2 #include <linux/hugetlb.h>
3 #include <linux/huge_mm.h>
4 #include <linux/mount.h>
5 #include <linux/seq_file.h>
6 #include <linux/highmem.h>
7 #include <linux/ptrace.h>
8 #include <linux/slab.h>
9 #include <linux/pagemap.h>
10 #include <linux/mempolicy.h>
11 #include <linux/rmap.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/mmu_notifier.h>
17 #include <asm/uaccess.h>
18 #include <asm/tlbflush.h>
21 void task_mem(struct seq_file
*m
, struct mm_struct
*mm
)
23 unsigned long data
, text
, lib
, swap
;
24 unsigned long hiwater_vm
, total_vm
, hiwater_rss
, total_rss
;
27 * Note: to minimize their overhead, mm maintains hiwater_vm and
28 * hiwater_rss only when about to *lower* total_vm or rss. Any
29 * collector of these hiwater stats must therefore get total_vm
30 * and rss too, which will usually be the higher. Barriers? not
31 * worth the effort, such snapshots can always be inconsistent.
33 hiwater_vm
= total_vm
= mm
->total_vm
;
34 if (hiwater_vm
< mm
->hiwater_vm
)
35 hiwater_vm
= mm
->hiwater_vm
;
36 hiwater_rss
= total_rss
= get_mm_rss(mm
);
37 if (hiwater_rss
< mm
->hiwater_rss
)
38 hiwater_rss
= mm
->hiwater_rss
;
40 data
= mm
->total_vm
- mm
->shared_vm
- mm
->stack_vm
;
41 text
= (PAGE_ALIGN(mm
->end_code
) - (mm
->start_code
& PAGE_MASK
)) >> 10;
42 lib
= (mm
->exec_vm
<< (PAGE_SHIFT
-10)) - text
;
43 swap
= get_mm_counter(mm
, MM_SWAPENTS
);
57 hiwater_vm
<< (PAGE_SHIFT
-10),
58 total_vm
<< (PAGE_SHIFT
-10),
59 mm
->locked_vm
<< (PAGE_SHIFT
-10),
60 mm
->pinned_vm
<< (PAGE_SHIFT
-10),
61 hiwater_rss
<< (PAGE_SHIFT
-10),
62 total_rss
<< (PAGE_SHIFT
-10),
63 data
<< (PAGE_SHIFT
-10),
64 mm
->stack_vm
<< (PAGE_SHIFT
-10), text
, lib
,
65 (PTRS_PER_PTE
* sizeof(pte_t
) *
66 atomic_long_read(&mm
->nr_ptes
)) >> 10,
67 swap
<< (PAGE_SHIFT
-10));
70 unsigned long task_vsize(struct mm_struct
*mm
)
72 return PAGE_SIZE
* mm
->total_vm
;
75 unsigned long task_statm(struct mm_struct
*mm
,
76 unsigned long *shared
, unsigned long *text
,
77 unsigned long *data
, unsigned long *resident
)
79 *shared
= get_mm_counter(mm
, MM_FILEPAGES
);
80 *text
= (PAGE_ALIGN(mm
->end_code
) - (mm
->start_code
& PAGE_MASK
))
82 *data
= mm
->total_vm
- mm
->shared_vm
;
83 *resident
= *shared
+ get_mm_counter(mm
, MM_ANONPAGES
);
89 * These functions are for numa_maps but called in generic **maps seq_file
90 * ->start(), ->stop() ops.
92 * numa_maps scans all vmas under mmap_sem and checks their mempolicy.
93 * Each mempolicy object is controlled by reference counting. The problem here
94 * is how to avoid accessing dead mempolicy object.
96 * Because we're holding mmap_sem while reading seq_file, it's safe to access
97 * each vma's mempolicy, no vma objects will never drop refs to mempolicy.
99 * A task's mempolicy (task->mempolicy) has different behavior. task->mempolicy
100 * is set and replaced under mmap_sem but unrefed and cleared under task_lock().
101 * So, without task_lock(), we cannot trust get_vma_policy() because we cannot
102 * gurantee the task never exits under us. But taking task_lock() around
103 * get_vma_plicy() causes lock order problem.
105 * To access task->mempolicy without lock, we hold a reference count of an
106 * object pointed by task->mempolicy and remember it. This will guarantee
107 * that task->mempolicy points to an alive object or NULL in numa_maps accesses.
109 static void hold_task_mempolicy(struct proc_maps_private
*priv
)
111 struct task_struct
*task
= priv
->task
;
114 priv
->task_mempolicy
= task
->mempolicy
;
115 mpol_get(priv
->task_mempolicy
);
118 static void release_task_mempolicy(struct proc_maps_private
*priv
)
120 mpol_put(priv
->task_mempolicy
);
123 static void hold_task_mempolicy(struct proc_maps_private
*priv
)
126 static void release_task_mempolicy(struct proc_maps_private
*priv
)
131 static void vma_stop(struct proc_maps_private
*priv
, struct vm_area_struct
*vma
)
133 if (vma
&& vma
!= priv
->tail_vma
) {
134 struct mm_struct
*mm
= vma
->vm_mm
;
135 release_task_mempolicy(priv
);
136 up_read(&mm
->mmap_sem
);
141 static void *m_start(struct seq_file
*m
, loff_t
*pos
)
143 struct proc_maps_private
*priv
= m
->private;
144 unsigned long last_addr
= m
->version
;
145 struct mm_struct
*mm
;
146 struct vm_area_struct
*vma
, *tail_vma
= NULL
;
149 /* Clear the per syscall fields in priv */
151 priv
->tail_vma
= NULL
;
154 * We remember last_addr rather than next_addr to hit with
155 * mmap_cache most of the time. We have zero last_addr at
156 * the beginning and also after lseek. We will have -1 last_addr
157 * after the end of the vmas.
160 if (last_addr
== -1UL)
163 priv
->task
= get_pid_task(priv
->pid
, PIDTYPE_PID
);
165 return ERR_PTR(-ESRCH
);
167 mm
= mm_access(priv
->task
, PTRACE_MODE_READ
);
168 if (!mm
|| IS_ERR(mm
))
170 down_read(&mm
->mmap_sem
);
172 tail_vma
= get_gate_vma(priv
->task
->mm
);
173 priv
->tail_vma
= tail_vma
;
174 hold_task_mempolicy(priv
);
175 /* Start with last addr hint */
176 vma
= find_vma(mm
, last_addr
);
177 if (last_addr
&& vma
) {
183 * Check the vma index is within the range and do
184 * sequential scan until m_index.
187 if ((unsigned long)l
< mm
->map_count
) {
194 if (l
!= mm
->map_count
)
195 tail_vma
= NULL
; /* After gate vma */
201 release_task_mempolicy(priv
);
202 /* End of vmas has been reached */
203 m
->version
= (tail_vma
!= NULL
)? 0: -1UL;
204 up_read(&mm
->mmap_sem
);
209 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
211 struct proc_maps_private
*priv
= m
->private;
212 struct vm_area_struct
*vma
= v
;
213 struct vm_area_struct
*tail_vma
= priv
->tail_vma
;
216 if (vma
&& (vma
!= tail_vma
) && vma
->vm_next
)
219 return (vma
!= tail_vma
)? tail_vma
: NULL
;
222 static void m_stop(struct seq_file
*m
, void *v
)
224 struct proc_maps_private
*priv
= m
->private;
225 struct vm_area_struct
*vma
= v
;
230 put_task_struct(priv
->task
);
233 static int do_maps_open(struct inode
*inode
, struct file
*file
,
234 const struct seq_operations
*ops
)
236 struct proc_maps_private
*priv
;
238 priv
= kzalloc(sizeof(*priv
), GFP_KERNEL
);
240 priv
->pid
= proc_pid(inode
);
241 ret
= seq_open(file
, ops
);
243 struct seq_file
*m
= file
->private_data
;
253 show_map_vma(struct seq_file
*m
, struct vm_area_struct
*vma
, int is_pid
)
255 struct mm_struct
*mm
= vma
->vm_mm
;
256 struct file
*file
= vma
->vm_file
;
257 struct proc_maps_private
*priv
= m
->private;
258 struct task_struct
*task
= priv
->task
;
259 vm_flags_t flags
= vma
->vm_flags
;
260 unsigned long ino
= 0;
261 unsigned long long pgoff
= 0;
262 unsigned long start
, end
;
264 const char *name
= NULL
;
267 struct inode
*inode
= file_inode(vma
->vm_file
);
268 dev
= inode
->i_sb
->s_dev
;
270 pgoff
= ((loff_t
)vma
->vm_pgoff
) << PAGE_SHIFT
;
273 /* We don't show the stack guard page in /proc/maps */
274 start
= vma
->vm_start
;
275 if (stack_guard_page_start(vma
, start
))
278 if (stack_guard_page_end(vma
, end
))
281 seq_setwidth(m
, 25 + sizeof(void *) * 6 - 1);
282 seq_printf(m
, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
285 flags
& VM_READ
? 'r' : '-',
286 flags
& VM_WRITE
? 'w' : '-',
287 flags
& VM_EXEC
? 'x' : '-',
288 flags
& VM_MAYSHARE
? 's' : 'p',
290 MAJOR(dev
), MINOR(dev
), ino
);
293 * Print the dentry name for named mappings, and a
294 * special [heap] marker for the heap:
298 seq_path(m
, &file
->f_path
, "\n");
302 name
= arch_vma_name(vma
);
311 if (vma
->vm_start
<= mm
->brk
&&
312 vma
->vm_end
>= mm
->start_brk
) {
317 tid
= vm_is_stack(task
, vma
, is_pid
);
321 * Thread stack in /proc/PID/task/TID/maps or
322 * the main process stack.
324 if (!is_pid
|| (vma
->vm_start
<= mm
->start_stack
&&
325 vma
->vm_end
>= mm
->start_stack
)) {
328 /* Thread stack in /proc/PID/maps */
330 seq_printf(m
, "[stack:%d]", tid
);
343 static int show_map(struct seq_file
*m
, void *v
, int is_pid
)
345 struct vm_area_struct
*vma
= v
;
346 struct proc_maps_private
*priv
= m
->private;
347 struct task_struct
*task
= priv
->task
;
349 show_map_vma(m
, vma
, is_pid
);
351 if (m
->count
< m
->size
) /* vma is copied successfully */
352 m
->version
= (vma
!= get_gate_vma(task
->mm
))
357 static int show_pid_map(struct seq_file
*m
, void *v
)
359 return show_map(m
, v
, 1);
362 static int show_tid_map(struct seq_file
*m
, void *v
)
364 return show_map(m
, v
, 0);
367 static const struct seq_operations proc_pid_maps_op
= {
374 static const struct seq_operations proc_tid_maps_op
= {
381 static int pid_maps_open(struct inode
*inode
, struct file
*file
)
383 return do_maps_open(inode
, file
, &proc_pid_maps_op
);
386 static int tid_maps_open(struct inode
*inode
, struct file
*file
)
388 return do_maps_open(inode
, file
, &proc_tid_maps_op
);
391 const struct file_operations proc_pid_maps_operations
= {
392 .open
= pid_maps_open
,
395 .release
= seq_release_private
,
398 const struct file_operations proc_tid_maps_operations
= {
399 .open
= tid_maps_open
,
402 .release
= seq_release_private
,
406 * Proportional Set Size(PSS): my share of RSS.
408 * PSS of a process is the count of pages it has in memory, where each
409 * page is divided by the number of processes sharing it. So if a
410 * process has 1000 pages all to itself, and 1000 shared with one other
411 * process, its PSS will be 1500.
413 * To keep (accumulated) division errors low, we adopt a 64bit
414 * fixed-point pss counter to minimize division errors. So (pss >>
415 * PSS_SHIFT) would be the real byte count.
417 * A shift of 12 before division means (assuming 4K page size):
418 * - 1M 3-user-pages add up to 8KB errors;
419 * - supports mapcount up to 2^24, or 16M;
420 * - supports PSS up to 2^52 bytes, or 4PB.
424 #ifdef CONFIG_PROC_PAGE_MONITOR
425 struct mem_size_stats
{
426 struct vm_area_struct
*vma
;
427 unsigned long resident
;
428 unsigned long shared_clean
;
429 unsigned long shared_dirty
;
430 unsigned long private_clean
;
431 unsigned long private_dirty
;
432 unsigned long referenced
;
433 unsigned long anonymous
;
434 unsigned long anonymous_thp
;
436 unsigned long nonlinear
;
441 static void smaps_pte_entry(pte_t ptent
, unsigned long addr
,
442 unsigned long ptent_size
, struct mm_walk
*walk
)
444 struct mem_size_stats
*mss
= walk
->private;
445 struct vm_area_struct
*vma
= mss
->vma
;
446 pgoff_t pgoff
= linear_page_index(vma
, addr
);
447 struct page
*page
= NULL
;
450 if (pte_present(ptent
)) {
451 page
= vm_normal_page(vma
, addr
, ptent
);
452 } else if (is_swap_pte(ptent
)) {
453 swp_entry_t swpent
= pte_to_swp_entry(ptent
);
455 if (!non_swap_entry(swpent
))
456 mss
->swap
+= ptent_size
;
457 else if (is_migration_entry(swpent
))
458 page
= migration_entry_to_page(swpent
);
459 } else if (pte_file(ptent
)) {
460 if (pte_to_pgoff(ptent
) != pgoff
)
461 mss
->nonlinear
+= ptent_size
;
468 mss
->anonymous
+= ptent_size
;
470 if (page
->index
!= pgoff
)
471 mss
->nonlinear
+= ptent_size
;
473 mss
->resident
+= ptent_size
;
474 /* Accumulate the size in pages that have been accessed. */
475 if (pte_young(ptent
) || PageReferenced(page
))
476 mss
->referenced
+= ptent_size
;
477 mapcount
= page_mapcount(page
);
479 if (pte_dirty(ptent
) || PageDirty(page
))
480 mss
->shared_dirty
+= ptent_size
;
482 mss
->shared_clean
+= ptent_size
;
483 mss
->pss
+= (ptent_size
<< PSS_SHIFT
) / mapcount
;
485 if (pte_dirty(ptent
) || PageDirty(page
))
486 mss
->private_dirty
+= ptent_size
;
488 mss
->private_clean
+= ptent_size
;
489 mss
->pss
+= (ptent_size
<< PSS_SHIFT
);
493 static int smaps_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
,
494 struct mm_walk
*walk
)
496 struct mem_size_stats
*mss
= walk
->private;
497 struct vm_area_struct
*vma
= mss
->vma
;
501 if (pmd_trans_huge_lock(pmd
, vma
, &ptl
) == 1) {
502 smaps_pte_entry(*(pte_t
*)pmd
, addr
, HPAGE_PMD_SIZE
, walk
);
504 mss
->anonymous_thp
+= HPAGE_PMD_SIZE
;
508 if (pmd_trans_unstable(pmd
))
511 * The mmap_sem held all the way back in m_start() is what
512 * keeps khugepaged out of here and from collapsing things
515 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
516 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
517 smaps_pte_entry(*pte
, addr
, PAGE_SIZE
, walk
);
518 pte_unmap_unlock(pte
- 1, ptl
);
523 static void show_smap_vma_flags(struct seq_file
*m
, struct vm_area_struct
*vma
)
526 * Don't forget to update Documentation/ on changes.
528 static const char mnemonics
[BITS_PER_LONG
][2] = {
530 * In case if we meet a flag we don't know about.
532 [0 ... (BITS_PER_LONG
-1)] = "??",
534 [ilog2(VM_READ
)] = "rd",
535 [ilog2(VM_WRITE
)] = "wr",
536 [ilog2(VM_EXEC
)] = "ex",
537 [ilog2(VM_SHARED
)] = "sh",
538 [ilog2(VM_MAYREAD
)] = "mr",
539 [ilog2(VM_MAYWRITE
)] = "mw",
540 [ilog2(VM_MAYEXEC
)] = "me",
541 [ilog2(VM_MAYSHARE
)] = "ms",
542 [ilog2(VM_GROWSDOWN
)] = "gd",
543 [ilog2(VM_PFNMAP
)] = "pf",
544 [ilog2(VM_DENYWRITE
)] = "dw",
545 [ilog2(VM_LOCKED
)] = "lo",
546 [ilog2(VM_IO
)] = "io",
547 [ilog2(VM_SEQ_READ
)] = "sr",
548 [ilog2(VM_RAND_READ
)] = "rr",
549 [ilog2(VM_DONTCOPY
)] = "dc",
550 [ilog2(VM_DONTEXPAND
)] = "de",
551 [ilog2(VM_ACCOUNT
)] = "ac",
552 [ilog2(VM_NORESERVE
)] = "nr",
553 [ilog2(VM_HUGETLB
)] = "ht",
554 [ilog2(VM_NONLINEAR
)] = "nl",
555 [ilog2(VM_ARCH_1
)] = "ar",
556 [ilog2(VM_DONTDUMP
)] = "dd",
557 #ifdef CONFIG_MEM_SOFT_DIRTY
558 [ilog2(VM_SOFTDIRTY
)] = "sd",
560 [ilog2(VM_MIXEDMAP
)] = "mm",
561 [ilog2(VM_HUGEPAGE
)] = "hg",
562 [ilog2(VM_NOHUGEPAGE
)] = "nh",
563 [ilog2(VM_MERGEABLE
)] = "mg",
567 seq_puts(m
, "VmFlags: ");
568 for (i
= 0; i
< BITS_PER_LONG
; i
++) {
569 if (vma
->vm_flags
& (1UL << i
)) {
570 seq_printf(m
, "%c%c ",
571 mnemonics
[i
][0], mnemonics
[i
][1]);
577 static int show_smap(struct seq_file
*m
, void *v
, int is_pid
)
579 struct proc_maps_private
*priv
= m
->private;
580 struct task_struct
*task
= priv
->task
;
581 struct vm_area_struct
*vma
= v
;
582 struct mem_size_stats mss
;
583 struct mm_walk smaps_walk
= {
584 .pmd_entry
= smaps_pte_range
,
589 memset(&mss
, 0, sizeof mss
);
591 /* mmap_sem is held in m_start */
592 if (vma
->vm_mm
&& !is_vm_hugetlb_page(vma
))
593 walk_page_range(vma
->vm_start
, vma
->vm_end
, &smaps_walk
);
595 show_map_vma(m
, vma
, is_pid
);
601 "Shared_Clean: %8lu kB\n"
602 "Shared_Dirty: %8lu kB\n"
603 "Private_Clean: %8lu kB\n"
604 "Private_Dirty: %8lu kB\n"
605 "Referenced: %8lu kB\n"
606 "Anonymous: %8lu kB\n"
607 "AnonHugePages: %8lu kB\n"
609 "KernelPageSize: %8lu kB\n"
610 "MMUPageSize: %8lu kB\n"
612 (vma
->vm_end
- vma
->vm_start
) >> 10,
614 (unsigned long)(mss
.pss
>> (10 + PSS_SHIFT
)),
615 mss
.shared_clean
>> 10,
616 mss
.shared_dirty
>> 10,
617 mss
.private_clean
>> 10,
618 mss
.private_dirty
>> 10,
619 mss
.referenced
>> 10,
621 mss
.anonymous_thp
>> 10,
623 vma_kernel_pagesize(vma
) >> 10,
624 vma_mmu_pagesize(vma
) >> 10,
625 (vma
->vm_flags
& VM_LOCKED
) ?
626 (unsigned long)(mss
.pss
>> (10 + PSS_SHIFT
)) : 0);
628 if (vma
->vm_flags
& VM_NONLINEAR
)
629 seq_printf(m
, "Nonlinear: %8lu kB\n",
630 mss
.nonlinear
>> 10);
632 show_smap_vma_flags(m
, vma
);
634 if (m
->count
< m
->size
) /* vma is copied successfully */
635 m
->version
= (vma
!= get_gate_vma(task
->mm
))
640 static int show_pid_smap(struct seq_file
*m
, void *v
)
642 return show_smap(m
, v
, 1);
645 static int show_tid_smap(struct seq_file
*m
, void *v
)
647 return show_smap(m
, v
, 0);
650 static const struct seq_operations proc_pid_smaps_op
= {
654 .show
= show_pid_smap
657 static const struct seq_operations proc_tid_smaps_op
= {
661 .show
= show_tid_smap
664 static int pid_smaps_open(struct inode
*inode
, struct file
*file
)
666 return do_maps_open(inode
, file
, &proc_pid_smaps_op
);
669 static int tid_smaps_open(struct inode
*inode
, struct file
*file
)
671 return do_maps_open(inode
, file
, &proc_tid_smaps_op
);
674 const struct file_operations proc_pid_smaps_operations
= {
675 .open
= pid_smaps_open
,
678 .release
= seq_release_private
,
681 const struct file_operations proc_tid_smaps_operations
= {
682 .open
= tid_smaps_open
,
685 .release
= seq_release_private
,
689 * We do not want to have constant page-shift bits sitting in
690 * pagemap entries and are about to reuse them some time soon.
692 * Here's the "migration strategy":
693 * 1. when the system boots these bits remain what they are,
694 * but a warning about future change is printed in log;
695 * 2. once anyone clears soft-dirty bits via clear_refs file,
696 * these flag is set to denote, that user is aware of the
697 * new API and those page-shift bits change their meaning.
698 * The respective warning is printed in dmesg;
699 * 3. In a couple of releases we will remove all the mentions
700 * of page-shift in pagemap entries.
703 static bool soft_dirty_cleared __read_mostly
;
705 enum clear_refs_types
{
709 CLEAR_REFS_SOFT_DIRTY
,
713 struct clear_refs_private
{
714 struct vm_area_struct
*vma
;
715 enum clear_refs_types type
;
718 static inline void clear_soft_dirty(struct vm_area_struct
*vma
,
719 unsigned long addr
, pte_t
*pte
)
721 #ifdef CONFIG_MEM_SOFT_DIRTY
723 * The soft-dirty tracker uses #PF-s to catch writes
724 * to pages, so write-protect the pte as well. See the
725 * Documentation/vm/soft-dirty.txt for full description
726 * of how soft-dirty works.
730 if (pte_present(ptent
)) {
731 ptent
= pte_wrprotect(ptent
);
732 ptent
= pte_clear_flags(ptent
, _PAGE_SOFT_DIRTY
);
733 } else if (is_swap_pte(ptent
)) {
734 ptent
= pte_swp_clear_soft_dirty(ptent
);
735 } else if (pte_file(ptent
)) {
736 ptent
= pte_file_clear_soft_dirty(ptent
);
739 if (vma
->vm_flags
& VM_SOFTDIRTY
)
740 vma
->vm_flags
&= ~VM_SOFTDIRTY
;
742 set_pte_at(vma
->vm_mm
, addr
, pte
, ptent
);
746 static int clear_refs_pte_range(pmd_t
*pmd
, unsigned long addr
,
747 unsigned long end
, struct mm_walk
*walk
)
749 struct clear_refs_private
*cp
= walk
->private;
750 struct vm_area_struct
*vma
= cp
->vma
;
755 split_huge_page_pmd(vma
, addr
, pmd
);
756 if (pmd_trans_unstable(pmd
))
759 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
760 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
) {
763 if (cp
->type
== CLEAR_REFS_SOFT_DIRTY
) {
764 clear_soft_dirty(vma
, addr
, pte
);
768 if (!pte_present(ptent
))
771 page
= vm_normal_page(vma
, addr
, ptent
);
775 /* Clear accessed and referenced bits. */
776 ptep_test_and_clear_young(vma
, addr
, pte
);
777 ClearPageReferenced(page
);
779 pte_unmap_unlock(pte
- 1, ptl
);
784 static ssize_t
clear_refs_write(struct file
*file
, const char __user
*buf
,
785 size_t count
, loff_t
*ppos
)
787 struct task_struct
*task
;
788 char buffer
[PROC_NUMBUF
];
789 struct mm_struct
*mm
;
790 struct vm_area_struct
*vma
;
791 enum clear_refs_types type
;
795 memset(buffer
, 0, sizeof(buffer
));
796 if (count
> sizeof(buffer
) - 1)
797 count
= sizeof(buffer
) - 1;
798 if (copy_from_user(buffer
, buf
, count
))
800 rv
= kstrtoint(strstrip(buffer
), 10, &itype
);
803 type
= (enum clear_refs_types
)itype
;
804 if (type
< CLEAR_REFS_ALL
|| type
>= CLEAR_REFS_LAST
)
807 if (type
== CLEAR_REFS_SOFT_DIRTY
) {
808 soft_dirty_cleared
= true;
809 pr_warn_once("The pagemap bits 55-60 has changed their meaning! "
810 "See the linux/Documentation/vm/pagemap.txt for details.\n");
813 task
= get_proc_task(file_inode(file
));
816 mm
= get_task_mm(task
);
818 struct clear_refs_private cp
= {
821 struct mm_walk clear_refs_walk
= {
822 .pmd_entry
= clear_refs_pte_range
,
826 down_read(&mm
->mmap_sem
);
827 if (type
== CLEAR_REFS_SOFT_DIRTY
)
828 mmu_notifier_invalidate_range_start(mm
, 0, -1);
829 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
831 if (is_vm_hugetlb_page(vma
))
834 * Writing 1 to /proc/pid/clear_refs affects all pages.
836 * Writing 2 to /proc/pid/clear_refs only affects
839 * Writing 3 to /proc/pid/clear_refs only affects file
842 if (type
== CLEAR_REFS_ANON
&& vma
->vm_file
)
844 if (type
== CLEAR_REFS_MAPPED
&& !vma
->vm_file
)
846 walk_page_range(vma
->vm_start
, vma
->vm_end
,
849 if (type
== CLEAR_REFS_SOFT_DIRTY
)
850 mmu_notifier_invalidate_range_end(mm
, 0, -1);
852 up_read(&mm
->mmap_sem
);
855 put_task_struct(task
);
860 const struct file_operations proc_clear_refs_operations
= {
861 .write
= clear_refs_write
,
862 .llseek
= noop_llseek
,
870 int pos
, len
; /* units: PM_ENTRY_BYTES, not bytes */
871 pagemap_entry_t
*buffer
;
875 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
876 #define PAGEMAP_WALK_MASK (PMD_MASK)
878 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
879 #define PM_STATUS_BITS 3
880 #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
881 #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
882 #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
883 #define PM_PSHIFT_BITS 6
884 #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
885 #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
886 #define __PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
887 #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
888 #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
889 /* in "new" pagemap pshift bits are occupied with more status bits */
890 #define PM_STATUS2(v2, x) (__PM_PSHIFT(v2 ? x : PAGE_SHIFT))
892 #define __PM_SOFT_DIRTY (1LL)
893 #define PM_PRESENT PM_STATUS(4LL)
894 #define PM_SWAP PM_STATUS(2LL)
895 #define PM_FILE PM_STATUS(1LL)
896 #define PM_NOT_PRESENT(v2) PM_STATUS2(v2, 0)
897 #define PM_END_OF_BUFFER 1
899 static inline pagemap_entry_t
make_pme(u64 val
)
901 return (pagemap_entry_t
) { .pme
= val
};
904 static int add_to_pagemap(unsigned long addr
, pagemap_entry_t
*pme
,
905 struct pagemapread
*pm
)
907 pm
->buffer
[pm
->pos
++] = *pme
;
908 if (pm
->pos
>= pm
->len
)
909 return PM_END_OF_BUFFER
;
913 static int pagemap_pte_hole(unsigned long start
, unsigned long end
,
914 struct mm_walk
*walk
)
916 struct pagemapread
*pm
= walk
->private;
919 pagemap_entry_t pme
= make_pme(PM_NOT_PRESENT(pm
->v2
));
921 for (addr
= start
; addr
< end
; addr
+= PAGE_SIZE
) {
922 err
= add_to_pagemap(addr
, &pme
, pm
);
929 static void pte_to_pagemap_entry(pagemap_entry_t
*pme
, struct pagemapread
*pm
,
930 struct vm_area_struct
*vma
, unsigned long addr
, pte_t pte
)
933 struct page
*page
= NULL
;
936 if (pte_present(pte
)) {
937 frame
= pte_pfn(pte
);
939 page
= vm_normal_page(vma
, addr
, pte
);
940 if (pte_soft_dirty(pte
))
941 flags2
|= __PM_SOFT_DIRTY
;
942 } else if (is_swap_pte(pte
)) {
944 if (pte_swp_soft_dirty(pte
))
945 flags2
|= __PM_SOFT_DIRTY
;
946 entry
= pte_to_swp_entry(pte
);
947 frame
= swp_type(entry
) |
948 (swp_offset(entry
) << MAX_SWAPFILES_SHIFT
);
950 if (is_migration_entry(entry
))
951 page
= migration_entry_to_page(entry
);
953 if (vma
->vm_flags
& VM_SOFTDIRTY
)
954 flags2
|= __PM_SOFT_DIRTY
;
955 *pme
= make_pme(PM_NOT_PRESENT(pm
->v2
) | PM_STATUS2(pm
->v2
, flags2
));
959 if (page
&& !PageAnon(page
))
961 if ((vma
->vm_flags
& VM_SOFTDIRTY
))
962 flags2
|= __PM_SOFT_DIRTY
;
964 *pme
= make_pme(PM_PFRAME(frame
) | PM_STATUS2(pm
->v2
, flags2
) | flags
);
967 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
968 static void thp_pmd_to_pagemap_entry(pagemap_entry_t
*pme
, struct pagemapread
*pm
,
969 pmd_t pmd
, int offset
, int pmd_flags2
)
972 * Currently pmd for thp is always present because thp can not be
973 * swapped-out, migrated, or HWPOISONed (split in such cases instead.)
974 * This if-check is just to prepare for future implementation.
976 if (pmd_present(pmd
))
977 *pme
= make_pme(PM_PFRAME(pmd_pfn(pmd
) + offset
)
978 | PM_STATUS2(pm
->v2
, pmd_flags2
) | PM_PRESENT
);
980 *pme
= make_pme(PM_NOT_PRESENT(pm
->v2
) | PM_STATUS2(pm
->v2
, pmd_flags2
));
983 static inline void thp_pmd_to_pagemap_entry(pagemap_entry_t
*pme
, struct pagemapread
*pm
,
984 pmd_t pmd
, int offset
, int pmd_flags2
)
989 static int pagemap_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
,
990 struct mm_walk
*walk
)
992 struct vm_area_struct
*vma
;
993 struct pagemapread
*pm
= walk
->private;
997 pagemap_entry_t pme
= make_pme(PM_NOT_PRESENT(pm
->v2
));
999 /* find the first VMA at or above 'addr' */
1000 vma
= find_vma(walk
->mm
, addr
);
1001 if (vma
&& pmd_trans_huge_lock(pmd
, vma
, &ptl
) == 1) {
1004 if ((vma
->vm_flags
& VM_SOFTDIRTY
) || pmd_soft_dirty(*pmd
))
1005 pmd_flags2
= __PM_SOFT_DIRTY
;
1009 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
1010 unsigned long offset
;
1012 offset
= (addr
& ~PAGEMAP_WALK_MASK
) >>
1014 thp_pmd_to_pagemap_entry(&pme
, pm
, *pmd
, offset
, pmd_flags2
);
1015 err
= add_to_pagemap(addr
, &pme
, pm
);
1023 if (pmd_trans_unstable(pmd
))
1025 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
1028 /* check to see if we've left 'vma' behind
1029 * and need a new, higher one */
1030 if (vma
&& (addr
>= vma
->vm_end
)) {
1031 vma
= find_vma(walk
->mm
, addr
);
1032 if (vma
&& (vma
->vm_flags
& VM_SOFTDIRTY
))
1033 flags2
= __PM_SOFT_DIRTY
;
1036 pme
= make_pme(PM_NOT_PRESENT(pm
->v2
) | PM_STATUS2(pm
->v2
, flags2
));
1039 /* check that 'vma' actually covers this address,
1040 * and that it isn't a huge page vma */
1041 if (vma
&& (vma
->vm_start
<= addr
) &&
1042 !is_vm_hugetlb_page(vma
)) {
1043 pte
= pte_offset_map(pmd
, addr
);
1044 pte_to_pagemap_entry(&pme
, pm
, vma
, addr
, *pte
);
1045 /* unmap before userspace copy */
1048 err
= add_to_pagemap(addr
, &pme
, pm
);
1058 #ifdef CONFIG_HUGETLB_PAGE
1059 static void huge_pte_to_pagemap_entry(pagemap_entry_t
*pme
, struct pagemapread
*pm
,
1060 pte_t pte
, int offset
, int flags2
)
1062 if (pte_present(pte
))
1063 *pme
= make_pme(PM_PFRAME(pte_pfn(pte
) + offset
) |
1064 PM_STATUS2(pm
->v2
, flags2
) |
1067 *pme
= make_pme(PM_NOT_PRESENT(pm
->v2
) |
1068 PM_STATUS2(pm
->v2
, flags2
));
1071 /* This function walks within one hugetlb entry in the single call */
1072 static int pagemap_hugetlb_range(pte_t
*pte
, unsigned long hmask
,
1073 unsigned long addr
, unsigned long end
,
1074 struct mm_walk
*walk
)
1076 struct pagemapread
*pm
= walk
->private;
1077 struct vm_area_struct
*vma
;
1080 pagemap_entry_t pme
;
1082 vma
= find_vma(walk
->mm
, addr
);
1085 if (vma
&& (vma
->vm_flags
& VM_SOFTDIRTY
))
1086 flags2
= __PM_SOFT_DIRTY
;
1090 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
1091 int offset
= (addr
& ~hmask
) >> PAGE_SHIFT
;
1092 huge_pte_to_pagemap_entry(&pme
, pm
, *pte
, offset
, flags2
);
1093 err
= add_to_pagemap(addr
, &pme
, pm
);
1102 #endif /* HUGETLB_PAGE */
1105 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1107 * For each page in the address space, this file contains one 64-bit entry
1108 * consisting of the following:
1110 * Bits 0-54 page frame number (PFN) if present
1111 * Bits 0-4 swap type if swapped
1112 * Bits 5-54 swap offset if swapped
1113 * Bits 55-60 page shift (page size = 1<<page shift)
1114 * Bit 61 page is file-page or shared-anon
1115 * Bit 62 page swapped
1116 * Bit 63 page present
1118 * If the page is not present but in swap, then the PFN contains an
1119 * encoding of the swap file number and the page's offset into the
1120 * swap. Unmapped pages return a null PFN. This allows determining
1121 * precisely which pages are mapped (or in swap) and comparing mapped
1122 * pages between processes.
1124 * Efficient users of this interface will use /proc/pid/maps to
1125 * determine which areas of memory are actually mapped and llseek to
1126 * skip over unmapped regions.
1128 static ssize_t
pagemap_read(struct file
*file
, char __user
*buf
,
1129 size_t count
, loff_t
*ppos
)
1131 struct task_struct
*task
= get_proc_task(file_inode(file
));
1132 struct mm_struct
*mm
;
1133 struct pagemapread pm
;
1135 struct mm_walk pagemap_walk
= {};
1137 unsigned long svpfn
;
1138 unsigned long start_vaddr
;
1139 unsigned long end_vaddr
;
1146 /* file position must be aligned */
1147 if ((*ppos
% PM_ENTRY_BYTES
) || (count
% PM_ENTRY_BYTES
))
1154 pm
.v2
= soft_dirty_cleared
;
1155 pm
.len
= (PAGEMAP_WALK_SIZE
>> PAGE_SHIFT
);
1156 pm
.buffer
= kmalloc(pm
.len
* PM_ENTRY_BYTES
, GFP_TEMPORARY
);
1161 mm
= mm_access(task
, PTRACE_MODE_READ
);
1163 if (!mm
|| IS_ERR(mm
))
1166 pagemap_walk
.pmd_entry
= pagemap_pte_range
;
1167 pagemap_walk
.pte_hole
= pagemap_pte_hole
;
1168 #ifdef CONFIG_HUGETLB_PAGE
1169 pagemap_walk
.hugetlb_entry
= pagemap_hugetlb_range
;
1171 pagemap_walk
.mm
= mm
;
1172 pagemap_walk
.private = &pm
;
1175 svpfn
= src
/ PM_ENTRY_BYTES
;
1176 start_vaddr
= svpfn
<< PAGE_SHIFT
;
1177 end_vaddr
= TASK_SIZE_OF(task
);
1179 /* watch out for wraparound */
1180 if (svpfn
> TASK_SIZE_OF(task
) >> PAGE_SHIFT
)
1181 start_vaddr
= end_vaddr
;
1184 * The odds are that this will stop walking way
1185 * before end_vaddr, because the length of the
1186 * user buffer is tracked in "pm", and the walk
1187 * will stop when we hit the end of the buffer.
1190 while (count
&& (start_vaddr
< end_vaddr
)) {
1195 end
= (start_vaddr
+ PAGEMAP_WALK_SIZE
) & PAGEMAP_WALK_MASK
;
1197 if (end
< start_vaddr
|| end
> end_vaddr
)
1199 down_read(&mm
->mmap_sem
);
1200 ret
= walk_page_range(start_vaddr
, end
, &pagemap_walk
);
1201 up_read(&mm
->mmap_sem
);
1204 len
= min(count
, PM_ENTRY_BYTES
* pm
.pos
);
1205 if (copy_to_user(buf
, pm
.buffer
, len
)) {
1214 if (!ret
|| ret
== PM_END_OF_BUFFER
)
1222 put_task_struct(task
);
1227 static int pagemap_open(struct inode
*inode
, struct file
*file
)
1229 pr_warn_once("Bits 55-60 of /proc/PID/pagemap entries are about "
1230 "to stop being page-shift some time soon. See the "
1231 "linux/Documentation/vm/pagemap.txt for details.\n");
1235 const struct file_operations proc_pagemap_operations
= {
1236 .llseek
= mem_lseek
, /* borrow this */
1237 .read
= pagemap_read
,
1238 .open
= pagemap_open
,
1240 #endif /* CONFIG_PROC_PAGE_MONITOR */
1245 struct vm_area_struct
*vma
;
1246 unsigned long pages
;
1248 unsigned long active
;
1249 unsigned long writeback
;
1250 unsigned long mapcount_max
;
1251 unsigned long dirty
;
1252 unsigned long swapcache
;
1253 unsigned long node
[MAX_NUMNODES
];
1256 struct numa_maps_private
{
1257 struct proc_maps_private proc_maps
;
1258 struct numa_maps md
;
1261 static void gather_stats(struct page
*page
, struct numa_maps
*md
, int pte_dirty
,
1262 unsigned long nr_pages
)
1264 int count
= page_mapcount(page
);
1266 md
->pages
+= nr_pages
;
1267 if (pte_dirty
|| PageDirty(page
))
1268 md
->dirty
+= nr_pages
;
1270 if (PageSwapCache(page
))
1271 md
->swapcache
+= nr_pages
;
1273 if (PageActive(page
) || PageUnevictable(page
))
1274 md
->active
+= nr_pages
;
1276 if (PageWriteback(page
))
1277 md
->writeback
+= nr_pages
;
1280 md
->anon
+= nr_pages
;
1282 if (count
> md
->mapcount_max
)
1283 md
->mapcount_max
= count
;
1285 md
->node
[page_to_nid(page
)] += nr_pages
;
1288 static struct page
*can_gather_numa_stats(pte_t pte
, struct vm_area_struct
*vma
,
1294 if (!pte_present(pte
))
1297 page
= vm_normal_page(vma
, addr
, pte
);
1301 if (PageReserved(page
))
1304 nid
= page_to_nid(page
);
1305 if (!node_isset(nid
, node_states
[N_MEMORY
]))
1311 static int gather_pte_stats(pmd_t
*pmd
, unsigned long addr
,
1312 unsigned long end
, struct mm_walk
*walk
)
1314 struct numa_maps
*md
;
1321 if (pmd_trans_huge_lock(pmd
, md
->vma
, &ptl
) == 1) {
1322 pte_t huge_pte
= *(pte_t
*)pmd
;
1325 page
= can_gather_numa_stats(huge_pte
, md
->vma
, addr
);
1327 gather_stats(page
, md
, pte_dirty(huge_pte
),
1328 HPAGE_PMD_SIZE
/PAGE_SIZE
);
1333 if (pmd_trans_unstable(pmd
))
1335 orig_pte
= pte
= pte_offset_map_lock(walk
->mm
, pmd
, addr
, &ptl
);
1337 struct page
*page
= can_gather_numa_stats(*pte
, md
->vma
, addr
);
1340 gather_stats(page
, md
, pte_dirty(*pte
), 1);
1342 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1343 pte_unmap_unlock(orig_pte
, ptl
);
1346 #ifdef CONFIG_HUGETLB_PAGE
1347 static int gather_hugetbl_stats(pte_t
*pte
, unsigned long hmask
,
1348 unsigned long addr
, unsigned long end
, struct mm_walk
*walk
)
1350 struct numa_maps
*md
;
1356 page
= pte_page(*pte
);
1361 gather_stats(page
, md
, pte_dirty(*pte
), 1);
1366 static int gather_hugetbl_stats(pte_t
*pte
, unsigned long hmask
,
1367 unsigned long addr
, unsigned long end
, struct mm_walk
*walk
)
1374 * Display pages allocated per node and memory policy via /proc.
1376 static int show_numa_map(struct seq_file
*m
, void *v
, int is_pid
)
1378 struct numa_maps_private
*numa_priv
= m
->private;
1379 struct proc_maps_private
*proc_priv
= &numa_priv
->proc_maps
;
1380 struct vm_area_struct
*vma
= v
;
1381 struct numa_maps
*md
= &numa_priv
->md
;
1382 struct file
*file
= vma
->vm_file
;
1383 struct task_struct
*task
= proc_priv
->task
;
1384 struct mm_struct
*mm
= vma
->vm_mm
;
1385 struct mm_walk walk
= {};
1386 struct mempolicy
*pol
;
1393 /* Ensure we start with an empty set of numa_maps statistics. */
1394 memset(md
, 0, sizeof(*md
));
1398 walk
.hugetlb_entry
= gather_hugetbl_stats
;
1399 walk
.pmd_entry
= gather_pte_stats
;
1403 pol
= get_vma_policy(task
, vma
, vma
->vm_start
);
1404 mpol_to_str(buffer
, sizeof(buffer
), pol
);
1407 seq_printf(m
, "%08lx %s", vma
->vm_start
, buffer
);
1410 seq_printf(m
, " file=");
1411 seq_path(m
, &file
->f_path
, "\n\t= ");
1412 } else if (vma
->vm_start
<= mm
->brk
&& vma
->vm_end
>= mm
->start_brk
) {
1413 seq_printf(m
, " heap");
1415 pid_t tid
= vm_is_stack(task
, vma
, is_pid
);
1418 * Thread stack in /proc/PID/task/TID/maps or
1419 * the main process stack.
1421 if (!is_pid
|| (vma
->vm_start
<= mm
->start_stack
&&
1422 vma
->vm_end
>= mm
->start_stack
))
1423 seq_printf(m
, " stack");
1425 seq_printf(m
, " stack:%d", tid
);
1429 if (is_vm_hugetlb_page(vma
))
1430 seq_printf(m
, " huge");
1432 walk_page_range(vma
->vm_start
, vma
->vm_end
, &walk
);
1438 seq_printf(m
, " anon=%lu", md
->anon
);
1441 seq_printf(m
, " dirty=%lu", md
->dirty
);
1443 if (md
->pages
!= md
->anon
&& md
->pages
!= md
->dirty
)
1444 seq_printf(m
, " mapped=%lu", md
->pages
);
1446 if (md
->mapcount_max
> 1)
1447 seq_printf(m
, " mapmax=%lu", md
->mapcount_max
);
1450 seq_printf(m
, " swapcache=%lu", md
->swapcache
);
1452 if (md
->active
< md
->pages
&& !is_vm_hugetlb_page(vma
))
1453 seq_printf(m
, " active=%lu", md
->active
);
1456 seq_printf(m
, " writeback=%lu", md
->writeback
);
1458 for_each_node_state(nid
, N_MEMORY
)
1460 seq_printf(m
, " N%d=%lu", nid
, md
->node
[nid
]);
1464 if (m
->count
< m
->size
)
1465 m
->version
= (vma
!= proc_priv
->tail_vma
) ? vma
->vm_start
: 0;
1469 static int show_pid_numa_map(struct seq_file
*m
, void *v
)
1471 return show_numa_map(m
, v
, 1);
1474 static int show_tid_numa_map(struct seq_file
*m
, void *v
)
1476 return show_numa_map(m
, v
, 0);
1479 static const struct seq_operations proc_pid_numa_maps_op
= {
1483 .show
= show_pid_numa_map
,
1486 static const struct seq_operations proc_tid_numa_maps_op
= {
1490 .show
= show_tid_numa_map
,
1493 static int numa_maps_open(struct inode
*inode
, struct file
*file
,
1494 const struct seq_operations
*ops
)
1496 struct numa_maps_private
*priv
;
1498 priv
= kzalloc(sizeof(*priv
), GFP_KERNEL
);
1500 priv
->proc_maps
.pid
= proc_pid(inode
);
1501 ret
= seq_open(file
, ops
);
1503 struct seq_file
*m
= file
->private_data
;
1512 static int pid_numa_maps_open(struct inode
*inode
, struct file
*file
)
1514 return numa_maps_open(inode
, file
, &proc_pid_numa_maps_op
);
1517 static int tid_numa_maps_open(struct inode
*inode
, struct file
*file
)
1519 return numa_maps_open(inode
, file
, &proc_tid_numa_maps_op
);
1522 const struct file_operations proc_pid_numa_maps_operations
= {
1523 .open
= pid_numa_maps_open
,
1525 .llseek
= seq_lseek
,
1526 .release
= seq_release_private
,
1529 const struct file_operations proc_tid_numa_maps_operations
= {
1530 .open
= tid_numa_maps_open
,
1532 .llseek
= seq_lseek
,
1533 .release
= seq_release_private
,
1535 #endif /* CONFIG_NUMA */