of: MSI: Simplify irqdomain lookup
[linux/fpc-iii.git] / arch / arm / include / asm / io.h
blob485982084fe96aef7218aeb134527b41f90beb1e
1 /*
2 * arch/arm/include/asm/io.h
4 * Copyright (C) 1996-2000 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * Modifications:
11 * 16-Sep-1996 RMK Inlined the inx/outx functions & optimised for both
12 * constant addresses and variable addresses.
13 * 04-Dec-1997 RMK Moved a lot of this stuff to the new architecture
14 * specific IO header files.
15 * 27-Mar-1999 PJB Second parameter of memcpy_toio is const..
16 * 04-Apr-1999 PJB Added check_signature.
17 * 12-Dec-1999 RMK More cleanups
18 * 18-Jun-2000 RMK Removed virt_to_* and friends definitions
19 * 05-Oct-2004 BJD Moved memory string functions to use void __iomem
21 #ifndef __ASM_ARM_IO_H
22 #define __ASM_ARM_IO_H
24 #ifdef __KERNEL__
26 #include <linux/string.h>
27 #include <linux/types.h>
28 #include <linux/blk_types.h>
29 #include <asm/byteorder.h>
30 #include <asm/memory.h>
31 #include <asm-generic/pci_iomap.h>
32 #include <xen/xen.h>
35 * ISA I/O bus memory addresses are 1:1 with the physical address.
37 #define isa_virt_to_bus virt_to_phys
38 #define isa_page_to_bus page_to_phys
39 #define isa_bus_to_virt phys_to_virt
42 * Atomic MMIO-wide IO modify
44 extern void atomic_io_modify(void __iomem *reg, u32 mask, u32 set);
45 extern void atomic_io_modify_relaxed(void __iomem *reg, u32 mask, u32 set);
48 * Generic IO read/write. These perform native-endian accesses. Note
49 * that some architectures will want to re-define __raw_{read,write}w.
51 void __raw_writesb(volatile void __iomem *addr, const void *data, int bytelen);
52 void __raw_writesw(volatile void __iomem *addr, const void *data, int wordlen);
53 void __raw_writesl(volatile void __iomem *addr, const void *data, int longlen);
55 void __raw_readsb(const volatile void __iomem *addr, void *data, int bytelen);
56 void __raw_readsw(const volatile void __iomem *addr, void *data, int wordlen);
57 void __raw_readsl(const volatile void __iomem *addr, void *data, int longlen);
59 #if __LINUX_ARM_ARCH__ < 6
61 * Half-word accesses are problematic with RiscPC due to limitations of
62 * the bus. Rather than special-case the machine, just let the compiler
63 * generate the access for CPUs prior to ARMv6.
65 #define __raw_readw(a) (__chk_io_ptr(a), *(volatile unsigned short __force *)(a))
66 #define __raw_writew(v,a) ((void)(__chk_io_ptr(a), *(volatile unsigned short __force *)(a) = (v)))
67 #else
69 * When running under a hypervisor, we want to avoid I/O accesses with
70 * writeback addressing modes as these incur a significant performance
71 * overhead (the address generation must be emulated in software).
73 #define __raw_writew __raw_writew
74 static inline void __raw_writew(u16 val, volatile void __iomem *addr)
76 asm volatile("strh %1, %0"
77 : : "Q" (*(volatile u16 __force *)addr), "r" (val));
80 #define __raw_readw __raw_readw
81 static inline u16 __raw_readw(const volatile void __iomem *addr)
83 u16 val;
84 asm volatile("ldrh %0, %1"
85 : "=r" (val)
86 : "Q" (*(volatile u16 __force *)addr));
87 return val;
89 #endif
91 #define __raw_writeb __raw_writeb
92 static inline void __raw_writeb(u8 val, volatile void __iomem *addr)
94 asm volatile("strb %1, %0"
95 : : "Qo" (*(volatile u8 __force *)addr), "r" (val));
98 #define __raw_writel __raw_writel
99 static inline void __raw_writel(u32 val, volatile void __iomem *addr)
101 asm volatile("str %1, %0"
102 : : "Qo" (*(volatile u32 __force *)addr), "r" (val));
105 #define __raw_readb __raw_readb
106 static inline u8 __raw_readb(const volatile void __iomem *addr)
108 u8 val;
109 asm volatile("ldrb %0, %1"
110 : "=r" (val)
111 : "Qo" (*(volatile u8 __force *)addr));
112 return val;
115 #define __raw_readl __raw_readl
116 static inline u32 __raw_readl(const volatile void __iomem *addr)
118 u32 val;
119 asm volatile("ldr %0, %1"
120 : "=r" (val)
121 : "Qo" (*(volatile u32 __force *)addr));
122 return val;
126 * Architecture ioremap implementation.
128 #define MT_DEVICE 0
129 #define MT_DEVICE_NONSHARED 1
130 #define MT_DEVICE_CACHED 2
131 #define MT_DEVICE_WC 3
133 * types 4 onwards can be found in asm/mach/map.h and are undefined
134 * for ioremap
138 * __arm_ioremap takes CPU physical address.
139 * __arm_ioremap_pfn takes a Page Frame Number and an offset into that page
140 * The _caller variety takes a __builtin_return_address(0) value for
141 * /proc/vmalloc to use - and should only be used in non-inline functions.
143 extern void __iomem *__arm_ioremap_caller(phys_addr_t, size_t, unsigned int,
144 void *);
145 extern void __iomem *__arm_ioremap_pfn(unsigned long, unsigned long, size_t, unsigned int);
146 extern void __iomem *__arm_ioremap_exec(phys_addr_t, size_t, bool cached);
147 extern void __iounmap(volatile void __iomem *addr);
149 extern void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t,
150 unsigned int, void *);
151 extern void (*arch_iounmap)(volatile void __iomem *);
154 * Bad read/write accesses...
156 extern void __readwrite_bug(const char *fn);
159 * A typesafe __io() helper
161 static inline void __iomem *__typesafe_io(unsigned long addr)
163 return (void __iomem *)addr;
166 #define IOMEM(x) ((void __force __iomem *)(x))
168 /* IO barriers */
169 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
170 #include <asm/barrier.h>
171 #define __iormb() rmb()
172 #define __iowmb() wmb()
173 #else
174 #define __iormb() do { } while (0)
175 #define __iowmb() do { } while (0)
176 #endif
178 /* PCI fixed i/o mapping */
179 #define PCI_IO_VIRT_BASE 0xfee00000
180 #define PCI_IOBASE ((void __iomem *)PCI_IO_VIRT_BASE)
182 #if defined(CONFIG_PCI)
183 void pci_ioremap_set_mem_type(int mem_type);
184 #else
185 static inline void pci_ioremap_set_mem_type(int mem_type) {}
186 #endif
188 extern int pci_ioremap_io(unsigned int offset, phys_addr_t phys_addr);
191 * Now, pick up the machine-defined IO definitions
193 #ifdef CONFIG_NEED_MACH_IO_H
194 #include <mach/io.h>
195 #elif defined(CONFIG_PCI)
196 #define IO_SPACE_LIMIT ((resource_size_t)0xfffff)
197 #define __io(a) __typesafe_io(PCI_IO_VIRT_BASE + ((a) & IO_SPACE_LIMIT))
198 #else
199 #define __io(a) __typesafe_io((a) & IO_SPACE_LIMIT)
200 #endif
203 * This is the limit of PC card/PCI/ISA IO space, which is by default
204 * 64K if we have PC card, PCI or ISA support. Otherwise, default to
205 * zero to prevent ISA/PCI drivers claiming IO space (and potentially
206 * oopsing.)
208 * Only set this larger if you really need inb() et.al. to operate over
209 * a larger address space. Note that SOC_COMMON ioremaps each sockets
210 * IO space area, and so inb() et.al. must be defined to operate as per
211 * readb() et.al. on such platforms.
213 #ifndef IO_SPACE_LIMIT
214 #if defined(CONFIG_PCMCIA_SOC_COMMON) || defined(CONFIG_PCMCIA_SOC_COMMON_MODULE)
215 #define IO_SPACE_LIMIT ((resource_size_t)0xffffffff)
216 #elif defined(CONFIG_PCI) || defined(CONFIG_ISA) || defined(CONFIG_PCCARD)
217 #define IO_SPACE_LIMIT ((resource_size_t)0xffff)
218 #else
219 #define IO_SPACE_LIMIT ((resource_size_t)0)
220 #endif
221 #endif
224 * IO port access primitives
225 * -------------------------
227 * The ARM doesn't have special IO access instructions; all IO is memory
228 * mapped. Note that these are defined to perform little endian accesses
229 * only. Their primary purpose is to access PCI and ISA peripherals.
231 * Note that for a big endian machine, this implies that the following
232 * big endian mode connectivity is in place, as described by numerous
233 * ARM documents:
235 * PCI: D0-D7 D8-D15 D16-D23 D24-D31
236 * ARM: D24-D31 D16-D23 D8-D15 D0-D7
238 * The machine specific io.h include defines __io to translate an "IO"
239 * address to a memory address.
241 * Note that we prevent GCC re-ordering or caching values in expressions
242 * by introducing sequence points into the in*() definitions. Note that
243 * __raw_* do not guarantee this behaviour.
245 * The {in,out}[bwl] macros are for emulating x86-style PCI/ISA IO space.
247 #ifdef __io
248 #define outb(v,p) ({ __iowmb(); __raw_writeb(v,__io(p)); })
249 #define outw(v,p) ({ __iowmb(); __raw_writew((__force __u16) \
250 cpu_to_le16(v),__io(p)); })
251 #define outl(v,p) ({ __iowmb(); __raw_writel((__force __u32) \
252 cpu_to_le32(v),__io(p)); })
254 #define inb(p) ({ __u8 __v = __raw_readb(__io(p)); __iormb(); __v; })
255 #define inw(p) ({ __u16 __v = le16_to_cpu((__force __le16) \
256 __raw_readw(__io(p))); __iormb(); __v; })
257 #define inl(p) ({ __u32 __v = le32_to_cpu((__force __le32) \
258 __raw_readl(__io(p))); __iormb(); __v; })
260 #define outsb(p,d,l) __raw_writesb(__io(p),d,l)
261 #define outsw(p,d,l) __raw_writesw(__io(p),d,l)
262 #define outsl(p,d,l) __raw_writesl(__io(p),d,l)
264 #define insb(p,d,l) __raw_readsb(__io(p),d,l)
265 #define insw(p,d,l) __raw_readsw(__io(p),d,l)
266 #define insl(p,d,l) __raw_readsl(__io(p),d,l)
267 #endif
270 * String version of IO memory access ops:
272 extern void _memcpy_fromio(void *, const volatile void __iomem *, size_t);
273 extern void _memcpy_toio(volatile void __iomem *, const void *, size_t);
274 extern void _memset_io(volatile void __iomem *, int, size_t);
276 #define mmiowb()
279 * Memory access primitives
280 * ------------------------
282 * These perform PCI memory accesses via an ioremap region. They don't
283 * take an address as such, but a cookie.
285 * Again, this are defined to perform little endian accesses. See the
286 * IO port primitives for more information.
288 #ifndef readl
289 #define readb_relaxed(c) ({ u8 __r = __raw_readb(c); __r; })
290 #define readw_relaxed(c) ({ u16 __r = le16_to_cpu((__force __le16) \
291 __raw_readw(c)); __r; })
292 #define readl_relaxed(c) ({ u32 __r = le32_to_cpu((__force __le32) \
293 __raw_readl(c)); __r; })
295 #define writeb_relaxed(v,c) __raw_writeb(v,c)
296 #define writew_relaxed(v,c) __raw_writew((__force u16) cpu_to_le16(v),c)
297 #define writel_relaxed(v,c) __raw_writel((__force u32) cpu_to_le32(v),c)
299 #define readb(c) ({ u8 __v = readb_relaxed(c); __iormb(); __v; })
300 #define readw(c) ({ u16 __v = readw_relaxed(c); __iormb(); __v; })
301 #define readl(c) ({ u32 __v = readl_relaxed(c); __iormb(); __v; })
303 #define writeb(v,c) ({ __iowmb(); writeb_relaxed(v,c); })
304 #define writew(v,c) ({ __iowmb(); writew_relaxed(v,c); })
305 #define writel(v,c) ({ __iowmb(); writel_relaxed(v,c); })
307 #define readsb(p,d,l) __raw_readsb(p,d,l)
308 #define readsw(p,d,l) __raw_readsw(p,d,l)
309 #define readsl(p,d,l) __raw_readsl(p,d,l)
311 #define writesb(p,d,l) __raw_writesb(p,d,l)
312 #define writesw(p,d,l) __raw_writesw(p,d,l)
313 #define writesl(p,d,l) __raw_writesl(p,d,l)
315 #ifndef __ARMBE__
316 static inline void memset_io(volatile void __iomem *dst, unsigned c,
317 size_t count)
319 extern void mmioset(void *, unsigned int, size_t);
320 mmioset((void __force *)dst, c, count);
322 #define memset_io(dst,c,count) memset_io(dst,c,count)
324 static inline void memcpy_fromio(void *to, const volatile void __iomem *from,
325 size_t count)
327 extern void mmiocpy(void *, const void *, size_t);
328 mmiocpy(to, (const void __force *)from, count);
330 #define memcpy_fromio(to,from,count) memcpy_fromio(to,from,count)
332 static inline void memcpy_toio(volatile void __iomem *to, const void *from,
333 size_t count)
335 extern void mmiocpy(void *, const void *, size_t);
336 mmiocpy((void __force *)to, from, count);
338 #define memcpy_toio(to,from,count) memcpy_toio(to,from,count)
340 #else
341 #define memset_io(c,v,l) _memset_io(c,(v),(l))
342 #define memcpy_fromio(a,c,l) _memcpy_fromio((a),c,(l))
343 #define memcpy_toio(c,a,l) _memcpy_toio(c,(a),(l))
344 #endif
346 #endif /* readl */
349 * ioremap() and friends.
351 * ioremap() takes a resource address, and size. Due to the ARM memory
352 * types, it is important to use the correct ioremap() function as each
353 * mapping has specific properties.
355 * Function Memory type Cacheability Cache hint
356 * ioremap() Device n/a n/a
357 * ioremap_nocache() Device n/a n/a
358 * ioremap_cache() Normal Writeback Read allocate
359 * ioremap_wc() Normal Non-cacheable n/a
360 * ioremap_wt() Normal Non-cacheable n/a
362 * All device mappings have the following properties:
363 * - no access speculation
364 * - no repetition (eg, on return from an exception)
365 * - number, order and size of accesses are maintained
366 * - unaligned accesses are "unpredictable"
367 * - writes may be delayed before they hit the endpoint device
369 * ioremap_nocache() is the same as ioremap() as there are too many device
370 * drivers using this for device registers, and documentation which tells
371 * people to use it for such for this to be any different. This is not a
372 * safe fallback for memory-like mappings, or memory regions where the
373 * compiler may generate unaligned accesses - eg, via inlining its own
374 * memcpy.
376 * All normal memory mappings have the following properties:
377 * - reads can be repeated with no side effects
378 * - repeated reads return the last value written
379 * - reads can fetch additional locations without side effects
380 * - writes can be repeated (in certain cases) with no side effects
381 * - writes can be merged before accessing the target
382 * - unaligned accesses can be supported
383 * - ordering is not guaranteed without explicit dependencies or barrier
384 * instructions
385 * - writes may be delayed before they hit the endpoint memory
387 * The cache hint is only a performance hint: CPUs may alias these hints.
388 * Eg, a CPU not implementing read allocate but implementing write allocate
389 * will provide a write allocate mapping instead.
391 void __iomem *ioremap(resource_size_t res_cookie, size_t size);
392 #define ioremap ioremap
393 #define ioremap_nocache ioremap
395 void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size);
396 #define ioremap_cache ioremap_cache
398 void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size);
399 #define ioremap_wc ioremap_wc
400 #define ioremap_wt ioremap_wc
402 void iounmap(volatile void __iomem *iomem_cookie);
403 #define iounmap iounmap
406 * io{read,write}{16,32}be() macros
408 #define ioread16be(p) ({ __u16 __v = be16_to_cpu((__force __be16)__raw_readw(p)); __iormb(); __v; })
409 #define ioread32be(p) ({ __u32 __v = be32_to_cpu((__force __be32)__raw_readl(p)); __iormb(); __v; })
411 #define iowrite16be(v,p) ({ __iowmb(); __raw_writew((__force __u16)cpu_to_be16(v), p); })
412 #define iowrite32be(v,p) ({ __iowmb(); __raw_writel((__force __u32)cpu_to_be32(v), p); })
414 #ifndef ioport_map
415 #define ioport_map ioport_map
416 extern void __iomem *ioport_map(unsigned long port, unsigned int nr);
417 #endif
418 #ifndef ioport_unmap
419 #define ioport_unmap ioport_unmap
420 extern void ioport_unmap(void __iomem *addr);
421 #endif
423 struct pci_dev;
425 #define pci_iounmap pci_iounmap
426 extern void pci_iounmap(struct pci_dev *dev, void __iomem *addr);
429 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
430 * access
432 #define xlate_dev_mem_ptr(p) __va(p)
435 * Convert a virtual cached pointer to an uncached pointer
437 #define xlate_dev_kmem_ptr(p) p
439 #include <asm-generic/io.h>
442 * can the hardware map this into one segment or not, given no other
443 * constraints.
445 #define BIOVEC_MERGEABLE(vec1, vec2) \
446 ((bvec_to_phys((vec1)) + (vec1)->bv_len) == bvec_to_phys((vec2)))
448 struct bio_vec;
449 extern bool xen_biovec_phys_mergeable(const struct bio_vec *vec1,
450 const struct bio_vec *vec2);
451 #define BIOVEC_PHYS_MERGEABLE(vec1, vec2) \
452 (__BIOVEC_PHYS_MERGEABLE(vec1, vec2) && \
453 (!xen_domain() || xen_biovec_phys_mergeable(vec1, vec2)))
455 #ifdef CONFIG_MMU
456 #define ARCH_HAS_VALID_PHYS_ADDR_RANGE
457 extern int valid_phys_addr_range(phys_addr_t addr, size_t size);
458 extern int valid_mmap_phys_addr_range(unsigned long pfn, size_t size);
459 extern int devmem_is_allowed(unsigned long pfn);
460 #endif
463 * Register ISA memory and port locations for glibc iopl/inb/outb
464 * emulation.
466 extern void register_isa_ports(unsigned int mmio, unsigned int io,
467 unsigned int io_shift);
469 #endif /* __KERNEL__ */
470 #endif /* __ASM_ARM_IO_H */