Merge branch 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux/fpc-iii.git] / fs / nfs / direct.c
blobb8797ae6831ff3e1be4c4b3f85c2c38e34252498
1 /*
2 * linux/fs/nfs/direct.c
4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
6 * High-performance uncached I/O for the Linux NFS client
8 * There are important applications whose performance or correctness
9 * depends on uncached access to file data. Database clusters
10 * (multiple copies of the same instance running on separate hosts)
11 * implement their own cache coherency protocol that subsumes file
12 * system cache protocols. Applications that process datasets
13 * considerably larger than the client's memory do not always benefit
14 * from a local cache. A streaming video server, for instance, has no
15 * need to cache the contents of a file.
17 * When an application requests uncached I/O, all read and write requests
18 * are made directly to the server; data stored or fetched via these
19 * requests is not cached in the Linux page cache. The client does not
20 * correct unaligned requests from applications. All requested bytes are
21 * held on permanent storage before a direct write system call returns to
22 * an application.
24 * Solaris implements an uncached I/O facility called directio() that
25 * is used for backups and sequential I/O to very large files. Solaris
26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27 * an undocumented mount option.
29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30 * help from Andrew Morton.
32 * 18 Dec 2001 Initial implementation for 2.4 --cel
33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
34 * 08 Jun 2003 Port to 2.5 APIs --cel
35 * 31 Mar 2004 Handle direct I/O without VFS support --cel
36 * 15 Sep 2004 Parallel async reads --cel
37 * 04 May 2005 support O_DIRECT with aio --cel
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/file.h>
45 #include <linux/pagemap.h>
46 #include <linux/kref.h>
47 #include <linux/slab.h>
48 #include <linux/task_io_accounting_ops.h>
49 #include <linux/module.h>
51 #include <linux/nfs_fs.h>
52 #include <linux/nfs_page.h>
53 #include <linux/sunrpc/clnt.h>
55 #include <asm/uaccess.h>
56 #include <linux/atomic.h>
58 #include "internal.h"
59 #include "iostat.h"
60 #include "pnfs.h"
62 #define NFSDBG_FACILITY NFSDBG_VFS
64 static struct kmem_cache *nfs_direct_cachep;
67 * This represents a set of asynchronous requests that we're waiting on
69 struct nfs_direct_req {
70 struct kref kref; /* release manager */
72 /* I/O parameters */
73 struct nfs_open_context *ctx; /* file open context info */
74 struct nfs_lock_context *l_ctx; /* Lock context info */
75 struct kiocb * iocb; /* controlling i/o request */
76 struct inode * inode; /* target file of i/o */
78 /* completion state */
79 atomic_t io_count; /* i/os we're waiting for */
80 spinlock_t lock; /* protect completion state */
81 ssize_t count, /* bytes actually processed */
82 bytes_left, /* bytes left to be sent */
83 error; /* any reported error */
84 struct completion completion; /* wait for i/o completion */
86 /* commit state */
87 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */
88 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */
89 struct work_struct work;
90 int flags;
91 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
92 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
93 struct nfs_writeverf verf; /* unstable write verifier */
96 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
97 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
98 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
99 static void nfs_direct_write_schedule_work(struct work_struct *work);
101 static inline void get_dreq(struct nfs_direct_req *dreq)
103 atomic_inc(&dreq->io_count);
106 static inline int put_dreq(struct nfs_direct_req *dreq)
108 return atomic_dec_and_test(&dreq->io_count);
112 * nfs_direct_IO - NFS address space operation for direct I/O
113 * @rw: direction (read or write)
114 * @iocb: target I/O control block
115 * @iov: array of vectors that define I/O buffer
116 * @pos: offset in file to begin the operation
117 * @nr_segs: size of iovec array
119 * The presence of this routine in the address space ops vector means
120 * the NFS client supports direct I/O. However, for most direct IO, we
121 * shunt off direct read and write requests before the VFS gets them,
122 * so this method is only ever called for swap.
124 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
126 #ifndef CONFIG_NFS_SWAP
127 dprintk("NFS: nfs_direct_IO (%pD) off/no(%Ld/%lu) EINVAL\n",
128 iocb->ki_filp, (long long) pos, nr_segs);
130 return -EINVAL;
131 #else
132 VM_BUG_ON(iocb->ki_nbytes != PAGE_SIZE);
134 if (rw == READ || rw == KERNEL_READ)
135 return nfs_file_direct_read(iocb, iov, nr_segs, pos,
136 rw == READ ? true : false);
137 return nfs_file_direct_write(iocb, iov, nr_segs, pos,
138 rw == WRITE ? true : false);
139 #endif /* CONFIG_NFS_SWAP */
142 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
144 unsigned int i;
145 for (i = 0; i < npages; i++)
146 page_cache_release(pages[i]);
149 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
150 struct nfs_direct_req *dreq)
152 cinfo->lock = &dreq->lock;
153 cinfo->mds = &dreq->mds_cinfo;
154 cinfo->ds = &dreq->ds_cinfo;
155 cinfo->dreq = dreq;
156 cinfo->completion_ops = &nfs_direct_commit_completion_ops;
159 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
161 struct nfs_direct_req *dreq;
163 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
164 if (!dreq)
165 return NULL;
167 kref_init(&dreq->kref);
168 kref_get(&dreq->kref);
169 init_completion(&dreq->completion);
170 INIT_LIST_HEAD(&dreq->mds_cinfo.list);
171 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
172 spin_lock_init(&dreq->lock);
174 return dreq;
177 static void nfs_direct_req_free(struct kref *kref)
179 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
181 if (dreq->l_ctx != NULL)
182 nfs_put_lock_context(dreq->l_ctx);
183 if (dreq->ctx != NULL)
184 put_nfs_open_context(dreq->ctx);
185 kmem_cache_free(nfs_direct_cachep, dreq);
188 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
190 kref_put(&dreq->kref, nfs_direct_req_free);
193 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
195 return dreq->bytes_left;
197 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
200 * Collects and returns the final error value/byte-count.
202 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
204 ssize_t result = -EIOCBQUEUED;
206 /* Async requests don't wait here */
207 if (dreq->iocb)
208 goto out;
210 result = wait_for_completion_killable(&dreq->completion);
212 if (!result)
213 result = dreq->error;
214 if (!result)
215 result = dreq->count;
217 out:
218 return (ssize_t) result;
222 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
223 * the iocb is still valid here if this is a synchronous request.
225 static void nfs_direct_complete(struct nfs_direct_req *dreq, bool write)
227 struct inode *inode = dreq->inode;
229 if (dreq->iocb && write) {
230 loff_t pos = dreq->iocb->ki_pos + dreq->count;
232 spin_lock(&inode->i_lock);
233 if (i_size_read(inode) < pos)
234 i_size_write(inode, pos);
235 spin_unlock(&inode->i_lock);
238 if (write)
239 nfs_zap_mapping(inode, inode->i_mapping);
241 inode_dio_done(inode);
243 if (dreq->iocb) {
244 long res = (long) dreq->error;
245 if (!res)
246 res = (long) dreq->count;
247 aio_complete(dreq->iocb, res, 0);
250 complete_all(&dreq->completion);
252 nfs_direct_req_release(dreq);
255 static void nfs_direct_readpage_release(struct nfs_page *req)
257 dprintk("NFS: direct read done (%s/%llu %d@%lld)\n",
258 req->wb_context->dentry->d_inode->i_sb->s_id,
259 (unsigned long long)NFS_FILEID(req->wb_context->dentry->d_inode),
260 req->wb_bytes,
261 (long long)req_offset(req));
262 nfs_release_request(req);
265 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
267 unsigned long bytes = 0;
268 struct nfs_direct_req *dreq = hdr->dreq;
270 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
271 goto out_put;
273 spin_lock(&dreq->lock);
274 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
275 dreq->error = hdr->error;
276 else
277 dreq->count += hdr->good_bytes;
278 spin_unlock(&dreq->lock);
280 while (!list_empty(&hdr->pages)) {
281 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
282 struct page *page = req->wb_page;
284 if (!PageCompound(page) && bytes < hdr->good_bytes)
285 set_page_dirty(page);
286 bytes += req->wb_bytes;
287 nfs_list_remove_request(req);
288 nfs_direct_readpage_release(req);
290 out_put:
291 if (put_dreq(dreq))
292 nfs_direct_complete(dreq, false);
293 hdr->release(hdr);
296 static void nfs_read_sync_pgio_error(struct list_head *head)
298 struct nfs_page *req;
300 while (!list_empty(head)) {
301 req = nfs_list_entry(head->next);
302 nfs_list_remove_request(req);
303 nfs_release_request(req);
307 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
309 get_dreq(hdr->dreq);
312 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
313 .error_cleanup = nfs_read_sync_pgio_error,
314 .init_hdr = nfs_direct_pgio_init,
315 .completion = nfs_direct_read_completion,
319 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
320 * operation. If nfs_readdata_alloc() or get_user_pages() fails,
321 * bail and stop sending more reads. Read length accounting is
322 * handled automatically by nfs_direct_read_result(). Otherwise, if
323 * no requests have been sent, just return an error.
325 static ssize_t nfs_direct_read_schedule_segment(struct nfs_pageio_descriptor *desc,
326 const struct iovec *iov,
327 loff_t pos, bool uio)
329 struct nfs_direct_req *dreq = desc->pg_dreq;
330 struct nfs_open_context *ctx = dreq->ctx;
331 struct inode *inode = ctx->dentry->d_inode;
332 unsigned long user_addr = (unsigned long)iov->iov_base;
333 size_t count = iov->iov_len;
334 size_t rsize = NFS_SERVER(inode)->rsize;
335 unsigned int pgbase;
336 int result;
337 ssize_t started = 0;
338 struct page **pagevec = NULL;
339 unsigned int npages;
341 do {
342 size_t bytes;
343 int i;
345 pgbase = user_addr & ~PAGE_MASK;
346 bytes = min(max_t(size_t, rsize, PAGE_SIZE), count);
348 result = -ENOMEM;
349 npages = nfs_page_array_len(pgbase, bytes);
350 if (!pagevec)
351 pagevec = kmalloc(npages * sizeof(struct page *),
352 GFP_KERNEL);
353 if (!pagevec)
354 break;
355 if (uio) {
356 down_read(&current->mm->mmap_sem);
357 result = get_user_pages(current, current->mm, user_addr,
358 npages, 1, 0, pagevec, NULL);
359 up_read(&current->mm->mmap_sem);
360 if (result < 0)
361 break;
362 } else {
363 WARN_ON(npages != 1);
364 result = get_kernel_page(user_addr, 1, pagevec);
365 if (WARN_ON(result != 1))
366 break;
369 if ((unsigned)result < npages) {
370 bytes = result * PAGE_SIZE;
371 if (bytes <= pgbase) {
372 nfs_direct_release_pages(pagevec, result);
373 break;
375 bytes -= pgbase;
376 npages = result;
379 for (i = 0; i < npages; i++) {
380 struct nfs_page *req;
381 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
382 /* XXX do we need to do the eof zeroing found in async_filler? */
383 req = nfs_create_request(dreq->ctx, dreq->inode,
384 pagevec[i],
385 pgbase, req_len);
386 if (IS_ERR(req)) {
387 result = PTR_ERR(req);
388 break;
390 req->wb_index = pos >> PAGE_SHIFT;
391 req->wb_offset = pos & ~PAGE_MASK;
392 if (!nfs_pageio_add_request(desc, req)) {
393 result = desc->pg_error;
394 nfs_release_request(req);
395 break;
397 pgbase = 0;
398 bytes -= req_len;
399 started += req_len;
400 user_addr += req_len;
401 pos += req_len;
402 count -= req_len;
403 dreq->bytes_left -= req_len;
405 /* The nfs_page now hold references to these pages */
406 nfs_direct_release_pages(pagevec, npages);
407 } while (count != 0 && result >= 0);
409 kfree(pagevec);
411 if (started)
412 return started;
413 return result < 0 ? (ssize_t) result : -EFAULT;
416 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
417 const struct iovec *iov,
418 unsigned long nr_segs,
419 loff_t pos, bool uio)
421 struct nfs_pageio_descriptor desc;
422 struct inode *inode = dreq->inode;
423 ssize_t result = -EINVAL;
424 size_t requested_bytes = 0;
425 unsigned long seg;
427 NFS_PROTO(dreq->inode)->read_pageio_init(&desc, dreq->inode,
428 &nfs_direct_read_completion_ops);
429 get_dreq(dreq);
430 desc.pg_dreq = dreq;
431 atomic_inc(&inode->i_dio_count);
433 for (seg = 0; seg < nr_segs; seg++) {
434 const struct iovec *vec = &iov[seg];
435 result = nfs_direct_read_schedule_segment(&desc, vec, pos, uio);
436 if (result < 0)
437 break;
438 requested_bytes += result;
439 if ((size_t)result < vec->iov_len)
440 break;
441 pos += vec->iov_len;
444 nfs_pageio_complete(&desc);
447 * If no bytes were started, return the error, and let the
448 * generic layer handle the completion.
450 if (requested_bytes == 0) {
451 inode_dio_done(inode);
452 nfs_direct_req_release(dreq);
453 return result < 0 ? result : -EIO;
456 if (put_dreq(dreq))
457 nfs_direct_complete(dreq, false);
458 return 0;
462 * nfs_file_direct_read - file direct read operation for NFS files
463 * @iocb: target I/O control block
464 * @iov: vector of user buffers into which to read data
465 * @nr_segs: size of iov vector
466 * @pos: byte offset in file where reading starts
468 * We use this function for direct reads instead of calling
469 * generic_file_aio_read() in order to avoid gfar's check to see if
470 * the request starts before the end of the file. For that check
471 * to work, we must generate a GETATTR before each direct read, and
472 * even then there is a window between the GETATTR and the subsequent
473 * READ where the file size could change. Our preference is simply
474 * to do all reads the application wants, and the server will take
475 * care of managing the end of file boundary.
477 * This function also eliminates unnecessarily updating the file's
478 * atime locally, as the NFS server sets the file's atime, and this
479 * client must read the updated atime from the server back into its
480 * cache.
482 ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
483 unsigned long nr_segs, loff_t pos, bool uio)
485 struct file *file = iocb->ki_filp;
486 struct address_space *mapping = file->f_mapping;
487 struct inode *inode = mapping->host;
488 struct nfs_direct_req *dreq;
489 struct nfs_lock_context *l_ctx;
490 ssize_t result = -EINVAL;
491 size_t count;
493 count = iov_length(iov, nr_segs);
494 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
496 dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
497 file, count, (long long) pos);
499 result = 0;
500 if (!count)
501 goto out;
503 mutex_lock(&inode->i_mutex);
504 result = nfs_sync_mapping(mapping);
505 if (result)
506 goto out_unlock;
508 task_io_account_read(count);
510 result = -ENOMEM;
511 dreq = nfs_direct_req_alloc();
512 if (dreq == NULL)
513 goto out_unlock;
515 dreq->inode = inode;
516 dreq->bytes_left = iov_length(iov, nr_segs);
517 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
518 l_ctx = nfs_get_lock_context(dreq->ctx);
519 if (IS_ERR(l_ctx)) {
520 result = PTR_ERR(l_ctx);
521 goto out_release;
523 dreq->l_ctx = l_ctx;
524 if (!is_sync_kiocb(iocb))
525 dreq->iocb = iocb;
527 NFS_I(inode)->read_io += iov_length(iov, nr_segs);
528 result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos, uio);
530 mutex_unlock(&inode->i_mutex);
532 if (!result) {
533 result = nfs_direct_wait(dreq);
534 if (result > 0)
535 iocb->ki_pos = pos + result;
538 nfs_direct_req_release(dreq);
539 return result;
541 out_release:
542 nfs_direct_req_release(dreq);
543 out_unlock:
544 mutex_unlock(&inode->i_mutex);
545 out:
546 return result;
549 #if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4)
550 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
552 struct nfs_pageio_descriptor desc;
553 struct nfs_page *req, *tmp;
554 LIST_HEAD(reqs);
555 struct nfs_commit_info cinfo;
556 LIST_HEAD(failed);
558 nfs_init_cinfo_from_dreq(&cinfo, dreq);
559 pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo);
560 spin_lock(cinfo.lock);
561 nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0);
562 spin_unlock(cinfo.lock);
564 dreq->count = 0;
565 get_dreq(dreq);
567 NFS_PROTO(dreq->inode)->write_pageio_init(&desc, dreq->inode, FLUSH_STABLE,
568 &nfs_direct_write_completion_ops);
569 desc.pg_dreq = dreq;
571 list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
572 if (!nfs_pageio_add_request(&desc, req)) {
573 nfs_list_remove_request(req);
574 nfs_list_add_request(req, &failed);
575 spin_lock(cinfo.lock);
576 dreq->flags = 0;
577 dreq->error = -EIO;
578 spin_unlock(cinfo.lock);
580 nfs_release_request(req);
582 nfs_pageio_complete(&desc);
584 while (!list_empty(&failed)) {
585 req = nfs_list_entry(failed.next);
586 nfs_list_remove_request(req);
587 nfs_unlock_and_release_request(req);
590 if (put_dreq(dreq))
591 nfs_direct_write_complete(dreq, dreq->inode);
594 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
596 struct nfs_direct_req *dreq = data->dreq;
597 struct nfs_commit_info cinfo;
598 struct nfs_page *req;
599 int status = data->task.tk_status;
601 nfs_init_cinfo_from_dreq(&cinfo, dreq);
602 if (status < 0) {
603 dprintk("NFS: %5u commit failed with error %d.\n",
604 data->task.tk_pid, status);
605 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
606 } else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
607 dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
608 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
611 dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
612 while (!list_empty(&data->pages)) {
613 req = nfs_list_entry(data->pages.next);
614 nfs_list_remove_request(req);
615 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
616 /* Note the rewrite will go through mds */
617 nfs_mark_request_commit(req, NULL, &cinfo);
618 } else
619 nfs_release_request(req);
620 nfs_unlock_and_release_request(req);
623 if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
624 nfs_direct_write_complete(dreq, data->inode);
627 static void nfs_direct_error_cleanup(struct nfs_inode *nfsi)
629 /* There is no lock to clear */
632 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
633 .completion = nfs_direct_commit_complete,
634 .error_cleanup = nfs_direct_error_cleanup,
637 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
639 int res;
640 struct nfs_commit_info cinfo;
641 LIST_HEAD(mds_list);
643 nfs_init_cinfo_from_dreq(&cinfo, dreq);
644 nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
645 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
646 if (res < 0) /* res == -ENOMEM */
647 nfs_direct_write_reschedule(dreq);
650 static void nfs_direct_write_schedule_work(struct work_struct *work)
652 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
653 int flags = dreq->flags;
655 dreq->flags = 0;
656 switch (flags) {
657 case NFS_ODIRECT_DO_COMMIT:
658 nfs_direct_commit_schedule(dreq);
659 break;
660 case NFS_ODIRECT_RESCHED_WRITES:
661 nfs_direct_write_reschedule(dreq);
662 break;
663 default:
664 nfs_direct_complete(dreq, true);
668 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
670 schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
673 #else
674 static void nfs_direct_write_schedule_work(struct work_struct *work)
678 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
680 nfs_direct_complete(dreq, true);
682 #endif
685 * NB: Return the value of the first error return code. Subsequent
686 * errors after the first one are ignored.
689 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
690 * operation. If nfs_writedata_alloc() or get_user_pages() fails,
691 * bail and stop sending more writes. Write length accounting is
692 * handled automatically by nfs_direct_write_result(). Otherwise, if
693 * no requests have been sent, just return an error.
695 static ssize_t nfs_direct_write_schedule_segment(struct nfs_pageio_descriptor *desc,
696 const struct iovec *iov,
697 loff_t pos, bool uio)
699 struct nfs_direct_req *dreq = desc->pg_dreq;
700 struct nfs_open_context *ctx = dreq->ctx;
701 struct inode *inode = ctx->dentry->d_inode;
702 unsigned long user_addr = (unsigned long)iov->iov_base;
703 size_t count = iov->iov_len;
704 size_t wsize = NFS_SERVER(inode)->wsize;
705 unsigned int pgbase;
706 int result;
707 ssize_t started = 0;
708 struct page **pagevec = NULL;
709 unsigned int npages;
711 do {
712 size_t bytes;
713 int i;
715 pgbase = user_addr & ~PAGE_MASK;
716 bytes = min(max_t(size_t, wsize, PAGE_SIZE), count);
718 result = -ENOMEM;
719 npages = nfs_page_array_len(pgbase, bytes);
720 if (!pagevec)
721 pagevec = kmalloc(npages * sizeof(struct page *), GFP_KERNEL);
722 if (!pagevec)
723 break;
725 if (uio) {
726 down_read(&current->mm->mmap_sem);
727 result = get_user_pages(current, current->mm, user_addr,
728 npages, 0, 0, pagevec, NULL);
729 up_read(&current->mm->mmap_sem);
730 if (result < 0)
731 break;
732 } else {
733 WARN_ON(npages != 1);
734 result = get_kernel_page(user_addr, 0, pagevec);
735 if (WARN_ON(result != 1))
736 break;
739 if ((unsigned)result < npages) {
740 bytes = result * PAGE_SIZE;
741 if (bytes <= pgbase) {
742 nfs_direct_release_pages(pagevec, result);
743 break;
745 bytes -= pgbase;
746 npages = result;
749 for (i = 0; i < npages; i++) {
750 struct nfs_page *req;
751 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
753 req = nfs_create_request(dreq->ctx, dreq->inode,
754 pagevec[i],
755 pgbase, req_len);
756 if (IS_ERR(req)) {
757 result = PTR_ERR(req);
758 break;
760 nfs_lock_request(req);
761 req->wb_index = pos >> PAGE_SHIFT;
762 req->wb_offset = pos & ~PAGE_MASK;
763 if (!nfs_pageio_add_request(desc, req)) {
764 result = desc->pg_error;
765 nfs_unlock_and_release_request(req);
766 break;
768 pgbase = 0;
769 bytes -= req_len;
770 started += req_len;
771 user_addr += req_len;
772 pos += req_len;
773 count -= req_len;
774 dreq->bytes_left -= req_len;
776 /* The nfs_page now hold references to these pages */
777 nfs_direct_release_pages(pagevec, npages);
778 } while (count != 0 && result >= 0);
780 kfree(pagevec);
782 if (started)
783 return started;
784 return result < 0 ? (ssize_t) result : -EFAULT;
787 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
789 struct nfs_direct_req *dreq = hdr->dreq;
790 struct nfs_commit_info cinfo;
791 int bit = -1;
792 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
794 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
795 goto out_put;
797 nfs_init_cinfo_from_dreq(&cinfo, dreq);
799 spin_lock(&dreq->lock);
801 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
802 dreq->flags = 0;
803 dreq->error = hdr->error;
805 if (dreq->error != 0)
806 bit = NFS_IOHDR_ERROR;
807 else {
808 dreq->count += hdr->good_bytes;
809 if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) {
810 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
811 bit = NFS_IOHDR_NEED_RESCHED;
812 } else if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) {
813 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
814 bit = NFS_IOHDR_NEED_RESCHED;
815 else if (dreq->flags == 0) {
816 memcpy(&dreq->verf, hdr->verf,
817 sizeof(dreq->verf));
818 bit = NFS_IOHDR_NEED_COMMIT;
819 dreq->flags = NFS_ODIRECT_DO_COMMIT;
820 } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
821 if (memcmp(&dreq->verf, hdr->verf, sizeof(dreq->verf))) {
822 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
823 bit = NFS_IOHDR_NEED_RESCHED;
824 } else
825 bit = NFS_IOHDR_NEED_COMMIT;
829 spin_unlock(&dreq->lock);
831 while (!list_empty(&hdr->pages)) {
832 req = nfs_list_entry(hdr->pages.next);
833 nfs_list_remove_request(req);
834 switch (bit) {
835 case NFS_IOHDR_NEED_RESCHED:
836 case NFS_IOHDR_NEED_COMMIT:
837 kref_get(&req->wb_kref);
838 nfs_mark_request_commit(req, hdr->lseg, &cinfo);
840 nfs_unlock_and_release_request(req);
843 out_put:
844 if (put_dreq(dreq))
845 nfs_direct_write_complete(dreq, hdr->inode);
846 hdr->release(hdr);
849 static void nfs_write_sync_pgio_error(struct list_head *head)
851 struct nfs_page *req;
853 while (!list_empty(head)) {
854 req = nfs_list_entry(head->next);
855 nfs_list_remove_request(req);
856 nfs_unlock_and_release_request(req);
860 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
861 .error_cleanup = nfs_write_sync_pgio_error,
862 .init_hdr = nfs_direct_pgio_init,
863 .completion = nfs_direct_write_completion,
866 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
867 const struct iovec *iov,
868 unsigned long nr_segs,
869 loff_t pos, bool uio)
871 struct nfs_pageio_descriptor desc;
872 struct inode *inode = dreq->inode;
873 ssize_t result = 0;
874 size_t requested_bytes = 0;
875 unsigned long seg;
877 NFS_PROTO(inode)->write_pageio_init(&desc, inode, FLUSH_COND_STABLE,
878 &nfs_direct_write_completion_ops);
879 desc.pg_dreq = dreq;
880 get_dreq(dreq);
881 atomic_inc(&inode->i_dio_count);
883 NFS_I(dreq->inode)->write_io += iov_length(iov, nr_segs);
884 for (seg = 0; seg < nr_segs; seg++) {
885 const struct iovec *vec = &iov[seg];
886 result = nfs_direct_write_schedule_segment(&desc, vec, pos, uio);
887 if (result < 0)
888 break;
889 requested_bytes += result;
890 if ((size_t)result < vec->iov_len)
891 break;
892 pos += vec->iov_len;
894 nfs_pageio_complete(&desc);
897 * If no bytes were started, return the error, and let the
898 * generic layer handle the completion.
900 if (requested_bytes == 0) {
901 inode_dio_done(inode);
902 nfs_direct_req_release(dreq);
903 return result < 0 ? result : -EIO;
906 if (put_dreq(dreq))
907 nfs_direct_write_complete(dreq, dreq->inode);
908 return 0;
912 * nfs_file_direct_write - file direct write operation for NFS files
913 * @iocb: target I/O control block
914 * @iov: vector of user buffers from which to write data
915 * @nr_segs: size of iov vector
916 * @pos: byte offset in file where writing starts
918 * We use this function for direct writes instead of calling
919 * generic_file_aio_write() in order to avoid taking the inode
920 * semaphore and updating the i_size. The NFS server will set
921 * the new i_size and this client must read the updated size
922 * back into its cache. We let the server do generic write
923 * parameter checking and report problems.
925 * We eliminate local atime updates, see direct read above.
927 * We avoid unnecessary page cache invalidations for normal cached
928 * readers of this file.
930 * Note that O_APPEND is not supported for NFS direct writes, as there
931 * is no atomic O_APPEND write facility in the NFS protocol.
933 ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
934 unsigned long nr_segs, loff_t pos, bool uio)
936 ssize_t result = -EINVAL;
937 struct file *file = iocb->ki_filp;
938 struct address_space *mapping = file->f_mapping;
939 struct inode *inode = mapping->host;
940 struct nfs_direct_req *dreq;
941 struct nfs_lock_context *l_ctx;
942 loff_t end;
943 size_t count;
945 count = iov_length(iov, nr_segs);
946 end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
948 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
950 dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
951 file, count, (long long) pos);
953 result = generic_write_checks(file, &pos, &count, 0);
954 if (result)
955 goto out;
957 result = -EINVAL;
958 if ((ssize_t) count < 0)
959 goto out;
960 result = 0;
961 if (!count)
962 goto out;
964 mutex_lock(&inode->i_mutex);
966 result = nfs_sync_mapping(mapping);
967 if (result)
968 goto out_unlock;
970 if (mapping->nrpages) {
971 result = invalidate_inode_pages2_range(mapping,
972 pos >> PAGE_CACHE_SHIFT, end);
973 if (result)
974 goto out_unlock;
977 task_io_account_write(count);
979 result = -ENOMEM;
980 dreq = nfs_direct_req_alloc();
981 if (!dreq)
982 goto out_unlock;
984 dreq->inode = inode;
985 dreq->bytes_left = count;
986 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
987 l_ctx = nfs_get_lock_context(dreq->ctx);
988 if (IS_ERR(l_ctx)) {
989 result = PTR_ERR(l_ctx);
990 goto out_release;
992 dreq->l_ctx = l_ctx;
993 if (!is_sync_kiocb(iocb))
994 dreq->iocb = iocb;
996 result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, uio);
998 if (mapping->nrpages) {
999 invalidate_inode_pages2_range(mapping,
1000 pos >> PAGE_CACHE_SHIFT, end);
1003 mutex_unlock(&inode->i_mutex);
1005 if (!result) {
1006 result = nfs_direct_wait(dreq);
1007 if (result > 0) {
1008 struct inode *inode = mapping->host;
1010 iocb->ki_pos = pos + result;
1011 spin_lock(&inode->i_lock);
1012 if (i_size_read(inode) < iocb->ki_pos)
1013 i_size_write(inode, iocb->ki_pos);
1014 spin_unlock(&inode->i_lock);
1017 nfs_direct_req_release(dreq);
1018 return result;
1020 out_release:
1021 nfs_direct_req_release(dreq);
1022 out_unlock:
1023 mutex_unlock(&inode->i_mutex);
1024 out:
1025 return result;
1029 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1032 int __init nfs_init_directcache(void)
1034 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1035 sizeof(struct nfs_direct_req),
1036 0, (SLAB_RECLAIM_ACCOUNT|
1037 SLAB_MEM_SPREAD),
1038 NULL);
1039 if (nfs_direct_cachep == NULL)
1040 return -ENOMEM;
1042 return 0;
1046 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1049 void nfs_destroy_directcache(void)
1051 kmem_cache_destroy(nfs_direct_cachep);