of: MSI: Simplify irqdomain lookup
[linux/fpc-iii.git] / arch / arm / crypto / aes-ce-glue.c
blobb445a5d56f4342b71540e40c1ce298e0ad786688
1 /*
2 * aes-ce-glue.c - wrapper code for ARMv8 AES
4 * Copyright (C) 2015 Linaro Ltd <ard.biesheuvel@linaro.org>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
11 #include <asm/hwcap.h>
12 #include <asm/neon.h>
13 #include <asm/hwcap.h>
14 #include <crypto/aes.h>
15 #include <crypto/ablk_helper.h>
16 #include <crypto/algapi.h>
17 #include <linux/module.h>
19 MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 Crypto Extensions");
20 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
21 MODULE_LICENSE("GPL v2");
23 /* defined in aes-ce-core.S */
24 asmlinkage u32 ce_aes_sub(u32 input);
25 asmlinkage void ce_aes_invert(void *dst, void *src);
27 asmlinkage void ce_aes_ecb_encrypt(u8 out[], u8 const in[], u8 const rk[],
28 int rounds, int blocks);
29 asmlinkage void ce_aes_ecb_decrypt(u8 out[], u8 const in[], u8 const rk[],
30 int rounds, int blocks);
32 asmlinkage void ce_aes_cbc_encrypt(u8 out[], u8 const in[], u8 const rk[],
33 int rounds, int blocks, u8 iv[]);
34 asmlinkage void ce_aes_cbc_decrypt(u8 out[], u8 const in[], u8 const rk[],
35 int rounds, int blocks, u8 iv[]);
37 asmlinkage void ce_aes_ctr_encrypt(u8 out[], u8 const in[], u8 const rk[],
38 int rounds, int blocks, u8 ctr[]);
40 asmlinkage void ce_aes_xts_encrypt(u8 out[], u8 const in[], u8 const rk1[],
41 int rounds, int blocks, u8 iv[],
42 u8 const rk2[], int first);
43 asmlinkage void ce_aes_xts_decrypt(u8 out[], u8 const in[], u8 const rk1[],
44 int rounds, int blocks, u8 iv[],
45 u8 const rk2[], int first);
47 struct aes_block {
48 u8 b[AES_BLOCK_SIZE];
51 static int num_rounds(struct crypto_aes_ctx *ctx)
54 * # of rounds specified by AES:
55 * 128 bit key 10 rounds
56 * 192 bit key 12 rounds
57 * 256 bit key 14 rounds
58 * => n byte key => 6 + (n/4) rounds
60 return 6 + ctx->key_length / 4;
63 static int ce_aes_expandkey(struct crypto_aes_ctx *ctx, const u8 *in_key,
64 unsigned int key_len)
67 * The AES key schedule round constants
69 static u8 const rcon[] = {
70 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36,
73 u32 kwords = key_len / sizeof(u32);
74 struct aes_block *key_enc, *key_dec;
75 int i, j;
77 if (key_len != AES_KEYSIZE_128 &&
78 key_len != AES_KEYSIZE_192 &&
79 key_len != AES_KEYSIZE_256)
80 return -EINVAL;
82 memcpy(ctx->key_enc, in_key, key_len);
83 ctx->key_length = key_len;
85 kernel_neon_begin();
86 for (i = 0; i < sizeof(rcon); i++) {
87 u32 *rki = ctx->key_enc + (i * kwords);
88 u32 *rko = rki + kwords;
90 rko[0] = ror32(ce_aes_sub(rki[kwords - 1]), 8);
91 rko[0] = rko[0] ^ rki[0] ^ rcon[i];
92 rko[1] = rko[0] ^ rki[1];
93 rko[2] = rko[1] ^ rki[2];
94 rko[3] = rko[2] ^ rki[3];
96 if (key_len == AES_KEYSIZE_192) {
97 if (i >= 7)
98 break;
99 rko[4] = rko[3] ^ rki[4];
100 rko[5] = rko[4] ^ rki[5];
101 } else if (key_len == AES_KEYSIZE_256) {
102 if (i >= 6)
103 break;
104 rko[4] = ce_aes_sub(rko[3]) ^ rki[4];
105 rko[5] = rko[4] ^ rki[5];
106 rko[6] = rko[5] ^ rki[6];
107 rko[7] = rko[6] ^ rki[7];
112 * Generate the decryption keys for the Equivalent Inverse Cipher.
113 * This involves reversing the order of the round keys, and applying
114 * the Inverse Mix Columns transformation on all but the first and
115 * the last one.
117 key_enc = (struct aes_block *)ctx->key_enc;
118 key_dec = (struct aes_block *)ctx->key_dec;
119 j = num_rounds(ctx);
121 key_dec[0] = key_enc[j];
122 for (i = 1, j--; j > 0; i++, j--)
123 ce_aes_invert(key_dec + i, key_enc + j);
124 key_dec[i] = key_enc[0];
126 kernel_neon_end();
127 return 0;
130 static int ce_aes_setkey(struct crypto_tfm *tfm, const u8 *in_key,
131 unsigned int key_len)
133 struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
134 int ret;
136 ret = ce_aes_expandkey(ctx, in_key, key_len);
137 if (!ret)
138 return 0;
140 tfm->crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
141 return -EINVAL;
144 struct crypto_aes_xts_ctx {
145 struct crypto_aes_ctx key1;
146 struct crypto_aes_ctx __aligned(8) key2;
149 static int xts_set_key(struct crypto_tfm *tfm, const u8 *in_key,
150 unsigned int key_len)
152 struct crypto_aes_xts_ctx *ctx = crypto_tfm_ctx(tfm);
153 int ret;
155 ret = ce_aes_expandkey(&ctx->key1, in_key, key_len / 2);
156 if (!ret)
157 ret = ce_aes_expandkey(&ctx->key2, &in_key[key_len / 2],
158 key_len / 2);
159 if (!ret)
160 return 0;
162 tfm->crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
163 return -EINVAL;
166 static int ecb_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
167 struct scatterlist *src, unsigned int nbytes)
169 struct crypto_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
170 struct blkcipher_walk walk;
171 unsigned int blocks;
172 int err;
174 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
175 blkcipher_walk_init(&walk, dst, src, nbytes);
176 err = blkcipher_walk_virt(desc, &walk);
178 kernel_neon_begin();
179 while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
180 ce_aes_ecb_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
181 (u8 *)ctx->key_enc, num_rounds(ctx), blocks);
182 err = blkcipher_walk_done(desc, &walk,
183 walk.nbytes % AES_BLOCK_SIZE);
185 kernel_neon_end();
186 return err;
189 static int ecb_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
190 struct scatterlist *src, unsigned int nbytes)
192 struct crypto_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
193 struct blkcipher_walk walk;
194 unsigned int blocks;
195 int err;
197 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
198 blkcipher_walk_init(&walk, dst, src, nbytes);
199 err = blkcipher_walk_virt(desc, &walk);
201 kernel_neon_begin();
202 while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
203 ce_aes_ecb_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
204 (u8 *)ctx->key_dec, num_rounds(ctx), blocks);
205 err = blkcipher_walk_done(desc, &walk,
206 walk.nbytes % AES_BLOCK_SIZE);
208 kernel_neon_end();
209 return err;
212 static int cbc_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
213 struct scatterlist *src, unsigned int nbytes)
215 struct crypto_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
216 struct blkcipher_walk walk;
217 unsigned int blocks;
218 int err;
220 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
221 blkcipher_walk_init(&walk, dst, src, nbytes);
222 err = blkcipher_walk_virt(desc, &walk);
224 kernel_neon_begin();
225 while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
226 ce_aes_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
227 (u8 *)ctx->key_enc, num_rounds(ctx), blocks,
228 walk.iv);
229 err = blkcipher_walk_done(desc, &walk,
230 walk.nbytes % AES_BLOCK_SIZE);
232 kernel_neon_end();
233 return err;
236 static int cbc_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
237 struct scatterlist *src, unsigned int nbytes)
239 struct crypto_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
240 struct blkcipher_walk walk;
241 unsigned int blocks;
242 int err;
244 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
245 blkcipher_walk_init(&walk, dst, src, nbytes);
246 err = blkcipher_walk_virt(desc, &walk);
248 kernel_neon_begin();
249 while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
250 ce_aes_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
251 (u8 *)ctx->key_dec, num_rounds(ctx), blocks,
252 walk.iv);
253 err = blkcipher_walk_done(desc, &walk,
254 walk.nbytes % AES_BLOCK_SIZE);
256 kernel_neon_end();
257 return err;
260 static int ctr_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
261 struct scatterlist *src, unsigned int nbytes)
263 struct crypto_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
264 struct blkcipher_walk walk;
265 int err, blocks;
267 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
268 blkcipher_walk_init(&walk, dst, src, nbytes);
269 err = blkcipher_walk_virt_block(desc, &walk, AES_BLOCK_SIZE);
271 kernel_neon_begin();
272 while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
273 ce_aes_ctr_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
274 (u8 *)ctx->key_enc, num_rounds(ctx), blocks,
275 walk.iv);
276 nbytes -= blocks * AES_BLOCK_SIZE;
277 if (nbytes && nbytes == walk.nbytes % AES_BLOCK_SIZE)
278 break;
279 err = blkcipher_walk_done(desc, &walk,
280 walk.nbytes % AES_BLOCK_SIZE);
282 if (nbytes) {
283 u8 *tdst = walk.dst.virt.addr + blocks * AES_BLOCK_SIZE;
284 u8 *tsrc = walk.src.virt.addr + blocks * AES_BLOCK_SIZE;
285 u8 __aligned(8) tail[AES_BLOCK_SIZE];
288 * Minimum alignment is 8 bytes, so if nbytes is <= 8, we need
289 * to tell aes_ctr_encrypt() to only read half a block.
291 blocks = (nbytes <= 8) ? -1 : 1;
293 ce_aes_ctr_encrypt(tail, tsrc, (u8 *)ctx->key_enc,
294 num_rounds(ctx), blocks, walk.iv);
295 memcpy(tdst, tail, nbytes);
296 err = blkcipher_walk_done(desc, &walk, 0);
298 kernel_neon_end();
300 return err;
303 static int xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
304 struct scatterlist *src, unsigned int nbytes)
306 struct crypto_aes_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
307 int err, first, rounds = num_rounds(&ctx->key1);
308 struct blkcipher_walk walk;
309 unsigned int blocks;
311 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
312 blkcipher_walk_init(&walk, dst, src, nbytes);
313 err = blkcipher_walk_virt(desc, &walk);
315 kernel_neon_begin();
316 for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) {
317 ce_aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
318 (u8 *)ctx->key1.key_enc, rounds, blocks,
319 walk.iv, (u8 *)ctx->key2.key_enc, first);
320 err = blkcipher_walk_done(desc, &walk,
321 walk.nbytes % AES_BLOCK_SIZE);
323 kernel_neon_end();
325 return err;
328 static int xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
329 struct scatterlist *src, unsigned int nbytes)
331 struct crypto_aes_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
332 int err, first, rounds = num_rounds(&ctx->key1);
333 struct blkcipher_walk walk;
334 unsigned int blocks;
336 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
337 blkcipher_walk_init(&walk, dst, src, nbytes);
338 err = blkcipher_walk_virt(desc, &walk);
340 kernel_neon_begin();
341 for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) {
342 ce_aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
343 (u8 *)ctx->key1.key_dec, rounds, blocks,
344 walk.iv, (u8 *)ctx->key2.key_enc, first);
345 err = blkcipher_walk_done(desc, &walk,
346 walk.nbytes % AES_BLOCK_SIZE);
348 kernel_neon_end();
350 return err;
353 static struct crypto_alg aes_algs[] = { {
354 .cra_name = "__ecb-aes-ce",
355 .cra_driver_name = "__driver-ecb-aes-ce",
356 .cra_priority = 0,
357 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
358 CRYPTO_ALG_INTERNAL,
359 .cra_blocksize = AES_BLOCK_SIZE,
360 .cra_ctxsize = sizeof(struct crypto_aes_ctx),
361 .cra_alignmask = 7,
362 .cra_type = &crypto_blkcipher_type,
363 .cra_module = THIS_MODULE,
364 .cra_blkcipher = {
365 .min_keysize = AES_MIN_KEY_SIZE,
366 .max_keysize = AES_MAX_KEY_SIZE,
367 .ivsize = AES_BLOCK_SIZE,
368 .setkey = ce_aes_setkey,
369 .encrypt = ecb_encrypt,
370 .decrypt = ecb_decrypt,
372 }, {
373 .cra_name = "__cbc-aes-ce",
374 .cra_driver_name = "__driver-cbc-aes-ce",
375 .cra_priority = 0,
376 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
377 CRYPTO_ALG_INTERNAL,
378 .cra_blocksize = AES_BLOCK_SIZE,
379 .cra_ctxsize = sizeof(struct crypto_aes_ctx),
380 .cra_alignmask = 7,
381 .cra_type = &crypto_blkcipher_type,
382 .cra_module = THIS_MODULE,
383 .cra_blkcipher = {
384 .min_keysize = AES_MIN_KEY_SIZE,
385 .max_keysize = AES_MAX_KEY_SIZE,
386 .ivsize = AES_BLOCK_SIZE,
387 .setkey = ce_aes_setkey,
388 .encrypt = cbc_encrypt,
389 .decrypt = cbc_decrypt,
391 }, {
392 .cra_name = "__ctr-aes-ce",
393 .cra_driver_name = "__driver-ctr-aes-ce",
394 .cra_priority = 0,
395 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
396 CRYPTO_ALG_INTERNAL,
397 .cra_blocksize = 1,
398 .cra_ctxsize = sizeof(struct crypto_aes_ctx),
399 .cra_alignmask = 7,
400 .cra_type = &crypto_blkcipher_type,
401 .cra_module = THIS_MODULE,
402 .cra_blkcipher = {
403 .min_keysize = AES_MIN_KEY_SIZE,
404 .max_keysize = AES_MAX_KEY_SIZE,
405 .ivsize = AES_BLOCK_SIZE,
406 .setkey = ce_aes_setkey,
407 .encrypt = ctr_encrypt,
408 .decrypt = ctr_encrypt,
410 }, {
411 .cra_name = "__xts-aes-ce",
412 .cra_driver_name = "__driver-xts-aes-ce",
413 .cra_priority = 0,
414 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
415 CRYPTO_ALG_INTERNAL,
416 .cra_blocksize = AES_BLOCK_SIZE,
417 .cra_ctxsize = sizeof(struct crypto_aes_xts_ctx),
418 .cra_alignmask = 7,
419 .cra_type = &crypto_blkcipher_type,
420 .cra_module = THIS_MODULE,
421 .cra_blkcipher = {
422 .min_keysize = 2 * AES_MIN_KEY_SIZE,
423 .max_keysize = 2 * AES_MAX_KEY_SIZE,
424 .ivsize = AES_BLOCK_SIZE,
425 .setkey = xts_set_key,
426 .encrypt = xts_encrypt,
427 .decrypt = xts_decrypt,
429 }, {
430 .cra_name = "ecb(aes)",
431 .cra_driver_name = "ecb-aes-ce",
432 .cra_priority = 300,
433 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
434 .cra_blocksize = AES_BLOCK_SIZE,
435 .cra_ctxsize = sizeof(struct async_helper_ctx),
436 .cra_alignmask = 7,
437 .cra_type = &crypto_ablkcipher_type,
438 .cra_module = THIS_MODULE,
439 .cra_init = ablk_init,
440 .cra_exit = ablk_exit,
441 .cra_ablkcipher = {
442 .min_keysize = AES_MIN_KEY_SIZE,
443 .max_keysize = AES_MAX_KEY_SIZE,
444 .ivsize = AES_BLOCK_SIZE,
445 .setkey = ablk_set_key,
446 .encrypt = ablk_encrypt,
447 .decrypt = ablk_decrypt,
449 }, {
450 .cra_name = "cbc(aes)",
451 .cra_driver_name = "cbc-aes-ce",
452 .cra_priority = 300,
453 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
454 .cra_blocksize = AES_BLOCK_SIZE,
455 .cra_ctxsize = sizeof(struct async_helper_ctx),
456 .cra_alignmask = 7,
457 .cra_type = &crypto_ablkcipher_type,
458 .cra_module = THIS_MODULE,
459 .cra_init = ablk_init,
460 .cra_exit = ablk_exit,
461 .cra_ablkcipher = {
462 .min_keysize = AES_MIN_KEY_SIZE,
463 .max_keysize = AES_MAX_KEY_SIZE,
464 .ivsize = AES_BLOCK_SIZE,
465 .setkey = ablk_set_key,
466 .encrypt = ablk_encrypt,
467 .decrypt = ablk_decrypt,
469 }, {
470 .cra_name = "ctr(aes)",
471 .cra_driver_name = "ctr-aes-ce",
472 .cra_priority = 300,
473 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
474 .cra_blocksize = 1,
475 .cra_ctxsize = sizeof(struct async_helper_ctx),
476 .cra_alignmask = 7,
477 .cra_type = &crypto_ablkcipher_type,
478 .cra_module = THIS_MODULE,
479 .cra_init = ablk_init,
480 .cra_exit = ablk_exit,
481 .cra_ablkcipher = {
482 .min_keysize = AES_MIN_KEY_SIZE,
483 .max_keysize = AES_MAX_KEY_SIZE,
484 .ivsize = AES_BLOCK_SIZE,
485 .setkey = ablk_set_key,
486 .encrypt = ablk_encrypt,
487 .decrypt = ablk_decrypt,
489 }, {
490 .cra_name = "xts(aes)",
491 .cra_driver_name = "xts-aes-ce",
492 .cra_priority = 300,
493 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
494 .cra_blocksize = AES_BLOCK_SIZE,
495 .cra_ctxsize = sizeof(struct async_helper_ctx),
496 .cra_alignmask = 7,
497 .cra_type = &crypto_ablkcipher_type,
498 .cra_module = THIS_MODULE,
499 .cra_init = ablk_init,
500 .cra_exit = ablk_exit,
501 .cra_ablkcipher = {
502 .min_keysize = 2 * AES_MIN_KEY_SIZE,
503 .max_keysize = 2 * AES_MAX_KEY_SIZE,
504 .ivsize = AES_BLOCK_SIZE,
505 .setkey = ablk_set_key,
506 .encrypt = ablk_encrypt,
507 .decrypt = ablk_decrypt,
509 } };
511 static int __init aes_init(void)
513 if (!(elf_hwcap2 & HWCAP2_AES))
514 return -ENODEV;
515 return crypto_register_algs(aes_algs, ARRAY_SIZE(aes_algs));
518 static void __exit aes_exit(void)
520 crypto_unregister_algs(aes_algs, ARRAY_SIZE(aes_algs));
523 module_init(aes_init);
524 module_exit(aes_exit);