2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19 #ifndef __ARM_KVM_MMU_H__
20 #define __ARM_KVM_MMU_H__
22 #include <asm/memory.h>
26 * We directly use the kernel VA for the HYP, as we can directly share
27 * the mapping (HTTBR "covers" TTBR1).
29 #define HYP_PAGE_OFFSET_MASK UL(~0)
30 #define HYP_PAGE_OFFSET PAGE_OFFSET
31 #define KERN_TO_HYP(kva) (kva)
34 * Our virtual mapping for the boot-time MMU-enable code. Must be
35 * shared across all the page-tables. Conveniently, we use the vectors
36 * page, where no kernel data will ever be shared with HYP.
38 #define TRAMPOLINE_VA UL(CONFIG_VECTORS_BASE)
41 * KVM_MMU_CACHE_MIN_PAGES is the number of stage2 page table translation levels.
43 #define KVM_MMU_CACHE_MIN_PAGES 2
47 #include <linux/highmem.h>
48 #include <asm/cacheflush.h>
49 #include <asm/pgalloc.h>
51 int create_hyp_mappings(void *from
, void *to
);
52 int create_hyp_io_mappings(void *from
, void *to
, phys_addr_t
);
53 void free_boot_hyp_pgd(void);
54 void free_hyp_pgds(void);
56 void stage2_unmap_vm(struct kvm
*kvm
);
57 int kvm_alloc_stage2_pgd(struct kvm
*kvm
);
58 void kvm_free_stage2_pgd(struct kvm
*kvm
);
59 int kvm_phys_addr_ioremap(struct kvm
*kvm
, phys_addr_t guest_ipa
,
60 phys_addr_t pa
, unsigned long size
, bool writable
);
62 int kvm_handle_guest_abort(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
);
64 void kvm_mmu_free_memory_caches(struct kvm_vcpu
*vcpu
);
66 phys_addr_t
kvm_mmu_get_httbr(void);
67 phys_addr_t
kvm_mmu_get_boot_httbr(void);
68 phys_addr_t
kvm_get_idmap_vector(void);
69 int kvm_mmu_init(void);
70 void kvm_clear_hyp_idmap(void);
72 static inline void kvm_set_pmd(pmd_t
*pmd
, pmd_t new_pmd
)
78 static inline void kvm_set_pte(pte_t
*pte
, pte_t new_pte
)
82 * flush_pmd_entry just takes a void pointer and cleans the necessary
83 * cache entries, so we can reuse the function for ptes.
88 static inline void kvm_clean_pgd(pgd_t
*pgd
)
90 clean_dcache_area(pgd
, PTRS_PER_S2_PGD
* sizeof(pgd_t
));
93 static inline void kvm_clean_pmd(pmd_t
*pmd
)
95 clean_dcache_area(pmd
, PTRS_PER_PMD
* sizeof(pmd_t
));
98 static inline void kvm_clean_pmd_entry(pmd_t
*pmd
)
100 clean_pmd_entry(pmd
);
103 static inline void kvm_clean_pte(pte_t
*pte
)
105 clean_pte_table(pte
);
108 static inline void kvm_set_s2pte_writable(pte_t
*pte
)
110 pte_val(*pte
) |= L_PTE_S2_RDWR
;
113 static inline void kvm_set_s2pmd_writable(pmd_t
*pmd
)
115 pmd_val(*pmd
) |= L_PMD_S2_RDWR
;
118 static inline void kvm_set_s2pte_readonly(pte_t
*pte
)
120 pte_val(*pte
) = (pte_val(*pte
) & ~L_PTE_S2_RDWR
) | L_PTE_S2_RDONLY
;
123 static inline bool kvm_s2pte_readonly(pte_t
*pte
)
125 return (pte_val(*pte
) & L_PTE_S2_RDWR
) == L_PTE_S2_RDONLY
;
128 static inline void kvm_set_s2pmd_readonly(pmd_t
*pmd
)
130 pmd_val(*pmd
) = (pmd_val(*pmd
) & ~L_PMD_S2_RDWR
) | L_PMD_S2_RDONLY
;
133 static inline bool kvm_s2pmd_readonly(pmd_t
*pmd
)
135 return (pmd_val(*pmd
) & L_PMD_S2_RDWR
) == L_PMD_S2_RDONLY
;
139 /* Open coded p*d_addr_end that can deal with 64bit addresses */
140 #define kvm_pgd_addr_end(addr, end) \
141 ({ u64 __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
142 (__boundary - 1 < (end) - 1)? __boundary: (end); \
145 #define kvm_pud_addr_end(addr,end) (end)
147 #define kvm_pmd_addr_end(addr, end) \
148 ({ u64 __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
149 (__boundary - 1 < (end) - 1)? __boundary: (end); \
152 #define kvm_pgd_index(addr) pgd_index(addr)
154 static inline bool kvm_page_empty(void *ptr
)
156 struct page
*ptr_page
= virt_to_page(ptr
);
157 return page_count(ptr_page
) == 1;
160 #define kvm_pte_table_empty(kvm, ptep) kvm_page_empty(ptep)
161 #define kvm_pmd_table_empty(kvm, pmdp) kvm_page_empty(pmdp)
162 #define kvm_pud_table_empty(kvm, pudp) (0)
164 #define KVM_PREALLOC_LEVEL 0
166 static inline void *kvm_get_hwpgd(struct kvm
*kvm
)
168 return kvm
->arch
.pgd
;
171 static inline unsigned int kvm_get_hwpgd_size(void)
173 return PTRS_PER_S2_PGD
* sizeof(pgd_t
);
178 #define kvm_flush_dcache_to_poc(a,l) __cpuc_flush_dcache_area((a), (l))
180 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu
*vcpu
)
182 return (vcpu
->arch
.cp15
[c1_SCTLR
] & 0b101) == 0b101;
185 static inline void __coherent_cache_guest_page(struct kvm_vcpu
*vcpu
, pfn_t pfn
,
190 * If we are going to insert an instruction page and the icache is
191 * either VIPT or PIPT, there is a potential problem where the host
192 * (or another VM) may have used the same page as this guest, and we
193 * read incorrect data from the icache. If we're using a PIPT cache,
194 * we can invalidate just that page, but if we are using a VIPT cache
195 * we need to invalidate the entire icache - damn shame - as written
196 * in the ARM ARM (DDI 0406C.b - Page B3-1393).
198 * VIVT caches are tagged using both the ASID and the VMID and doesn't
199 * need any kind of flushing (DDI 0406C.b - Page B3-1392).
201 * We need to do this through a kernel mapping (using the
202 * user-space mapping has proved to be the wrong
203 * solution). For that, we need to kmap one page at a time,
204 * and iterate over the range.
207 bool need_flush
= !vcpu_has_cache_enabled(vcpu
) || ipa_uncached
;
209 VM_BUG_ON(size
& ~PAGE_MASK
);
211 if (!need_flush
&& !icache_is_pipt())
215 void *va
= kmap_atomic_pfn(pfn
);
218 kvm_flush_dcache_to_poc(va
, PAGE_SIZE
);
220 if (icache_is_pipt())
221 __cpuc_coherent_user_range((unsigned long)va
,
222 (unsigned long)va
+ PAGE_SIZE
);
231 if (!icache_is_pipt() && !icache_is_vivt_asid_tagged()) {
232 /* any kind of VIPT cache */
233 __flush_icache_all();
237 static inline void __kvm_flush_dcache_pte(pte_t pte
)
239 void *va
= kmap_atomic(pte_page(pte
));
241 kvm_flush_dcache_to_poc(va
, PAGE_SIZE
);
246 static inline void __kvm_flush_dcache_pmd(pmd_t pmd
)
248 unsigned long size
= PMD_SIZE
;
249 pfn_t pfn
= pmd_pfn(pmd
);
252 void *va
= kmap_atomic_pfn(pfn
);
254 kvm_flush_dcache_to_poc(va
, PAGE_SIZE
);
263 static inline void __kvm_flush_dcache_pud(pud_t pud
)
267 #define kvm_virt_to_phys(x) virt_to_idmap((unsigned long)(x))
269 void kvm_set_way_flush(struct kvm_vcpu
*vcpu
);
270 void kvm_toggle_cache(struct kvm_vcpu
*vcpu
, bool was_enabled
);
272 static inline bool __kvm_cpu_uses_extended_idmap(void)
277 static inline void __kvm_extend_hypmap(pgd_t
*boot_hyp_pgd
,
279 pgd_t
*merged_hyp_pgd
,
280 unsigned long hyp_idmap_start
) { }
282 #endif /* !__ASSEMBLY__ */
284 #endif /* __ARM_KVM_MMU_H__ */