr
,
1351 num_bytes
, num_bytes
, type
);
1352 BUG_ON(ret
); /* -ENOMEM */
1354 if (root
->root_key
.objectid
==
1355 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
1356 ret
= btrfs_reloc_clone_csums(inode
, cur_offset
,
1362 extent_clear_unlock_delalloc(inode
, cur_offset
,
1363 cur_offset
+ num_bytes
- 1,
1364 locked_page
, EXTENT_LOCKED
|
1365 EXTENT_DELALLOC
, PAGE_UNLOCK
|
1367 cur_offset
= extent_end
;
1368 if (cur_offset
> end
)
1371 btrfs_release_path(path
);
1373 if (cur_offset
<= end
&& cow_start
== (u64
)-1) {
1374 cow_start
= cur_offset
;
1378 if (cow_start
!= (u64
)-1) {
1379 ret
= cow_file_range(inode
, locked_page
, cow_start
, end
,
1380 page_started
, nr_written
, 1);
1386 err
= btrfs_end_transaction(trans
, root
);
1390 if (ret
&& cur_offset
< end
)
1391 extent_clear_unlock_delalloc(inode
, cur_offset
, end
,
1392 locked_page
, EXTENT_LOCKED
|
1393 EXTENT_DELALLOC
| EXTENT_DEFRAG
|
1394 EXTENT_DO_ACCOUNTING
, PAGE_UNLOCK
|
1396 PAGE_SET_WRITEBACK
|
1397 PAGE_END_WRITEBACK
);
1398 btrfs_free_path(path
);
1403 * extent_io.c call back to do delayed allocation processing
1405 static int run_delalloc_range(struct inode
*inode
, struct page
*locked_page
,
1406 u64 start
, u64 end
, int *page_started
,
1407 unsigned long *nr_written
)
1410 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1412 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) {
1413 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1414 page_started
, 1, nr_written
);
1415 } else if (BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
) {
1416 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1417 page_started
, 0, nr_written
);
1418 } else if (!btrfs_test_opt(root
, COMPRESS
) &&
1419 !(BTRFS_I(inode
)->force_compress
) &&
1420 !(BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
)) {
1421 ret
= cow_file_range(inode
, locked_page
, start
, end
,
1422 page_started
, nr_written
, 1);
1424 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
1425 &BTRFS_I(inode
)->runtime_flags
);
1426 ret
= cow_file_range_async(inode
, locked_page
, start
, end
,
1427 page_started
, nr_written
);
1432 static void btrfs_split_extent_hook(struct inode
*inode
,
1433 struct extent_state
*orig
, u64 split
)
1435 /* not delalloc, ignore it */
1436 if (!(orig
->state
& EXTENT_DELALLOC
))
1439 spin_lock(&BTRFS_I(inode
)->lock
);
1440 BTRFS_I(inode
)->outstanding_extents
++;
1441 spin_unlock(&BTRFS_I(inode
)->lock
);
1445 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1446 * extents so we can keep track of new extents that are just merged onto old
1447 * extents, such as when we are doing sequential writes, so we can properly
1448 * account for the metadata space we'll need.
1450 static void btrfs_merge_extent_hook(struct inode
*inode
,
1451 struct extent_state
*new,
1452 struct extent_state
*other
)
1454 /* not delalloc, ignore it */
1455 if (!(other
->state
& EXTENT_DELALLOC
))
1458 spin_lock(&BTRFS_I(inode
)->lock
);
1459 BTRFS_I(inode
)->outstanding_extents
--;
1460 spin_unlock(&BTRFS_I(inode
)->lock
);
1463 static void btrfs_add_delalloc_inodes(struct btrfs_root
*root
,
1464 struct inode
*inode
)
1466 spin_lock(&root
->delalloc_lock
);
1467 if (list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1468 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
1469 &root
->delalloc_inodes
);
1470 set_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1471 &BTRFS_I(inode
)->runtime_flags
);
1472 root
->nr_delalloc_inodes
++;
1473 if (root
->nr_delalloc_inodes
== 1) {
1474 spin_lock(&root
->fs_info
->delalloc_root_lock
);
1475 BUG_ON(!list_empty(&root
->delalloc_root
));
1476 list_add_tail(&root
->delalloc_root
,
1477 &root
->fs_info
->delalloc_roots
);
1478 spin_unlock(&root
->fs_info
->delalloc_root_lock
);
1481 spin_unlock(&root
->delalloc_lock
);
1484 static void btrfs_del_delalloc_inode(struct btrfs_root
*root
,
1485 struct inode
*inode
)
1487 spin_lock(&root
->delalloc_lock
);
1488 if (!list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1489 list_del_init(&BTRFS_I(inode
)->delalloc_inodes
);
1490 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1491 &BTRFS_I(inode
)->runtime_flags
);
1492 root
->nr_delalloc_inodes
--;
1493 if (!root
->nr_delalloc_inodes
) {
1494 spin_lock(&root
->fs_info
->delalloc_root_lock
);
1495 BUG_ON(list_empty(&root
->delalloc_root
));
1496 list_del_init(&root
->delalloc_root
);
1497 spin_unlock(&root
->fs_info
->delalloc_root_lock
);
1500 spin_unlock(&root
->delalloc_lock
);
1504 * extent_io.c set_bit_hook, used to track delayed allocation
1505 * bytes in this file, and to maintain the list of inodes that
1506 * have pending delalloc work to be done.
1508 static void btrfs_set_bit_hook(struct inode
*inode
,
1509 struct extent_state
*state
, unsigned long *bits
)
1513 * set_bit and clear bit hooks normally require _irqsave/restore
1514 * but in this case, we are only testing for the DELALLOC
1515 * bit, which is only set or cleared with irqs on
1517 if (!(state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1518 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1519 u64 len
= state
->end
+ 1 - state
->start
;
1520 bool do_list
= !btrfs_is_free_space_inode(inode
);
1522 if (*bits
& EXTENT_FIRST_DELALLOC
) {
1523 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1525 spin_lock(&BTRFS_I(inode
)->lock
);
1526 BTRFS_I(inode
)->outstanding_extents
++;
1527 spin_unlock(&BTRFS_I(inode
)->lock
);
1530 __percpu_counter_add(&root
->fs_info
->delalloc_bytes
, len
,
1531 root
->fs_info
->delalloc_batch
);
1532 spin_lock(&BTRFS_I(inode
)->lock
);
1533 BTRFS_I(inode
)->delalloc_bytes
+= len
;
1534 if (do_list
&& !test_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1535 &BTRFS_I(inode
)->runtime_flags
))
1536 btrfs_add_delalloc_inodes(root
, inode
);
1537 spin_unlock(&BTRFS_I(inode
)->lock
);
1542 * extent_io.c clear_bit_hook, see set_bit_hook for why
1544 static void btrfs_clear_bit_hook(struct inode
*inode
,
1545 struct extent_state
*state
,
1546 unsigned long *bits
)
1549 * set_bit and clear bit hooks normally require _irqsave/restore
1550 * but in this case, we are only testing for the DELALLOC
1551 * bit, which is only set or cleared with irqs on
1553 if ((state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1554 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1555 u64 len
= state
->end
+ 1 - state
->start
;
1556 bool do_list
= !btrfs_is_free_space_inode(inode
);
1558 if (*bits
& EXTENT_FIRST_DELALLOC
) {
1559 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1560 } else if (!(*bits
& EXTENT_DO_ACCOUNTING
)) {
1561 spin_lock(&BTRFS_I(inode
)->lock
);
1562 BTRFS_I(inode
)->outstanding_extents
--;
1563 spin_unlock(&BTRFS_I(inode
)->lock
);
1567 * We don't reserve metadata space for space cache inodes so we
1568 * don't need to call dellalloc_release_metadata if there is an
1571 if (*bits
& EXTENT_DO_ACCOUNTING
&&
1572 root
!= root
->fs_info
->tree_root
)
1573 btrfs_delalloc_release_metadata(inode
, len
);
1575 if (root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
1576 && do_list
&& !(state
->state
& EXTENT_NORESERVE
))
1577 btrfs_free_reserved_data_space(inode
, len
);
1579 __percpu_counter_add(&root
->fs_info
->delalloc_bytes
, -len
,
1580 root
->fs_info
->delalloc_batch
);
1581 spin_lock(&BTRFS_I(inode
)->lock
);
1582 BTRFS_I(inode
)->delalloc_bytes
-= len
;
1583 if (do_list
&& BTRFS_I(inode
)->delalloc_bytes
== 0 &&
1584 test_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1585 &BTRFS_I(inode
)->runtime_flags
))
1586 btrfs_del_delalloc_inode(root
, inode
);
1587 spin_unlock(&BTRFS_I(inode
)->lock
);
1592 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1593 * we don't create bios that span stripes or chunks
1595 int btrfs_merge_bio_hook(int rw
, struct page
*page
, unsigned long offset
,
1596 size_t size
, struct bio
*bio
,
1597 unsigned long bio_flags
)
1599 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
1600 u64 logical
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
1605 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
1608 length
= bio
->bi_iter
.bi_size
;
1609 map_length
= length
;
1610 ret
= btrfs_map_block(root
->fs_info
, rw
, logical
,
1611 &map_length
, NULL
, 0);
1612 /* Will always return 0 with map_multi == NULL */
1614 if (map_length
< length
+ size
)
1620 * in order to insert checksums into the metadata in large chunks,
1621 * we wait until bio submission time. All the pages in the bio are
1622 * checksummed and sums are attached onto the ordered extent record.
1624 * At IO completion time the cums attached on the ordered extent record
1625 * are inserted into the btree
1627 static int __btrfs_submit_bio_start(struct inode
*inode
, int rw
,
1628 struct bio
*bio
, int mirror_num
,
1629 unsigned long bio_flags
,
1632 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1635 ret
= btrfs_csum_one_bio(root
, inode
, bio
, 0, 0);
1636 BUG_ON(ret
); /* -ENOMEM */
1641 * in order to insert checksums into the metadata in large chunks,
1642 * we wait until bio submission time. All the pages in the bio are
1643 * checksummed and sums are attached onto the ordered extent record.
1645 * At IO completion time the cums attached on the ordered extent record
1646 * are inserted into the btree
1648 static int __btrfs_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
1649 int mirror_num
, unsigned long bio_flags
,
1652 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1655 ret
= btrfs_map_bio(root
, rw
, bio
, mirror_num
, 1);
1657 bio_endio(bio
, ret
);
1662 * extent_io.c submission hook. This does the right thing for csum calculation
1663 * on write, or reading the csums from the tree before a read
1665 static int btrfs_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
1666 int mirror_num
, unsigned long bio_flags
,
1669 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1673 int async
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
1675 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
1677 if (btrfs_is_free_space_inode(inode
))
1680 if (!(rw
& REQ_WRITE
)) {
1681 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, metadata
);
1685 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
1686 ret
= btrfs_submit_compressed_read(inode
, bio
,
1690 } else if (!skip_sum
) {
1691 ret
= btrfs_lookup_bio_sums(root
, inode
, bio
, NULL
);
1696 } else if (async
&& !skip_sum
) {
1697 /* csum items have already been cloned */
1698 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
1700 /* we're doing a write, do the async checksumming */
1701 ret
= btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
1702 inode
, rw
, bio
, mirror_num
,
1703 bio_flags
, bio_offset
,
1704 __btrfs_submit_bio_start
,
1705 __btrfs_submit_bio_done
);
1707 } else if (!skip_sum
) {
1708 ret
= btrfs_csum_one_bio(root
, inode
, bio
, 0, 0);
1714 ret
= btrfs_map_bio(root
, rw
, bio
, mirror_num
, 0);
1718 bio_endio(bio
, ret
);
1723 * given a list of ordered sums record them in the inode. This happens
1724 * at IO completion time based on sums calculated at bio submission time.
1726 static noinline
int add_pending_csums(struct btrfs_trans_handle
*trans
,
1727 struct inode
*inode
, u64 file_offset
,
1728 struct list_head
*list
)
1730 struct btrfs_ordered_sum
*sum
;
1732 list_for_each_entry(sum
, list
, list
) {
1733 trans
->adding_csums
= 1;
1734 btrfs_csum_file_blocks(trans
,
1735 BTRFS_I(inode
)->root
->fs_info
->csum_root
, sum
);
1736 trans
->adding_csums
= 0;
1741 int btrfs_set_extent_delalloc(struct inode
*inode
, u64 start
, u64 end
,
1742 struct extent_state
**cached_state
)
1744 WARN_ON((end
& (PAGE_CACHE_SIZE
- 1)) == 0);
1745 return set_extent_delalloc(&BTRFS_I(inode
)->io_tree
, start
, end
,
1746 cached_state
, GFP_NOFS
);
1749 /* see btrfs_writepage_start_hook for details on why this is required */
1750 struct btrfs_writepage_fixup
{
1752 struct btrfs_work work
;
1755 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
1757 struct btrfs_writepage_fixup
*fixup
;
1758 struct btrfs_ordered_extent
*ordered
;
1759 struct extent_state
*cached_state
= NULL
;
1761 struct inode
*inode
;
1766 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
1770 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
1771 ClearPageChecked(page
);
1775 inode
= page
->mapping
->host
;
1776 page_start
= page_offset(page
);
1777 page_end
= page_offset(page
) + PAGE_CACHE_SIZE
- 1;
1779 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
, 0,
1782 /* already ordered? We're done */
1783 if (PagePrivate2(page
))
1786 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
1788 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
,
1789 page_end
, &cached_state
, GFP_NOFS
);
1791 btrfs_start_ordered_extent(inode
, ordered
, 1);
1792 btrfs_put_ordered_extent(ordered
);
1796 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
1798 mapping_set_error(page
->mapping
, ret
);
1799 end_extent_writepage(page
, ret
, page_start
, page_end
);
1800 ClearPageChecked(page
);
1804 btrfs_set_extent_delalloc(inode
, page_start
, page_end
, &cached_state
);
1805 ClearPageChecked(page
);
1806 set_page_dirty(page
);
1808 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
1809 &cached_state
, GFP_NOFS
);
1812 page_cache_release(page
);
1817 * There are a few paths in the higher layers of the kernel that directly
1818 * set the page dirty bit without asking the filesystem if it is a
1819 * good idea. This causes problems because we want to make sure COW
1820 * properly happens and the data=ordered rules are followed.
1822 * In our case any range that doesn't have the ORDERED bit set
1823 * hasn't been properly setup for IO. We kick off an async process
1824 * to fix it up. The async helper will wait for ordered extents, set
1825 * the delalloc bit and make it safe to write the page.
1827 static int btrfs_writepage_start_hook(struct page
*page
, u64 start
, u64 end
)
1829 struct inode
*inode
= page
->mapping
->host
;
1830 struct btrfs_writepage_fixup
*fixup
;
1831 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1833 /* this page is properly in the ordered list */
1834 if (TestClearPagePrivate2(page
))
1837 if (PageChecked(page
))
1840 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
1844 SetPageChecked(page
);
1845 page_cache_get(page
);
1846 fixup
->work
.func
= btrfs_writepage_fixup_worker
;
1848 btrfs_queue_worker(&root
->fs_info
->fixup_workers
, &fixup
->work
);
1852 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
1853 struct inode
*inode
, u64 file_pos
,
1854 u64 disk_bytenr
, u64 disk_num_bytes
,
1855 u64 num_bytes
, u64 ram_bytes
,
1856 u8 compression
, u8 encryption
,
1857 u16 other_encoding
, int extent_type
)
1859 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1860 struct btrfs_file_extent_item
*fi
;
1861 struct btrfs_path
*path
;
1862 struct extent_buffer
*leaf
;
1863 struct btrfs_key ins
;
1864 int extent_inserted
= 0;
1867 path
= btrfs_alloc_path();
1872 * we may be replacing one extent in the tree with another.
1873 * The new extent is pinned in the extent map, and we don't want
1874 * to drop it from the cache until it is completely in the btree.
1876 * So, tell btrfs_drop_extents to leave this extent in the cache.
1877 * the caller is expected to unpin it and allow it to be merged
1880 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
, file_pos
,
1881 file_pos
+ num_bytes
, NULL
, 0,
1882 1, sizeof(*fi
), &extent_inserted
);
1886 if (!extent_inserted
) {
1887 ins
.objectid
= btrfs_ino(inode
);
1888 ins
.offset
= file_pos
;
1889 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
1891 path
->leave_spinning
= 1;
1892 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
,
1897 leaf
= path
->nodes
[0];
1898 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1899 struct btrfs_file_extent_item
);
1900 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1901 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
1902 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, disk_bytenr
);
1903 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, disk_num_bytes
);
1904 btrfs_set_file_extent_offset(leaf
, fi
, 0);
1905 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
1906 btrfs_set_file_extent_ram_bytes(leaf
, fi
, ram_bytes
);
1907 btrfs_set_file_extent_compression(leaf
, fi
, compression
);
1908 btrfs_set_file_extent_encryption(leaf
, fi
, encryption
);
1909 btrfs_set_file_extent_other_encoding(leaf
, fi
, other_encoding
);
1911 btrfs_mark_buffer_dirty(leaf
);
1912 btrfs_release_path(path
);
1914 inode_add_bytes(inode
, num_bytes
);
1916 ins
.objectid
= disk_bytenr
;
1917 ins
.offset
= disk_num_bytes
;
1918 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1919 ret
= btrfs_alloc_reserved_file_extent(trans
, root
,
1920 root
->root_key
.objectid
,
1921 btrfs_ino(inode
), file_pos
, &ins
);
1923 btrfs_free_path(path
);
1928 /* snapshot-aware defrag */
1929 struct sa_defrag_extent_backref
{
1930 struct rb_node node
;
1931 struct old_sa_defrag_extent
*old
;
1940 struct old_sa_defrag_extent
{
1941 struct list_head list
;
1942 struct new_sa_defrag_extent
*new;
1951 struct new_sa_defrag_extent
{
1952 struct rb_root root
;
1953 struct list_head head
;
1954 struct btrfs_path
*path
;
1955 struct inode
*inode
;
1963 static int backref_comp(struct sa_defrag_extent_backref
*b1
,
1964 struct sa_defrag_extent_backref
*b2
)
1966 if (b1
->root_id
< b2
->root_id
)
1968 else if (b1
->root_id
> b2
->root_id
)
1971 if (b1
->inum
< b2
->inum
)
1973 else if (b1
->inum
> b2
->inum
)
1976 if (b1
->file_pos
< b2
->file_pos
)
1978 else if (b1
->file_pos
> b2
->file_pos
)
1982 * [------------------------------] ===> (a range of space)
1983 * |<--->| |<---->| =============> (fs/file tree A)
1984 * |<---------------------------->| ===> (fs/file tree B)
1986 * A range of space can refer to two file extents in one tree while
1987 * refer to only one file extent in another tree.
1989 * So we may process a disk offset more than one time(two extents in A)
1990 * and locate at the same extent(one extent in B), then insert two same
1991 * backrefs(both refer to the extent in B).
1996 static void backref_insert(struct rb_root
*root
,
1997 struct sa_defrag_extent_backref
*backref
)
1999 struct rb_node
**p
= &root
->rb_node
;
2000 struct rb_node
*parent
= NULL
;
2001 struct sa_defrag_extent_backref
*entry
;
2006 entry
= rb_entry(parent
, struct sa_defrag_extent_backref
, node
);
2008 ret
= backref_comp(backref
, entry
);
2012 p
= &(*p
)->rb_right
;
2015 rb_link_node(&backref
->node
, parent
, p
);
2016 rb_insert_color(&backref
->node
, root
);
2020 * Note the backref might has changed, and in this case we just return 0.
2022 static noinline
int record_one_backref(u64 inum
, u64 offset
, u64 root_id
,
2025 struct btrfs_file_extent_item
*extent
;
2026 struct btrfs_fs_info
*fs_info
;
2027 struct old_sa_defrag_extent
*old
= ctx
;
2028 struct new_sa_defrag_extent
*new = old
->new;
2029 struct btrfs_path
*path
= new->path
;
2030 struct btrfs_key key
;
2031 struct btrfs_root
*root
;
2032 struct sa_defrag_extent_backref
*backref
;
2033 struct extent_buffer
*leaf
;
2034 struct inode
*inode
= new->inode
;
2040 if (BTRFS_I(inode
)->root
->root_key
.objectid
== root_id
&&
2041 inum
== btrfs_ino(inode
))
2044 key
.objectid
= root_id
;
2045 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2046 key
.offset
= (u64
)-1;
2048 fs_info
= BTRFS_I(inode
)->root
->fs_info
;
2049 root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
2051 if (PTR_ERR(root
) == -ENOENT
)
2054 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2055 inum
, offset
, root_id
);
2056 return PTR_ERR(root
);
2059 key
.objectid
= inum
;
2060 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2061 if (offset
> (u64
)-1 << 32)
2064 key
.offset
= offset
;
2066 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2067 if (WARN_ON(ret
< 0))
2074 leaf
= path
->nodes
[0];
2075 slot
= path
->slots
[0];
2077 if (slot
>= btrfs_header_nritems(leaf
)) {
2078 ret
= btrfs_next_leaf(root
, path
);
2081 } else if (ret
> 0) {
2090 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
2092 if (key
.objectid
> inum
)
2095 if (key
.objectid
< inum
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2098 extent
= btrfs_item_ptr(leaf
, slot
,
2099 struct btrfs_file_extent_item
);
2101 if (btrfs_file_extent_disk_bytenr(leaf
, extent
) != old
->bytenr
)
2105 * 'offset' refers to the exact key.offset,
2106 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2107 * (key.offset - extent_offset).
2109 if (key
.offset
!= offset
)
2112 extent_offset
= btrfs_file_extent_offset(leaf
, extent
);
2113 num_bytes
= btrfs_file_extent_num_bytes(leaf
, extent
);
2115 if (extent_offset
>= old
->extent_offset
+ old
->offset
+
2116 old
->len
|| extent_offset
+ num_bytes
<=
2117 old
->extent_offset
+ old
->offset
)
2122 backref
= kmalloc(sizeof(*backref
), GFP_NOFS
);
2128 backref
->root_id
= root_id
;
2129 backref
->inum
= inum
;
2130 backref
->file_pos
= offset
;
2131 backref
->num_bytes
= num_bytes
;
2132 backref
->extent_offset
= extent_offset
;
2133 backref
->generation
= btrfs_file_extent_generation(leaf
, extent
);
2135 backref_insert(&new->root
, backref
);
2138 btrfs_release_path(path
);
2143 static noinline
bool record_extent_backrefs(struct btrfs_path
*path
,
2144 struct new_sa_defrag_extent
*new)
2146 struct btrfs_fs_info
*fs_info
= BTRFS_I(new->inode
)->root
->fs_info
;
2147 struct old_sa_defrag_extent
*old
, *tmp
;
2152 list_for_each_entry_safe(old
, tmp
, &new->head
, list
) {
2153 ret
= iterate_inodes_from_logical(old
->bytenr
+
2154 old
->extent_offset
, fs_info
,
2155 path
, record_one_backref
,
2157 if (ret
< 0 && ret
!= -ENOENT
)
2160 /* no backref to be processed for this extent */
2162 list_del(&old
->list
);
2167 if (list_empty(&new->head
))
2173 static int relink_is_mergable(struct extent_buffer
*leaf
,
2174 struct btrfs_file_extent_item
*fi
,
2175 struct new_sa_defrag_extent
*new)
2177 if (btrfs_file_extent_disk_bytenr(leaf
, fi
) != new->bytenr
)
2180 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_REG
)
2183 if (btrfs_file_extent_compression(leaf
, fi
) != new->compress_type
)
2186 if (btrfs_file_extent_encryption(leaf
, fi
) ||
2187 btrfs_file_extent_other_encoding(leaf
, fi
))
2194 * Note the backref might has changed, and in this case we just return 0.
2196 static noinline
int relink_extent_backref(struct btrfs_path
*path
,
2197 struct sa_defrag_extent_backref
*prev
,
2198 struct sa_defrag_extent_backref
*backref
)
2200 struct btrfs_file_extent_item
*extent
;
2201 struct btrfs_file_extent_item
*item
;
2202 struct btrfs_ordered_extent
*ordered
;
2203 struct btrfs_trans_handle
*trans
;
2204 struct btrfs_fs_info
*fs_info
;
2205 struct btrfs_root
*root
;
2206 struct btrfs_key key
;
2207 struct extent_buffer
*leaf
;
2208 struct old_sa_defrag_extent
*old
= backref
->old
;
2209 struct new_sa_defrag_extent
*new = old
->new;
2210 struct inode
*src_inode
= new->inode
;
2211 struct inode
*inode
;
2212 struct extent_state
*cached
= NULL
;
2221 if (prev
&& prev
->root_id
== backref
->root_id
&&
2222 prev
->inum
== backref
->inum
&&
2223 prev
->file_pos
+ prev
->num_bytes
== backref
->file_pos
)
2226 /* step 1: get root */
2227 key
.objectid
= backref
->root_id
;
2228 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2229 key
.offset
= (u64
)-1;
2231 fs_info
= BTRFS_I(src_inode
)->root
->fs_info
;
2232 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
2234 root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
2236 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2237 if (PTR_ERR(root
) == -ENOENT
)
2239 return PTR_ERR(root
);
2242 /* step 2: get inode */
2243 key
.objectid
= backref
->inum
;
2244 key
.type
= BTRFS_INODE_ITEM_KEY
;
2247 inode
= btrfs_iget(fs_info
->sb
, &key
, root
, NULL
);
2248 if (IS_ERR(inode
)) {
2249 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2253 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2255 /* step 3: relink backref */
2256 lock_start
= backref
->file_pos
;
2257 lock_end
= backref
->file_pos
+ backref
->num_bytes
- 1;
2258 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lock_start
, lock_end
,
2261 ordered
= btrfs_lookup_first_ordered_extent(inode
, lock_end
);
2263 btrfs_put_ordered_extent(ordered
);
2267 trans
= btrfs_join_transaction(root
);
2268 if (IS_ERR(trans
)) {
2269 ret
= PTR_ERR(trans
);
2273 key
.objectid
= backref
->inum
;
2274 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2275 key
.offset
= backref
->file_pos
;
2277 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2280 } else if (ret
> 0) {
2285 extent
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2286 struct btrfs_file_extent_item
);
2288 if (btrfs_file_extent_generation(path
->nodes
[0], extent
) !=
2289 backref
->generation
)
2292 btrfs_release_path(path
);
2294 start
= backref
->file_pos
;
2295 if (backref
->extent_offset
< old
->extent_offset
+ old
->offset
)
2296 start
+= old
->extent_offset
+ old
->offset
-
2297 backref
->extent_offset
;
2299 len
= min(backref
->extent_offset
+ backref
->num_bytes
,
2300 old
->extent_offset
+ old
->offset
+ old
->len
);
2301 len
-= max(backref
->extent_offset
, old
->extent_offset
+ old
->offset
);
2303 ret
= btrfs_drop_extents(trans
, root
, inode
, start
,
2308 key
.objectid
= btrfs_ino(inode
);
2309 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2312 path
->leave_spinning
= 1;
2314 struct btrfs_file_extent_item
*fi
;
2316 struct btrfs_key found_key
;
2318 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2323 leaf
= path
->nodes
[0];
2324 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2326 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2327 struct btrfs_file_extent_item
);
2328 extent_len
= btrfs_file_extent_num_bytes(leaf
, fi
);
2330 if (extent_len
+ found_key
.offset
== start
&&
2331 relink_is_mergable(leaf
, fi
, new)) {
2332 btrfs_set_file_extent_num_bytes(leaf
, fi
,
2334 btrfs_mark_buffer_dirty(leaf
);
2335 inode_add_bytes(inode
, len
);
2341 btrfs_release_path(path
);
2346 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
2349 btrfs_abort_transaction(trans
, root
, ret
);
2353 leaf
= path
->nodes
[0];
2354 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2355 struct btrfs_file_extent_item
);
2356 btrfs_set_file_extent_disk_bytenr(leaf
, item
, new->bytenr
);
2357 btrfs_set_file_extent_disk_num_bytes(leaf
, item
, new->disk_len
);
2358 btrfs_set_file_extent_offset(leaf
, item
, start
- new->file_pos
);
2359 btrfs_set_file_extent_num_bytes(leaf
, item
, len
);
2360 btrfs_set_file_extent_ram_bytes(leaf
, item
, new->len
);
2361 btrfs_set_file_extent_generation(leaf
, item
, trans
->transid
);
2362 btrfs_set_file_extent_type(leaf
, item
, BTRFS_FILE_EXTENT_REG
);
2363 btrfs_set_file_extent_compression(leaf
, item
, new->compress_type
);
2364 btrfs_set_file_extent_encryption(leaf
, item
, 0);
2365 btrfs_set_file_extent_other_encoding(leaf
, item
, 0);
2367 btrfs_mark_buffer_dirty(leaf
);
2368 inode_add_bytes(inode
, len
);
2369 btrfs_release_path(path
);
2371 ret
= btrfs_inc_extent_ref(trans
, root
, new->bytenr
,
2373 backref
->root_id
, backref
->inum
,
2374 new->file_pos
, 0); /* start - extent_offset */
2376 btrfs_abort_transaction(trans
, root
, ret
);
2382 btrfs_release_path(path
);
2383 path
->leave_spinning
= 0;
2384 btrfs_end_transaction(trans
, root
);
2386 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lock_start
, lock_end
,
2392 static void free_sa_defrag_extent(struct new_sa_defrag_extent
*new)
2394 struct old_sa_defrag_extent
*old
, *tmp
;
2399 list_for_each_entry_safe(old
, tmp
, &new->head
, list
) {
2400 list_del(&old
->list
);
2406 static void relink_file_extents(struct new_sa_defrag_extent
*new)
2408 struct btrfs_path
*path
;
2409 struct sa_defrag_extent_backref
*backref
;
2410 struct sa_defrag_extent_backref
*prev
= NULL
;
2411 struct inode
*inode
;
2412 struct btrfs_root
*root
;
2413 struct rb_node
*node
;
2417 root
= BTRFS_I(inode
)->root
;
2419 path
= btrfs_alloc_path();
2423 if (!record_extent_backrefs(path
, new)) {
2424 btrfs_free_path(path
);
2427 btrfs_release_path(path
);
2430 node
= rb_first(&new->root
);
2433 rb_erase(node
, &new->root
);
2435 backref
= rb_entry(node
, struct sa_defrag_extent_backref
, node
);
2437 ret
= relink_extent_backref(path
, prev
, backref
);
2450 btrfs_free_path(path
);
2452 free_sa_defrag_extent(new);
2454 atomic_dec(&root
->fs_info
->defrag_running
);
2455 wake_up(&root
->fs_info
->transaction_wait
);
2458 static struct new_sa_defrag_extent
*
2459 record_old_file_extents(struct inode
*inode
,
2460 struct btrfs_ordered_extent
*ordered
)
2462 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2463 struct btrfs_path
*path
;
2464 struct btrfs_key key
;
2465 struct old_sa_defrag_extent
*old
;
2466 struct new_sa_defrag_extent
*new;
2469 new = kmalloc(sizeof(*new), GFP_NOFS
);
2474 new->file_pos
= ordered
->file_offset
;
2475 new->len
= ordered
->len
;
2476 new->bytenr
= ordered
->start
;
2477 new->disk_len
= ordered
->disk_len
;
2478 new->compress_type
= ordered
->compress_type
;
2479 new->root
= RB_ROOT
;
2480 INIT_LIST_HEAD(&new->head
);
2482 path
= btrfs_alloc_path();
2486 key
.objectid
= btrfs_ino(inode
);
2487 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2488 key
.offset
= new->file_pos
;
2490 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2493 if (ret
> 0 && path
->slots
[0] > 0)
2496 /* find out all the old extents for the file range */
2498 struct btrfs_file_extent_item
*extent
;
2499 struct extent_buffer
*l
;
2508 slot
= path
->slots
[0];
2510 if (slot
>= btrfs_header_nritems(l
)) {
2511 ret
= btrfs_next_leaf(root
, path
);
2519 btrfs_item_key_to_cpu(l
, &key
, slot
);
2521 if (key
.objectid
!= btrfs_ino(inode
))
2523 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2525 if (key
.offset
>= new->file_pos
+ new->len
)
2528 extent
= btrfs_item_ptr(l
, slot
, struct btrfs_file_extent_item
);
2530 num_bytes
= btrfs_file_extent_num_bytes(l
, extent
);
2531 if (key
.offset
+ num_bytes
< new->file_pos
)
2534 disk_bytenr
= btrfs_file_extent_disk_bytenr(l
, extent
);
2538 extent_offset
= btrfs_file_extent_offset(l
, extent
);
2540 old
= kmalloc(sizeof(*old
), GFP_NOFS
);
2544 offset
= max(new->file_pos
, key
.offset
);
2545 end
= min(new->file_pos
+ new->len
, key
.offset
+ num_bytes
);
2547 old
->bytenr
= disk_bytenr
;
2548 old
->extent_offset
= extent_offset
;
2549 old
->offset
= offset
- key
.offset
;
2550 old
->len
= end
- offset
;
2553 list_add_tail(&old
->list
, &new->head
);
2559 btrfs_free_path(path
);
2560 atomic_inc(&root
->fs_info
->defrag_running
);
2565 btrfs_free_path(path
);
2567 free_sa_defrag_extent(new);
2571 /* as ordered data IO finishes, this gets called so we can finish
2572 * an ordered extent if the range of bytes in the file it covers are
2575 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
)
2577 struct inode
*inode
= ordered_extent
->inode
;
2578 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2579 struct btrfs_trans_handle
*trans
= NULL
;
2580 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2581 struct extent_state
*cached_state
= NULL
;
2582 struct new_sa_defrag_extent
*new = NULL
;
2583 int compress_type
= 0;
2585 u64 logical_len
= ordered_extent
->len
;
2587 bool truncated
= false;
2589 nolock
= btrfs_is_free_space_inode(inode
);
2591 if (test_bit(BTRFS_ORDERED_IOERR
, &ordered_extent
->flags
)) {
2596 if (test_bit(BTRFS_ORDERED_TRUNCATED
, &ordered_extent
->flags
)) {
2598 logical_len
= ordered_extent
->truncated_len
;
2599 /* Truncated the entire extent, don't bother adding */
2604 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
)) {
2605 BUG_ON(!list_empty(&ordered_extent
->list
)); /* Logic error */
2606 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
2608 trans
= btrfs_join_transaction_nolock(root
);
2610 trans
= btrfs_join_transaction(root
);
2611 if (IS_ERR(trans
)) {
2612 ret
= PTR_ERR(trans
);
2616 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
2617 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
2618 if (ret
) /* -ENOMEM or corruption */
2619 btrfs_abort_transaction(trans
, root
, ret
);
2623 lock_extent_bits(io_tree
, ordered_extent
->file_offset
,
2624 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
2627 ret
= test_range_bit(io_tree
, ordered_extent
->file_offset
,
2628 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
2629 EXTENT_DEFRAG
, 1, cached_state
);
2631 u64 last_snapshot
= btrfs_root_last_snapshot(&root
->root_item
);
2632 if (0 && last_snapshot
>= BTRFS_I(inode
)->generation
)
2633 /* the inode is shared */
2634 new = record_old_file_extents(inode
, ordered_extent
);
2636 clear_extent_bit(io_tree
, ordered_extent
->file_offset
,
2637 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
2638 EXTENT_DEFRAG
, 0, 0, &cached_state
, GFP_NOFS
);
2642 trans
= btrfs_join_transaction_nolock(root
);
2644 trans
= btrfs_join_transaction(root
);
2645 if (IS_ERR(trans
)) {
2646 ret
= PTR_ERR(trans
);
2650 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
2652 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
2653 compress_type
= ordered_extent
->compress_type
;
2654 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
2655 BUG_ON(compress_type
);
2656 ret
= btrfs_mark_extent_written(trans
, inode
,
2657 ordered_extent
->file_offset
,
2658 ordered_extent
->file_offset
+
2661 BUG_ON(root
== root
->fs_info
->tree_root
);
2662 ret
= insert_reserved_file_extent(trans
, inode
,
2663 ordered_extent
->file_offset
,
2664 ordered_extent
->start
,
2665 ordered_extent
->disk_len
,
2666 logical_len
, logical_len
,
2667 compress_type
, 0, 0,
2668 BTRFS_FILE_EXTENT_REG
);
2670 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
2671 ordered_extent
->file_offset
, ordered_extent
->len
,
2674 btrfs_abort_transaction(trans
, root
, ret
);
2678 add_pending_csums(trans
, inode
, ordered_extent
->file_offset
,
2679 &ordered_extent
->list
);
2681 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
2682 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
2683 if (ret
) { /* -ENOMEM or corruption */
2684 btrfs_abort_transaction(trans
, root
, ret
);
2689 unlock_extent_cached(io_tree
, ordered_extent
->file_offset
,
2690 ordered_extent
->file_offset
+
2691 ordered_extent
->len
- 1, &cached_state
, GFP_NOFS
);
2693 if (root
!= root
->fs_info
->tree_root
)
2694 btrfs_delalloc_release_metadata(inode
, ordered_extent
->len
);
2696 btrfs_end_transaction(trans
, root
);
2698 if (ret
|| truncated
) {
2702 start
= ordered_extent
->file_offset
+ logical_len
;
2704 start
= ordered_extent
->file_offset
;
2705 end
= ordered_extent
->file_offset
+ ordered_extent
->len
- 1;
2706 clear_extent_uptodate(io_tree
, start
, end
, NULL
, GFP_NOFS
);
2708 /* Drop the cache for the part of the extent we didn't write. */
2709 btrfs_drop_extent_cache(inode
, start
, end
, 0);
2712 * If the ordered extent had an IOERR or something else went
2713 * wrong we need to return the space for this ordered extent
2714 * back to the allocator. We only free the extent in the
2715 * truncated case if we didn't write out the extent at all.
2717 if ((ret
|| !logical_len
) &&
2718 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
) &&
2719 !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
))
2720 btrfs_free_reserved_extent(root
, ordered_extent
->start
,
2721 ordered_extent
->disk_len
);
2726 * This needs to be done to make sure anybody waiting knows we are done
2727 * updating everything for this ordered extent.
2729 btrfs_remove_ordered_extent(inode
, ordered_extent
);
2731 /* for snapshot-aware defrag */
2734 free_sa_defrag_extent(new);
2735 atomic_dec(&root
->fs_info
->defrag_running
);
2737 relink_file_extents(new);
2742 btrfs_put_ordered_extent(ordered_extent
);
2743 /* once for the tree */
2744 btrfs_put_ordered_extent(ordered_extent
);
2749 static void finish_ordered_fn(struct btrfs_work
*work
)
2751 struct btrfs_ordered_extent
*ordered_extent
;
2752 ordered_extent
= container_of(work
, struct btrfs_ordered_extent
, work
);
2753 btrfs_finish_ordered_io(ordered_extent
);
2756 static int btrfs_writepage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
2757 struct extent_state
*state
, int uptodate
)
2759 struct inode
*inode
= page
->mapping
->host
;
2760 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2761 struct btrfs_ordered_extent
*ordered_extent
= NULL
;
2762 struct btrfs_workers
*workers
;
2764 trace_btrfs_writepage_end_io_hook(page
, start
, end
, uptodate
);
2766 ClearPagePrivate2(page
);
2767 if (!btrfs_dec_test_ordered_pending(inode
, &ordered_extent
, start
,
2768 end
- start
+ 1, uptodate
))
2771 ordered_extent
->work
.func
= finish_ordered_fn
;
2772 ordered_extent
->work
.flags
= 0;
2774 if (btrfs_is_free_space_inode(inode
))
2775 workers
= &root
->fs_info
->endio_freespace_worker
;
2777 workers
= &root
->fs_info
->endio_write_workers
;
2778 btrfs_queue_worker(workers
, &ordered_extent
->work
);
2784 * when reads are done, we need to check csums to verify the data is correct
2785 * if there's a match, we allow the bio to finish. If not, the code in
2786 * extent_io.c will try to find good copies for us.
2788 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio
*io_bio
,
2789 u64 phy_offset
, struct page
*page
,
2790 u64 start
, u64 end
, int mirror
)
2792 size_t offset
= start
- page_offset(page
);
2793 struct inode
*inode
= page
->mapping
->host
;
2794 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2796 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2799 static DEFINE_RATELIMIT_STATE(_rs
, DEFAULT_RATELIMIT_INTERVAL
,
2800 DEFAULT_RATELIMIT_BURST
);
2802 if (PageChecked(page
)) {
2803 ClearPageChecked(page
);
2807 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
2810 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
2811 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1, NULL
)) {
2812 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
,
2817 phy_offset
>>= inode
->i_sb
->s_blocksize_bits
;
2818 csum_expected
= *(((u32
*)io_bio
->csum
) + phy_offset
);
2820 kaddr
= kmap_atomic(page
);
2821 csum
= btrfs_csum_data(kaddr
+ offset
, csum
, end
- start
+ 1);
2822 btrfs_csum_final(csum
, (char *)&csum
);
2823 if (csum
!= csum_expected
)
2826 kunmap_atomic(kaddr
);
2831 if (__ratelimit(&_rs
))
2832 btrfs_info(root
->fs_info
, "csum failed ino %llu off %llu csum %u expected csum %u",
2833 btrfs_ino(page
->mapping
->host
), start
, csum
, csum_expected
);
2834 memset(kaddr
+ offset
, 1, end
- start
+ 1);
2835 flush_dcache_page(page
);
2836 kunmap_atomic(kaddr
);
2837 if (csum_expected
== 0)
2842 struct delayed_iput
{
2843 struct list_head list
;
2844 struct inode
*inode
;
2847 /* JDM: If this is fs-wide, why can't we add a pointer to
2848 * btrfs_inode instead and avoid the allocation? */
2849 void btrfs_add_delayed_iput(struct inode
*inode
)
2851 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
2852 struct delayed_iput
*delayed
;
2854 if (atomic_add_unless(&inode
->i_count
, -1, 1))
2857 delayed
= kmalloc(sizeof(*delayed
), GFP_NOFS
| __GFP_NOFAIL
);
2858 delayed
->inode
= inode
;
2860 spin_lock(&fs_info
->delayed_iput_lock
);
2861 list_add_tail(&delayed
->list
, &fs_info
->delayed_iputs
);
2862 spin_unlock(&fs_info
->delayed_iput_lock
);
2865 void btrfs_run_delayed_iputs(struct btrfs_root
*root
)
2868 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2869 struct delayed_iput
*delayed
;
2872 spin_lock(&fs_info
->delayed_iput_lock
);
2873 empty
= list_empty(&fs_info
->delayed_iputs
);
2874 spin_unlock(&fs_info
->delayed_iput_lock
);
2878 spin_lock(&fs_info
->delayed_iput_lock
);
2879 list_splice_init(&fs_info
->delayed_iputs
, &list
);
2880 spin_unlock(&fs_info
->delayed_iput_lock
);
2882 while (!list_empty(&list
)) {
2883 delayed
= list_entry(list
.next
, struct delayed_iput
, list
);
2884 list_del(&delayed
->list
);
2885 iput(delayed
->inode
);
2891 * This is called in transaction commit time. If there are no orphan
2892 * files in the subvolume, it removes orphan item and frees block_rsv
2895 void btrfs_orphan_commit_root(struct btrfs_trans_handle
*trans
,
2896 struct btrfs_root
*root
)
2898 struct btrfs_block_rsv
*block_rsv
;
2901 if (atomic_read(&root
->orphan_inodes
) ||
2902 root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
)
2905 spin_lock(&root
->orphan_lock
);
2906 if (atomic_read(&root
->orphan_inodes
)) {
2907 spin_unlock(&root
->orphan_lock
);
2911 if (root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
) {
2912 spin_unlock(&root
->orphan_lock
);
2916 block_rsv
= root
->orphan_block_rsv
;
2917 root
->orphan_block_rsv
= NULL
;
2918 spin_unlock(&root
->orphan_lock
);
2920 if (root
->orphan_item_inserted
&&
2921 btrfs_root_refs(&root
->root_item
) > 0) {
2922 ret
= btrfs_del_orphan_item(trans
, root
->fs_info
->tree_root
,
2923 root
->root_key
.objectid
);
2925 btrfs_abort_transaction(trans
, root
, ret
);
2927 root
->orphan_item_inserted
= 0;
2931 WARN_ON(block_rsv
->size
> 0);
2932 btrfs_free_block_rsv(root
, block_rsv
);
2937 * This creates an orphan entry for the given inode in case something goes
2938 * wrong in the middle of an unlink/truncate.
2940 * NOTE: caller of this function should reserve 5 units of metadata for
2943 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
2945 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2946 struct btrfs_block_rsv
*block_rsv
= NULL
;
2951 if (!root
->orphan_block_rsv
) {
2952 block_rsv
= btrfs_alloc_block_rsv(root
, BTRFS_BLOCK_RSV_TEMP
);
2957 spin_lock(&root
->orphan_lock
);
2958 if (!root
->orphan_block_rsv
) {
2959 root
->orphan_block_rsv
= block_rsv
;
2960 } else if (block_rsv
) {
2961 btrfs_free_block_rsv(root
, block_rsv
);
2965 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
2966 &BTRFS_I(inode
)->runtime_flags
)) {
2969 * For proper ENOSPC handling, we should do orphan
2970 * cleanup when mounting. But this introduces backward
2971 * compatibility issue.
2973 if (!xchg(&root
->orphan_item_inserted
, 1))
2979 atomic_inc(&root
->orphan_inodes
);
2982 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
2983 &BTRFS_I(inode
)->runtime_flags
))
2985 spin_unlock(&root
->orphan_lock
);
2987 /* grab metadata reservation from transaction handle */
2989 ret
= btrfs_orphan_reserve_metadata(trans
, inode
);
2990 BUG_ON(ret
); /* -ENOSPC in reservation; Logic error? JDM */
2993 /* insert an orphan item to track this unlinked/truncated file */
2995 ret
= btrfs_insert_orphan_item(trans
, root
, btrfs_ino(inode
));
2997 atomic_dec(&root
->orphan_inodes
);
2999 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
3000 &BTRFS_I(inode
)->runtime_flags
);
3001 btrfs_orphan_release_metadata(inode
);
3003 if (ret
!= -EEXIST
) {
3004 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3005 &BTRFS_I(inode
)->runtime_flags
);
3006 btrfs_abort_transaction(trans
, root
, ret
);
3013 /* insert an orphan item to track subvolume contains orphan files */
3015 ret
= btrfs_insert_orphan_item(trans
, root
->fs_info
->tree_root
,
3016 root
->root_key
.objectid
);
3017 if (ret
&& ret
!= -EEXIST
) {
3018 btrfs_abort_transaction(trans
, root
, ret
);
3026 * We have done the truncate/delete so we can go ahead and remove the orphan
3027 * item for this particular inode.
3029 static int btrfs_orphan_del(struct btrfs_trans_handle
*trans
,
3030 struct inode
*inode
)
3032 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3033 int delete_item
= 0;
3034 int release_rsv
= 0;
3037 spin_lock(&root
->orphan_lock
);
3038 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3039 &BTRFS_I(inode
)->runtime_flags
))
3042 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
3043 &BTRFS_I(inode
)->runtime_flags
))
3045 spin_unlock(&root
->orphan_lock
);
3048 atomic_dec(&root
->orphan_inodes
);
3050 ret
= btrfs_del_orphan_item(trans
, root
,
3055 btrfs_orphan_release_metadata(inode
);
3061 * this cleans up any orphans that may be left on the list from the last use
3064 int btrfs_orphan_cleanup(struct btrfs_root
*root
)
3066 struct btrfs_path
*path
;
3067 struct extent_buffer
*leaf
;
3068 struct btrfs_key key
, found_key
;
3069 struct btrfs_trans_handle
*trans
;
3070 struct inode
*inode
;
3071 u64 last_objectid
= 0;
3072 int ret
= 0, nr_unlink
= 0, nr_truncate
= 0;
3074 if (cmpxchg(&root
->orphan_cleanup_state
, 0, ORPHAN_CLEANUP_STARTED
))
3077 path
= btrfs_alloc_path();
3084 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
3085 btrfs_set_key_type(&key
, BTRFS_ORPHAN_ITEM_KEY
);
3086 key
.offset
= (u64
)-1;
3089 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3094 * if ret == 0 means we found what we were searching for, which
3095 * is weird, but possible, so only screw with path if we didn't
3096 * find the key and see if we have stuff that matches
3100 if (path
->slots
[0] == 0)
3105 /* pull out the item */
3106 leaf
= path
->nodes
[0];
3107 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3109 /* make sure the item matches what we want */
3110 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
3112 if (btrfs_key_type(&found_key
) != BTRFS_ORPHAN_ITEM_KEY
)
3115 /* release the path since we're done with it */
3116 btrfs_release_path(path
);
3119 * this is where we are basically btrfs_lookup, without the
3120 * crossing root thing. we store the inode number in the
3121 * offset of the orphan item.
3124 if (found_key
.offset
== last_objectid
) {
3125 btrfs_err(root
->fs_info
,
3126 "Error removing orphan entry, stopping orphan cleanup");
3131 last_objectid
= found_key
.offset
;
3133 found_key
.objectid
= found_key
.offset
;
3134 found_key
.type
= BTRFS_INODE_ITEM_KEY
;
3135 found_key
.offset
= 0;
3136 inode
= btrfs_iget(root
->fs_info
->sb
, &found_key
, root
, NULL
);
3137 ret
= PTR_ERR_OR_ZERO(inode
);
3138 if (ret
&& ret
!= -ESTALE
)
3141 if (ret
== -ESTALE
&& root
== root
->fs_info
->tree_root
) {
3142 struct btrfs_root
*dead_root
;
3143 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3144 int is_dead_root
= 0;
3147 * this is an orphan in the tree root. Currently these
3148 * could come from 2 sources:
3149 * a) a snapshot deletion in progress
3150 * b) a free space cache inode
3151 * We need to distinguish those two, as the snapshot
3152 * orphan must not get deleted.
3153 * find_dead_roots already ran before us, so if this
3154 * is a snapshot deletion, we should find the root
3155 * in the dead_roots list
3157 spin_lock(&fs_info
->trans_lock
);
3158 list_for_each_entry(dead_root
, &fs_info
->dead_roots
,
3160 if (dead_root
->root_key
.objectid
==
3161 found_key
.objectid
) {
3166 spin_unlock(&fs_info
->trans_lock
);
3168 /* prevent this orphan from being found again */
3169 key
.offset
= found_key
.objectid
- 1;
3174 * Inode is already gone but the orphan item is still there,
3175 * kill the orphan item.
3177 if (ret
== -ESTALE
) {
3178 trans
= btrfs_start_transaction(root
, 1);
3179 if (IS_ERR(trans
)) {
3180 ret
= PTR_ERR(trans
);
3183 btrfs_debug(root
->fs_info
, "auto deleting %Lu",
3184 found_key
.objectid
);
3185 ret
= btrfs_del_orphan_item(trans
, root
,
3186 found_key
.objectid
);
3187 btrfs_end_transaction(trans
, root
);
3194 * add this inode to the orphan list so btrfs_orphan_del does
3195 * the proper thing when we hit it
3197 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3198 &BTRFS_I(inode
)->runtime_flags
);
3199 atomic_inc(&root
->orphan_inodes
);
3201 /* if we have links, this was a truncate, lets do that */
3202 if (inode
->i_nlink
) {
3203 if (WARN_ON(!S_ISREG(inode
->i_mode
))) {
3209 /* 1 for the orphan item deletion. */
3210 trans
= btrfs_start_transaction(root
, 1);
3211 if (IS_ERR(trans
)) {
3213 ret
= PTR_ERR(trans
);
3216 ret
= btrfs_orphan_add(trans
, inode
);
3217 btrfs_end_transaction(trans
, root
);
3223 ret
= btrfs_truncate(inode
);
3225 btrfs_orphan_del(NULL
, inode
);
3230 /* this will do delete_inode and everything for us */
3235 /* release the path since we're done with it */
3236 btrfs_release_path(path
);
3238 root
->orphan_cleanup_state
= ORPHAN_CLEANUP_DONE
;
3240 if (root
->orphan_block_rsv
)
3241 btrfs_block_rsv_release(root
, root
->orphan_block_rsv
,
3244 if (root
->orphan_block_rsv
|| root
->orphan_item_inserted
) {
3245 trans
= btrfs_join_transaction(root
);
3247 btrfs_end_transaction(trans
, root
);
3251 btrfs_debug(root
->fs_info
, "unlinked %d orphans", nr_unlink
);
3253 btrfs_debug(root
->fs_info
, "truncated %d orphans", nr_truncate
);
3257 btrfs_crit(root
->fs_info
,
3258 "could not do orphan cleanup %d", ret
);
3259 btrfs_free_path(path
);
3264 * very simple check to peek ahead in the leaf looking for xattrs. If we
3265 * don't find any xattrs, we know there can't be any acls.
3267 * slot is the slot the inode is in, objectid is the objectid of the inode
3269 static noinline
int acls_after_inode_item(struct extent_buffer
*leaf
,
3270 int slot
, u64 objectid
,
3271 int *first_xattr_slot
)
3273 u32 nritems
= btrfs_header_nritems(leaf
);
3274 struct btrfs_key found_key
;
3275 static u64 xattr_access
= 0;
3276 static u64 xattr_default
= 0;
3279 if (!xattr_access
) {
3280 xattr_access
= btrfs_name_hash(POSIX_ACL_XATTR_ACCESS
,
3281 strlen(POSIX_ACL_XATTR_ACCESS
));
3282 xattr_default
= btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT
,
3283 strlen(POSIX_ACL_XATTR_DEFAULT
));
3287 *first_xattr_slot
= -1;
3288 while (slot
< nritems
) {
3289 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3291 /* we found a different objectid, there must not be acls */
3292 if (found_key
.objectid
!= objectid
)
3295 /* we found an xattr, assume we've got an acl */
3296 if (found_key
.type
== BTRFS_XATTR_ITEM_KEY
) {
3297 if (*first_xattr_slot
== -1)
3298 *first_xattr_slot
= slot
;
3299 if (found_key
.offset
== xattr_access
||
3300 found_key
.offset
== xattr_default
)
3305 * we found a key greater than an xattr key, there can't
3306 * be any acls later on
3308 if (found_key
.type
> BTRFS_XATTR_ITEM_KEY
)
3315 * it goes inode, inode backrefs, xattrs, extents,
3316 * so if there are a ton of hard links to an inode there can
3317 * be a lot of backrefs. Don't waste time searching too hard,
3318 * this is just an optimization
3323 /* we hit the end of the leaf before we found an xattr or
3324 * something larger than an xattr. We have to assume the inode
3327 if (*first_xattr_slot
== -1)
3328 *first_xattr_slot
= slot
;
3333 * read an inode from the btree into the in-memory inode
3335 static void btrfs_read_locked_inode(struct inode
*inode
)
3337 struct btrfs_path
*path
;
3338 struct extent_buffer
*leaf
;
3339 struct btrfs_inode_item
*inode_item
;
3340 struct btrfs_timespec
*tspec
;
3341 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3342 struct btrfs_key location
;
3347 bool filled
= false;
3348 int first_xattr_slot
;
3350 ret
= btrfs_fill_inode(inode
, &rdev
);
3354 path
= btrfs_alloc_path();
3358 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
3360 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
3364 leaf
= path
->nodes
[0];
3369 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
3370 struct btrfs_inode_item
);
3371 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
3372 set_nlink(inode
, btrfs_inode_nlink(leaf
, inode_item
));
3373 i_uid_write(inode
, btrfs_inode_uid(leaf
, inode_item
));
3374 i_gid_write(inode
, btrfs_inode_gid(leaf
, inode_item
));
3375 btrfs_i_size_write(inode
, btrfs_inode_size(leaf
, inode_item
));
3377 tspec
= btrfs_inode_atime(inode_item
);
3378 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
3379 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
3381 tspec
= btrfs_inode_mtime(inode_item
);
3382 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
3383 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
3385 tspec
= btrfs_inode_ctime(inode_item
);
3386 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
3387 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
3389 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
3390 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
3391 BTRFS_I(inode
)->last_trans
= btrfs_inode_transid(leaf
, inode_item
);
3394 * If we were modified in the current generation and evicted from memory
3395 * and then re-read we need to do a full sync since we don't have any
3396 * idea about which extents were modified before we were evicted from
3399 if (BTRFS_I(inode
)->last_trans
== root
->fs_info
->generation
)
3400 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3401 &BTRFS_I(inode
)->runtime_flags
);
3403 inode
->i_version
= btrfs_inode_sequence(leaf
, inode_item
);
3404 inode
->i_generation
= BTRFS_I(inode
)->generation
;
3406 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
3408 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
3409 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
3413 if (inode
->i_nlink
!= 1 ||
3414 path
->slots
[0] >= btrfs_header_nritems(leaf
))
3417 btrfs_item_key_to_cpu(leaf
, &location
, path
->slots
[0]);
3418 if (location
.objectid
!= btrfs_ino(inode
))
3421 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
3422 if (location
.type
== BTRFS_INODE_REF_KEY
) {
3423 struct btrfs_inode_ref
*ref
;
3425 ref
= (struct btrfs_inode_ref
*)ptr
;
3426 BTRFS_I(inode
)->dir_index
= btrfs_inode_ref_index(leaf
, ref
);
3427 } else if (location
.type
== BTRFS_INODE_EXTREF_KEY
) {
3428 struct btrfs_inode_extref
*extref
;
3430 extref
= (struct btrfs_inode_extref
*)ptr
;
3431 BTRFS_I(inode
)->dir_index
= btrfs_inode_extref_index(leaf
,
3436 * try to precache a NULL acl entry for files that don't have
3437 * any xattrs or acls
3439 maybe_acls
= acls_after_inode_item(leaf
, path
->slots
[0],
3440 btrfs_ino(inode
), &first_xattr_slot
);
3441 if (first_xattr_slot
!= -1) {
3442 path
->slots
[0] = first_xattr_slot
;
3443 ret
= btrfs_load_inode_props(inode
, path
);
3445 btrfs_err(root
->fs_info
,
3446 "error loading props for ino %llu (root %llu): %d\n",
3448 root
->root_key
.objectid
, ret
);
3450 btrfs_free_path(path
);
3453 cache_no_acl(inode
);
3455 switch (inode
->i_mode
& S_IFMT
) {
3457 inode
->i_mapping
->a_ops
= &btrfs_aops
;
3458 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
3459 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
3460 inode
->i_fop
= &btrfs_file_operations
;
3461 inode
->i_op
= &btrfs_file_inode_operations
;
3464 inode
->i_fop
= &btrfs_dir_file_operations
;
3465 if (root
== root
->fs_info
->tree_root
)
3466 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
3468 inode
->i_op
= &btrfs_dir_inode_operations
;
3471 inode
->i_op
= &btrfs_symlink_inode_operations
;
3472 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
3473 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
3476 inode
->i_op
= &btrfs_special_inode_operations
;
3477 init_special_inode(inode
, inode
->i_mode
, rdev
);
3481 btrfs_update_iflags(inode
);
3485 btrfs_free_path(path
);
3486 make_bad_inode(inode
);
3490 * given a leaf and an inode, copy the inode fields into the leaf
3492 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
3493 struct extent_buffer
*leaf
,
3494 struct btrfs_inode_item
*item
,
3495 struct inode
*inode
)
3497 struct btrfs_map_token token
;
3499 btrfs_init_map_token(&token
);
3501 btrfs_set_token_inode_uid(leaf
, item
, i_uid_read(inode
), &token
);
3502 btrfs_set_token_inode_gid(leaf
, item
, i_gid_read(inode
), &token
);
3503 btrfs_set_token_inode_size(leaf
, item
, BTRFS_I(inode
)->disk_i_size
,
3505 btrfs_set_token_inode_mode(leaf
, item
, inode
->i_mode
, &token
);
3506 btrfs_set_token_inode_nlink(leaf
, item
, inode
->i_nlink
, &token
);
3508 btrfs_set_token_timespec_sec(leaf
, btrfs_inode_atime(item
),
3509 inode
->i_atime
.tv_sec
, &token
);
3510 btrfs_set_token_timespec_nsec(leaf
, btrfs_inode_atime(item
),
3511 inode
->i_atime
.tv_nsec
, &token
);
3513 btrfs_set_token_timespec_sec(leaf
, btrfs_inode_mtime(item
),
3514 inode
->i_mtime
.tv_sec
, &token
);
3515 btrfs_set_token_timespec_nsec(leaf
, btrfs_inode_mtime(item
),
3516 inode
->i_mtime
.tv_nsec
, &token
);
3518 btrfs_set_token_timespec_sec(leaf
, btrfs_inode_ctime(item
),
3519 inode
->i_ctime
.tv_sec
, &token
);
3520 btrfs_set_token_timespec_nsec(leaf
, btrfs_inode_ctime(item
),
3521 inode
->i_ctime
.tv_nsec
, &token
);
3523 btrfs_set_token_inode_nbytes(leaf
, item
, inode_get_bytes(inode
),
3525 btrfs_set_token_inode_generation(leaf
, item
, BTRFS_I(inode
)->generation
,
3527 btrfs_set_token_inode_sequence(leaf
, item
, inode
->i_version
, &token
);
3528 btrfs_set_token_inode_transid(leaf
, item
, trans
->transid
, &token
);
3529 btrfs_set_token_inode_rdev(leaf
, item
, inode
->i_rdev
, &token
);
3530 btrfs_set_token_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
, &token
);
3531 btrfs_set_token_inode_block_group(leaf
, item
, 0, &token
);
3535 * copy everything in the in-memory inode into the btree.
3537 static noinline
int btrfs_update_inode_item(struct btrfs_trans_handle
*trans
,
3538 struct btrfs_root
*root
, struct inode
*inode
)
3540 struct btrfs_inode_item
*inode_item
;
3541 struct btrfs_path
*path
;
3542 struct extent_buffer
*leaf
;
3545 path
= btrfs_alloc_path();
3549 path
->leave_spinning
= 1;
3550 ret
= btrfs_lookup_inode(trans
, root
, path
, &BTRFS_I(inode
)->location
,
3558 leaf
= path
->nodes
[0];
3559 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
3560 struct btrfs_inode_item
);
3562 fill_inode_item(trans
, leaf
, inode_item
, inode
);
3563 btrfs_mark_buffer_dirty(leaf
);
3564 btrfs_set_inode_last_trans(trans
, inode
);
3567 btrfs_free_path(path
);
3572 * copy everything in the in-memory inode into the btree.
3574 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
3575 struct btrfs_root
*root
, struct inode
*inode
)
3580 * If the inode is a free space inode, we can deadlock during commit
3581 * if we put it into the delayed code.
3583 * The data relocation inode should also be directly updated
3586 if (!btrfs_is_free_space_inode(inode
)
3587 && root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
) {
3588 btrfs_update_root_times(trans
, root
);
3590 ret
= btrfs_delayed_update_inode(trans
, root
, inode
);
3592 btrfs_set_inode_last_trans(trans
, inode
);
3596 return btrfs_update_inode_item(trans
, root
, inode
);
3599 noinline
int btrfs_update_inode_fallback(struct btrfs_trans_handle
*trans
,
3600 struct btrfs_root
*root
,
3601 struct inode
*inode
)
3605 ret
= btrfs_update_inode(trans
, root
, inode
);
3607 return btrfs_update_inode_item(trans
, root
, inode
);
3612 * unlink helper that gets used here in inode.c and in the tree logging
3613 * recovery code. It remove a link in a directory with a given name, and
3614 * also drops the back refs in the inode to the directory
3616 static int __btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
3617 struct btrfs_root
*root
,
3618 struct inode
*dir
, struct inode
*inode
,
3619 const char *name
, int name_len
)
3621 struct btrfs_path
*path
;
3623 struct extent_buffer
*leaf
;
3624 struct btrfs_dir_item
*di
;
3625 struct btrfs_key key
;
3627 u64 ino
= btrfs_ino(inode
);
3628 u64 dir_ino
= btrfs_ino(dir
);
3630 path
= btrfs_alloc_path();
3636 path
->leave_spinning
= 1;
3637 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
3638 name
, name_len
, -1);
3647 leaf
= path
->nodes
[0];
3648 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
3649 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
3652 btrfs_release_path(path
);
3655 * If we don't have dir index, we have to get it by looking up
3656 * the inode ref, since we get the inode ref, remove it directly,
3657 * it is unnecessary to do delayed deletion.
3659 * But if we have dir index, needn't search inode ref to get it.
3660 * Since the inode ref is close to the inode item, it is better
3661 * that we delay to delete it, and just do this deletion when
3662 * we update the inode item.
3664 if (BTRFS_I(inode
)->dir_index
) {
3665 ret
= btrfs_delayed_delete_inode_ref(inode
);
3667 index
= BTRFS_I(inode
)->dir_index
;
3672 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
, ino
,
3675 btrfs_info(root
->fs_info
,
3676 "failed to delete reference to %.*s, inode %llu parent %llu",
3677 name_len
, name
, ino
, dir_ino
);
3678 btrfs_abort_transaction(trans
, root
, ret
);
3682 ret
= btrfs_delete_delayed_dir_index(trans
, root
, dir
, index
);
3684 btrfs_abort_transaction(trans
, root
, ret
);
3688 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
,
3690 if (ret
!= 0 && ret
!= -ENOENT
) {
3691 btrfs_abort_transaction(trans
, root
, ret
);
3695 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
,
3700 btrfs_abort_transaction(trans
, root
, ret
);
3702 btrfs_free_path(path
);
3706 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
3707 inode_inc_iversion(inode
);
3708 inode_inc_iversion(dir
);
3709 inode
->i_ctime
= dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
3710 ret
= btrfs_update_inode(trans
, root
, dir
);
3715 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
3716 struct btrfs_root
*root
,
3717 struct inode
*dir
, struct inode
*inode
,
3718 const char *name
, int name_len
)
3721 ret
= __btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
3724 ret
= btrfs_update_inode(trans
, root
, inode
);
3730 * helper to start transaction for unlink and rmdir.
3732 * unlink and rmdir are special in btrfs, they do not always free space, so
3733 * if we cannot make our reservations the normal way try and see if there is
3734 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3735 * allow the unlink to occur.
3737 static struct btrfs_trans_handle
*__unlink_start_trans(struct inode
*dir
)
3739 struct btrfs_trans_handle
*trans
;
3740 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3744 * 1 for the possible orphan item
3745 * 1 for the dir item
3746 * 1 for the dir index
3747 * 1 for the inode ref
3750 trans
= btrfs_start_transaction(root
, 5);
3751 if (!IS_ERR(trans
) || PTR_ERR(trans
) != -ENOSPC
)
3754 if (PTR_ERR(trans
) == -ENOSPC
) {
3755 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 5);
3757 trans
= btrfs_start_transaction(root
, 0);
3760 ret
= btrfs_cond_migrate_bytes(root
->fs_info
,
3761 &root
->fs_info
->trans_block_rsv
,
3764 btrfs_end_transaction(trans
, root
);
3765 return ERR_PTR(ret
);
3767 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
3768 trans
->bytes_reserved
= num_bytes
;
3773 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
3775 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3776 struct btrfs_trans_handle
*trans
;
3777 struct inode
*inode
= dentry
->d_inode
;
3780 trans
= __unlink_start_trans(dir
);
3782 return PTR_ERR(trans
);
3784 btrfs_record_unlink_dir(trans
, dir
, dentry
->d_inode
, 0);
3786 ret
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
3787 dentry
->d_name
.name
, dentry
->d_name
.len
);
3791 if (inode
->i_nlink
== 0) {
3792 ret
= btrfs_orphan_add(trans
, inode
);
3798 btrfs_end_transaction(trans
, root
);
3799 btrfs_btree_balance_dirty(root
);
3803 int btrfs_unlink_subvol(struct btrfs_trans_handle
*trans
,
3804 struct btrfs_root
*root
,
3805 struct inode
*dir
, u64 objectid
,
3806 const char *name
, int name_len
)
3808 struct btrfs_path
*path
;
3809 struct extent_buffer
*leaf
;
3810 struct btrfs_dir_item
*di
;
3811 struct btrfs_key key
;
3814 u64 dir_ino
= btrfs_ino(dir
);
3816 path
= btrfs_alloc_path();
3820 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
3821 name
, name_len
, -1);
3822 if (IS_ERR_OR_NULL(di
)) {
3830 leaf
= path
->nodes
[0];
3831 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
3832 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
3833 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
3835 btrfs_abort_transaction(trans
, root
, ret
);
3838 btrfs_release_path(path
);
3840 ret
= btrfs_del_root_ref(trans
, root
->fs_info
->tree_root
,
3841 objectid
, root
->root_key
.objectid
,
3842 dir_ino
, &index
, name
, name_len
);
3844 if (ret
!= -ENOENT
) {
3845 btrfs_abort_transaction(trans
, root
, ret
);
3848 di
= btrfs_search_dir_index_item(root
, path
, dir_ino
,
3850 if (IS_ERR_OR_NULL(di
)) {
3855 btrfs_abort_transaction(trans
, root
, ret
);
3859 leaf
= path
->nodes
[0];
3860 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
3861 btrfs_release_path(path
);
3864 btrfs_release_path(path
);
3866 ret
= btrfs_delete_delayed_dir_index(trans
, root
, dir
, index
);
3868 btrfs_abort_transaction(trans
, root
, ret
);
3872 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
3873 inode_inc_iversion(dir
);
3874 dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
3875 ret
= btrfs_update_inode_fallback(trans
, root
, dir
);
3877 btrfs_abort_transaction(trans
, root
, ret
);
3879 btrfs_free_path(path
);
3883 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
3885 struct inode
*inode
= dentry
->d_inode
;
3887 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3888 struct btrfs_trans_handle
*trans
;
3890 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
3892 if (btrfs_ino(inode
) == BTRFS_FIRST_FREE_OBJECTID
)
3895 trans
= __unlink_start_trans(dir
);
3897 return PTR_ERR(trans
);
3899 if (unlikely(btrfs_ino(inode
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
3900 err
= btrfs_unlink_subvol(trans
, root
, dir
,
3901 BTRFS_I(inode
)->location
.objectid
,
3902 dentry
->d_name
.name
,
3903 dentry
->d_name
.len
);
3907 err
= btrfs_orphan_add(trans
, inode
);
3911 /* now the directory is empty */
3912 err
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
3913 dentry
->d_name
.name
, dentry
->d_name
.len
);
3915 btrfs_i_size_write(inode
, 0);
3917 btrfs_end_transaction(trans
, root
);
3918 btrfs_btree_balance_dirty(root
);
3924 * this can truncate away extent items, csum items and directory items.
3925 * It starts at a high offset and removes keys until it can't find
3926 * any higher than new_size
3928 * csum items that cross the new i_size are truncated to the new size
3931 * min_type is the minimum key type to truncate down to. If set to 0, this
3932 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3934 int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
3935 struct btrfs_root
*root
,
3936 struct inode
*inode
,
3937 u64 new_size
, u32 min_type
)
3939 struct btrfs_path
*path
;
3940 struct extent_buffer
*leaf
;
3941 struct btrfs_file_extent_item
*fi
;
3942 struct btrfs_key key
;
3943 struct btrfs_key found_key
;
3944 u64 extent_start
= 0;
3945 u64 extent_num_bytes
= 0;
3946 u64 extent_offset
= 0;
3948 u64 last_size
= (u64
)-1;
3949 u32 found_type
= (u8
)-1;
3952 int pending_del_nr
= 0;
3953 int pending_del_slot
= 0;
3954 int extent_type
= -1;
3957 u64 ino
= btrfs_ino(inode
);
3959 BUG_ON(new_size
> 0 && min_type
!= BTRFS_EXTENT_DATA_KEY
);
3961 path
= btrfs_alloc_path();
3967 * We want to drop from the next block forward in case this new size is
3968 * not block aligned since we will be keeping the last block of the
3969 * extent just the way it is.
3971 if (root
->ref_cows
|| root
== root
->fs_info
->tree_root
)
3972 btrfs_drop_extent_cache(inode
, ALIGN(new_size
,
3973 root
->sectorsize
), (u64
)-1, 0);
3976 * This function is also used to drop the items in the log tree before
3977 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3978 * it is used to drop the loged items. So we shouldn't kill the delayed
3981 if (min_type
== 0 && root
== BTRFS_I(inode
)->root
)
3982 btrfs_kill_delayed_inode_items(inode
);
3985 key
.offset
= (u64
)-1;
3989 path
->leave_spinning
= 1;
3990 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
3997 /* there are no items in the tree for us to truncate, we're
4000 if (path
->slots
[0] == 0)
4007 leaf
= path
->nodes
[0];
4008 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4009 found_type
= btrfs_key_type(&found_key
);
4011 if (found_key
.objectid
!= ino
)
4014 if (found_type
< min_type
)
4017 item_end
= found_key
.offset
;
4018 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
4019 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4020 struct btrfs_file_extent_item
);
4021 extent_type
= btrfs_file_extent_type(leaf
, fi
);
4022 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
4024 btrfs_file_extent_num_bytes(leaf
, fi
);
4025 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
4026 item_end
+= btrfs_file_extent_inline_len(leaf
,
4027 path
->slots
[0], fi
);
4031 if (found_type
> min_type
) {
4034 if (item_end
< new_size
)
4036 if (found_key
.offset
>= new_size
)
4042 /* FIXME, shrink the extent if the ref count is only 1 */
4043 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
4047 last_size
= found_key
.offset
;
4049 last_size
= new_size
;
4051 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
4053 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
4055 u64 orig_num_bytes
=
4056 btrfs_file_extent_num_bytes(leaf
, fi
);
4057 extent_num_bytes
= ALIGN(new_size
-
4060 btrfs_set_file_extent_num_bytes(leaf
, fi
,
4062 num_dec
= (orig_num_bytes
-
4064 if (root
->ref_cows
&& extent_start
!= 0)
4065 inode_sub_bytes(inode
, num_dec
);
4066 btrfs_mark_buffer_dirty(leaf
);
4069 btrfs_file_extent_disk_num_bytes(leaf
,
4071 extent_offset
= found_key
.offset
-
4072 btrfs_file_extent_offset(leaf
, fi
);
4074 /* FIXME blocksize != 4096 */
4075 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
4076 if (extent_start
!= 0) {
4079 inode_sub_bytes(inode
, num_dec
);
4082 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
4084 * we can't truncate inline items that have had
4088 btrfs_file_extent_compression(leaf
, fi
) == 0 &&
4089 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
4090 btrfs_file_extent_other_encoding(leaf
, fi
) == 0) {
4091 u32 size
= new_size
- found_key
.offset
;
4093 if (root
->ref_cows
) {
4094 inode_sub_bytes(inode
, item_end
+ 1 -
4099 * update the ram bytes to properly reflect
4100 * the new size of our item
4102 btrfs_set_file_extent_ram_bytes(leaf
, fi
, size
);
4104 btrfs_file_extent_calc_inline_size(size
);
4105 btrfs_truncate_item(root
, path
, size
, 1);
4106 } else if (root
->ref_cows
) {
4107 inode_sub_bytes(inode
, item_end
+ 1 -
4113 if (!pending_del_nr
) {
4114 /* no pending yet, add ourselves */
4115 pending_del_slot
= path
->slots
[0];
4117 } else if (pending_del_nr
&&
4118 path
->slots
[0] + 1 == pending_del_slot
) {
4119 /* hop on the pending chunk */
4121 pending_del_slot
= path
->slots
[0];
4128 if (found_extent
&& (root
->ref_cows
||
4129 root
== root
->fs_info
->tree_root
)) {
4130 btrfs_set_path_blocking(path
);
4131 ret
= btrfs_free_extent(trans
, root
, extent_start
,
4132 extent_num_bytes
, 0,
4133 btrfs_header_owner(leaf
),
4134 ino
, extent_offset
, 0);
4138 if (found_type
== BTRFS_INODE_ITEM_KEY
)
4141 if (path
->slots
[0] == 0 ||
4142 path
->slots
[0] != pending_del_slot
) {
4143 if (pending_del_nr
) {
4144 ret
= btrfs_del_items(trans
, root
, path
,
4148 btrfs_abort_transaction(trans
,
4154 btrfs_release_path(path
);
4161 if (pending_del_nr
) {
4162 ret
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
4165 btrfs_abort_transaction(trans
, root
, ret
);
4168 if (last_size
!= (u64
)-1)
4169 btrfs_ordered_update_i_size(inode
, last_size
, NULL
);
4170 btrfs_free_path(path
);
4175 * btrfs_truncate_page - read, zero a chunk and write a page
4176 * @inode - inode that we're zeroing
4177 * @from - the offset to start zeroing
4178 * @len - the length to zero, 0 to zero the entire range respective to the
4180 * @front - zero up to the offset instead of from the offset on
4182 * This will find the page for the "from" offset and cow the page and zero the
4183 * part we want to zero. This is used with truncate and hole punching.
4185 int btrfs_truncate_page(struct inode
*inode
, loff_t from
, loff_t len
,
4188 struct address_space
*mapping
= inode
->i_mapping
;
4189 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4190 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4191 struct btrfs_ordered_extent
*ordered
;
4192 struct extent_state
*cached_state
= NULL
;
4194 u32 blocksize
= root
->sectorsize
;
4195 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
4196 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
4198 gfp_t mask
= btrfs_alloc_write_mask(mapping
);
4203 if ((offset
& (blocksize
- 1)) == 0 &&
4204 (!len
|| ((len
& (blocksize
- 1)) == 0)))
4206 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
4211 page
= find_or_create_page(mapping
, index
, mask
);
4213 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
4218 page_start
= page_offset(page
);
4219 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
4221 if (!PageUptodate(page
)) {
4222 ret
= btrfs_readpage(NULL
, page
);
4224 if (page
->mapping
!= mapping
) {
4226 page_cache_release(page
);
4229 if (!PageUptodate(page
)) {
4234 wait_on_page_writeback(page
);
4236 lock_extent_bits(io_tree
, page_start
, page_end
, 0, &cached_state
);
4237 set_page_extent_mapped(page
);
4239 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
4241 unlock_extent_cached(io_tree
, page_start
, page_end
,
4242 &cached_state
, GFP_NOFS
);
4244 page_cache_release(page
);
4245 btrfs_start_ordered_extent(inode
, ordered
, 1);
4246 btrfs_put_ordered_extent(ordered
);
4250 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
4251 EXTENT_DIRTY
| EXTENT_DELALLOC
|
4252 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
4253 0, 0, &cached_state
, GFP_NOFS
);
4255 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
,
4258 unlock_extent_cached(io_tree
, page_start
, page_end
,
4259 &cached_state
, GFP_NOFS
);
4263 if (offset
!= PAGE_CACHE_SIZE
) {
4265 len
= PAGE_CACHE_SIZE
- offset
;
4268 memset(kaddr
, 0, offset
);
4270 memset(kaddr
+ offset
, 0, len
);
4271 flush_dcache_page(page
);
4274 ClearPageChecked(page
);
4275 set_page_dirty(page
);
4276 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
,
4281 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
4283 page_cache_release(page
);
4288 static int maybe_insert_hole(struct btrfs_root
*root
, struct inode
*inode
,
4289 u64 offset
, u64 len
)
4291 struct btrfs_trans_handle
*trans
;
4295 * Still need to make sure the inode looks like it's been updated so
4296 * that any holes get logged if we fsync.
4298 if (btrfs_fs_incompat(root
->fs_info
, NO_HOLES
)) {
4299 BTRFS_I(inode
)->last_trans
= root
->fs_info
->generation
;
4300 BTRFS_I(inode
)->last_sub_trans
= root
->log_transid
;
4301 BTRFS_I(inode
)->last_log_commit
= root
->last_log_commit
;
4306 * 1 - for the one we're dropping
4307 * 1 - for the one we're adding
4308 * 1 - for updating the inode.
4310 trans
= btrfs_start_transaction(root
, 3);
4312 return PTR_ERR(trans
);
4314 ret
= btrfs_drop_extents(trans
, root
, inode
, offset
, offset
+ len
, 1);
4316 btrfs_abort_transaction(trans
, root
, ret
);
4317 btrfs_end_transaction(trans
, root
);
4321 ret
= btrfs_insert_file_extent(trans
, root
, btrfs_ino(inode
), offset
,
4322 0, 0, len
, 0, len
, 0, 0, 0);
4324 btrfs_abort_transaction(trans
, root
, ret
);
4326 btrfs_update_inode(trans
, root
, inode
);
4327 btrfs_end_transaction(trans
, root
);
4332 * This function puts in dummy file extents for the area we're creating a hole
4333 * for. So if we are truncating this file to a larger size we need to insert
4334 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4335 * the range between oldsize and size
4337 int btrfs_cont_expand(struct inode
*inode
, loff_t oldsize
, loff_t size
)
4339 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4340 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4341 struct extent_map
*em
= NULL
;
4342 struct extent_state
*cached_state
= NULL
;
4343 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
4344 u64 hole_start
= ALIGN(oldsize
, root
->sectorsize
);
4345 u64 block_end
= ALIGN(size
, root
->sectorsize
);
4352 * If our size started in the middle of a page we need to zero out the
4353 * rest of the page before we expand the i_size, otherwise we could
4354 * expose stale data.
4356 err
= btrfs_truncate_page(inode
, oldsize
, 0, 0);
4360 if (size
<= hole_start
)
4364 struct btrfs_ordered_extent
*ordered
;
4366 lock_extent_bits(io_tree
, hole_start
, block_end
- 1, 0,
4368 ordered
= btrfs_lookup_ordered_range(inode
, hole_start
,
4369 block_end
- hole_start
);
4372 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1,
4373 &cached_state
, GFP_NOFS
);
4374 btrfs_start_ordered_extent(inode
, ordered
, 1);
4375 btrfs_put_ordered_extent(ordered
);
4378 cur_offset
= hole_start
;
4380 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
4381 block_end
- cur_offset
, 0);
4387 last_byte
= min(extent_map_end(em
), block_end
);
4388 last_byte
= ALIGN(last_byte
, root
->sectorsize
);
4389 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
4390 struct extent_map
*hole_em
;
4391 hole_size
= last_byte
- cur_offset
;
4393 err
= maybe_insert_hole(root
, inode
, cur_offset
,
4397 btrfs_drop_extent_cache(inode
, cur_offset
,
4398 cur_offset
+ hole_size
- 1, 0);
4399 hole_em
= alloc_extent_map();
4401 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4402 &BTRFS_I(inode
)->runtime_flags
);
4405 hole_em
->start
= cur_offset
;
4406 hole_em
->len
= hole_size
;
4407 hole_em
->orig_start
= cur_offset
;
4409 hole_em
->block_start
= EXTENT_MAP_HOLE
;
4410 hole_em
->block_len
= 0;
4411 hole_em
->orig_block_len
= 0;
4412 hole_em
->ram_bytes
= hole_size
;
4413 hole_em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
4414 hole_em
->compress_type
= BTRFS_COMPRESS_NONE
;
4415 hole_em
->generation
= root
->fs_info
->generation
;
4418 write_lock(&em_tree
->lock
);
4419 err
= add_extent_mapping(em_tree
, hole_em
, 1);
4420 write_unlock(&em_tree
->lock
);
4423 btrfs_drop_extent_cache(inode
, cur_offset
,
4427 free_extent_map(hole_em
);
4430 free_extent_map(em
);
4432 cur_offset
= last_byte
;
4433 if (cur_offset
>= block_end
)
4436 free_extent_map(em
);
4437 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1, &cached_state
,
4442 static int btrfs_setsize(struct inode
*inode
, struct iattr
*attr
)
4444 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4445 struct btrfs_trans_handle
*trans
;
4446 loff_t oldsize
= i_size_read(inode
);
4447 loff_t newsize
= attr
->ia_size
;
4448 int mask
= attr
->ia_valid
;
4452 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4453 * special case where we need to update the times despite not having
4454 * these flags set. For all other operations the VFS set these flags
4455 * explicitly if it wants a timestamp update.
4457 if (newsize
!= oldsize
) {
4458 inode_inc_iversion(inode
);
4459 if (!(mask
& (ATTR_CTIME
| ATTR_MTIME
)))
4460 inode
->i_ctime
= inode
->i_mtime
=
4461 current_fs_time(inode
->i_sb
);
4464 if (newsize
> oldsize
) {
4465 truncate_pagecache(inode
, newsize
);
4466 ret
= btrfs_cont_expand(inode
, oldsize
, newsize
);
4470 trans
= btrfs_start_transaction(root
, 1);
4472 return PTR_ERR(trans
);
4474 i_size_write(inode
, newsize
);
4475 btrfs_ordered_update_i_size(inode
, i_size_read(inode
), NULL
);
4476 ret
= btrfs_update_inode(trans
, root
, inode
);
4477 btrfs_end_transaction(trans
, root
);
4481 * We're truncating a file that used to have good data down to
4482 * zero. Make sure it gets into the ordered flush list so that
4483 * any new writes get down to disk quickly.
4486 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE
,
4487 &BTRFS_I(inode
)->runtime_flags
);
4490 * 1 for the orphan item we're going to add
4491 * 1 for the orphan item deletion.
4493 trans
= btrfs_start_transaction(root
, 2);
4495 return PTR_ERR(trans
);
4498 * We need to do this in case we fail at _any_ point during the
4499 * actual truncate. Once we do the truncate_setsize we could
4500 * invalidate pages which forces any outstanding ordered io to
4501 * be instantly completed which will give us extents that need
4502 * to be truncated. If we fail to get an orphan inode down we
4503 * could have left over extents that were never meant to live,
4504 * so we need to garuntee from this point on that everything
4505 * will be consistent.
4507 ret
= btrfs_orphan_add(trans
, inode
);
4508 btrfs_end_transaction(trans
, root
);
4512 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4513 truncate_setsize(inode
, newsize
);
4515 /* Disable nonlocked read DIO to avoid the end less truncate */
4516 btrfs_inode_block_unlocked_dio(inode
);
4517 inode_dio_wait(inode
);
4518 btrfs_inode_resume_unlocked_dio(inode
);
4520 ret
= btrfs_truncate(inode
);
4521 if (ret
&& inode
->i_nlink
) {
4525 * failed to truncate, disk_i_size is only adjusted down
4526 * as we remove extents, so it should represent the true
4527 * size of the inode, so reset the in memory size and
4528 * delete our orphan entry.
4530 trans
= btrfs_join_transaction(root
);
4531 if (IS_ERR(trans
)) {
4532 btrfs_orphan_del(NULL
, inode
);
4535 i_size_write(inode
, BTRFS_I(inode
)->disk_i_size
);
4536 err
= btrfs_orphan_del(trans
, inode
);
4538 btrfs_abort_transaction(trans
, root
, err
);
4539 btrfs_end_transaction(trans
, root
);
4546 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
4548 struct inode
*inode
= dentry
->d_inode
;
4549 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4552 if (btrfs_root_readonly(root
))
4555 err
= inode_change_ok(inode
, attr
);
4559 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
4560 err
= btrfs_setsize(inode
, attr
);
4565 if (attr
->ia_valid
) {
4566 setattr_copy(inode
, attr
);
4567 inode_inc_iversion(inode
);
4568 err
= btrfs_dirty_inode(inode
);
4570 if (!err
&& attr
->ia_valid
& ATTR_MODE
)
4571 err
= posix_acl_chmod(inode
, inode
->i_mode
);
4578 * While truncating the inode pages during eviction, we get the VFS calling
4579 * btrfs_invalidatepage() against each page of the inode. This is slow because
4580 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4581 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4582 * extent_state structures over and over, wasting lots of time.
4584 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4585 * those expensive operations on a per page basis and do only the ordered io
4586 * finishing, while we release here the extent_map and extent_state structures,
4587 * without the excessive merging and splitting.
4589 static void evict_inode_truncate_pages(struct inode
*inode
)
4591 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4592 struct extent_map_tree
*map_tree
= &BTRFS_I(inode
)->extent_tree
;
4593 struct rb_node
*node
;
4595 ASSERT(inode
->i_state
& I_FREEING
);
4596 truncate_inode_pages(&inode
->i_data
, 0);
4598 write_lock(&map_tree
->lock
);
4599 while (!RB_EMPTY_ROOT(&map_tree
->map
)) {
4600 struct extent_map
*em
;
4602 node
= rb_first(&map_tree
->map
);
4603 em
= rb_entry(node
, struct extent_map
, rb_node
);
4604 clear_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
4605 clear_bit(EXTENT_FLAG_LOGGING
, &em
->flags
);
4606 remove_extent_mapping(map_tree
, em
);
4607 free_extent_map(em
);
4609 write_unlock(&map_tree
->lock
);
4611 spin_lock(&io_tree
->lock
);
4612 while (!RB_EMPTY_ROOT(&io_tree
->state
)) {
4613 struct extent_state
*state
;
4614 struct extent_state
*cached_state
= NULL
;
4616 node
= rb_first(&io_tree
->state
);
4617 state
= rb_entry(node
, struct extent_state
, rb_node
);
4618 atomic_inc(&state
->refs
);
4619 spin_unlock(&io_tree
->lock
);
4621 lock_extent_bits(io_tree
, state
->start
, state
->end
,
4623 clear_extent_bit(io_tree
, state
->start
, state
->end
,
4624 EXTENT_LOCKED
| EXTENT_DIRTY
|
4625 EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
|
4626 EXTENT_DEFRAG
, 1, 1,
4627 &cached_state
, GFP_NOFS
);
4628 free_extent_state(state
);
4630 spin_lock(&io_tree
->lock
);
4632 spin_unlock(&io_tree
->lock
);
4635 void btrfs_evict_inode(struct inode
*inode
)
4637 struct btrfs_trans_handle
*trans
;
4638 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4639 struct btrfs_block_rsv
*rsv
, *global_rsv
;
4640 u64 min_size
= btrfs_calc_trunc_metadata_size(root
, 1);
4643 trace_btrfs_inode_evict(inode
);
4645 evict_inode_truncate_pages(inode
);
4647 if (inode
->i_nlink
&&
4648 ((btrfs_root_refs(&root
->root_item
) != 0 &&
4649 root
->root_key
.objectid
!= BTRFS_ROOT_TREE_OBJECTID
) ||
4650 btrfs_is_free_space_inode(inode
)))
4653 if (is_bad_inode(inode
)) {
4654 btrfs_orphan_del(NULL
, inode
);
4657 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4658 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
4660 if (root
->fs_info
->log_root_recovering
) {
4661 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
4662 &BTRFS_I(inode
)->runtime_flags
));
4666 if (inode
->i_nlink
> 0) {
4667 BUG_ON(btrfs_root_refs(&root
->root_item
) != 0 &&
4668 root
->root_key
.objectid
!= BTRFS_ROOT_TREE_OBJECTID
);
4672 ret
= btrfs_commit_inode_delayed_inode(inode
);
4674 btrfs_orphan_del(NULL
, inode
);
4678 rsv
= btrfs_alloc_block_rsv(root
, BTRFS_BLOCK_RSV_TEMP
);
4680 btrfs_orphan_del(NULL
, inode
);
4683 rsv
->size
= min_size
;
4685 global_rsv
= &root
->fs_info
->global_block_rsv
;
4687 btrfs_i_size_write(inode
, 0);
4690 * This is a bit simpler than btrfs_truncate since we've already
4691 * reserved our space for our orphan item in the unlink, so we just
4692 * need to reserve some slack space in case we add bytes and update
4693 * inode item when doing the truncate.
4696 ret
= btrfs_block_rsv_refill(root
, rsv
, min_size
,
4697 BTRFS_RESERVE_FLUSH_LIMIT
);
4700 * Try and steal from the global reserve since we will
4701 * likely not use this space anyway, we want to try as
4702 * hard as possible to get this to work.
4705 ret
= btrfs_block_rsv_migrate(global_rsv
, rsv
, min_size
);
4708 btrfs_warn(root
->fs_info
,
4709 "Could not get space for a delete, will truncate on mount %d",
4711 btrfs_orphan_del(NULL
, inode
);
4712 btrfs_free_block_rsv(root
, rsv
);
4716 trans
= btrfs_join_transaction(root
);
4717 if (IS_ERR(trans
)) {
4718 btrfs_orphan_del(NULL
, inode
);
4719 btrfs_free_block_rsv(root
, rsv
);
4723 trans
->block_rsv
= rsv
;
4725 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, 0, 0);
4729 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
4730 btrfs_end_transaction(trans
, root
);
4732 btrfs_btree_balance_dirty(root
);
4735 btrfs_free_block_rsv(root
, rsv
);
4738 * Errors here aren't a big deal, it just means we leave orphan items
4739 * in the tree. They will be cleaned up on the next mount.
4742 trans
->block_rsv
= root
->orphan_block_rsv
;
4743 btrfs_orphan_del(trans
, inode
);
4745 btrfs_orphan_del(NULL
, inode
);
4748 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
4749 if (!(root
== root
->fs_info
->tree_root
||
4750 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
))
4751 btrfs_return_ino(root
, btrfs_ino(inode
));
4753 btrfs_end_transaction(trans
, root
);
4754 btrfs_btree_balance_dirty(root
);
4756 btrfs_remove_delayed_node(inode
);
4762 * this returns the key found in the dir entry in the location pointer.
4763 * If no dir entries were found, location->objectid is 0.
4765 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
4766 struct btrfs_key
*location
)
4768 const char *name
= dentry
->d_name
.name
;
4769 int namelen
= dentry
->d_name
.len
;
4770 struct btrfs_dir_item
*di
;
4771 struct btrfs_path
*path
;
4772 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4775 path
= btrfs_alloc_path();
4779 di
= btrfs_lookup_dir_item(NULL
, root
, path
, btrfs_ino(dir
), name
,
4784 if (IS_ERR_OR_NULL(di
))
4787 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
4789 btrfs_free_path(path
);
4792 location
->objectid
= 0;
4797 * when we hit a tree root in a directory, the btrfs part of the inode
4798 * needs to be changed to reflect the root directory of the tree root. This
4799 * is kind of like crossing a mount point.
4801 static int fixup_tree_root_location(struct btrfs_root
*root
,
4803 struct dentry
*dentry
,
4804 struct btrfs_key
*location
,
4805 struct btrfs_root
**sub_root
)
4807 struct btrfs_path
*path
;
4808 struct btrfs_root
*new_root
;
4809 struct btrfs_root_ref
*ref
;
4810 struct extent_buffer
*leaf
;
4814 path
= btrfs_alloc_path();
4821 ret
= btrfs_find_item(root
->fs_info
->tree_root
, path
,
4822 BTRFS_I(dir
)->root
->root_key
.objectid
,
4823 location
->objectid
, BTRFS_ROOT_REF_KEY
, NULL
);
4830 leaf
= path
->nodes
[0];
4831 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
4832 if (btrfs_root_ref_dirid(leaf
, ref
) != btrfs_ino(dir
) ||
4833 btrfs_root_ref_name_len(leaf
, ref
) != dentry
->d_name
.len
)
4836 ret
= memcmp_extent_buffer(leaf
, dentry
->d_name
.name
,
4837 (unsigned long)(ref
+ 1),
4838 dentry
->d_name
.len
);
4842 btrfs_release_path(path
);
4844 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, location
);
4845 if (IS_ERR(new_root
)) {
4846 err
= PTR_ERR(new_root
);
4850 *sub_root
= new_root
;
4851 location
->objectid
= btrfs_root_dirid(&new_root
->root_item
);
4852 location
->type
= BTRFS_INODE_ITEM_KEY
;
4853 location
->offset
= 0;
4856 btrfs_free_path(path
);
4860 static void inode_tree_add(struct inode
*inode
)
4862 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4863 struct btrfs_inode
*entry
;
4865 struct rb_node
*parent
;
4866 struct rb_node
*new = &BTRFS_I(inode
)->rb_node
;
4867 u64 ino
= btrfs_ino(inode
);
4869 if (inode_unhashed(inode
))
4872 spin_lock(&root
->inode_lock
);
4873 p
= &root
->inode_tree
.rb_node
;
4876 entry
= rb_entry(parent
, struct btrfs_inode
, rb_node
);
4878 if (ino
< btrfs_ino(&entry
->vfs_inode
))
4879 p
= &parent
->rb_left
;
4880 else if (ino
> btrfs_ino(&entry
->vfs_inode
))
4881 p
= &parent
->rb_right
;
4883 WARN_ON(!(entry
->vfs_inode
.i_state
&
4884 (I_WILL_FREE
| I_FREEING
)));
4885 rb_replace_node(parent
, new, &root
->inode_tree
);
4886 RB_CLEAR_NODE(parent
);
4887 spin_unlock(&root
->inode_lock
);
4891 rb_link_node(new, parent
, p
);
4892 rb_insert_color(new, &root
->inode_tree
);
4893 spin_unlock(&root
->inode_lock
);
4896 static void inode_tree_del(struct inode
*inode
)
4898 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4901 spin_lock(&root
->inode_lock
);
4902 if (!RB_EMPTY_NODE(&BTRFS_I(inode
)->rb_node
)) {
4903 rb_erase(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
4904 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
4905 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
4907 spin_unlock(&root
->inode_lock
);
4909 if (empty
&& btrfs_root_refs(&root
->root_item
) == 0) {
4910 synchronize_srcu(&root
->fs_info
->subvol_srcu
);
4911 spin_lock(&root
->inode_lock
);
4912 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
4913 spin_unlock(&root
->inode_lock
);
4915 btrfs_add_dead_root(root
);
4919 void btrfs_invalidate_inodes(struct btrfs_root
*root
)
4921 struct rb_node
*node
;
4922 struct rb_node
*prev
;
4923 struct btrfs_inode
*entry
;
4924 struct inode
*inode
;
4927 WARN_ON(btrfs_root_refs(&root
->root_item
) != 0);
4929 spin_lock(&root
->inode_lock
);
4931 node
= root
->inode_tree
.rb_node
;
4935 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
4937 if (objectid
< btrfs_ino(&entry
->vfs_inode
))
4938 node
= node
->rb_left
;
4939 else if (objectid
> btrfs_ino(&entry
->vfs_inode
))
4940 node
= node
->rb_right
;
4946 entry
= rb_entry(prev
, struct btrfs_inode
, rb_node
);
4947 if (objectid
<= btrfs_ino(&entry
->vfs_inode
)) {
4951 prev
= rb_next(prev
);
4955 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
4956 objectid
= btrfs_ino(&entry
->vfs_inode
) + 1;
4957 inode
= igrab(&entry
->vfs_inode
);
4959 spin_unlock(&root
->inode_lock
);
4960 if (atomic_read(&inode
->i_count
) > 1)
4961 d_prune_aliases(inode
);
4963 * btrfs_drop_inode will have it removed from
4964 * the inode cache when its usage count
4969 spin_lock(&root
->inode_lock
);
4973 if (cond_resched_lock(&root
->inode_lock
))
4976 node
= rb_next(node
);
4978 spin_unlock(&root
->inode_lock
);
4981 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
4983 struct btrfs_iget_args
*args
= p
;
4984 inode
->i_ino
= args
->location
->objectid
;
4985 memcpy(&BTRFS_I(inode
)->location
, args
->location
,
4986 sizeof(*args
->location
));
4987 BTRFS_I(inode
)->root
= args
->root
;
4991 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
4993 struct btrfs_iget_args
*args
= opaque
;
4994 return args
->location
->objectid
== BTRFS_I(inode
)->location
.objectid
&&
4995 args
->root
== BTRFS_I(inode
)->root
;
4998 static struct inode
*btrfs_iget_locked(struct super_block
*s
,
4999 struct btrfs_key
*location
,
5000 struct btrfs_root
*root
)
5002 struct inode
*inode
;
5003 struct btrfs_iget_args args
;
5004 unsigned long hashval
= btrfs_inode_hash(location
->objectid
, root
);
5006 args
.location
= location
;
5009 inode
= iget5_locked(s
, hashval
, btrfs_find_actor
,
5010 btrfs_init_locked_inode
,
5015 /* Get an inode object given its location and corresponding root.
5016 * Returns in *is_new if the inode was read from disk
5018 struct inode
*btrfs_iget(struct super_block
*s
, struct btrfs_key
*location
,
5019 struct btrfs_root
*root
, int *new)
5021 struct inode
*inode
;
5023 inode
= btrfs_iget_locked(s
, location
, root
);
5025 return ERR_PTR(-ENOMEM
);
5027 if (inode
->i_state
& I_NEW
) {
5028 btrfs_read_locked_inode(inode
);
5029 if (!is_bad_inode(inode
)) {
5030 inode_tree_add(inode
);
5031 unlock_new_inode(inode
);
5035 unlock_new_inode(inode
);
5037 inode
= ERR_PTR(-ESTALE
);
5044 static struct inode
*new_simple_dir(struct super_block
*s
,
5045 struct btrfs_key
*key
,
5046 struct btrfs_root
*root
)
5048 struct inode
*inode
= new_inode(s
);
5051 return ERR_PTR(-ENOMEM
);
5053 BTRFS_I(inode
)->root
= root
;
5054 memcpy(&BTRFS_I(inode
)->location
, key
, sizeof(*key
));
5055 set_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
);
5057 inode
->i_ino
= BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
;
5058 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
5059 inode
->i_fop
= &simple_dir_operations
;
5060 inode
->i_mode
= S_IFDIR
| S_IRUGO
| S_IWUSR
| S_IXUGO
;
5061 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
5066 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
5068 struct inode
*inode
;
5069 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5070 struct btrfs_root
*sub_root
= root
;
5071 struct btrfs_key location
;
5075 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
5076 return ERR_PTR(-ENAMETOOLONG
);
5078 ret
= btrfs_inode_by_name(dir
, dentry
, &location
);
5080 return ERR_PTR(ret
);
5082 if (location
.objectid
== 0)
5083 return ERR_PTR(-ENOENT
);
5085 if (location
.type
== BTRFS_INODE_ITEM_KEY
) {
5086 inode
= btrfs_iget(dir
->i_sb
, &location
, root
, NULL
);
5090 BUG_ON(location
.type
!= BTRFS_ROOT_ITEM_KEY
);
5092 index
= srcu_read_lock(&root
->fs_info
->subvol_srcu
);
5093 ret
= fixup_tree_root_location(root
, dir
, dentry
,
5094 &location
, &sub_root
);
5097 inode
= ERR_PTR(ret
);
5099 inode
= new_simple_dir(dir
->i_sb
, &location
, sub_root
);
5101 inode
= btrfs_iget(dir
->i_sb
, &location
, sub_root
, NULL
);
5103 srcu_read_unlock(&root
->fs_info
->subvol_srcu
, index
);
5105 if (!IS_ERR(inode
) && root
!= sub_root
) {
5106 down_read(&root
->fs_info
->cleanup_work_sem
);
5107 if (!(inode
->i_sb
->s_flags
& MS_RDONLY
))
5108 ret
= btrfs_orphan_cleanup(sub_root
);
5109 up_read(&root
->fs_info
->cleanup_work_sem
);
5112 inode
= ERR_PTR(ret
);
5119 static int btrfs_dentry_delete(const struct dentry
*dentry
)
5121 struct btrfs_root
*root
;
5122 struct inode
*inode
= dentry
->d_inode
;
5124 if (!inode
&& !IS_ROOT(dentry
))
5125 inode
= dentry
->d_parent
->d_inode
;
5128 root
= BTRFS_I(inode
)->root
;
5129 if (btrfs_root_refs(&root
->root_item
) == 0)
5132 if (btrfs_ino(inode
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
5138 static void btrfs_dentry_release(struct dentry
*dentry
)
5140 if (dentry
->d_fsdata
)
5141 kfree(dentry
->d_fsdata
);
5144 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
5147 struct inode
*inode
;
5149 inode
= btrfs_lookup_dentry(dir
, dentry
);
5150 if (IS_ERR(inode
)) {
5151 if (PTR_ERR(inode
) == -ENOENT
)
5154 return ERR_CAST(inode
);
5157 return d_materialise_unique(dentry
, inode
);
5160 unsigned char btrfs_filetype_table
[] = {
5161 DT_UNKNOWN
, DT_REG
, DT_DIR
, DT_CHR
, DT_BLK
, DT_FIFO
, DT_SOCK
, DT_LNK
5164 static int btrfs_real_readdir(struct file
*file
, struct dir_context
*ctx
)
5166 struct inode
*inode
= file_inode(file
);
5167 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5168 struct btrfs_item
*item
;
5169 struct btrfs_dir_item
*di
;
5170 struct btrfs_key key
;
5171 struct btrfs_key found_key
;
5172 struct btrfs_path
*path
;
5173 struct list_head ins_list
;
5174 struct list_head del_list
;
5176 struct extent_buffer
*leaf
;
5178 unsigned char d_type
;
5183 int key_type
= BTRFS_DIR_INDEX_KEY
;
5187 int is_curr
= 0; /* ctx->pos points to the current index? */
5189 /* FIXME, use a real flag for deciding about the key type */
5190 if (root
->fs_info
->tree_root
== root
)
5191 key_type
= BTRFS_DIR_ITEM_KEY
;
5193 if (!dir_emit_dots(file
, ctx
))
5196 path
= btrfs_alloc_path();
5202 if (key_type
== BTRFS_DIR_INDEX_KEY
) {
5203 INIT_LIST_HEAD(&ins_list
);
5204 INIT_LIST_HEAD(&del_list
);
5205 btrfs_get_delayed_items(inode
, &ins_list
, &del_list
);
5208 btrfs_set_key_type(&key
, key_type
);
5209 key
.offset
= ctx
->pos
;
5210 key
.objectid
= btrfs_ino(inode
);
5212 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5217 leaf
= path
->nodes
[0];
5218 slot
= path
->slots
[0];
5219 if (slot
>= btrfs_header_nritems(leaf
)) {
5220 ret
= btrfs_next_leaf(root
, path
);
5228 item
= btrfs_item_nr(slot
);
5229 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
5231 if (found_key
.objectid
!= key
.objectid
)
5233 if (btrfs_key_type(&found_key
) != key_type
)
5235 if (found_key
.offset
< ctx
->pos
)
5237 if (key_type
== BTRFS_DIR_INDEX_KEY
&&
5238 btrfs_should_delete_dir_index(&del_list
,
5242 ctx
->pos
= found_key
.offset
;
5245 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
5247 di_total
= btrfs_item_size(leaf
, item
);
5249 while (di_cur
< di_total
) {
5250 struct btrfs_key location
;
5252 if (verify_dir_item(root
, leaf
, di
))
5255 name_len
= btrfs_dir_name_len(leaf
, di
);
5256 if (name_len
<= sizeof(tmp_name
)) {
5257 name_ptr
= tmp_name
;
5259 name_ptr
= kmalloc(name_len
, GFP_NOFS
);
5265 read_extent_buffer(leaf
, name_ptr
,
5266 (unsigned long)(di
+ 1), name_len
);
5268 d_type
= btrfs_filetype_table
[btrfs_dir_type(leaf
, di
)];
5269 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
5272 /* is this a reference to our own snapshot? If so
5275 * In contrast to old kernels, we insert the snapshot's
5276 * dir item and dir index after it has been created, so
5277 * we won't find a reference to our own snapshot. We
5278 * still keep the following code for backward
5281 if (location
.type
== BTRFS_ROOT_ITEM_KEY
&&
5282 location
.objectid
== root
->root_key
.objectid
) {
5286 over
= !dir_emit(ctx
, name_ptr
, name_len
,
5287 location
.objectid
, d_type
);
5290 if (name_ptr
!= tmp_name
)
5295 di_len
= btrfs_dir_name_len(leaf
, di
) +
5296 btrfs_dir_data_len(leaf
, di
) + sizeof(*di
);
5298 di
= (struct btrfs_dir_item
*)((char *)di
+ di_len
);
5304 if (key_type
== BTRFS_DIR_INDEX_KEY
) {
5307 ret
= btrfs_readdir_delayed_dir_index(ctx
, &ins_list
);
5312 /* Reached end of directory/root. Bump pos past the last item. */
5316 * Stop new entries from being returned after we return the last
5319 * New directory entries are assigned a strictly increasing
5320 * offset. This means that new entries created during readdir
5321 * are *guaranteed* to be seen in the future by that readdir.
5322 * This has broken buggy programs which operate on names as
5323 * they're returned by readdir. Until we re-use freed offsets
5324 * we have this hack to stop new entries from being returned
5325 * under the assumption that they'll never reach this huge
5328 * This is being careful not to overflow 32bit loff_t unless the
5329 * last entry requires it because doing so has broken 32bit apps
5332 if (key_type
== BTRFS_DIR_INDEX_KEY
) {
5333 if (ctx
->pos
>= INT_MAX
)
5334 ctx
->pos
= LLONG_MAX
;
5341 if (key_type
== BTRFS_DIR_INDEX_KEY
)
5342 btrfs_put_delayed_items(&ins_list
, &del_list
);
5343 btrfs_free_path(path
);
5347 int btrfs_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
5349 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5350 struct btrfs_trans_handle
*trans
;
5352 bool nolock
= false;
5354 if (test_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
))
5357 if (btrfs_fs_closing(root
->fs_info
) && btrfs_is_free_space_inode(inode
))
5360 if (wbc
->sync_mode
== WB_SYNC_ALL
) {
5362 trans
= btrfs_join_transaction_nolock(root
);
5364 trans
= btrfs_join_transaction(root
);
5366 return PTR_ERR(trans
);
5367 ret
= btrfs_commit_transaction(trans
, root
);
5373 * This is somewhat expensive, updating the tree every time the
5374 * inode changes. But, it is most likely to find the inode in cache.
5375 * FIXME, needs more benchmarking...there are no reasons other than performance
5376 * to keep or drop this code.
5378 static int btrfs_dirty_inode(struct inode
*inode
)
5380 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5381 struct btrfs_trans_handle
*trans
;
5384 if (test_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
))
5387 trans
= btrfs_join_transaction(root
);
5389 return PTR_ERR(trans
);
5391 ret
= btrfs_update_inode(trans
, root
, inode
);
5392 if (ret
&& ret
== -ENOSPC
) {
5393 /* whoops, lets try again with the full transaction */
5394 btrfs_end_transaction(trans
, root
);
5395 trans
= btrfs_start_transaction(root
, 1);
5397 return PTR_ERR(trans
);
5399 ret
= btrfs_update_inode(trans
, root
, inode
);
5401 btrfs_end_transaction(trans
, root
);
5402 if (BTRFS_I(inode
)->delayed_node
)
5403 btrfs_balance_delayed_items(root
);
5409 * This is a copy of file_update_time. We need this so we can return error on
5410 * ENOSPC for updating the inode in the case of file write and mmap writes.
5412 static int btrfs_update_time(struct inode
*inode
, struct timespec
*now
,
5415 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5417 if (btrfs_root_readonly(root
))
5420 if (flags
& S_VERSION
)
5421 inode_inc_iversion(inode
);
5422 if (flags
& S_CTIME
)
5423 inode
->i_ctime
= *now
;
5424 if (flags
& S_MTIME
)
5425 inode
->i_mtime
= *now
;
5426 if (flags
& S_ATIME
)
5427 inode
->i_atime
= *now
;
5428 return btrfs_dirty_inode(inode
);
5432 * find the highest existing sequence number in a directory
5433 * and then set the in-memory index_cnt variable to reflect
5434 * free sequence numbers
5436 static int btrfs_set_inode_index_count(struct inode
*inode
)
5438 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5439 struct btrfs_key key
, found_key
;
5440 struct btrfs_path
*path
;
5441 struct extent_buffer
*leaf
;
5444 key
.objectid
= btrfs_ino(inode
);
5445 btrfs_set_key_type(&key
, BTRFS_DIR_INDEX_KEY
);
5446 key
.offset
= (u64
)-1;
5448 path
= btrfs_alloc_path();
5452 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5455 /* FIXME: we should be able to handle this */
5461 * MAGIC NUMBER EXPLANATION:
5462 * since we search a directory based on f_pos we have to start at 2
5463 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5464 * else has to start at 2
5466 if (path
->slots
[0] == 0) {
5467 BTRFS_I(inode
)->index_cnt
= 2;
5473 leaf
= path
->nodes
[0];
5474 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5476 if (found_key
.objectid
!= btrfs_ino(inode
) ||
5477 btrfs_key_type(&found_key
) != BTRFS_DIR_INDEX_KEY
) {
5478 BTRFS_I(inode
)->index_cnt
= 2;
5482 BTRFS_I(inode
)->index_cnt
= found_key
.offset
+ 1;
5484 btrfs_free_path(path
);
5489 * helper to find a free sequence number in a given directory. This current
5490 * code is very simple, later versions will do smarter things in the btree
5492 int btrfs_set_inode_index(struct inode
*dir
, u64
*index
)
5496 if (BTRFS_I(dir
)->index_cnt
== (u64
)-1) {
5497 ret
= btrfs_inode_delayed_dir_index_count(dir
);
5499 ret
= btrfs_set_inode_index_count(dir
);
5505 *index
= BTRFS_I(dir
)->index_cnt
;
5506 BTRFS_I(dir
)->index_cnt
++;
5511 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
5512 struct btrfs_root
*root
,
5514 const char *name
, int name_len
,
5515 u64 ref_objectid
, u64 objectid
,
5516 umode_t mode
, u64
*index
)
5518 struct inode
*inode
;
5519 struct btrfs_inode_item
*inode_item
;
5520 struct btrfs_key
*location
;
5521 struct btrfs_path
*path
;
5522 struct btrfs_inode_ref
*ref
;
5523 struct btrfs_key key
[2];
5528 path
= btrfs_alloc_path();
5530 return ERR_PTR(-ENOMEM
);
5532 inode
= new_inode(root
->fs_info
->sb
);
5534 btrfs_free_path(path
);
5535 return ERR_PTR(-ENOMEM
);
5539 * we have to initialize this early, so we can reclaim the inode
5540 * number if we fail afterwards in this function.
5542 inode
->i_ino
= objectid
;
5545 trace_btrfs_inode_request(dir
);
5547 ret
= btrfs_set_inode_index(dir
, index
);
5549 btrfs_free_path(path
);
5551 return ERR_PTR(ret
);
5555 * index_cnt is ignored for everything but a dir,
5556 * btrfs_get_inode_index_count has an explanation for the magic
5559 BTRFS_I(inode
)->index_cnt
= 2;
5560 BTRFS_I(inode
)->dir_index
= *index
;
5561 BTRFS_I(inode
)->root
= root
;
5562 BTRFS_I(inode
)->generation
= trans
->transid
;
5563 inode
->i_generation
= BTRFS_I(inode
)->generation
;
5566 * We could have gotten an inode number from somebody who was fsynced
5567 * and then removed in this same transaction, so let's just set full
5568 * sync since it will be a full sync anyway and this will blow away the
5569 * old info in the log.
5571 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
5573 key
[0].objectid
= objectid
;
5574 btrfs_set_key_type(&key
[0], BTRFS_INODE_ITEM_KEY
);
5578 * Start new inodes with an inode_ref. This is slightly more
5579 * efficient for small numbers of hard links since they will
5580 * be packed into one item. Extended refs will kick in if we
5581 * add more hard links than can fit in the ref item.
5583 key
[1].objectid
= objectid
;
5584 btrfs_set_key_type(&key
[1], BTRFS_INODE_REF_KEY
);
5585 key
[1].offset
= ref_objectid
;
5587 sizes
[0] = sizeof(struct btrfs_inode_item
);
5588 sizes
[1] = name_len
+ sizeof(*ref
);
5590 path
->leave_spinning
= 1;
5591 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, 2);
5595 inode_init_owner(inode
, dir
, mode
);
5596 inode_set_bytes(inode
, 0);
5597 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
5598 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
5599 struct btrfs_inode_item
);
5600 memset_extent_buffer(path
->nodes
[0], 0, (unsigned long)inode_item
,
5601 sizeof(*inode_item
));
5602 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
5604 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
5605 struct btrfs_inode_ref
);
5606 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
5607 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
5608 ptr
= (unsigned long)(ref
+ 1);
5609 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
5611 btrfs_mark_buffer_dirty(path
->nodes
[0]);
5612 btrfs_free_path(path
);
5614 location
= &BTRFS_I(inode
)->location
;
5615 location
->objectid
= objectid
;
5616 location
->offset
= 0;
5617 btrfs_set_key_type(location
, BTRFS_INODE_ITEM_KEY
);
5619 btrfs_inherit_iflags(inode
, dir
);
5621 if (S_ISREG(mode
)) {
5622 if (btrfs_test_opt(root
, NODATASUM
))
5623 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
5624 if (btrfs_test_opt(root
, NODATACOW
))
5625 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
|
5626 BTRFS_INODE_NODATASUM
;
5629 btrfs_insert_inode_hash(inode
);
5630 inode_tree_add(inode
);
5632 trace_btrfs_inode_new(inode
);
5633 btrfs_set_inode_last_trans(trans
, inode
);
5635 btrfs_update_root_times(trans
, root
);
5637 ret
= btrfs_inode_inherit_props(trans
, inode
, dir
);
5639 btrfs_err(root
->fs_info
,
5640 "error inheriting props for ino %llu (root %llu): %d",
5641 btrfs_ino(inode
), root
->root_key
.objectid
, ret
);
5646 BTRFS_I(dir
)->index_cnt
--;
5647 btrfs_free_path(path
);
5649 return ERR_PTR(ret
);
5652 static inline u8
btrfs_inode_type(struct inode
*inode
)
5654 return btrfs_type_by_mode
[(inode
->i_mode
& S_IFMT
) >> S_SHIFT
];
5658 * utility function to add 'inode' into 'parent_inode' with
5659 * a give name and a given sequence number.
5660 * if 'add_backref' is true, also insert a backref from the
5661 * inode to the parent directory.
5663 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
5664 struct inode
*parent_inode
, struct inode
*inode
,
5665 const char *name
, int name_len
, int add_backref
, u64 index
)
5668 struct btrfs_key key
;
5669 struct btrfs_root
*root
= BTRFS_I(parent_inode
)->root
;
5670 u64 ino
= btrfs_ino(inode
);
5671 u64 parent_ino
= btrfs_ino(parent_inode
);
5673 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
5674 memcpy(&key
, &BTRFS_I(inode
)->root
->root_key
, sizeof(key
));
5677 btrfs_set_key_type(&key
, BTRFS_INODE_ITEM_KEY
);
5681 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
5682 ret
= btrfs_add_root_ref(trans
, root
->fs_info
->tree_root
,
5683 key
.objectid
, root
->root_key
.objectid
,
5684 parent_ino
, index
, name
, name_len
);
5685 } else if (add_backref
) {
5686 ret
= btrfs_insert_inode_ref(trans
, root
, name
, name_len
, ino
,
5690 /* Nothing to clean up yet */
5694 ret
= btrfs_insert_dir_item(trans
, root
, name
, name_len
,
5696 btrfs_inode_type(inode
), index
);
5697 if (ret
== -EEXIST
|| ret
== -EOVERFLOW
)
5700 btrfs_abort_transaction(trans
, root
, ret
);
5704 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
5706 inode_inc_iversion(parent_inode
);
5707 parent_inode
->i_mtime
= parent_inode
->i_ctime
= CURRENT_TIME
;
5708 ret
= btrfs_update_inode(trans
, root
, parent_inode
);
5710 btrfs_abort_transaction(trans
, root
, ret
);
5714 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
5717 err
= btrfs_del_root_ref(trans
, root
->fs_info
->tree_root
,
5718 key
.objectid
, root
->root_key
.objectid
,
5719 parent_ino
, &local_index
, name
, name_len
);
5721 } else if (add_backref
) {
5725 err
= btrfs_del_inode_ref(trans
, root
, name
, name_len
,
5726 ino
, parent_ino
, &local_index
);
5731 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
5732 struct inode
*dir
, struct dentry
*dentry
,
5733 struct inode
*inode
, int backref
, u64 index
)
5735 int err
= btrfs_add_link(trans
, dir
, inode
,
5736 dentry
->d_name
.name
, dentry
->d_name
.len
,
5743 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
5744 umode_t mode
, dev_t rdev
)
5746 struct btrfs_trans_handle
*trans
;
5747 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5748 struct inode
*inode
= NULL
;
5754 if (!new_valid_dev(rdev
))
5758 * 2 for inode item and ref
5760 * 1 for xattr if selinux is on
5762 trans
= btrfs_start_transaction(root
, 5);
5764 return PTR_ERR(trans
);
5766 err
= btrfs_find_free_ino(root
, &objectid
);
5770 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
5771 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
5773 if (IS_ERR(inode
)) {
5774 err
= PTR_ERR(inode
);
5778 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
5785 * If the active LSM wants to access the inode during
5786 * d_instantiate it needs these. Smack checks to see
5787 * if the filesystem supports xattrs by looking at the
5791 inode
->i_op
= &btrfs_special_inode_operations
;
5792 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
5796 init_special_inode(inode
, inode
->i_mode
, rdev
);
5797 btrfs_update_inode(trans
, root
, inode
);
5798 d_instantiate(dentry
, inode
);
5801 btrfs_end_transaction(trans
, root
);
5802 btrfs_btree_balance_dirty(root
);
5804 inode_dec_link_count(inode
);
5810 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
5811 umode_t mode
, bool excl
)
5813 struct btrfs_trans_handle
*trans
;
5814 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5815 struct inode
*inode
= NULL
;
5816 int drop_inode_on_err
= 0;
5822 * 2 for inode item and ref
5824 * 1 for xattr if selinux is on
5826 trans
= btrfs_start_transaction(root
, 5);
5828 return PTR_ERR(trans
);
5830 err
= btrfs_find_free_ino(root
, &objectid
);
5834 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
5835 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
5837 if (IS_ERR(inode
)) {
5838 err
= PTR_ERR(inode
);
5841 drop_inode_on_err
= 1;
5843 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
5847 err
= btrfs_update_inode(trans
, root
, inode
);
5852 * If the active LSM wants to access the inode during
5853 * d_instantiate it needs these. Smack checks to see
5854 * if the filesystem supports xattrs by looking at the
5857 inode
->i_fop
= &btrfs_file_operations
;
5858 inode
->i_op
= &btrfs_file_inode_operations
;
5860 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
5864 inode
->i_mapping
->a_ops
= &btrfs_aops
;
5865 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
5866 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
5867 d_instantiate(dentry
, inode
);
5870 btrfs_end_transaction(trans
, root
);
5871 if (err
&& drop_inode_on_err
) {
5872 inode_dec_link_count(inode
);
5875 btrfs_btree_balance_dirty(root
);
5879 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
5880 struct dentry
*dentry
)
5882 struct btrfs_trans_handle
*trans
;
5883 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5884 struct inode
*inode
= old_dentry
->d_inode
;
5889 /* do not allow sys_link's with other subvols of the same device */
5890 if (root
->objectid
!= BTRFS_I(inode
)->root
->objectid
)
5893 if (inode
->i_nlink
>= BTRFS_LINK_MAX
)
5896 err
= btrfs_set_inode_index(dir
, &index
);
5901 * 2 items for inode and inode ref
5902 * 2 items for dir items
5903 * 1 item for parent inode
5905 trans
= btrfs_start_transaction(root
, 5);
5906 if (IS_ERR(trans
)) {
5907 err
= PTR_ERR(trans
);
5911 /* There are several dir indexes for this inode, clear the cache. */
5912 BTRFS_I(inode
)->dir_index
= 0ULL;
5914 inode_inc_iversion(inode
);
5915 inode
->i_ctime
= CURRENT_TIME
;
5917 set_bit(BTRFS_INODE_COPY_EVERYTHING
, &BTRFS_I(inode
)->runtime_flags
);
5919 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 1, index
);
5924 struct dentry
*parent
= dentry
->d_parent
;
5925 err
= btrfs_update_inode(trans
, root
, inode
);
5928 d_instantiate(dentry
, inode
);
5929 btrfs_log_new_name(trans
, inode
, NULL
, parent
);
5932 btrfs_end_transaction(trans
, root
);
5935 inode_dec_link_count(inode
);
5938 btrfs_btree_balance_dirty(root
);
5942 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
5944 struct inode
*inode
= NULL
;
5945 struct btrfs_trans_handle
*trans
;
5946 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5948 int drop_on_err
= 0;
5953 * 2 items for inode and ref
5954 * 2 items for dir items
5955 * 1 for xattr if selinux is on
5957 trans
= btrfs_start_transaction(root
, 5);
5959 return PTR_ERR(trans
);
5961 err
= btrfs_find_free_ino(root
, &objectid
);
5965 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
5966 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
5967 S_IFDIR
| mode
, &index
);
5968 if (IS_ERR(inode
)) {
5969 err
= PTR_ERR(inode
);
5975 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
5979 inode
->i_op
= &btrfs_dir_inode_operations
;
5980 inode
->i_fop
= &btrfs_dir_file_operations
;
5982 btrfs_i_size_write(inode
, 0);
5983 err
= btrfs_update_inode(trans
, root
, inode
);
5987 err
= btrfs_add_link(trans
, dir
, inode
, dentry
->d_name
.name
,
5988 dentry
->d_name
.len
, 0, index
);
5992 d_instantiate(dentry
, inode
);
5996 btrfs_end_transaction(trans
, root
);
5999 btrfs_btree_balance_dirty(root
);
6003 /* helper for btfs_get_extent. Given an existing extent in the tree,
6004 * and an extent that you want to insert, deal with overlap and insert
6005 * the new extent into the tree.
6007 static int merge_extent_mapping(struct extent_map_tree
*em_tree
,
6008 struct extent_map
*existing
,
6009 struct extent_map
*em
,
6010 u64 map_start
, u64 map_len
)
6014 BUG_ON(map_start
< em
->start
|| map_start
>= extent_map_end(em
));
6015 start_diff
= map_start
- em
->start
;
6016 em
->start
= map_start
;
6018 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
6019 !test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
6020 em
->block_start
+= start_diff
;
6021 em
->block_len
-= start_diff
;
6023 return add_extent_mapping(em_tree
, em
, 0);
6026 static noinline
int uncompress_inline(struct btrfs_path
*path
,
6027 struct inode
*inode
, struct page
*page
,
6028 size_t pg_offset
, u64 extent_offset
,
6029 struct btrfs_file_extent_item
*item
)
6032 struct extent_buffer
*leaf
= path
->nodes
[0];
6035 unsigned long inline_size
;
6039 WARN_ON(pg_offset
!= 0);
6040 compress_type
= btrfs_file_extent_compression(leaf
, item
);
6041 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
6042 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
6043 btrfs_item_nr(path
->slots
[0]));
6044 tmp
= kmalloc(inline_size
, GFP_NOFS
);
6047 ptr
= btrfs_file_extent_inline_start(item
);
6049 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
6051 max_size
= min_t(unsigned long, PAGE_CACHE_SIZE
, max_size
);
6052 ret
= btrfs_decompress(compress_type
, tmp
, page
,
6053 extent_offset
, inline_size
, max_size
);
6055 char *kaddr
= kmap_atomic(page
);
6056 unsigned long copy_size
= min_t(u64
,
6057 PAGE_CACHE_SIZE
- pg_offset
,
6058 max_size
- extent_offset
);
6059 memset(kaddr
+ pg_offset
, 0, copy_size
);
6060 kunmap_atomic(kaddr
);
6067 * a bit scary, this does extent mapping from logical file offset to the disk.
6068 * the ugly parts come from merging extents from the disk with the in-ram
6069 * representation. This gets more complex because of the data=ordered code,
6070 * where the in-ram extents might be locked pending data=ordered completion.
6072 * This also copies inline extents directly into the page.
6075 struct extent_map
*btrfs_get_extent(struct inode
*inode
, struct page
*page
,
6076 size_t pg_offset
, u64 start
, u64 len
,
6082 u64 extent_start
= 0;
6084 u64 objectid
= btrfs_ino(inode
);
6086 struct btrfs_path
*path
= NULL
;
6087 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6088 struct btrfs_file_extent_item
*item
;
6089 struct extent_buffer
*leaf
;
6090 struct btrfs_key found_key
;
6091 struct extent_map
*em
= NULL
;
6092 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
6093 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
6094 struct btrfs_trans_handle
*trans
= NULL
;
6098 read_lock(&em_tree
->lock
);
6099 em
= lookup_extent_mapping(em_tree
, start
, len
);
6101 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
6102 read_unlock(&em_tree
->lock
);
6105 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
6106 free_extent_map(em
);
6107 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
6108 free_extent_map(em
);
6112 em
= alloc_extent_map();
6117 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
6118 em
->start
= EXTENT_MAP_HOLE
;
6119 em
->orig_start
= EXTENT_MAP_HOLE
;
6121 em
->block_len
= (u64
)-1;
6124 path
= btrfs_alloc_path();
6130 * Chances are we'll be called again, so go ahead and do
6136 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
6137 objectid
, start
, trans
!= NULL
);
6144 if (path
->slots
[0] == 0)
6149 leaf
= path
->nodes
[0];
6150 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
6151 struct btrfs_file_extent_item
);
6152 /* are we inside the extent that was found? */
6153 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6154 found_type
= btrfs_key_type(&found_key
);
6155 if (found_key
.objectid
!= objectid
||
6156 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
6158 * If we backup past the first extent we want to move forward
6159 * and see if there is an extent in front of us, otherwise we'll
6160 * say there is a hole for our whole search range which can
6167 found_type
= btrfs_file_extent_type(leaf
, item
);
6168 extent_start
= found_key
.offset
;
6169 compress_type
= btrfs_file_extent_compression(leaf
, item
);
6170 if (found_type
== BTRFS_FILE_EXTENT_REG
||
6171 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
6172 extent_end
= extent_start
+
6173 btrfs_file_extent_num_bytes(leaf
, item
);
6174 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
6176 size
= btrfs_file_extent_inline_len(leaf
, path
->slots
[0], item
);
6177 extent_end
= ALIGN(extent_start
+ size
, root
->sectorsize
);
6180 if (start
>= extent_end
) {
6182 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
6183 ret
= btrfs_next_leaf(root
, path
);
6190 leaf
= path
->nodes
[0];
6192 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6193 if (found_key
.objectid
!= objectid
||
6194 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
6196 if (start
+ len
<= found_key
.offset
)
6199 em
->orig_start
= start
;
6200 em
->len
= found_key
.offset
- start
;
6204 em
->ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, item
);
6205 if (found_type
== BTRFS_FILE_EXTENT_REG
||
6206 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
6207 em
->start
= extent_start
;
6208 em
->len
= extent_end
- extent_start
;
6209 em
->orig_start
= extent_start
-
6210 btrfs_file_extent_offset(leaf
, item
);
6211 em
->orig_block_len
= btrfs_file_extent_disk_num_bytes(leaf
,
6213 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, item
);
6215 em
->block_start
= EXTENT_MAP_HOLE
;
6218 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
6219 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
6220 em
->compress_type
= compress_type
;
6221 em
->block_start
= bytenr
;
6222 em
->block_len
= em
->orig_block_len
;
6224 bytenr
+= btrfs_file_extent_offset(leaf
, item
);
6225 em
->block_start
= bytenr
;
6226 em
->block_len
= em
->len
;
6227 if (found_type
== BTRFS_FILE_EXTENT_PREALLOC
)
6228 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
6231 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
6235 size_t extent_offset
;
6238 em
->block_start
= EXTENT_MAP_INLINE
;
6239 if (!page
|| create
) {
6240 em
->start
= extent_start
;
6241 em
->len
= extent_end
- extent_start
;
6245 size
= btrfs_file_extent_inline_len(leaf
, path
->slots
[0], item
);
6246 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
6247 copy_size
= min_t(u64
, PAGE_CACHE_SIZE
- pg_offset
,
6248 size
- extent_offset
);
6249 em
->start
= extent_start
+ extent_offset
;
6250 em
->len
= ALIGN(copy_size
, root
->sectorsize
);
6251 em
->orig_block_len
= em
->len
;
6252 em
->orig_start
= em
->start
;
6253 if (compress_type
) {
6254 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
6255 em
->compress_type
= compress_type
;
6257 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
6258 if (create
== 0 && !PageUptodate(page
)) {
6259 if (btrfs_file_extent_compression(leaf
, item
) !=
6260 BTRFS_COMPRESS_NONE
) {
6261 ret
= uncompress_inline(path
, inode
, page
,
6263 extent_offset
, item
);
6264 BUG_ON(ret
); /* -ENOMEM */
6267 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
6269 if (pg_offset
+ copy_size
< PAGE_CACHE_SIZE
) {
6270 memset(map
+ pg_offset
+ copy_size
, 0,
6271 PAGE_CACHE_SIZE
- pg_offset
-
6276 flush_dcache_page(page
);
6277 } else if (create
&& PageUptodate(page
)) {
6281 free_extent_map(em
);
6284 btrfs_release_path(path
);
6285 trans
= btrfs_join_transaction(root
);
6288 return ERR_CAST(trans
);
6292 write_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
6295 btrfs_mark_buffer_dirty(leaf
);
6297 set_extent_uptodate(io_tree
, em
->start
,
6298 extent_map_end(em
) - 1, NULL
, GFP_NOFS
);
6301 WARN(1, KERN_ERR
"btrfs unknown found_type %d\n", found_type
);
6305 em
->orig_start
= start
;
6308 em
->block_start
= EXTENT_MAP_HOLE
;
6309 set_bit(EXTENT_FLAG_VACANCY
, &em
->flags
);
6311 btrfs_release_path(path
);
6312 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
6313 btrfs_err(root
->fs_info
, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6314 em
->start
, em
->len
, start
, len
);
6320 write_lock(&em_tree
->lock
);
6321 ret
= add_extent_mapping(em_tree
, em
, 0);
6322 /* it is possible that someone inserted the extent into the tree
6323 * while we had the lock dropped. It is also possible that
6324 * an overlapping map exists in the tree
6326 if (ret
== -EEXIST
) {
6327 struct extent_map
*existing
;
6331 existing
= lookup_extent_mapping(em_tree
, start
, len
);
6332 if (existing
&& (existing
->start
> start
||
6333 existing
->start
+ existing
->len
<= start
)) {
6334 free_extent_map(existing
);
6338 existing
= lookup_extent_mapping(em_tree
, em
->start
,
6341 err
= merge_extent_mapping(em_tree
, existing
,
6344 free_extent_map(existing
);
6346 free_extent_map(em
);
6351 free_extent_map(em
);
6355 free_extent_map(em
);
6360 write_unlock(&em_tree
->lock
);
6363 trace_btrfs_get_extent(root
, em
);
6366 btrfs_free_path(path
);
6368 ret
= btrfs_end_transaction(trans
, root
);
6373 free_extent_map(em
);
6374 return ERR_PTR(err
);
6376 BUG_ON(!em
); /* Error is always set */
6380 struct extent_map
*btrfs_get_extent_fiemap(struct inode
*inode
, struct page
*page
,
6381 size_t pg_offset
, u64 start
, u64 len
,
6384 struct extent_map
*em
;
6385 struct extent_map
*hole_em
= NULL
;
6386 u64 range_start
= start
;
6392 em
= btrfs_get_extent(inode
, page
, pg_offset
, start
, len
, create
);
6399 * - a pre-alloc extent,
6400 * there might actually be delalloc bytes behind it.
6402 if (em
->block_start
!= EXTENT_MAP_HOLE
&&
6403 !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
6409 /* check to see if we've wrapped (len == -1 or similar) */
6418 /* ok, we didn't find anything, lets look for delalloc */
6419 found
= count_range_bits(&BTRFS_I(inode
)->io_tree
, &range_start
,
6420 end
, len
, EXTENT_DELALLOC
, 1);
6421 found_end
= range_start
+ found
;
6422 if (found_end
< range_start
)
6423 found_end
= (u64
)-1;
6426 * we didn't find anything useful, return
6427 * the original results from get_extent()
6429 if (range_start
> end
|| found_end
<= start
) {
6435 /* adjust the range_start to make sure it doesn't
6436 * go backwards from the start they passed in
6438 range_start
= max(start
, range_start
);
6439 found
= found_end
- range_start
;
6442 u64 hole_start
= start
;
6445 em
= alloc_extent_map();
6451 * when btrfs_get_extent can't find anything it
6452 * returns one huge hole
6454 * make sure what it found really fits our range, and
6455 * adjust to make sure it is based on the start from
6459 u64 calc_end
= extent_map_end(hole_em
);
6461 if (calc_end
<= start
|| (hole_em
->start
> end
)) {
6462 free_extent_map(hole_em
);
6465 hole_start
= max(hole_em
->start
, start
);
6466 hole_len
= calc_end
- hole_start
;
6470 if (hole_em
&& range_start
> hole_start
) {
6471 /* our hole starts before our delalloc, so we
6472 * have to return just the parts of the hole
6473 * that go until the delalloc starts
6475 em
->len
= min(hole_len
,
6476 range_start
- hole_start
);
6477 em
->start
= hole_start
;
6478 em
->orig_start
= hole_start
;
6480 * don't adjust block start at all,
6481 * it is fixed at EXTENT_MAP_HOLE
6483 em
->block_start
= hole_em
->block_start
;
6484 em
->block_len
= hole_len
;
6485 if (test_bit(EXTENT_FLAG_PREALLOC
, &hole_em
->flags
))
6486 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
6488 em
->start
= range_start
;
6490 em
->orig_start
= range_start
;
6491 em
->block_start
= EXTENT_MAP_DELALLOC
;
6492 em
->block_len
= found
;
6494 } else if (hole_em
) {
6499 free_extent_map(hole_em
);
6501 free_extent_map(em
);
6502 return ERR_PTR(err
);
6507 static struct extent_map
*btrfs_new_extent_direct(struct inode
*inode
,
6510 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6511 struct extent_map
*em
;
6512 struct btrfs_key ins
;
6516 alloc_hint
= get_extent_allocation_hint(inode
, start
, len
);
6517 ret
= btrfs_reserve_extent(root
, len
, root
->sectorsize
, 0,
6518 alloc_hint
, &ins
, 1);
6520 return ERR_PTR(ret
);
6522 em
= create_pinned_em(inode
, start
, ins
.offset
, start
, ins
.objectid
,
6523 ins
.offset
, ins
.offset
, ins
.offset
, 0);
6525 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
);
6529 ret
= btrfs_add_ordered_extent_dio(inode
, start
, ins
.objectid
,
6530 ins
.offset
, ins
.offset
, 0);
6532 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
);
6533 free_extent_map(em
);
6534 return ERR_PTR(ret
);
6541 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6542 * block must be cow'd
6544 noinline
int can_nocow_extent(struct inode
*inode
, u64 offset
, u64
*len
,
6545 u64
*orig_start
, u64
*orig_block_len
,
6548 struct btrfs_trans_handle
*trans
;
6549 struct btrfs_path
*path
;
6551 struct extent_buffer
*leaf
;
6552 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6553 struct btrfs_file_extent_item
*fi
;
6554 struct btrfs_key key
;
6561 bool nocow
= (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
);
6563 path
= btrfs_alloc_path();
6567 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, btrfs_ino(inode
),
6572 slot
= path
->slots
[0];
6575 /* can't find the item, must cow */
6582 leaf
= path
->nodes
[0];
6583 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
6584 if (key
.objectid
!= btrfs_ino(inode
) ||
6585 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
6586 /* not our file or wrong item type, must cow */
6590 if (key
.offset
> offset
) {
6591 /* Wrong offset, must cow */
6595 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
6596 found_type
= btrfs_file_extent_type(leaf
, fi
);
6597 if (found_type
!= BTRFS_FILE_EXTENT_REG
&&
6598 found_type
!= BTRFS_FILE_EXTENT_PREALLOC
) {
6599 /* not a regular extent, must cow */
6603 if (!nocow
&& found_type
== BTRFS_FILE_EXTENT_REG
)
6606 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
6607 if (extent_end
<= offset
)
6610 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
6611 if (disk_bytenr
== 0)
6614 if (btrfs_file_extent_compression(leaf
, fi
) ||
6615 btrfs_file_extent_encryption(leaf
, fi
) ||
6616 btrfs_file_extent_other_encoding(leaf
, fi
))
6619 backref_offset
= btrfs_file_extent_offset(leaf
, fi
);
6622 *orig_start
= key
.offset
- backref_offset
;
6623 *orig_block_len
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
6624 *ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
6627 if (btrfs_extent_readonly(root
, disk_bytenr
))
6629 btrfs_release_path(path
);
6632 * look for other files referencing this extent, if we
6633 * find any we must cow
6635 trans
= btrfs_join_transaction(root
);
6636 if (IS_ERR(trans
)) {
6641 ret
= btrfs_cross_ref_exist(trans
, root
, btrfs_ino(inode
),
6642 key
.offset
- backref_offset
, disk_bytenr
);
6643 btrfs_end_transaction(trans
, root
);
6650 * adjust disk_bytenr and num_bytes to cover just the bytes
6651 * in this extent we are about to write. If there
6652 * are any csums in that range we have to cow in order
6653 * to keep the csums correct
6655 disk_bytenr
+= backref_offset
;
6656 disk_bytenr
+= offset
- key
.offset
;
6657 num_bytes
= min(offset
+ *len
, extent_end
) - offset
;
6658 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
6661 * all of the above have passed, it is safe to overwrite this extent
6667 btrfs_free_path(path
);
6671 static int lock_extent_direct(struct inode
*inode
, u64 lockstart
, u64 lockend
,
6672 struct extent_state
**cached_state
, int writing
)
6674 struct btrfs_ordered_extent
*ordered
;
6678 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6681 * We're concerned with the entire range that we're going to be
6682 * doing DIO to, so we need to make sure theres no ordered
6683 * extents in this range.
6685 ordered
= btrfs_lookup_ordered_range(inode
, lockstart
,
6686 lockend
- lockstart
+ 1);
6689 * We need to make sure there are no buffered pages in this
6690 * range either, we could have raced between the invalidate in
6691 * generic_file_direct_write and locking the extent. The
6692 * invalidate needs to happen so that reads after a write do not
6695 if (!ordered
&& (!writing
||
6696 !test_range_bit(&BTRFS_I(inode
)->io_tree
,
6697 lockstart
, lockend
, EXTENT_UPTODATE
, 0,
6701 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6702 cached_state
, GFP_NOFS
);
6705 btrfs_start_ordered_extent(inode
, ordered
, 1);
6706 btrfs_put_ordered_extent(ordered
);
6708 /* Screw you mmap */
6709 ret
= filemap_write_and_wait_range(inode
->i_mapping
,
6716 * If we found a page that couldn't be invalidated just
6717 * fall back to buffered.
6719 ret
= invalidate_inode_pages2_range(inode
->i_mapping
,
6720 lockstart
>> PAGE_CACHE_SHIFT
,
6721 lockend
>> PAGE_CACHE_SHIFT
);
6732 static struct extent_map
*create_pinned_em(struct inode
*inode
, u64 start
,
6733 u64 len
, u64 orig_start
,
6734 u64 block_start
, u64 block_len
,
6735 u64 orig_block_len
, u64 ram_bytes
,
6738 struct extent_map_tree
*em_tree
;
6739 struct extent_map
*em
;
6740 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6743 em_tree
= &BTRFS_I(inode
)->extent_tree
;
6744 em
= alloc_extent_map();
6746 return ERR_PTR(-ENOMEM
);
6749 em
->orig_start
= orig_start
;
6750 em
->mod_start
= start
;
6753 em
->block_len
= block_len
;
6754 em
->block_start
= block_start
;
6755 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
6756 em
->orig_block_len
= orig_block_len
;
6757 em
->ram_bytes
= ram_bytes
;
6758 em
->generation
= -1;
6759 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
6760 if (type
== BTRFS_ORDERED_PREALLOC
)
6761 set_bit(EXTENT_FLAG_FILLING
, &em
->flags
);
6764 btrfs_drop_extent_cache(inode
, em
->start
,
6765 em
->start
+ em
->len
- 1, 0);
6766 write_lock(&em_tree
->lock
);
6767 ret
= add_extent_mapping(em_tree
, em
, 1);
6768 write_unlock(&em_tree
->lock
);
6769 } while (ret
== -EEXIST
);
6772 free_extent_map(em
);
6773 return ERR_PTR(ret
);
6780 static int btrfs_get_blocks_direct(struct inode
*inode
, sector_t iblock
,
6781 struct buffer_head
*bh_result
, int create
)
6783 struct extent_map
*em
;
6784 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6785 struct extent_state
*cached_state
= NULL
;
6786 u64 start
= iblock
<< inode
->i_blkbits
;
6787 u64 lockstart
, lockend
;
6788 u64 len
= bh_result
->b_size
;
6789 int unlock_bits
= EXTENT_LOCKED
;
6793 unlock_bits
|= EXTENT_DELALLOC
| EXTENT_DIRTY
;
6795 len
= min_t(u64
, len
, root
->sectorsize
);
6798 lockend
= start
+ len
- 1;
6801 * If this errors out it's because we couldn't invalidate pagecache for
6802 * this range and we need to fallback to buffered.
6804 if (lock_extent_direct(inode
, lockstart
, lockend
, &cached_state
, create
))
6807 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
, 0);
6814 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6815 * io. INLINE is special, and we could probably kludge it in here, but
6816 * it's still buffered so for safety lets just fall back to the generic
6819 * For COMPRESSED we _have_ to read the entire extent in so we can
6820 * decompress it, so there will be buffering required no matter what we
6821 * do, so go ahead and fallback to buffered.
6823 * We return -ENOTBLK because thats what makes DIO go ahead and go back
6824 * to buffered IO. Don't blame me, this is the price we pay for using
6827 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) ||
6828 em
->block_start
== EXTENT_MAP_INLINE
) {
6829 free_extent_map(em
);
6834 /* Just a good old fashioned hole, return */
6835 if (!create
&& (em
->block_start
== EXTENT_MAP_HOLE
||
6836 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))) {
6837 free_extent_map(em
);
6842 * We don't allocate a new extent in the following cases
6844 * 1) The inode is marked as NODATACOW. In this case we'll just use the
6846 * 2) The extent is marked as PREALLOC. We're good to go here and can
6847 * just use the extent.
6851 len
= min(len
, em
->len
- (start
- em
->start
));
6852 lockstart
= start
+ len
;
6856 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
6857 ((BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
6858 em
->block_start
!= EXTENT_MAP_HOLE
)) {
6861 u64 block_start
, orig_start
, orig_block_len
, ram_bytes
;
6863 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
6864 type
= BTRFS_ORDERED_PREALLOC
;
6866 type
= BTRFS_ORDERED_NOCOW
;
6867 len
= min(len
, em
->len
- (start
- em
->start
));
6868 block_start
= em
->block_start
+ (start
- em
->start
);
6870 if (can_nocow_extent(inode
, start
, &len
, &orig_start
,
6871 &orig_block_len
, &ram_bytes
) == 1) {
6872 if (type
== BTRFS_ORDERED_PREALLOC
) {
6873 free_extent_map(em
);
6874 em
= create_pinned_em(inode
, start
, len
,
6883 ret
= btrfs_add_ordered_extent_dio(inode
, start
,
6884 block_start
, len
, len
, type
);
6886 free_extent_map(em
);
6894 * this will cow the extent, reset the len in case we changed
6897 len
= bh_result
->b_size
;
6898 free_extent_map(em
);
6899 em
= btrfs_new_extent_direct(inode
, start
, len
);
6904 len
= min(len
, em
->len
- (start
- em
->start
));
6906 bh_result
->b_blocknr
= (em
->block_start
+ (start
- em
->start
)) >>
6908 bh_result
->b_size
= len
;
6909 bh_result
->b_bdev
= em
->bdev
;
6910 set_buffer_mapped(bh_result
);
6912 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
6913 set_buffer_new(bh_result
);
6916 * Need to update the i_size under the extent lock so buffered
6917 * readers will get the updated i_size when we unlock.
6919 if (start
+ len
> i_size_read(inode
))
6920 i_size_write(inode
, start
+ len
);
6922 spin_lock(&BTRFS_I(inode
)->lock
);
6923 BTRFS_I(inode
)->outstanding_extents
++;
6924 spin_unlock(&BTRFS_I(inode
)->lock
);
6926 ret
= set_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
6927 lockstart
+ len
- 1, EXTENT_DELALLOC
, NULL
,
6928 &cached_state
, GFP_NOFS
);
6933 * In the case of write we need to clear and unlock the entire range,
6934 * in the case of read we need to unlock only the end area that we
6935 * aren't using if there is any left over space.
6937 if (lockstart
< lockend
) {
6938 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
6939 lockend
, unlock_bits
, 1, 0,
6940 &cached_state
, GFP_NOFS
);
6942 free_extent_state(cached_state
);
6945 free_extent_map(em
);
6950 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6951 unlock_bits
, 1, 0, &cached_state
, GFP_NOFS
);
6955 static void btrfs_endio_direct_read(struct bio
*bio
, int err
)
6957 struct btrfs_dio_private
*dip
= bio
->bi_private
;
6958 struct bio_vec
*bvec
;
6959 struct inode
*inode
= dip
->inode
;
6960 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6961 struct bio
*dio_bio
;
6962 u32
*csums
= (u32
*)dip
->csum
;
6966 start
= dip
->logical_offset
;
6967 bio_for_each_segment_all(bvec
, bio
, i
) {
6968 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)) {
6969 struct page
*page
= bvec
->bv_page
;
6972 unsigned long flags
;
6974 local_irq_save(flags
);
6975 kaddr
= kmap_atomic(page
);
6976 csum
= btrfs_csum_data(kaddr
+ bvec
->bv_offset
,
6977 csum
, bvec
->bv_len
);
6978 btrfs_csum_final(csum
, (char *)&csum
);
6979 kunmap_atomic(kaddr
);
6980 local_irq_restore(flags
);
6982 flush_dcache_page(bvec
->bv_page
);
6983 if (csum
!= csums
[i
]) {
6984 btrfs_err(root
->fs_info
, "csum failed ino %llu off %llu csum %u expected csum %u",
6985 btrfs_ino(inode
), start
, csum
,
6991 start
+= bvec
->bv_len
;
6994 unlock_extent(&BTRFS_I(inode
)->io_tree
, dip
->logical_offset
,
6995 dip
->logical_offset
+ dip
->bytes
- 1);
6996 dio_bio
= dip
->dio_bio
;
7000 /* If we had a csum failure make sure to clear the uptodate flag */
7002 clear_bit(BIO_UPTODATE
, &dio_bio
->bi_flags
);
7003 dio_end_io(dio_bio
, err
);
7007 static void btrfs_endio_direct_write(struct bio
*bio
, int err
)
7009 struct btrfs_dio_private
*dip
= bio
->bi_private
;
7010 struct inode
*inode
= dip
->inode
;
7011 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7012 struct btrfs_ordered_extent
*ordered
= NULL
;
7013 u64 ordered_offset
= dip
->logical_offset
;
7014 u64 ordered_bytes
= dip
->bytes
;
7015 struct bio
*dio_bio
;
7021 ret
= btrfs_dec_test_first_ordered_pending(inode
, &ordered
,
7023 ordered_bytes
, !err
);
7027 ordered
->work
.func
= finish_ordered_fn
;
7028 ordered
->work
.flags
= 0;
7029 btrfs_queue_worker(&root
->fs_info
->endio_write_workers
,
7033 * our bio might span multiple ordered extents. If we haven't
7034 * completed the accounting for the whole dio, go back and try again
7036 if (ordered_offset
< dip
->logical_offset
+ dip
->bytes
) {
7037 ordered_bytes
= dip
->logical_offset
+ dip
->bytes
-
7043 dio_bio
= dip
->dio_bio
;
7047 /* If we had an error make sure to clear the uptodate flag */
7049 clear_bit(BIO_UPTODATE
, &dio_bio
->bi_flags
);
7050 dio_end_io(dio_bio
, err
);
7054 static int __btrfs_submit_bio_start_direct_io(struct inode
*inode
, int rw
,
7055 struct bio
*bio
, int mirror_num
,
7056 unsigned long bio_flags
, u64 offset
)
7059 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7060 ret
= btrfs_csum_one_bio(root
, inode
, bio
, offset
, 1);
7061 BUG_ON(ret
); /* -ENOMEM */
7065 static void btrfs_end_dio_bio(struct bio
*bio
, int err
)
7067 struct btrfs_dio_private
*dip
= bio
->bi_private
;
7070 btrfs_err(BTRFS_I(dip
->inode
)->root
->fs_info
,
7071 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
7072 btrfs_ino(dip
->inode
), bio
->bi_rw
,
7073 (unsigned long long)bio
->bi_iter
.bi_sector
,
7074 bio
->bi_iter
.bi_size
, err
);
7078 * before atomic variable goto zero, we must make sure
7079 * dip->errors is perceived to be set.
7081 smp_mb__before_atomic_dec();
7084 /* if there are more bios still pending for this dio, just exit */
7085 if (!atomic_dec_and_test(&dip
->pending_bios
))
7089 bio_io_error(dip
->orig_bio
);
7091 set_bit(BIO_UPTODATE
, &dip
->dio_bio
->bi_flags
);
7092 bio_endio(dip
->orig_bio
, 0);
7098 static struct bio
*btrfs_dio_bio_alloc(struct block_device
*bdev
,
7099 u64 first_sector
, gfp_t gfp_flags
)
7101 int nr_vecs
= bio_get_nr_vecs(bdev
);
7102 return btrfs_bio_alloc(bdev
, first_sector
, nr_vecs
, gfp_flags
);
7105 static inline int __btrfs_submit_dio_bio(struct bio
*bio
, struct inode
*inode
,
7106 int rw
, u64 file_offset
, int skip_sum
,
7109 struct btrfs_dio_private
*dip
= bio
->bi_private
;
7110 int write
= rw
& REQ_WRITE
;
7111 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7115 async_submit
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
7120 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
7128 if (write
&& async_submit
) {
7129 ret
= btrfs_wq_submit_bio(root
->fs_info
,
7130 inode
, rw
, bio
, 0, 0,
7132 __btrfs_submit_bio_start_direct_io
,
7133 __btrfs_submit_bio_done
);
7137 * If we aren't doing async submit, calculate the csum of the
7140 ret
= btrfs_csum_one_bio(root
, inode
, bio
, file_offset
, 1);
7143 } else if (!skip_sum
) {
7144 ret
= btrfs_lookup_bio_sums_dio(root
, inode
, dip
, bio
,
7151 ret
= btrfs_map_bio(root
, rw
, bio
, 0, async_submit
);
7157 static int btrfs_submit_direct_hook(int rw
, struct btrfs_dio_private
*dip
,
7160 struct inode
*inode
= dip
->inode
;
7161 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7163 struct bio
*orig_bio
= dip
->orig_bio
;
7164 struct bio_vec
*bvec
= orig_bio
->bi_io_vec
;
7165 u64 start_sector
= orig_bio
->bi_iter
.bi_sector
;
7166 u64 file_offset
= dip
->logical_offset
;
7171 int async_submit
= 0;
7173 map_length
= orig_bio
->bi_iter
.bi_size
;
7174 ret
= btrfs_map_block(root
->fs_info
, rw
, start_sector
<< 9,
7175 &map_length
, NULL
, 0);
7181 if (map_length
>= orig_bio
->bi_iter
.bi_size
) {
7186 /* async crcs make it difficult to collect full stripe writes. */
7187 if (btrfs_get_alloc_profile(root
, 1) &
7188 (BTRFS_BLOCK_GROUP_RAID5
| BTRFS_BLOCK_GROUP_RAID6
))
7193 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
, start_sector
, GFP_NOFS
);
7196 bio
->bi_private
= dip
;
7197 bio
->bi_end_io
= btrfs_end_dio_bio
;
7198 atomic_inc(&dip
->pending_bios
);
7200 while (bvec
<= (orig_bio
->bi_io_vec
+ orig_bio
->bi_vcnt
- 1)) {
7201 if (unlikely(map_length
< submit_len
+ bvec
->bv_len
||
7202 bio_add_page(bio
, bvec
->bv_page
, bvec
->bv_len
,
7203 bvec
->bv_offset
) < bvec
->bv_len
)) {
7205 * inc the count before we submit the bio so
7206 * we know the end IO handler won't happen before
7207 * we inc the count. Otherwise, the dip might get freed
7208 * before we're done setting it up
7210 atomic_inc(&dip
->pending_bios
);
7211 ret
= __btrfs_submit_dio_bio(bio
, inode
, rw
,
7212 file_offset
, skip_sum
,
7216 atomic_dec(&dip
->pending_bios
);
7220 start_sector
+= submit_len
>> 9;
7221 file_offset
+= submit_len
;
7226 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
,
7227 start_sector
, GFP_NOFS
);
7230 bio
->bi_private
= dip
;
7231 bio
->bi_end_io
= btrfs_end_dio_bio
;
7233 map_length
= orig_bio
->bi_iter
.bi_size
;
7234 ret
= btrfs_map_block(root
->fs_info
, rw
,
7236 &map_length
, NULL
, 0);
7242 submit_len
+= bvec
->bv_len
;
7249 ret
= __btrfs_submit_dio_bio(bio
, inode
, rw
, file_offset
, skip_sum
,
7258 * before atomic variable goto zero, we must
7259 * make sure dip->errors is perceived to be set.
7261 smp_mb__before_atomic_dec();
7262 if (atomic_dec_and_test(&dip
->pending_bios
))
7263 bio_io_error(dip
->orig_bio
);
7265 /* bio_end_io() will handle error, so we needn't return it */
7269 static void btrfs_submit_direct(int rw
, struct bio
*dio_bio
,
7270 struct inode
*inode
, loff_t file_offset
)
7272 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7273 struct btrfs_dio_private
*dip
;
7277 int write
= rw
& REQ_WRITE
;
7281 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
7283 io_bio
= btrfs_bio_clone(dio_bio
, GFP_NOFS
);
7289 if (!skip_sum
&& !write
) {
7290 csum_size
= btrfs_super_csum_size(root
->fs_info
->super_copy
);
7291 sum_len
= dio_bio
->bi_iter
.bi_size
>>
7292 inode
->i_sb
->s_blocksize_bits
;
7293 sum_len
*= csum_size
;
7298 dip
= kmalloc(sizeof(*dip
) + sum_len
, GFP_NOFS
);
7304 dip
->private = dio_bio
->bi_private
;
7306 dip
->logical_offset
= file_offset
;
7307 dip
->bytes
= dio_bio
->bi_iter
.bi_size
;
7308 dip
->disk_bytenr
= (u64
)dio_bio
->bi_iter
.bi_sector
<< 9;
7309 io_bio
->bi_private
= dip
;
7311 dip
->orig_bio
= io_bio
;
7312 dip
->dio_bio
= dio_bio
;
7313 atomic_set(&dip
->pending_bios
, 0);
7316 io_bio
->bi_end_io
= btrfs_endio_direct_write
;
7318 io_bio
->bi_end_io
= btrfs_endio_direct_read
;
7320 ret
= btrfs_submit_direct_hook(rw
, dip
, skip_sum
);
7329 * If this is a write, we need to clean up the reserved space and kill
7330 * the ordered extent.
7333 struct btrfs_ordered_extent
*ordered
;
7334 ordered
= btrfs_lookup_ordered_extent(inode
, file_offset
);
7335 if (!test_bit(BTRFS_ORDERED_PREALLOC
, &ordered
->flags
) &&
7336 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered
->flags
))
7337 btrfs_free_reserved_extent(root
, ordered
->start
,
7339 btrfs_put_ordered_extent(ordered
);
7340 btrfs_put_ordered_extent(ordered
);
7342 bio_endio(dio_bio
, ret
);
7345 static ssize_t
check_direct_IO(struct btrfs_root
*root
, int rw
, struct kiocb
*iocb
,
7346 const struct iovec
*iov
, loff_t offset
,
7347 unsigned long nr_segs
)
7353 unsigned blocksize_mask
= root
->sectorsize
- 1;
7354 ssize_t retval
= -EINVAL
;
7355 loff_t end
= offset
;
7357 if (offset
& blocksize_mask
)
7360 /* Check the memory alignment. Blocks cannot straddle pages */
7361 for (seg
= 0; seg
< nr_segs
; seg
++) {
7362 addr
= (unsigned long)iov
[seg
].iov_base
;
7363 size
= iov
[seg
].iov_len
;
7365 if ((addr
& blocksize_mask
) || (size
& blocksize_mask
))
7368 /* If this is a write we don't need to check anymore */
7373 * Check to make sure we don't have duplicate iov_base's in this
7374 * iovec, if so return EINVAL, otherwise we'll get csum errors
7375 * when reading back.
7377 for (i
= seg
+ 1; i
< nr_segs
; i
++) {
7378 if (iov
[seg
].iov_base
== iov
[i
].iov_base
)
7387 static ssize_t
btrfs_direct_IO(int rw
, struct kiocb
*iocb
,
7388 const struct iovec
*iov
, loff_t offset
,
7389 unsigned long nr_segs
)
7391 struct file
*file
= iocb
->ki_filp
;
7392 struct inode
*inode
= file
->f_mapping
->host
;
7396 bool relock
= false;
7399 if (check_direct_IO(BTRFS_I(inode
)->root
, rw
, iocb
, iov
,
7403 atomic_inc(&inode
->i_dio_count
);
7404 smp_mb__after_atomic_inc();
7407 * The generic stuff only does filemap_write_and_wait_range, which isn't
7408 * enough if we've written compressed pages to this area, so we need to
7409 * call btrfs_wait_ordered_range to make absolutely sure that any
7410 * outstanding dirty pages are on disk.
7412 count
= iov_length(iov
, nr_segs
);
7413 ret
= btrfs_wait_ordered_range(inode
, offset
, count
);
7419 * If the write DIO is beyond the EOF, we need update
7420 * the isize, but it is protected by i_mutex. So we can
7421 * not unlock the i_mutex at this case.
7423 if (offset
+ count
<= inode
->i_size
) {
7424 mutex_unlock(&inode
->i_mutex
);
7427 ret
= btrfs_delalloc_reserve_space(inode
, count
);
7430 } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK
,
7431 &BTRFS_I(inode
)->runtime_flags
))) {
7432 inode_dio_done(inode
);
7433 flags
= DIO_LOCKING
| DIO_SKIP_HOLES
;
7437 ret
= __blockdev_direct_IO(rw
, iocb
, inode
,
7438 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
,
7439 iov
, offset
, nr_segs
, btrfs_get_blocks_direct
, NULL
,
7440 btrfs_submit_direct
, flags
);
7442 if (ret
< 0 && ret
!= -EIOCBQUEUED
)
7443 btrfs_delalloc_release_space(inode
, count
);
7444 else if (ret
>= 0 && (size_t)ret
< count
)
7445 btrfs_delalloc_release_space(inode
,
7446 count
- (size_t)ret
);
7448 btrfs_delalloc_release_metadata(inode
, 0);
7452 inode_dio_done(inode
);
7454 mutex_lock(&inode
->i_mutex
);
7459 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
7461 static int btrfs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
7462 __u64 start
, __u64 len
)
7466 ret
= fiemap_check_flags(fieinfo
, BTRFS_FIEMAP_FLAGS
);
7470 return extent_fiemap(inode
, fieinfo
, start
, len
, btrfs_get_extent_fiemap
);
7473 int btrfs_readpage(struct file
*file
, struct page
*page
)
7475 struct extent_io_tree
*tree
;
7476 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
7477 return extent_read_full_page(tree
, page
, btrfs_get_extent
, 0);
7480 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
7482 struct extent_io_tree
*tree
;
7485 if (current
->flags
& PF_MEMALLOC
) {
7486 redirty_page_for_writepage(wbc
, page
);
7490 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
7491 return extent_write_full_page(tree
, page
, btrfs_get_extent
, wbc
);
7494 static int btrfs_writepages(struct address_space
*mapping
,
7495 struct writeback_control
*wbc
)
7497 struct extent_io_tree
*tree
;
7499 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
7500 return extent_writepages(tree
, mapping
, btrfs_get_extent
, wbc
);
7504 btrfs_readpages(struct file
*file
, struct address_space
*mapping
,
7505 struct list_head
*pages
, unsigned nr_pages
)
7507 struct extent_io_tree
*tree
;
7508 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
7509 return extent_readpages(tree
, mapping
, pages
, nr_pages
,
7512 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
7514 struct extent_io_tree
*tree
;
7515 struct extent_map_tree
*map
;
7518 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
7519 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
7520 ret
= try_release_extent_mapping(map
, tree
, page
, gfp_flags
);
7522 ClearPagePrivate(page
);
7523 set_page_private(page
, 0);
7524 page_cache_release(page
);
7529 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
7531 if (PageWriteback(page
) || PageDirty(page
))
7533 return __btrfs_releasepage(page
, gfp_flags
& GFP_NOFS
);
7536 static void btrfs_invalidatepage(struct page
*page
, unsigned int offset
,
7537 unsigned int length
)
7539 struct inode
*inode
= page
->mapping
->host
;
7540 struct extent_io_tree
*tree
;
7541 struct btrfs_ordered_extent
*ordered
;
7542 struct extent_state
*cached_state
= NULL
;
7543 u64 page_start
= page_offset(page
);
7544 u64 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
7545 int inode_evicting
= inode
->i_state
& I_FREEING
;
7548 * we have the page locked, so new writeback can't start,
7549 * and the dirty bit won't be cleared while we are here.
7551 * Wait for IO on this page so that we can safely clear
7552 * the PagePrivate2 bit and do ordered accounting
7554 wait_on_page_writeback(page
);
7556 tree
= &BTRFS_I(inode
)->io_tree
;
7558 btrfs_releasepage(page
, GFP_NOFS
);
7562 if (!inode_evicting
)
7563 lock_extent_bits(tree
, page_start
, page_end
, 0, &cached_state
);
7564 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
7567 * IO on this page will never be started, so we need
7568 * to account for any ordered extents now
7570 if (!inode_evicting
)
7571 clear_extent_bit(tree
, page_start
, page_end
,
7572 EXTENT_DIRTY
| EXTENT_DELALLOC
|
7573 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
|
7574 EXTENT_DEFRAG
, 1, 0, &cached_state
,
7577 * whoever cleared the private bit is responsible
7578 * for the finish_ordered_io
7580 if (TestClearPagePrivate2(page
)) {
7581 struct btrfs_ordered_inode_tree
*tree
;
7584 tree
= &BTRFS_I(inode
)->ordered_tree
;
7586 spin_lock_irq(&tree
->lock
);
7587 set_bit(BTRFS_ORDERED_TRUNCATED
, &ordered
->flags
);
7588 new_len
= page_start
- ordered
->file_offset
;
7589 if (new_len
< ordered
->truncated_len
)
7590 ordered
->truncated_len
= new_len
;
7591 spin_unlock_irq(&tree
->lock
);
7593 if (btrfs_dec_test_ordered_pending(inode
, &ordered
,
7595 PAGE_CACHE_SIZE
, 1))
7596 btrfs_finish_ordered_io(ordered
);
7598 btrfs_put_ordered_extent(ordered
);
7599 if (!inode_evicting
) {
7600 cached_state
= NULL
;
7601 lock_extent_bits(tree
, page_start
, page_end
, 0,
7606 if (!inode_evicting
) {
7607 clear_extent_bit(tree
, page_start
, page_end
,
7608 EXTENT_LOCKED
| EXTENT_DIRTY
|
7609 EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
|
7610 EXTENT_DEFRAG
, 1, 1,
7611 &cached_state
, GFP_NOFS
);
7613 __btrfs_releasepage(page
, GFP_NOFS
);
7616 ClearPageChecked(page
);
7617 if (PagePrivate(page
)) {
7618 ClearPagePrivate(page
);
7619 set_page_private(page
, 0);
7620 page_cache_release(page
);
7625 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
7626 * called from a page fault handler when a page is first dirtied. Hence we must
7627 * be careful to check for EOF conditions here. We set the page up correctly
7628 * for a written page which means we get ENOSPC checking when writing into
7629 * holes and correct delalloc and unwritten extent mapping on filesystems that
7630 * support these features.
7632 * We are not allowed to take the i_mutex here so we have to play games to
7633 * protect against truncate races as the page could now be beyond EOF. Because
7634 * vmtruncate() writes the inode size before removing pages, once we have the
7635 * page lock we can determine safely if the page is beyond EOF. If it is not
7636 * beyond EOF, then the page is guaranteed safe against truncation until we
7639 int btrfs_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
7641 struct page
*page
= vmf
->page
;
7642 struct inode
*inode
= file_inode(vma
->vm_file
);
7643 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7644 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
7645 struct btrfs_ordered_extent
*ordered
;
7646 struct extent_state
*cached_state
= NULL
;
7648 unsigned long zero_start
;
7655 sb_start_pagefault(inode
->i_sb
);
7656 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
7658 ret
= file_update_time(vma
->vm_file
);
7664 else /* -ENOSPC, -EIO, etc */
7665 ret
= VM_FAULT_SIGBUS
;
7671 ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
7674 size
= i_size_read(inode
);
7675 page_start
= page_offset(page
);
7676 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
7678 if ((page
->mapping
!= inode
->i_mapping
) ||
7679 (page_start
>= size
)) {
7680 /* page got truncated out from underneath us */
7683 wait_on_page_writeback(page
);
7685 lock_extent_bits(io_tree
, page_start
, page_end
, 0, &cached_state
);
7686 set_page_extent_mapped(page
);
7689 * we can't set the delalloc bits if there are pending ordered
7690 * extents. Drop our locks and wait for them to finish
7692 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
7694 unlock_extent_cached(io_tree
, page_start
, page_end
,
7695 &cached_state
, GFP_NOFS
);
7697 btrfs_start_ordered_extent(inode
, ordered
, 1);
7698 btrfs_put_ordered_extent(ordered
);
7703 * XXX - page_mkwrite gets called every time the page is dirtied, even
7704 * if it was already dirty, so for space accounting reasons we need to
7705 * clear any delalloc bits for the range we are fixing to save. There
7706 * is probably a better way to do this, but for now keep consistent with
7707 * prepare_pages in the normal write path.
7709 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
7710 EXTENT_DIRTY
| EXTENT_DELALLOC
|
7711 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
7712 0, 0, &cached_state
, GFP_NOFS
);
7714 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
,
7717 unlock_extent_cached(io_tree
, page_start
, page_end
,
7718 &cached_state
, GFP_NOFS
);
7719 ret
= VM_FAULT_SIGBUS
;
7724 /* page is wholly or partially inside EOF */
7725 if (page_start
+ PAGE_CACHE_SIZE
> size
)
7726 zero_start
= size
& ~PAGE_CACHE_MASK
;
7728 zero_start
= PAGE_CACHE_SIZE
;
7730 if (zero_start
!= PAGE_CACHE_SIZE
) {
7732 memset(kaddr
+ zero_start
, 0, PAGE_CACHE_SIZE
- zero_start
);
7733 flush_dcache_page(page
);
7736 ClearPageChecked(page
);
7737 set_page_dirty(page
);
7738 SetPageUptodate(page
);
7740 BTRFS_I(inode
)->last_trans
= root
->fs_info
->generation
;
7741 BTRFS_I(inode
)->last_sub_trans
= BTRFS_I(inode
)->root
->log_transid
;
7742 BTRFS_I(inode
)->last_log_commit
= BTRFS_I(inode
)->root
->last_log_commit
;
7744 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
, GFP_NOFS
);
7748 sb_end_pagefault(inode
->i_sb
);
7749 return VM_FAULT_LOCKED
;
7753 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
7755 sb_end_pagefault(inode
->i_sb
);
7759 static int btrfs_truncate(struct inode
*inode
)
7761 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7762 struct btrfs_block_rsv
*rsv
;
7765 struct btrfs_trans_handle
*trans
;
7766 u64 mask
= root
->sectorsize
- 1;
7767 u64 min_size
= btrfs_calc_trunc_metadata_size(root
, 1);
7769 ret
= btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
),
7775 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
7776 * 3 things going on here
7778 * 1) We need to reserve space for our orphan item and the space to
7779 * delete our orphan item. Lord knows we don't want to have a dangling
7780 * orphan item because we didn't reserve space to remove it.
7782 * 2) We need to reserve space to update our inode.
7784 * 3) We need to have something to cache all the space that is going to
7785 * be free'd up by the truncate operation, but also have some slack
7786 * space reserved in case it uses space during the truncate (thank you
7787 * very much snapshotting).
7789 * And we need these to all be seperate. The fact is we can use alot of
7790 * space doing the truncate, and we have no earthly idea how much space
7791 * we will use, so we need the truncate reservation to be seperate so it
7792 * doesn't end up using space reserved for updating the inode or
7793 * removing the orphan item. We also need to be able to stop the
7794 * transaction and start a new one, which means we need to be able to
7795 * update the inode several times, and we have no idea of knowing how
7796 * many times that will be, so we can't just reserve 1 item for the
7797 * entirety of the opration, so that has to be done seperately as well.
7798 * Then there is the orphan item, which does indeed need to be held on
7799 * to for the whole operation, and we need nobody to touch this reserved
7800 * space except the orphan code.
7802 * So that leaves us with
7804 * 1) root->orphan_block_rsv - for the orphan deletion.
7805 * 2) rsv - for the truncate reservation, which we will steal from the
7806 * transaction reservation.
7807 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
7808 * updating the inode.
7810 rsv
= btrfs_alloc_block_rsv(root
, BTRFS_BLOCK_RSV_TEMP
);
7813 rsv
->size
= min_size
;
7817 * 1 for the truncate slack space
7818 * 1 for updating the inode.
7820 trans
= btrfs_start_transaction(root
, 2);
7821 if (IS_ERR(trans
)) {
7822 err
= PTR_ERR(trans
);
7826 /* Migrate the slack space for the truncate to our reserve */
7827 ret
= btrfs_block_rsv_migrate(&root
->fs_info
->trans_block_rsv
, rsv
,
7832 * setattr is responsible for setting the ordered_data_close flag,
7833 * but that is only tested during the last file release. That
7834 * could happen well after the next commit, leaving a great big
7835 * window where new writes may get lost if someone chooses to write
7836 * to this file after truncating to zero
7838 * The inode doesn't have any dirty data here, and so if we commit
7839 * this is a noop. If someone immediately starts writing to the inode
7840 * it is very likely we'll catch some of their writes in this
7841 * transaction, and the commit will find this file on the ordered
7842 * data list with good things to send down.
7844 * This is a best effort solution, there is still a window where
7845 * using truncate to replace the contents of the file will
7846 * end up with a zero length file after a crash.
7848 if (inode
->i_size
== 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE
,
7849 &BTRFS_I(inode
)->runtime_flags
))
7850 btrfs_add_ordered_operation(trans
, root
, inode
);
7853 * So if we truncate and then write and fsync we normally would just
7854 * write the extents that changed, which is a problem if we need to
7855 * first truncate that entire inode. So set this flag so we write out
7856 * all of the extents in the inode to the sync log so we're completely
7859 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
7860 trans
->block_rsv
= rsv
;
7863 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
7865 BTRFS_EXTENT_DATA_KEY
);
7866 if (ret
!= -ENOSPC
) {
7871 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
7872 ret
= btrfs_update_inode(trans
, root
, inode
);
7878 btrfs_end_transaction(trans
, root
);
7879 btrfs_btree_balance_dirty(root
);
7881 trans
= btrfs_start_transaction(root
, 2);
7882 if (IS_ERR(trans
)) {
7883 ret
= err
= PTR_ERR(trans
);
7888 ret
= btrfs_block_rsv_migrate(&root
->fs_info
->trans_block_rsv
,
7890 BUG_ON(ret
); /* shouldn't happen */
7891 trans
->block_rsv
= rsv
;
7894 if (ret
== 0 && inode
->i_nlink
> 0) {
7895 trans
->block_rsv
= root
->orphan_block_rsv
;
7896 ret
= btrfs_orphan_del(trans
, inode
);
7902 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
7903 ret
= btrfs_update_inode(trans
, root
, inode
);
7907 ret
= btrfs_end_transaction(trans
, root
);
7908 btrfs_btree_balance_dirty(root
);
7912 btrfs_free_block_rsv(root
, rsv
);
7921 * create a new subvolume directory/inode (helper for the ioctl).
7923 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
7924 struct btrfs_root
*new_root
,
7925 struct btrfs_root
*parent_root
,
7928 struct inode
*inode
;
7932 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2,
7933 new_dirid
, new_dirid
,
7934 S_IFDIR
| (~current_umask() & S_IRWXUGO
),
7937 return PTR_ERR(inode
);
7938 inode
->i_op
= &btrfs_dir_inode_operations
;
7939 inode
->i_fop
= &btrfs_dir_file_operations
;
7941 set_nlink(inode
, 1);
7942 btrfs_i_size_write(inode
, 0);
7944 err
= btrfs_subvol_inherit_props(trans
, new_root
, parent_root
);
7946 btrfs_err(new_root
->fs_info
,
7947 "error inheriting subvolume %llu properties: %d\n",
7948 new_root
->root_key
.objectid
, err
);
7950 err
= btrfs_update_inode(trans
, new_root
, inode
);
7956 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
7958 struct btrfs_inode
*ei
;
7959 struct inode
*inode
;
7961 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_NOFS
);
7968 ei
->last_sub_trans
= 0;
7969 ei
->logged_trans
= 0;
7970 ei
->delalloc_bytes
= 0;
7971 ei
->disk_i_size
= 0;
7974 ei
->index_cnt
= (u64
)-1;
7976 ei
->last_unlink_trans
= 0;
7977 ei
->last_log_commit
= 0;
7979 spin_lock_init(&ei
->lock
);
7980 ei
->outstanding_extents
= 0;
7981 ei
->reserved_extents
= 0;
7983 ei
->runtime_flags
= 0;
7984 ei
->force_compress
= BTRFS_COMPRESS_NONE
;
7986 ei
->delayed_node
= NULL
;
7988 inode
= &ei
->vfs_inode
;
7989 extent_map_tree_init(&ei
->extent_tree
);
7990 extent_io_tree_init(&ei
->io_tree
, &inode
->i_data
);
7991 extent_io_tree_init(&ei
->io_failure_tree
, &inode
->i_data
);
7992 ei
->io_tree
.track_uptodate
= 1;
7993 ei
->io_failure_tree
.track_uptodate
= 1;
7994 atomic_set(&ei
->sync_writers
, 0);
7995 mutex_init(&ei
->log_mutex
);
7996 mutex_init(&ei
->delalloc_mutex
);
7997 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
7998 INIT_LIST_HEAD(&ei
->delalloc_inodes
);
7999 INIT_LIST_HEAD(&ei
->ordered_operations
);
8000 RB_CLEAR_NODE(&ei
->rb_node
);
8005 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8006 void btrfs_test_destroy_inode(struct inode
*inode
)
8008 btrfs_drop_extent_cache(inode
, 0, (u64
)-1, 0);
8009 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
8013 static void btrfs_i_callback(struct rcu_head
*head
)
8015 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
8016 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
8019 void btrfs_destroy_inode(struct inode
*inode
)
8021 struct btrfs_ordered_extent
*ordered
;
8022 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8024 WARN_ON(!hlist_empty(&inode
->i_dentry
));
8025 WARN_ON(inode
->i_data
.nrpages
);
8026 WARN_ON(BTRFS_I(inode
)->outstanding_extents
);
8027 WARN_ON(BTRFS_I(inode
)->reserved_extents
);
8028 WARN_ON(BTRFS_I(inode
)->delalloc_bytes
);
8029 WARN_ON(BTRFS_I(inode
)->csum_bytes
);
8032 * This can happen where we create an inode, but somebody else also
8033 * created the same inode and we need to destroy the one we already
8040 * Make sure we're properly removed from the ordered operation
8044 if (!list_empty(&BTRFS_I(inode
)->ordered_operations
)) {
8045 spin_lock(&root
->fs_info
->ordered_root_lock
);
8046 list_del_init(&BTRFS_I(inode
)->ordered_operations
);
8047 spin_unlock(&root
->fs_info
->ordered_root_lock
);
8050 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
8051 &BTRFS_I(inode
)->runtime_flags
)) {
8052 btrfs_info(root
->fs_info
, "inode %llu still on the orphan list",
8054 atomic_dec(&root
->orphan_inodes
);
8058 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
8062 btrfs_err(root
->fs_info
, "found ordered extent %llu %llu on inode cleanup",
8063 ordered
->file_offset
, ordered
->len
);
8064 btrfs_remove_ordered_extent(inode
, ordered
);
8065 btrfs_put_ordered_extent(ordered
);
8066 btrfs_put_ordered_extent(ordered
);
8069 inode_tree_del(inode
);
8070 btrfs_drop_extent_cache(inode
, 0, (u64
)-1, 0);
8072 call_rcu(&inode
->i_rcu
, btrfs_i_callback
);
8075 int btrfs_drop_inode(struct inode
*inode
)
8077 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8082 /* the snap/subvol tree is on deleting */
8083 if (btrfs_root_refs(&root
->root_item
) == 0)
8086 return generic_drop_inode(inode
);
8089 static void init_once(void *foo
)
8091 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
8093 inode_init_once(&ei
->vfs_inode
);
8096 void btrfs_destroy_cachep(void)
8099 * Make sure all delayed rcu free inodes are flushed before we
8103 if (btrfs_inode_cachep
)
8104 kmem_cache_destroy(btrfs_inode_cachep
);
8105 if (btrfs_trans_handle_cachep
)
8106 kmem_cache_destroy(btrfs_trans_handle_cachep
);
8107 if (btrfs_transaction_cachep
)
8108 kmem_cache_destroy(btrfs_transaction_cachep
);
8109 if (btrfs_path_cachep
)
8110 kmem_cache_destroy(btrfs_path_cachep
);
8111 if (btrfs_free_space_cachep
)
8112 kmem_cache_destroy(btrfs_free_space_cachep
);
8113 if (btrfs_delalloc_work_cachep
)
8114 kmem_cache_destroy(btrfs_delalloc_work_cachep
);
8117 int btrfs_init_cachep(void)
8119 btrfs_inode_cachep
= kmem_cache_create("btrfs_inode",
8120 sizeof(struct btrfs_inode
), 0,
8121 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, init_once
);
8122 if (!btrfs_inode_cachep
)
8125 btrfs_trans_handle_cachep
= kmem_cache_create("btrfs_trans_handle",
8126 sizeof(struct btrfs_trans_handle
), 0,
8127 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
8128 if (!btrfs_trans_handle_cachep
)
8131 btrfs_transaction_cachep
= kmem_cache_create("btrfs_transaction",
8132 sizeof(struct btrfs_transaction
), 0,
8133 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
8134 if (!btrfs_transaction_cachep
)
8137 btrfs_path_cachep
= kmem_cache_create("btrfs_path",
8138 sizeof(struct btrfs_path
), 0,
8139 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
8140 if (!btrfs_path_cachep
)
8143 btrfs_free_space_cachep
= kmem_cache_create("btrfs_free_space",
8144 sizeof(struct btrfs_free_space
), 0,
8145 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
8146 if (!btrfs_free_space_cachep
)
8149 btrfs_delalloc_work_cachep
= kmem_cache_create("btrfs_delalloc_work",
8150 sizeof(struct btrfs_delalloc_work
), 0,
8151 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
,
8153 if (!btrfs_delalloc_work_cachep
)
8158 btrfs_destroy_cachep();
8162 static int btrfs_getattr(struct vfsmount
*mnt
,
8163 struct dentry
*dentry
, struct kstat
*stat
)
8166 struct inode
*inode
= dentry
->d_inode
;
8167 u32 blocksize
= inode
->i_sb
->s_blocksize
;
8169 generic_fillattr(inode
, stat
);
8170 stat
->dev
= BTRFS_I(inode
)->root
->anon_dev
;
8171 stat
->blksize
= PAGE_CACHE_SIZE
;
8173 spin_lock(&BTRFS_I(inode
)->lock
);
8174 delalloc_bytes
= BTRFS_I(inode
)->delalloc_bytes
;
8175 spin_unlock(&BTRFS_I(inode
)->lock
);
8176 stat
->blocks
= (ALIGN(inode_get_bytes(inode
), blocksize
) +
8177 ALIGN(delalloc_bytes
, blocksize
)) >> 9;
8181 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
8182 struct inode
*new_dir
, struct dentry
*new_dentry
)
8184 struct btrfs_trans_handle
*trans
;
8185 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
8186 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
8187 struct inode
*new_inode
= new_dentry
->d_inode
;
8188 struct inode
*old_inode
= old_dentry
->d_inode
;
8189 struct timespec ctime
= CURRENT_TIME
;
8193 u64 old_ino
= btrfs_ino(old_inode
);
8195 if (btrfs_ino(new_dir
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
8198 /* we only allow rename subvolume link between subvolumes */
8199 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
8202 if (old_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
||
8203 (new_inode
&& btrfs_ino(new_inode
) == BTRFS_FIRST_FREE_OBJECTID
))
8206 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
8207 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
8211 /* check for collisions, even if the name isn't there */
8212 ret
= btrfs_check_dir_item_collision(dest
, new_dir
->i_ino
,
8213 new_dentry
->d_name
.name
,
8214 new_dentry
->d_name
.len
);
8217 if (ret
== -EEXIST
) {
8219 * eexist without a new_inode */
8220 if (WARN_ON(!new_inode
)) {
8224 /* maybe -EOVERFLOW */
8231 * we're using rename to replace one file with another.
8232 * and the replacement file is large. Start IO on it now so
8233 * we don't add too much work to the end of the transaction
8235 if (new_inode
&& S_ISREG(old_inode
->i_mode
) && new_inode
->i_size
&&
8236 old_inode
->i_size
> BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT
)
8237 filemap_flush(old_inode
->i_mapping
);
8239 /* close the racy window with snapshot create/destroy ioctl */
8240 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
8241 down_read(&root
->fs_info
->subvol_sem
);
8243 * We want to reserve the absolute worst case amount of items. So if
8244 * both inodes are subvols and we need to unlink them then that would
8245 * require 4 item modifications, but if they are both normal inodes it
8246 * would require 5 item modifications, so we'll assume their normal
8247 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8248 * should cover the worst case number of items we'll modify.
8250 trans
= btrfs_start_transaction(root
, 11);
8251 if (IS_ERR(trans
)) {
8252 ret
= PTR_ERR(trans
);
8257 btrfs_record_root_in_trans(trans
, dest
);
8259 ret
= btrfs_set_inode_index(new_dir
, &index
);
8263 BTRFS_I(old_inode
)->dir_index
= 0ULL;
8264 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
8265 /* force full log commit if subvolume involved. */
8266 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
8268 ret
= btrfs_insert_inode_ref(trans
, dest
,
8269 new_dentry
->d_name
.name
,
8270 new_dentry
->d_name
.len
,
8272 btrfs_ino(new_dir
), index
);
8276 * this is an ugly little race, but the rename is required
8277 * to make sure that if we crash, the inode is either at the
8278 * old name or the new one. pinning the log transaction lets
8279 * us make sure we don't allow a log commit to come in after
8280 * we unlink the name but before we add the new name back in.
8282 btrfs_pin_log_trans(root
);
8285 * make sure the inode gets flushed if it is replacing
8288 if (new_inode
&& new_inode
->i_size
&& S_ISREG(old_inode
->i_mode
))
8289 btrfs_add_ordered_operation(trans
, root
, old_inode
);
8291 inode_inc_iversion(old_dir
);
8292 inode_inc_iversion(new_dir
);
8293 inode_inc_iversion(old_inode
);
8294 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
8295 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
8296 old_inode
->i_ctime
= ctime
;
8298 if (old_dentry
->d_parent
!= new_dentry
->d_parent
)
8299 btrfs_record_unlink_dir(trans
, old_dir
, old_inode
, 1);
8301 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
8302 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
8303 ret
= btrfs_unlink_subvol(trans
, root
, old_dir
, root_objectid
,
8304 old_dentry
->d_name
.name
,
8305 old_dentry
->d_name
.len
);
8307 ret
= __btrfs_unlink_inode(trans
, root
, old_dir
,
8308 old_dentry
->d_inode
,
8309 old_dentry
->d_name
.name
,
8310 old_dentry
->d_name
.len
);
8312 ret
= btrfs_update_inode(trans
, root
, old_inode
);
8315 btrfs_abort_transaction(trans
, root
, ret
);
8320 inode_inc_iversion(new_inode
);
8321 new_inode
->i_ctime
= CURRENT_TIME
;
8322 if (unlikely(btrfs_ino(new_inode
) ==
8323 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
8324 root_objectid
= BTRFS_I(new_inode
)->location
.objectid
;
8325 ret
= btrfs_unlink_subvol(trans
, dest
, new_dir
,
8327 new_dentry
->d_name
.name
,
8328 new_dentry
->d_name
.len
);
8329 BUG_ON(new_inode
->i_nlink
== 0);
8331 ret
= btrfs_unlink_inode(trans
, dest
, new_dir
,
8332 new_dentry
->d_inode
,
8333 new_dentry
->d_name
.name
,
8334 new_dentry
->d_name
.len
);
8336 if (!ret
&& new_inode
->i_nlink
== 0)
8337 ret
= btrfs_orphan_add(trans
, new_dentry
->d_inode
);
8339 btrfs_abort_transaction(trans
, root
, ret
);
8344 ret
= btrfs_add_link(trans
, new_dir
, old_inode
,
8345 new_dentry
->d_name
.name
,
8346 new_dentry
->d_name
.len
, 0, index
);
8348 btrfs_abort_transaction(trans
, root
, ret
);
8352 if (old_inode
->i_nlink
== 1)
8353 BTRFS_I(old_inode
)->dir_index
= index
;
8355 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
8356 struct dentry
*parent
= new_dentry
->d_parent
;
8357 btrfs_log_new_name(trans
, old_inode
, old_dir
, parent
);
8358 btrfs_end_log_trans(root
);
8361 btrfs_end_transaction(trans
, root
);
8363 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
8364 up_read(&root
->fs_info
->subvol_sem
);
8369 static void btrfs_run_delalloc_work(struct btrfs_work
*work
)
8371 struct btrfs_delalloc_work
*delalloc_work
;
8372 struct inode
*inode
;
8374 delalloc_work
= container_of(work
, struct btrfs_delalloc_work
,
8376 inode
= delalloc_work
->inode
;
8377 if (delalloc_work
->wait
) {
8378 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
8380 filemap_flush(inode
->i_mapping
);
8381 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
8382 &BTRFS_I(inode
)->runtime_flags
))
8383 filemap_flush(inode
->i_mapping
);
8386 if (delalloc_work
->delay_iput
)
8387 btrfs_add_delayed_iput(inode
);
8390 complete(&delalloc_work
->completion
);
8393 struct btrfs_delalloc_work
*btrfs_alloc_delalloc_work(struct inode
*inode
,
8394 int wait
, int delay_iput
)
8396 struct btrfs_delalloc_work
*work
;
8398 work
= kmem_cache_zalloc(btrfs_delalloc_work_cachep
, GFP_NOFS
);
8402 init_completion(&work
->completion
);
8403 INIT_LIST_HEAD(&work
->list
);
8404 work
->inode
= inode
;
8406 work
->delay_iput
= delay_iput
;
8407 work
->work
.func
= btrfs_run_delalloc_work
;
8412 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work
*work
)
8414 wait_for_completion(&work
->completion
);
8415 kmem_cache_free(btrfs_delalloc_work_cachep
, work
);
8419 * some fairly slow code that needs optimization. This walks the list
8420 * of all the inodes with pending delalloc and forces them to disk.
8422 static int __start_delalloc_inodes(struct btrfs_root
*root
, int delay_iput
)
8424 struct btrfs_inode
*binode
;
8425 struct inode
*inode
;
8426 struct btrfs_delalloc_work
*work
, *next
;
8427 struct list_head works
;
8428 struct list_head splice
;
8431 INIT_LIST_HEAD(&works
);
8432 INIT_LIST_HEAD(&splice
);
8434 spin_lock(&root
->delalloc_lock
);
8435 list_splice_init(&root
->delalloc_inodes
, &splice
);
8436 while (!list_empty(&splice
)) {
8437 binode
= list_entry(splice
.next
, struct btrfs_inode
,
8440 list_move_tail(&binode
->delalloc_inodes
,
8441 &root
->delalloc_inodes
);
8442 inode
= igrab(&binode
->vfs_inode
);
8444 cond_resched_lock(&root
->delalloc_lock
);
8447 spin_unlock(&root
->delalloc_lock
);
8449 work
= btrfs_alloc_delalloc_work(inode
, 0, delay_iput
);
8450 if (unlikely(!work
)) {
8452 btrfs_add_delayed_iput(inode
);
8458 list_add_tail(&work
->list
, &works
);
8459 btrfs_queue_worker(&root
->fs_info
->flush_workers
,
8463 spin_lock(&root
->delalloc_lock
);
8465 spin_unlock(&root
->delalloc_lock
);
8467 list_for_each_entry_safe(work
, next
, &works
, list
) {
8468 list_del_init(&work
->list
);
8469 btrfs_wait_and_free_delalloc_work(work
);
8473 list_for_each_entry_safe(work
, next
, &works
, list
) {
8474 list_del_init(&work
->list
);
8475 btrfs_wait_and_free_delalloc_work(work
);
8478 if (!list_empty_careful(&splice
)) {
8479 spin_lock(&root
->delalloc_lock
);
8480 list_splice_tail(&splice
, &root
->delalloc_inodes
);
8481 spin_unlock(&root
->delalloc_lock
);
8486 int btrfs_start_delalloc_inodes(struct btrfs_root
*root
, int delay_iput
)
8490 if (test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
))
8493 ret
= __start_delalloc_inodes(root
, delay_iput
);
8495 * the filemap_flush will queue IO into the worker threads, but
8496 * we have to make sure the IO is actually started and that
8497 * ordered extents get created before we return
8499 atomic_inc(&root
->fs_info
->async_submit_draining
);
8500 while (atomic_read(&root
->fs_info
->nr_async_submits
) ||
8501 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
8502 wait_event(root
->fs_info
->async_submit_wait
,
8503 (atomic_read(&root
->fs_info
->nr_async_submits
) == 0 &&
8504 atomic_read(&root
->fs_info
->async_delalloc_pages
) == 0));
8506 atomic_dec(&root
->fs_info
->async_submit_draining
);
8510 int btrfs_start_delalloc_roots(struct btrfs_fs_info
*fs_info
, int delay_iput
)
8512 struct btrfs_root
*root
;
8513 struct list_head splice
;
8516 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
8519 INIT_LIST_HEAD(&splice
);
8521 spin_lock(&fs_info
->delalloc_root_lock
);
8522 list_splice_init(&fs_info
->delalloc_roots
, &splice
);
8523 while (!list_empty(&splice
)) {
8524 root
= list_first_entry(&splice
, struct btrfs_root
,
8526 root
= btrfs_grab_fs_root(root
);
8528 list_move_tail(&root
->delalloc_root
,
8529 &fs_info
->delalloc_roots
);
8530 spin_unlock(&fs_info
->delalloc_root_lock
);
8532 ret
= __start_delalloc_inodes(root
, delay_iput
);
8533 btrfs_put_fs_root(root
);
8537 spin_lock(&fs_info
->delalloc_root_lock
);
8539 spin_unlock(&fs_info
->delalloc_root_lock
);
8541 atomic_inc(&fs_info
->async_submit_draining
);
8542 while (atomic_read(&fs_info
->nr_async_submits
) ||
8543 atomic_read(&fs_info
->async_delalloc_pages
)) {
8544 wait_event(fs_info
->async_submit_wait
,
8545 (atomic_read(&fs_info
->nr_async_submits
) == 0 &&
8546 atomic_read(&fs_info
->async_delalloc_pages
) == 0));
8548 atomic_dec(&fs_info
->async_submit_draining
);
8551 if (!list_empty_careful(&splice
)) {
8552 spin_lock(&fs_info
->delalloc_root_lock
);
8553 list_splice_tail(&splice
, &fs_info
->delalloc_roots
);
8554 spin_unlock(&fs_info
->delalloc_root_lock
);
8559 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
8560 const char *symname
)
8562 struct btrfs_trans_handle
*trans
;
8563 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
8564 struct btrfs_path
*path
;
8565 struct btrfs_key key
;
8566 struct inode
*inode
= NULL
;
8574 struct btrfs_file_extent_item
*ei
;
8575 struct extent_buffer
*leaf
;
8577 name_len
= strlen(symname
);
8578 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(root
))
8579 return -ENAMETOOLONG
;
8582 * 2 items for inode item and ref
8583 * 2 items for dir items
8584 * 1 item for xattr if selinux is on
8586 trans
= btrfs_start_transaction(root
, 5);
8588 return PTR_ERR(trans
);
8590 err
= btrfs_find_free_ino(root
, &objectid
);
8594 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
8595 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
8596 S_IFLNK
|S_IRWXUGO
, &index
);
8597 if (IS_ERR(inode
)) {
8598 err
= PTR_ERR(inode
);
8602 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
8609 * If the active LSM wants to access the inode during
8610 * d_instantiate it needs these. Smack checks to see
8611 * if the filesystem supports xattrs by looking at the
8614 inode
->i_fop
= &btrfs_file_operations
;
8615 inode
->i_op
= &btrfs_file_inode_operations
;
8617 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
8621 inode
->i_mapping
->a_ops
= &btrfs_aops
;
8622 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
8623 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
8628 path
= btrfs_alloc_path();
8634 key
.objectid
= btrfs_ino(inode
);
8636 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
8637 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
8638 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
8642 btrfs_free_path(path
);
8645 leaf
= path
->nodes
[0];
8646 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
8647 struct btrfs_file_extent_item
);
8648 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
8649 btrfs_set_file_extent_type(leaf
, ei
,
8650 BTRFS_FILE_EXTENT_INLINE
);
8651 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
8652 btrfs_set_file_extent_compression(leaf
, ei
, 0);
8653 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
8654 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
8656 ptr
= btrfs_file_extent_inline_start(ei
);
8657 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
8658 btrfs_mark_buffer_dirty(leaf
);
8659 btrfs_free_path(path
);
8661 inode
->i_op
= &btrfs_symlink_inode_operations
;
8662 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
8663 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
8664 inode_set_bytes(inode
, name_len
);
8665 btrfs_i_size_write(inode
, name_len
);
8666 err
= btrfs_update_inode(trans
, root
, inode
);
8672 d_instantiate(dentry
, inode
);
8673 btrfs_end_transaction(trans
, root
);
8675 inode_dec_link_count(inode
);
8678 btrfs_btree_balance_dirty(root
);
8682 static int __btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
8683 u64 start
, u64 num_bytes
, u64 min_size
,
8684 loff_t actual_len
, u64
*alloc_hint
,
8685 struct btrfs_trans_handle
*trans
)
8687 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
8688 struct extent_map
*em
;
8689 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8690 struct btrfs_key ins
;
8691 u64 cur_offset
= start
;
8695 bool own_trans
= true;
8699 while (num_bytes
> 0) {
8701 trans
= btrfs_start_transaction(root
, 3);
8702 if (IS_ERR(trans
)) {
8703 ret
= PTR_ERR(trans
);
8708 cur_bytes
= min(num_bytes
, 256ULL * 1024 * 1024);
8709 cur_bytes
= max(cur_bytes
, min_size
);
8710 ret
= btrfs_reserve_extent(root
, cur_bytes
, min_size
, 0,
8711 *alloc_hint
, &ins
, 1);
8714 btrfs_end_transaction(trans
, root
);
8718 ret
= insert_reserved_file_extent(trans
, inode
,
8719 cur_offset
, ins
.objectid
,
8720 ins
.offset
, ins
.offset
,
8721 ins
.offset
, 0, 0, 0,
8722 BTRFS_FILE_EXTENT_PREALLOC
);
8724 btrfs_free_reserved_extent(root
, ins
.objectid
,
8726 btrfs_abort_transaction(trans
, root
, ret
);
8728 btrfs_end_transaction(trans
, root
);
8731 btrfs_drop_extent_cache(inode
, cur_offset
,
8732 cur_offset
+ ins
.offset
-1, 0);
8734 em
= alloc_extent_map();
8736 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
8737 &BTRFS_I(inode
)->runtime_flags
);
8741 em
->start
= cur_offset
;
8742 em
->orig_start
= cur_offset
;
8743 em
->len
= ins
.offset
;
8744 em
->block_start
= ins
.objectid
;
8745 em
->block_len
= ins
.offset
;
8746 em
->orig_block_len
= ins
.offset
;
8747 em
->ram_bytes
= ins
.offset
;
8748 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
8749 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
8750 em
->generation
= trans
->transid
;
8753 write_lock(&em_tree
->lock
);
8754 ret
= add_extent_mapping(em_tree
, em
, 1);
8755 write_unlock(&em_tree
->lock
);
8758 btrfs_drop_extent_cache(inode
, cur_offset
,
8759 cur_offset
+ ins
.offset
- 1,
8762 free_extent_map(em
);
8764 num_bytes
-= ins
.offset
;
8765 cur_offset
+= ins
.offset
;
8766 *alloc_hint
= ins
.objectid
+ ins
.offset
;
8768 inode_inc_iversion(inode
);
8769 inode
->i_ctime
= CURRENT_TIME
;
8770 BTRFS_I(inode
)->flags
|= BTRFS_INODE_PREALLOC
;
8771 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
8772 (actual_len
> inode
->i_size
) &&
8773 (cur_offset
> inode
->i_size
)) {
8774 if (cur_offset
> actual_len
)
8775 i_size
= actual_len
;
8777 i_size
= cur_offset
;
8778 i_size_write(inode
, i_size
);
8779 btrfs_ordered_update_i_size(inode
, i_size
, NULL
);
8782 ret
= btrfs_update_inode(trans
, root
, inode
);
8785 btrfs_abort_transaction(trans
, root
, ret
);
8787 btrfs_end_transaction(trans
, root
);
8792 btrfs_end_transaction(trans
, root
);
8797 int btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
8798 u64 start
, u64 num_bytes
, u64 min_size
,
8799 loff_t actual_len
, u64
*alloc_hint
)
8801 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
8802 min_size
, actual_len
, alloc_hint
,
8806 int btrfs_prealloc_file_range_trans(struct inode
*inode
,
8807 struct btrfs_trans_handle
*trans
, int mode
,
8808 u64 start
, u64 num_bytes
, u64 min_size
,
8809 loff_t actual_len
, u64
*alloc_hint
)
8811 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
8812 min_size
, actual_len
, alloc_hint
, trans
);
8815 static int btrfs_set_page_dirty(struct page
*page
)
8817 return __set_page_dirty_nobuffers(page
);
8820 static int btrfs_permission(struct inode
*inode
, int mask
)
8822 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8823 umode_t mode
= inode
->i_mode
;
8825 if (mask
& MAY_WRITE
&&
8826 (S_ISREG(mode
) || S_ISDIR(mode
) || S_ISLNK(mode
))) {
8827 if (btrfs_root_readonly(root
))
8829 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_READONLY
)
8832 return generic_permission(inode
, mask
);
8835 static const struct inode_operations btrfs_dir_inode_operations
= {
8836 .getattr
= btrfs_getattr
,
8837 .lookup
= btrfs_lookup
,
8838 .create
= btrfs_create
,
8839 .unlink
= btrfs_unlink
,
8841 .mkdir
= btrfs_mkdir
,
8842 .rmdir
= btrfs_rmdir
,
8843 .rename
= btrfs_rename
,
8844 .symlink
= btrfs_symlink
,
8845 .setattr
= btrfs_setattr
,
8846 .mknod
= btrfs_mknod
,
8847 .setxattr
= btrfs_setxattr
,
8848 .getxattr
= btrfs_getxattr
,
8849 .listxattr
= btrfs_listxattr
,
8850 .removexattr
= btrfs_removexattr
,
8851 .permission
= btrfs_permission
,
8852 .get_acl
= btrfs_get_acl
,
8853 .set_acl
= btrfs_set_acl
,
8854 .update_time
= btrfs_update_time
,
8856 static const struct inode_operations btrfs_dir_ro_inode_operations
= {
8857 .lookup
= btrfs_lookup
,
8858 .permission
= btrfs_permission
,
8859 .get_acl
= btrfs_get_acl
,
8860 .set_acl
= btrfs_set_acl
,
8861 .update_time
= btrfs_update_time
,
8864 static const struct file_operations btrfs_dir_file_operations
= {
8865 .llseek
= generic_file_llseek
,
8866 .read
= generic_read_dir
,
8867 .iterate
= btrfs_real_readdir
,
8868 .unlocked_ioctl
= btrfs_ioctl
,
8869 #ifdef CONFIG_COMPAT
8870 .compat_ioctl
= btrfs_ioctl
,
8872 .release
= btrfs_release_file
,
8873 .fsync
= btrfs_sync_file
,
8876 static struct extent_io_ops btrfs_extent_io_ops
= {
8877 .fill_delalloc
= run_delalloc_range
,
8878 .submit_bio_hook
= btrfs_submit_bio_hook
,
8879 .merge_bio_hook
= btrfs_merge_bio_hook
,
8880 .readpage_end_io_hook
= btrfs_readpage_end_io_hook
,
8881 .writepage_end_io_hook
= btrfs_writepage_end_io_hook
,
8882 .writepage_start_hook
= btrfs_writepage_start_hook
,
8883 .set_bit_hook
= btrfs_set_bit_hook
,
8884 .clear_bit_hook
= btrfs_clear_bit_hook
,
8885 .merge_extent_hook
= btrfs_merge_extent_hook
,
8886 .split_extent_hook
= btrfs_split_extent_hook
,
8890 * btrfs doesn't support the bmap operation because swapfiles
8891 * use bmap to make a mapping of extents in the file. They assume
8892 * these extents won't change over the life of the file and they
8893 * use the bmap result to do IO directly to the drive.
8895 * the btrfs bmap call would return logical addresses that aren't
8896 * suitable for IO and they also will change frequently as COW
8897 * operations happen. So, swapfile + btrfs == corruption.
8899 * For now we're avoiding this by dropping bmap.
8901 static const struct address_space_operations btrfs_aops
= {
8902 .readpage
= btrfs_readpage
,
8903 .writepage
= btrfs_writepage
,
8904 .writepages
= btrfs_writepages
,
8905 .readpages
= btrfs_readpages
,
8906 .direct_IO
= btrfs_direct_IO
,
8907 .invalidatepage
= btrfs_invalidatepage
,
8908 .releasepage
= btrfs_releasepage
,
8909 .set_page_dirty
= btrfs_set_page_dirty
,
8910 .error_remove_page
= generic_error_remove_page
,
8913 static const struct address_space_operations btrfs_symlink_aops
= {
8914 .readpage
= btrfs_readpage
,
8915 .writepage
= btrfs_writepage
,
8916 .invalidatepage
= btrfs_invalidatepage
,
8917 .releasepage
= btrfs_releasepage
,
8920 static const struct inode_operations btrfs_file_inode_operations
= {
8921 .getattr
= btrfs_getattr
,
8922 .setattr
= btrfs_setattr
,
8923 .setxattr
= btrfs_setxattr
,
8924 .getxattr
= btrfs_getxattr
,
8925 .listxattr
= btrfs_listxattr
,
8926 .removexattr
= btrfs_removexattr
,
8927 .permission
= btrfs_permission
,
8928 .fiemap
= btrfs_fiemap
,
8929 .get_acl
= btrfs_get_acl
,
8930 .set_acl
= btrfs_set_acl
,
8931 .update_time
= btrfs_update_time
,
8933 static const struct inode_operations btrfs_special_inode_operations
= {
8934 .getattr
= btrfs_getattr
,
8935 .setattr
= btrfs_setattr
,
8936 .permission
= btrfs_permission
,
8937 .setxattr
= btrfs_setxattr
,
8938 .getxattr
= btrfs_getxattr
,
8939 .listxattr
= btrfs_listxattr
,
8940 .removexattr
= btrfs_removexattr
,
8941 .get_acl
= btrfs_get_acl
,
8942 .set_acl
= btrfs_set_acl
,
8943 .update_time
= btrfs_update_time
,
8945 static const struct inode_operations btrfs_symlink_inode_operations
= {
8946 .readlink
= generic_readlink
,
8947 .follow_link
= page_follow_link_light
,
8948 .put_link
= page_put_link
,
8949 .getattr
= btrfs_getattr
,
8950 .setattr
= btrfs_setattr
,
8951 .permission
= btrfs_permission
,
8952 .setxattr
= btrfs_setxattr
,
8953 .getxattr
= btrfs_getxattr
,
8954 .listxattr
= btrfs_listxattr
,
8955 .removexattr
= btrfs_removexattr
,
8956 .update_time
= btrfs_update_time
,
8959 const struct dentry_operations btrfs_dentry_operations
= {
8960 .d_delete
= btrfs_dentry_delete
,
8961 .d_release
= btrfs_dentry_release
,