2 * linux/arch/arm/mm/dma-mapping.c
4 * Copyright (C) 2000-2004 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * DMA uncached mapping support.
12 #include <linux/bootmem.h>
13 #include <linux/module.h>
15 #include <linux/genalloc.h>
16 #include <linux/gfp.h>
17 #include <linux/errno.h>
18 #include <linux/list.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/dma-contiguous.h>
23 #include <linux/highmem.h>
24 #include <linux/memblock.h>
25 #include <linux/slab.h>
26 #include <linux/iommu.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sizes.h>
30 #include <linux/cma.h>
32 #include <asm/memory.h>
33 #include <asm/highmem.h>
34 #include <asm/cacheflush.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mach/arch.h>
37 #include <asm/dma-iommu.h>
38 #include <asm/mach/map.h>
39 #include <asm/system_info.h>
40 #include <asm/dma-contiguous.h>
46 * The DMA API is built upon the notion of "buffer ownership". A buffer
47 * is either exclusively owned by the CPU (and therefore may be accessed
48 * by it) or exclusively owned by the DMA device. These helper functions
49 * represent the transitions between these two ownership states.
51 * Note, however, that on later ARMs, this notion does not work due to
52 * speculative prefetches. We model our approach on the assumption that
53 * the CPU does do speculative prefetches, which means we clean caches
54 * before transfers and delay cache invalidation until transfer completion.
57 static void __dma_page_cpu_to_dev(struct page
*, unsigned long,
58 size_t, enum dma_data_direction
);
59 static void __dma_page_dev_to_cpu(struct page
*, unsigned long,
60 size_t, enum dma_data_direction
);
63 * arm_dma_map_page - map a portion of a page for streaming DMA
64 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
65 * @page: page that buffer resides in
66 * @offset: offset into page for start of buffer
67 * @size: size of buffer to map
68 * @dir: DMA transfer direction
70 * Ensure that any data held in the cache is appropriately discarded
73 * The device owns this memory once this call has completed. The CPU
74 * can regain ownership by calling dma_unmap_page().
76 static dma_addr_t
arm_dma_map_page(struct device
*dev
, struct page
*page
,
77 unsigned long offset
, size_t size
, enum dma_data_direction dir
,
78 struct dma_attrs
*attrs
)
80 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC
, attrs
))
81 __dma_page_cpu_to_dev(page
, offset
, size
, dir
);
82 return pfn_to_dma(dev
, page_to_pfn(page
)) + offset
;
85 static dma_addr_t
arm_coherent_dma_map_page(struct device
*dev
, struct page
*page
,
86 unsigned long offset
, size_t size
, enum dma_data_direction dir
,
87 struct dma_attrs
*attrs
)
89 return pfn_to_dma(dev
, page_to_pfn(page
)) + offset
;
93 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
94 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
95 * @handle: DMA address of buffer
96 * @size: size of buffer (same as passed to dma_map_page)
97 * @dir: DMA transfer direction (same as passed to dma_map_page)
99 * Unmap a page streaming mode DMA translation. The handle and size
100 * must match what was provided in the previous dma_map_page() call.
101 * All other usages are undefined.
103 * After this call, reads by the CPU to the buffer are guaranteed to see
104 * whatever the device wrote there.
106 static void arm_dma_unmap_page(struct device
*dev
, dma_addr_t handle
,
107 size_t size
, enum dma_data_direction dir
,
108 struct dma_attrs
*attrs
)
110 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC
, attrs
))
111 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev
, handle
)),
112 handle
& ~PAGE_MASK
, size
, dir
);
115 static void arm_dma_sync_single_for_cpu(struct device
*dev
,
116 dma_addr_t handle
, size_t size
, enum dma_data_direction dir
)
118 unsigned int offset
= handle
& (PAGE_SIZE
- 1);
119 struct page
*page
= pfn_to_page(dma_to_pfn(dev
, handle
-offset
));
120 __dma_page_dev_to_cpu(page
, offset
, size
, dir
);
123 static void arm_dma_sync_single_for_device(struct device
*dev
,
124 dma_addr_t handle
, size_t size
, enum dma_data_direction dir
)
126 unsigned int offset
= handle
& (PAGE_SIZE
- 1);
127 struct page
*page
= pfn_to_page(dma_to_pfn(dev
, handle
-offset
));
128 __dma_page_cpu_to_dev(page
, offset
, size
, dir
);
131 struct dma_map_ops arm_dma_ops
= {
132 .alloc
= arm_dma_alloc
,
133 .free
= arm_dma_free
,
134 .mmap
= arm_dma_mmap
,
135 .get_sgtable
= arm_dma_get_sgtable
,
136 .map_page
= arm_dma_map_page
,
137 .unmap_page
= arm_dma_unmap_page
,
138 .map_sg
= arm_dma_map_sg
,
139 .unmap_sg
= arm_dma_unmap_sg
,
140 .sync_single_for_cpu
= arm_dma_sync_single_for_cpu
,
141 .sync_single_for_device
= arm_dma_sync_single_for_device
,
142 .sync_sg_for_cpu
= arm_dma_sync_sg_for_cpu
,
143 .sync_sg_for_device
= arm_dma_sync_sg_for_device
,
144 .set_dma_mask
= arm_dma_set_mask
,
146 EXPORT_SYMBOL(arm_dma_ops
);
148 static void *arm_coherent_dma_alloc(struct device
*dev
, size_t size
,
149 dma_addr_t
*handle
, gfp_t gfp
, struct dma_attrs
*attrs
);
150 static void arm_coherent_dma_free(struct device
*dev
, size_t size
, void *cpu_addr
,
151 dma_addr_t handle
, struct dma_attrs
*attrs
);
152 static int arm_coherent_dma_mmap(struct device
*dev
, struct vm_area_struct
*vma
,
153 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
,
154 struct dma_attrs
*attrs
);
156 struct dma_map_ops arm_coherent_dma_ops
= {
157 .alloc
= arm_coherent_dma_alloc
,
158 .free
= arm_coherent_dma_free
,
159 .mmap
= arm_coherent_dma_mmap
,
160 .get_sgtable
= arm_dma_get_sgtable
,
161 .map_page
= arm_coherent_dma_map_page
,
162 .map_sg
= arm_dma_map_sg
,
163 .set_dma_mask
= arm_dma_set_mask
,
165 EXPORT_SYMBOL(arm_coherent_dma_ops
);
167 static int __dma_supported(struct device
*dev
, u64 mask
, bool warn
)
169 unsigned long max_dma_pfn
;
172 * If the mask allows for more memory than we can address,
173 * and we actually have that much memory, then we must
174 * indicate that DMA to this device is not supported.
176 if (sizeof(mask
) != sizeof(dma_addr_t
) &&
177 mask
> (dma_addr_t
)~0 &&
178 dma_to_pfn(dev
, ~0) < max_pfn
- 1) {
180 dev_warn(dev
, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
182 dev_warn(dev
, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
187 max_dma_pfn
= min(max_pfn
, arm_dma_pfn_limit
);
190 * Translate the device's DMA mask to a PFN limit. This
191 * PFN number includes the page which we can DMA to.
193 if (dma_to_pfn(dev
, mask
) < max_dma_pfn
) {
195 dev_warn(dev
, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
197 dma_to_pfn(dev
, 0), dma_to_pfn(dev
, mask
) + 1,
205 static u64
get_coherent_dma_mask(struct device
*dev
)
207 u64 mask
= (u64
)DMA_BIT_MASK(32);
210 mask
= dev
->coherent_dma_mask
;
213 * Sanity check the DMA mask - it must be non-zero, and
214 * must be able to be satisfied by a DMA allocation.
217 dev_warn(dev
, "coherent DMA mask is unset\n");
221 if (!__dma_supported(dev
, mask
, true))
228 static void __dma_clear_buffer(struct page
*page
, size_t size
)
231 * Ensure that the allocated pages are zeroed, and that any data
232 * lurking in the kernel direct-mapped region is invalidated.
234 if (PageHighMem(page
)) {
235 phys_addr_t base
= __pfn_to_phys(page_to_pfn(page
));
236 phys_addr_t end
= base
+ size
;
238 void *ptr
= kmap_atomic(page
);
239 memset(ptr
, 0, PAGE_SIZE
);
240 dmac_flush_range(ptr
, ptr
+ PAGE_SIZE
);
245 outer_flush_range(base
, end
);
247 void *ptr
= page_address(page
);
248 memset(ptr
, 0, size
);
249 dmac_flush_range(ptr
, ptr
+ size
);
250 outer_flush_range(__pa(ptr
), __pa(ptr
) + size
);
255 * Allocate a DMA buffer for 'dev' of size 'size' using the
256 * specified gfp mask. Note that 'size' must be page aligned.
258 static struct page
*__dma_alloc_buffer(struct device
*dev
, size_t size
, gfp_t gfp
)
260 unsigned long order
= get_order(size
);
261 struct page
*page
, *p
, *e
;
263 page
= alloc_pages(gfp
, order
);
268 * Now split the huge page and free the excess pages
270 split_page(page
, order
);
271 for (p
= page
+ (size
>> PAGE_SHIFT
), e
= page
+ (1 << order
); p
< e
; p
++)
274 __dma_clear_buffer(page
, size
);
280 * Free a DMA buffer. 'size' must be page aligned.
282 static void __dma_free_buffer(struct page
*page
, size_t size
)
284 struct page
*e
= page
+ (size
>> PAGE_SHIFT
);
294 static void *__alloc_from_contiguous(struct device
*dev
, size_t size
,
295 pgprot_t prot
, struct page
**ret_page
,
296 const void *caller
, bool want_vaddr
);
298 static void *__alloc_remap_buffer(struct device
*dev
, size_t size
, gfp_t gfp
,
299 pgprot_t prot
, struct page
**ret_page
,
300 const void *caller
, bool want_vaddr
);
303 __dma_alloc_remap(struct page
*page
, size_t size
, gfp_t gfp
, pgprot_t prot
,
307 * DMA allocation can be mapped to user space, so lets
308 * set VM_USERMAP flags too.
310 return dma_common_contiguous_remap(page
, size
,
311 VM_ARM_DMA_CONSISTENT
| VM_USERMAP
,
315 static void __dma_free_remap(void *cpu_addr
, size_t size
)
317 dma_common_free_remap(cpu_addr
, size
,
318 VM_ARM_DMA_CONSISTENT
| VM_USERMAP
);
321 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
322 static struct gen_pool
*atomic_pool
;
324 static size_t atomic_pool_size
= DEFAULT_DMA_COHERENT_POOL_SIZE
;
326 static int __init
early_coherent_pool(char *p
)
328 atomic_pool_size
= memparse(p
, &p
);
331 early_param("coherent_pool", early_coherent_pool
);
333 void __init
init_dma_coherent_pool_size(unsigned long size
)
336 * Catch any attempt to set the pool size too late.
341 * Set architecture specific coherent pool size only if
342 * it has not been changed by kernel command line parameter.
344 if (atomic_pool_size
== DEFAULT_DMA_COHERENT_POOL_SIZE
)
345 atomic_pool_size
= size
;
349 * Initialise the coherent pool for atomic allocations.
351 static int __init
atomic_pool_init(void)
353 pgprot_t prot
= pgprot_dmacoherent(PAGE_KERNEL
);
354 gfp_t gfp
= GFP_KERNEL
| GFP_DMA
;
358 atomic_pool
= gen_pool_create(PAGE_SHIFT
, -1);
362 if (dev_get_cma_area(NULL
))
363 ptr
= __alloc_from_contiguous(NULL
, atomic_pool_size
, prot
,
364 &page
, atomic_pool_init
, true);
366 ptr
= __alloc_remap_buffer(NULL
, atomic_pool_size
, gfp
, prot
,
367 &page
, atomic_pool_init
, true);
371 ret
= gen_pool_add_virt(atomic_pool
, (unsigned long)ptr
,
373 atomic_pool_size
, -1);
375 goto destroy_genpool
;
377 gen_pool_set_algo(atomic_pool
,
378 gen_pool_first_fit_order_align
,
380 pr_info("DMA: preallocated %zd KiB pool for atomic coherent allocations\n",
381 atomic_pool_size
/ 1024);
386 gen_pool_destroy(atomic_pool
);
389 pr_err("DMA: failed to allocate %zx KiB pool for atomic coherent allocation\n",
390 atomic_pool_size
/ 1024);
394 * CMA is activated by core_initcall, so we must be called after it.
396 postcore_initcall(atomic_pool_init
);
398 struct dma_contig_early_reserve
{
403 static struct dma_contig_early_reserve dma_mmu_remap
[MAX_CMA_AREAS
] __initdata
;
405 static int dma_mmu_remap_num __initdata
;
407 void __init
dma_contiguous_early_fixup(phys_addr_t base
, unsigned long size
)
409 dma_mmu_remap
[dma_mmu_remap_num
].base
= base
;
410 dma_mmu_remap
[dma_mmu_remap_num
].size
= size
;
414 void __init
dma_contiguous_remap(void)
417 for (i
= 0; i
< dma_mmu_remap_num
; i
++) {
418 phys_addr_t start
= dma_mmu_remap
[i
].base
;
419 phys_addr_t end
= start
+ dma_mmu_remap
[i
].size
;
423 if (end
> arm_lowmem_limit
)
424 end
= arm_lowmem_limit
;
428 map
.pfn
= __phys_to_pfn(start
);
429 map
.virtual = __phys_to_virt(start
);
430 map
.length
= end
- start
;
431 map
.type
= MT_MEMORY_DMA_READY
;
434 * Clear previous low-memory mapping to ensure that the
435 * TLB does not see any conflicting entries, then flush
436 * the TLB of the old entries before creating new mappings.
438 * This ensures that any speculatively loaded TLB entries
439 * (even though they may be rare) can not cause any problems,
440 * and ensures that this code is architecturally compliant.
442 for (addr
= __phys_to_virt(start
); addr
< __phys_to_virt(end
);
444 pmd_clear(pmd_off_k(addr
));
446 flush_tlb_kernel_range(__phys_to_virt(start
),
447 __phys_to_virt(end
));
449 iotable_init(&map
, 1);
453 static int __dma_update_pte(pte_t
*pte
, pgtable_t token
, unsigned long addr
,
456 struct page
*page
= virt_to_page(addr
);
457 pgprot_t prot
= *(pgprot_t
*)data
;
459 set_pte_ext(pte
, mk_pte(page
, prot
), 0);
463 static void __dma_remap(struct page
*page
, size_t size
, pgprot_t prot
)
465 unsigned long start
= (unsigned long) page_address(page
);
466 unsigned end
= start
+ size
;
468 apply_to_page_range(&init_mm
, start
, size
, __dma_update_pte
, &prot
);
469 flush_tlb_kernel_range(start
, end
);
472 static void *__alloc_remap_buffer(struct device
*dev
, size_t size
, gfp_t gfp
,
473 pgprot_t prot
, struct page
**ret_page
,
474 const void *caller
, bool want_vaddr
)
478 page
= __dma_alloc_buffer(dev
, size
, gfp
);
484 ptr
= __dma_alloc_remap(page
, size
, gfp
, prot
, caller
);
486 __dma_free_buffer(page
, size
);
495 static void *__alloc_from_pool(size_t size
, struct page
**ret_page
)
501 WARN(1, "coherent pool not initialised!\n");
505 val
= gen_pool_alloc(atomic_pool
, size
);
507 phys_addr_t phys
= gen_pool_virt_to_phys(atomic_pool
, val
);
509 *ret_page
= phys_to_page(phys
);
516 static bool __in_atomic_pool(void *start
, size_t size
)
518 return addr_in_gen_pool(atomic_pool
, (unsigned long)start
, size
);
521 static int __free_from_pool(void *start
, size_t size
)
523 if (!__in_atomic_pool(start
, size
))
526 gen_pool_free(atomic_pool
, (unsigned long)start
, size
);
531 static void *__alloc_from_contiguous(struct device
*dev
, size_t size
,
532 pgprot_t prot
, struct page
**ret_page
,
533 const void *caller
, bool want_vaddr
)
535 unsigned long order
= get_order(size
);
536 size_t count
= size
>> PAGE_SHIFT
;
540 page
= dma_alloc_from_contiguous(dev
, count
, order
);
544 __dma_clear_buffer(page
, size
);
549 if (PageHighMem(page
)) {
550 ptr
= __dma_alloc_remap(page
, size
, GFP_KERNEL
, prot
, caller
);
552 dma_release_from_contiguous(dev
, page
, count
);
556 __dma_remap(page
, size
, prot
);
557 ptr
= page_address(page
);
565 static void __free_from_contiguous(struct device
*dev
, struct page
*page
,
566 void *cpu_addr
, size_t size
, bool want_vaddr
)
569 if (PageHighMem(page
))
570 __dma_free_remap(cpu_addr
, size
);
572 __dma_remap(page
, size
, PAGE_KERNEL
);
574 dma_release_from_contiguous(dev
, page
, size
>> PAGE_SHIFT
);
577 static inline pgprot_t
__get_dma_pgprot(struct dma_attrs
*attrs
, pgprot_t prot
)
579 prot
= dma_get_attr(DMA_ATTR_WRITE_COMBINE
, attrs
) ?
580 pgprot_writecombine(prot
) :
581 pgprot_dmacoherent(prot
);
587 #else /* !CONFIG_MMU */
591 #define __get_dma_pgprot(attrs, prot) __pgprot(0)
592 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv) NULL
593 #define __alloc_from_pool(size, ret_page) NULL
594 #define __alloc_from_contiguous(dev, size, prot, ret, c, wv) NULL
595 #define __free_from_pool(cpu_addr, size) 0
596 #define __free_from_contiguous(dev, page, cpu_addr, size, wv) do { } while (0)
597 #define __dma_free_remap(cpu_addr, size) do { } while (0)
599 #endif /* CONFIG_MMU */
601 static void *__alloc_simple_buffer(struct device
*dev
, size_t size
, gfp_t gfp
,
602 struct page
**ret_page
)
605 page
= __dma_alloc_buffer(dev
, size
, gfp
);
610 return page_address(page
);
615 static void *__dma_alloc(struct device
*dev
, size_t size
, dma_addr_t
*handle
,
616 gfp_t gfp
, pgprot_t prot
, bool is_coherent
,
617 struct dma_attrs
*attrs
, const void *caller
)
619 u64 mask
= get_coherent_dma_mask(dev
);
620 struct page
*page
= NULL
;
624 #ifdef CONFIG_DMA_API_DEBUG
625 u64 limit
= (mask
+ 1) & ~mask
;
626 if (limit
&& size
>= limit
) {
627 dev_warn(dev
, "coherent allocation too big (requested %#x mask %#llx)\n",
636 if (mask
< 0xffffffffULL
)
640 * Following is a work-around (a.k.a. hack) to prevent pages
641 * with __GFP_COMP being passed to split_page() which cannot
642 * handle them. The real problem is that this flag probably
643 * should be 0 on ARM as it is not supported on this
644 * platform; see CONFIG_HUGETLBFS.
646 gfp
&= ~(__GFP_COMP
);
648 *handle
= DMA_ERROR_CODE
;
649 size
= PAGE_ALIGN(size
);
650 want_vaddr
= !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING
, attrs
);
653 addr
= __alloc_simple_buffer(dev
, size
, gfp
, &page
);
654 else if (dev_get_cma_area(dev
) && (gfp
& __GFP_DIRECT_RECLAIM
))
655 addr
= __alloc_from_contiguous(dev
, size
, prot
, &page
,
657 else if (is_coherent
)
658 addr
= __alloc_simple_buffer(dev
, size
, gfp
, &page
);
659 else if (!gfpflags_allow_blocking(gfp
))
660 addr
= __alloc_from_pool(size
, &page
);
662 addr
= __alloc_remap_buffer(dev
, size
, gfp
, prot
, &page
,
666 *handle
= pfn_to_dma(dev
, page_to_pfn(page
));
668 return want_vaddr
? addr
: page
;
672 * Allocate DMA-coherent memory space and return both the kernel remapped
673 * virtual and bus address for that space.
675 void *arm_dma_alloc(struct device
*dev
, size_t size
, dma_addr_t
*handle
,
676 gfp_t gfp
, struct dma_attrs
*attrs
)
678 pgprot_t prot
= __get_dma_pgprot(attrs
, PAGE_KERNEL
);
680 return __dma_alloc(dev
, size
, handle
, gfp
, prot
, false,
681 attrs
, __builtin_return_address(0));
684 static void *arm_coherent_dma_alloc(struct device
*dev
, size_t size
,
685 dma_addr_t
*handle
, gfp_t gfp
, struct dma_attrs
*attrs
)
687 return __dma_alloc(dev
, size
, handle
, gfp
, PAGE_KERNEL
, true,
688 attrs
, __builtin_return_address(0));
691 static int __arm_dma_mmap(struct device
*dev
, struct vm_area_struct
*vma
,
692 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
,
693 struct dma_attrs
*attrs
)
697 unsigned long nr_vma_pages
= (vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
;
698 unsigned long nr_pages
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
699 unsigned long pfn
= dma_to_pfn(dev
, dma_addr
);
700 unsigned long off
= vma
->vm_pgoff
;
702 if (dma_mmap_from_coherent(dev
, vma
, cpu_addr
, size
, &ret
))
705 if (off
< nr_pages
&& nr_vma_pages
<= (nr_pages
- off
)) {
706 ret
= remap_pfn_range(vma
, vma
->vm_start
,
708 vma
->vm_end
- vma
->vm_start
,
711 #endif /* CONFIG_MMU */
717 * Create userspace mapping for the DMA-coherent memory.
719 static int arm_coherent_dma_mmap(struct device
*dev
, struct vm_area_struct
*vma
,
720 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
,
721 struct dma_attrs
*attrs
)
723 return __arm_dma_mmap(dev
, vma
, cpu_addr
, dma_addr
, size
, attrs
);
726 int arm_dma_mmap(struct device
*dev
, struct vm_area_struct
*vma
,
727 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
,
728 struct dma_attrs
*attrs
)
731 vma
->vm_page_prot
= __get_dma_pgprot(attrs
, vma
->vm_page_prot
);
732 #endif /* CONFIG_MMU */
733 return __arm_dma_mmap(dev
, vma
, cpu_addr
, dma_addr
, size
, attrs
);
737 * Free a buffer as defined by the above mapping.
739 static void __arm_dma_free(struct device
*dev
, size_t size
, void *cpu_addr
,
740 dma_addr_t handle
, struct dma_attrs
*attrs
,
743 struct page
*page
= pfn_to_page(dma_to_pfn(dev
, handle
));
744 bool want_vaddr
= !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING
, attrs
);
746 size
= PAGE_ALIGN(size
);
749 __dma_free_buffer(page
, size
);
750 } else if (!is_coherent
&& __free_from_pool(cpu_addr
, size
)) {
752 } else if (!dev_get_cma_area(dev
)) {
753 if (want_vaddr
&& !is_coherent
)
754 __dma_free_remap(cpu_addr
, size
);
755 __dma_free_buffer(page
, size
);
758 * Non-atomic allocations cannot be freed with IRQs disabled
760 WARN_ON(irqs_disabled());
761 __free_from_contiguous(dev
, page
, cpu_addr
, size
, want_vaddr
);
765 void arm_dma_free(struct device
*dev
, size_t size
, void *cpu_addr
,
766 dma_addr_t handle
, struct dma_attrs
*attrs
)
768 __arm_dma_free(dev
, size
, cpu_addr
, handle
, attrs
, false);
771 static void arm_coherent_dma_free(struct device
*dev
, size_t size
, void *cpu_addr
,
772 dma_addr_t handle
, struct dma_attrs
*attrs
)
774 __arm_dma_free(dev
, size
, cpu_addr
, handle
, attrs
, true);
777 int arm_dma_get_sgtable(struct device
*dev
, struct sg_table
*sgt
,
778 void *cpu_addr
, dma_addr_t handle
, size_t size
,
779 struct dma_attrs
*attrs
)
781 struct page
*page
= pfn_to_page(dma_to_pfn(dev
, handle
));
784 ret
= sg_alloc_table(sgt
, 1, GFP_KERNEL
);
788 sg_set_page(sgt
->sgl
, page
, PAGE_ALIGN(size
), 0);
792 static void dma_cache_maint_page(struct page
*page
, unsigned long offset
,
793 size_t size
, enum dma_data_direction dir
,
794 void (*op
)(const void *, size_t, int))
799 pfn
= page_to_pfn(page
) + offset
/ PAGE_SIZE
;
803 * A single sg entry may refer to multiple physically contiguous
804 * pages. But we still need to process highmem pages individually.
805 * If highmem is not configured then the bulk of this loop gets
812 page
= pfn_to_page(pfn
);
814 if (PageHighMem(page
)) {
815 if (len
+ offset
> PAGE_SIZE
)
816 len
= PAGE_SIZE
- offset
;
818 if (cache_is_vipt_nonaliasing()) {
819 vaddr
= kmap_atomic(page
);
820 op(vaddr
+ offset
, len
, dir
);
821 kunmap_atomic(vaddr
);
823 vaddr
= kmap_high_get(page
);
825 op(vaddr
+ offset
, len
, dir
);
830 vaddr
= page_address(page
) + offset
;
840 * Make an area consistent for devices.
841 * Note: Drivers should NOT use this function directly, as it will break
842 * platforms with CONFIG_DMABOUNCE.
843 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
845 static void __dma_page_cpu_to_dev(struct page
*page
, unsigned long off
,
846 size_t size
, enum dma_data_direction dir
)
850 dma_cache_maint_page(page
, off
, size
, dir
, dmac_map_area
);
852 paddr
= page_to_phys(page
) + off
;
853 if (dir
== DMA_FROM_DEVICE
) {
854 outer_inv_range(paddr
, paddr
+ size
);
856 outer_clean_range(paddr
, paddr
+ size
);
858 /* FIXME: non-speculating: flush on bidirectional mappings? */
861 static void __dma_page_dev_to_cpu(struct page
*page
, unsigned long off
,
862 size_t size
, enum dma_data_direction dir
)
864 phys_addr_t paddr
= page_to_phys(page
) + off
;
866 /* FIXME: non-speculating: not required */
867 /* in any case, don't bother invalidating if DMA to device */
868 if (dir
!= DMA_TO_DEVICE
) {
869 outer_inv_range(paddr
, paddr
+ size
);
871 dma_cache_maint_page(page
, off
, size
, dir
, dmac_unmap_area
);
875 * Mark the D-cache clean for these pages to avoid extra flushing.
877 if (dir
!= DMA_TO_DEVICE
&& size
>= PAGE_SIZE
) {
881 pfn
= page_to_pfn(page
) + off
/ PAGE_SIZE
;
885 left
-= PAGE_SIZE
- off
;
887 while (left
>= PAGE_SIZE
) {
888 page
= pfn_to_page(pfn
++);
889 set_bit(PG_dcache_clean
, &page
->flags
);
896 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
897 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
898 * @sg: list of buffers
899 * @nents: number of buffers to map
900 * @dir: DMA transfer direction
902 * Map a set of buffers described by scatterlist in streaming mode for DMA.
903 * This is the scatter-gather version of the dma_map_single interface.
904 * Here the scatter gather list elements are each tagged with the
905 * appropriate dma address and length. They are obtained via
906 * sg_dma_{address,length}.
908 * Device ownership issues as mentioned for dma_map_single are the same
911 int arm_dma_map_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
912 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
914 struct dma_map_ops
*ops
= get_dma_ops(dev
);
915 struct scatterlist
*s
;
918 for_each_sg(sg
, s
, nents
, i
) {
919 #ifdef CONFIG_NEED_SG_DMA_LENGTH
920 s
->dma_length
= s
->length
;
922 s
->dma_address
= ops
->map_page(dev
, sg_page(s
), s
->offset
,
923 s
->length
, dir
, attrs
);
924 if (dma_mapping_error(dev
, s
->dma_address
))
930 for_each_sg(sg
, s
, i
, j
)
931 ops
->unmap_page(dev
, sg_dma_address(s
), sg_dma_len(s
), dir
, attrs
);
936 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
937 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
938 * @sg: list of buffers
939 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
940 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
942 * Unmap a set of streaming mode DMA translations. Again, CPU access
943 * rules concerning calls here are the same as for dma_unmap_single().
945 void arm_dma_unmap_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
946 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
948 struct dma_map_ops
*ops
= get_dma_ops(dev
);
949 struct scatterlist
*s
;
953 for_each_sg(sg
, s
, nents
, i
)
954 ops
->unmap_page(dev
, sg_dma_address(s
), sg_dma_len(s
), dir
, attrs
);
958 * arm_dma_sync_sg_for_cpu
959 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
960 * @sg: list of buffers
961 * @nents: number of buffers to map (returned from dma_map_sg)
962 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
964 void arm_dma_sync_sg_for_cpu(struct device
*dev
, struct scatterlist
*sg
,
965 int nents
, enum dma_data_direction dir
)
967 struct dma_map_ops
*ops
= get_dma_ops(dev
);
968 struct scatterlist
*s
;
971 for_each_sg(sg
, s
, nents
, i
)
972 ops
->sync_single_for_cpu(dev
, sg_dma_address(s
), s
->length
,
977 * arm_dma_sync_sg_for_device
978 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
979 * @sg: list of buffers
980 * @nents: number of buffers to map (returned from dma_map_sg)
981 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
983 void arm_dma_sync_sg_for_device(struct device
*dev
, struct scatterlist
*sg
,
984 int nents
, enum dma_data_direction dir
)
986 struct dma_map_ops
*ops
= get_dma_ops(dev
);
987 struct scatterlist
*s
;
990 for_each_sg(sg
, s
, nents
, i
)
991 ops
->sync_single_for_device(dev
, sg_dma_address(s
), s
->length
,
996 * Return whether the given device DMA address mask can be supported
997 * properly. For example, if your device can only drive the low 24-bits
998 * during bus mastering, then you would pass 0x00ffffff as the mask
1001 int dma_supported(struct device
*dev
, u64 mask
)
1003 return __dma_supported(dev
, mask
, false);
1005 EXPORT_SYMBOL(dma_supported
);
1007 int arm_dma_set_mask(struct device
*dev
, u64 dma_mask
)
1009 if (!dev
->dma_mask
|| !dma_supported(dev
, dma_mask
))
1012 *dev
->dma_mask
= dma_mask
;
1017 #define PREALLOC_DMA_DEBUG_ENTRIES 4096
1019 static int __init
dma_debug_do_init(void)
1021 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES
);
1024 fs_initcall(dma_debug_do_init
);
1026 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1030 static int extend_iommu_mapping(struct dma_iommu_mapping
*mapping
);
1032 static inline dma_addr_t
__alloc_iova(struct dma_iommu_mapping
*mapping
,
1035 unsigned int order
= get_order(size
);
1036 unsigned int align
= 0;
1037 unsigned int count
, start
;
1038 size_t mapping_size
= mapping
->bits
<< PAGE_SHIFT
;
1039 unsigned long flags
;
1043 if (order
> CONFIG_ARM_DMA_IOMMU_ALIGNMENT
)
1044 order
= CONFIG_ARM_DMA_IOMMU_ALIGNMENT
;
1046 count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
1047 align
= (1 << order
) - 1;
1049 spin_lock_irqsave(&mapping
->lock
, flags
);
1050 for (i
= 0; i
< mapping
->nr_bitmaps
; i
++) {
1051 start
= bitmap_find_next_zero_area(mapping
->bitmaps
[i
],
1052 mapping
->bits
, 0, count
, align
);
1054 if (start
> mapping
->bits
)
1057 bitmap_set(mapping
->bitmaps
[i
], start
, count
);
1062 * No unused range found. Try to extend the existing mapping
1063 * and perform a second attempt to reserve an IO virtual
1064 * address range of size bytes.
1066 if (i
== mapping
->nr_bitmaps
) {
1067 if (extend_iommu_mapping(mapping
)) {
1068 spin_unlock_irqrestore(&mapping
->lock
, flags
);
1069 return DMA_ERROR_CODE
;
1072 start
= bitmap_find_next_zero_area(mapping
->bitmaps
[i
],
1073 mapping
->bits
, 0, count
, align
);
1075 if (start
> mapping
->bits
) {
1076 spin_unlock_irqrestore(&mapping
->lock
, flags
);
1077 return DMA_ERROR_CODE
;
1080 bitmap_set(mapping
->bitmaps
[i
], start
, count
);
1082 spin_unlock_irqrestore(&mapping
->lock
, flags
);
1084 iova
= mapping
->base
+ (mapping_size
* i
);
1085 iova
+= start
<< PAGE_SHIFT
;
1090 static inline void __free_iova(struct dma_iommu_mapping
*mapping
,
1091 dma_addr_t addr
, size_t size
)
1093 unsigned int start
, count
;
1094 size_t mapping_size
= mapping
->bits
<< PAGE_SHIFT
;
1095 unsigned long flags
;
1096 dma_addr_t bitmap_base
;
1102 bitmap_index
= (u32
) (addr
- mapping
->base
) / (u32
) mapping_size
;
1103 BUG_ON(addr
< mapping
->base
|| bitmap_index
> mapping
->extensions
);
1105 bitmap_base
= mapping
->base
+ mapping_size
* bitmap_index
;
1107 start
= (addr
- bitmap_base
) >> PAGE_SHIFT
;
1109 if (addr
+ size
> bitmap_base
+ mapping_size
) {
1111 * The address range to be freed reaches into the iova
1112 * range of the next bitmap. This should not happen as
1113 * we don't allow this in __alloc_iova (at the
1118 count
= size
>> PAGE_SHIFT
;
1120 spin_lock_irqsave(&mapping
->lock
, flags
);
1121 bitmap_clear(mapping
->bitmaps
[bitmap_index
], start
, count
);
1122 spin_unlock_irqrestore(&mapping
->lock
, flags
);
1125 static struct page
**__iommu_alloc_buffer(struct device
*dev
, size_t size
,
1126 gfp_t gfp
, struct dma_attrs
*attrs
)
1128 struct page
**pages
;
1129 int count
= size
>> PAGE_SHIFT
;
1130 int array_size
= count
* sizeof(struct page
*);
1133 if (array_size
<= PAGE_SIZE
)
1134 pages
= kzalloc(array_size
, GFP_KERNEL
);
1136 pages
= vzalloc(array_size
);
1140 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS
, attrs
))
1142 unsigned long order
= get_order(size
);
1145 page
= dma_alloc_from_contiguous(dev
, count
, order
);
1149 __dma_clear_buffer(page
, size
);
1151 for (i
= 0; i
< count
; i
++)
1152 pages
[i
] = page
+ i
;
1158 * IOMMU can map any pages, so himem can also be used here
1160 gfp
|= __GFP_NOWARN
| __GFP_HIGHMEM
;
1165 for (order
= __fls(count
); order
> 0; --order
) {
1167 * We do not want OOM killer to be invoked as long
1168 * as we can fall back to single pages, so we force
1169 * __GFP_NORETRY for orders higher than zero.
1171 pages
[i
] = alloc_pages(gfp
| __GFP_NORETRY
, order
);
1178 * Fall back to single page allocation.
1179 * Might invoke OOM killer as last resort.
1181 pages
[i
] = alloc_pages(gfp
, 0);
1187 split_page(pages
[i
], order
);
1190 pages
[i
+ j
] = pages
[i
] + j
;
1193 __dma_clear_buffer(pages
[i
], PAGE_SIZE
<< order
);
1195 count
-= 1 << order
;
1202 __free_pages(pages
[i
], 0);
1203 if (array_size
<= PAGE_SIZE
)
1210 static int __iommu_free_buffer(struct device
*dev
, struct page
**pages
,
1211 size_t size
, struct dma_attrs
*attrs
)
1213 int count
= size
>> PAGE_SHIFT
;
1214 int array_size
= count
* sizeof(struct page
*);
1217 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS
, attrs
)) {
1218 dma_release_from_contiguous(dev
, pages
[0], count
);
1220 for (i
= 0; i
< count
; i
++)
1222 __free_pages(pages
[i
], 0);
1225 if (array_size
<= PAGE_SIZE
)
1233 * Create a CPU mapping for a specified pages
1236 __iommu_alloc_remap(struct page
**pages
, size_t size
, gfp_t gfp
, pgprot_t prot
,
1239 return dma_common_pages_remap(pages
, size
,
1240 VM_ARM_DMA_CONSISTENT
| VM_USERMAP
, prot
, caller
);
1244 * Create a mapping in device IO address space for specified pages
1247 __iommu_create_mapping(struct device
*dev
, struct page
**pages
, size_t size
)
1249 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1250 unsigned int count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
1251 dma_addr_t dma_addr
, iova
;
1254 dma_addr
= __alloc_iova(mapping
, size
);
1255 if (dma_addr
== DMA_ERROR_CODE
)
1259 for (i
= 0; i
< count
; ) {
1262 unsigned int next_pfn
= page_to_pfn(pages
[i
]) + 1;
1263 phys_addr_t phys
= page_to_phys(pages
[i
]);
1264 unsigned int len
, j
;
1266 for (j
= i
+ 1; j
< count
; j
++, next_pfn
++)
1267 if (page_to_pfn(pages
[j
]) != next_pfn
)
1270 len
= (j
- i
) << PAGE_SHIFT
;
1271 ret
= iommu_map(mapping
->domain
, iova
, phys
, len
,
1272 IOMMU_READ
|IOMMU_WRITE
);
1280 iommu_unmap(mapping
->domain
, dma_addr
, iova
-dma_addr
);
1281 __free_iova(mapping
, dma_addr
, size
);
1282 return DMA_ERROR_CODE
;
1285 static int __iommu_remove_mapping(struct device
*dev
, dma_addr_t iova
, size_t size
)
1287 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1290 * add optional in-page offset from iova to size and align
1291 * result to page size
1293 size
= PAGE_ALIGN((iova
& ~PAGE_MASK
) + size
);
1296 iommu_unmap(mapping
->domain
, iova
, size
);
1297 __free_iova(mapping
, iova
, size
);
1301 static struct page
**__atomic_get_pages(void *addr
)
1306 phys
= gen_pool_virt_to_phys(atomic_pool
, (unsigned long)addr
);
1307 page
= phys_to_page(phys
);
1309 return (struct page
**)page
;
1312 static struct page
**__iommu_get_pages(void *cpu_addr
, struct dma_attrs
*attrs
)
1314 struct vm_struct
*area
;
1316 if (__in_atomic_pool(cpu_addr
, PAGE_SIZE
))
1317 return __atomic_get_pages(cpu_addr
);
1319 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING
, attrs
))
1322 area
= find_vm_area(cpu_addr
);
1323 if (area
&& (area
->flags
& VM_ARM_DMA_CONSISTENT
))
1328 static void *__iommu_alloc_atomic(struct device
*dev
, size_t size
,
1334 addr
= __alloc_from_pool(size
, &page
);
1338 *handle
= __iommu_create_mapping(dev
, &page
, size
);
1339 if (*handle
== DMA_ERROR_CODE
)
1345 __free_from_pool(addr
, size
);
1349 static void __iommu_free_atomic(struct device
*dev
, void *cpu_addr
,
1350 dma_addr_t handle
, size_t size
)
1352 __iommu_remove_mapping(dev
, handle
, size
);
1353 __free_from_pool(cpu_addr
, size
);
1356 static void *arm_iommu_alloc_attrs(struct device
*dev
, size_t size
,
1357 dma_addr_t
*handle
, gfp_t gfp
, struct dma_attrs
*attrs
)
1359 pgprot_t prot
= __get_dma_pgprot(attrs
, PAGE_KERNEL
);
1360 struct page
**pages
;
1363 *handle
= DMA_ERROR_CODE
;
1364 size
= PAGE_ALIGN(size
);
1366 if (!gfpflags_allow_blocking(gfp
))
1367 return __iommu_alloc_atomic(dev
, size
, handle
);
1370 * Following is a work-around (a.k.a. hack) to prevent pages
1371 * with __GFP_COMP being passed to split_page() which cannot
1372 * handle them. The real problem is that this flag probably
1373 * should be 0 on ARM as it is not supported on this
1374 * platform; see CONFIG_HUGETLBFS.
1376 gfp
&= ~(__GFP_COMP
);
1378 pages
= __iommu_alloc_buffer(dev
, size
, gfp
, attrs
);
1382 *handle
= __iommu_create_mapping(dev
, pages
, size
);
1383 if (*handle
== DMA_ERROR_CODE
)
1386 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING
, attrs
))
1389 addr
= __iommu_alloc_remap(pages
, size
, gfp
, prot
,
1390 __builtin_return_address(0));
1397 __iommu_remove_mapping(dev
, *handle
, size
);
1399 __iommu_free_buffer(dev
, pages
, size
, attrs
);
1403 static int arm_iommu_mmap_attrs(struct device
*dev
, struct vm_area_struct
*vma
,
1404 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
,
1405 struct dma_attrs
*attrs
)
1407 unsigned long uaddr
= vma
->vm_start
;
1408 unsigned long usize
= vma
->vm_end
- vma
->vm_start
;
1409 struct page
**pages
= __iommu_get_pages(cpu_addr
, attrs
);
1410 unsigned long nr_pages
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
1411 unsigned long off
= vma
->vm_pgoff
;
1413 vma
->vm_page_prot
= __get_dma_pgprot(attrs
, vma
->vm_page_prot
);
1418 if (off
>= nr_pages
|| (usize
>> PAGE_SHIFT
) > nr_pages
- off
)
1424 int ret
= vm_insert_page(vma
, uaddr
, *pages
++);
1426 pr_err("Remapping memory failed: %d\n", ret
);
1431 } while (usize
> 0);
1437 * free a page as defined by the above mapping.
1438 * Must not be called with IRQs disabled.
1440 void arm_iommu_free_attrs(struct device
*dev
, size_t size
, void *cpu_addr
,
1441 dma_addr_t handle
, struct dma_attrs
*attrs
)
1443 struct page
**pages
;
1444 size
= PAGE_ALIGN(size
);
1446 if (__in_atomic_pool(cpu_addr
, size
)) {
1447 __iommu_free_atomic(dev
, cpu_addr
, handle
, size
);
1451 pages
= __iommu_get_pages(cpu_addr
, attrs
);
1453 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr
);
1457 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING
, attrs
)) {
1458 dma_common_free_remap(cpu_addr
, size
,
1459 VM_ARM_DMA_CONSISTENT
| VM_USERMAP
);
1462 __iommu_remove_mapping(dev
, handle
, size
);
1463 __iommu_free_buffer(dev
, pages
, size
, attrs
);
1466 static int arm_iommu_get_sgtable(struct device
*dev
, struct sg_table
*sgt
,
1467 void *cpu_addr
, dma_addr_t dma_addr
,
1468 size_t size
, struct dma_attrs
*attrs
)
1470 unsigned int count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
1471 struct page
**pages
= __iommu_get_pages(cpu_addr
, attrs
);
1476 return sg_alloc_table_from_pages(sgt
, pages
, count
, 0, size
,
1480 static int __dma_direction_to_prot(enum dma_data_direction dir
)
1485 case DMA_BIDIRECTIONAL
:
1486 prot
= IOMMU_READ
| IOMMU_WRITE
;
1491 case DMA_FROM_DEVICE
:
1502 * Map a part of the scatter-gather list into contiguous io address space
1504 static int __map_sg_chunk(struct device
*dev
, struct scatterlist
*sg
,
1505 size_t size
, dma_addr_t
*handle
,
1506 enum dma_data_direction dir
, struct dma_attrs
*attrs
,
1509 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1510 dma_addr_t iova
, iova_base
;
1513 struct scatterlist
*s
;
1516 size
= PAGE_ALIGN(size
);
1517 *handle
= DMA_ERROR_CODE
;
1519 iova_base
= iova
= __alloc_iova(mapping
, size
);
1520 if (iova
== DMA_ERROR_CODE
)
1523 for (count
= 0, s
= sg
; count
< (size
>> PAGE_SHIFT
); s
= sg_next(s
)) {
1524 phys_addr_t phys
= page_to_phys(sg_page(s
));
1525 unsigned int len
= PAGE_ALIGN(s
->offset
+ s
->length
);
1528 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC
, attrs
))
1529 __dma_page_cpu_to_dev(sg_page(s
), s
->offset
, s
->length
, dir
);
1531 prot
= __dma_direction_to_prot(dir
);
1533 ret
= iommu_map(mapping
->domain
, iova
, phys
, len
, prot
);
1536 count
+= len
>> PAGE_SHIFT
;
1539 *handle
= iova_base
;
1543 iommu_unmap(mapping
->domain
, iova_base
, count
* PAGE_SIZE
);
1544 __free_iova(mapping
, iova_base
, size
);
1548 static int __iommu_map_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
1549 enum dma_data_direction dir
, struct dma_attrs
*attrs
,
1552 struct scatterlist
*s
= sg
, *dma
= sg
, *start
= sg
;
1554 unsigned int offset
= s
->offset
;
1555 unsigned int size
= s
->offset
+ s
->length
;
1556 unsigned int max
= dma_get_max_seg_size(dev
);
1558 for (i
= 1; i
< nents
; i
++) {
1561 s
->dma_address
= DMA_ERROR_CODE
;
1564 if (s
->offset
|| (size
& ~PAGE_MASK
) || size
+ s
->length
> max
) {
1565 if (__map_sg_chunk(dev
, start
, size
, &dma
->dma_address
,
1566 dir
, attrs
, is_coherent
) < 0)
1569 dma
->dma_address
+= offset
;
1570 dma
->dma_length
= size
- offset
;
1572 size
= offset
= s
->offset
;
1579 if (__map_sg_chunk(dev
, start
, size
, &dma
->dma_address
, dir
, attrs
,
1583 dma
->dma_address
+= offset
;
1584 dma
->dma_length
= size
- offset
;
1589 for_each_sg(sg
, s
, count
, i
)
1590 __iommu_remove_mapping(dev
, sg_dma_address(s
), sg_dma_len(s
));
1595 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1596 * @dev: valid struct device pointer
1597 * @sg: list of buffers
1598 * @nents: number of buffers to map
1599 * @dir: DMA transfer direction
1601 * Map a set of i/o coherent buffers described by scatterlist in streaming
1602 * mode for DMA. The scatter gather list elements are merged together (if
1603 * possible) and tagged with the appropriate dma address and length. They are
1604 * obtained via sg_dma_{address,length}.
1606 int arm_coherent_iommu_map_sg(struct device
*dev
, struct scatterlist
*sg
,
1607 int nents
, enum dma_data_direction dir
, struct dma_attrs
*attrs
)
1609 return __iommu_map_sg(dev
, sg
, nents
, dir
, attrs
, true);
1613 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1614 * @dev: valid struct device pointer
1615 * @sg: list of buffers
1616 * @nents: number of buffers to map
1617 * @dir: DMA transfer direction
1619 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1620 * The scatter gather list elements are merged together (if possible) and
1621 * tagged with the appropriate dma address and length. They are obtained via
1622 * sg_dma_{address,length}.
1624 int arm_iommu_map_sg(struct device
*dev
, struct scatterlist
*sg
,
1625 int nents
, enum dma_data_direction dir
, struct dma_attrs
*attrs
)
1627 return __iommu_map_sg(dev
, sg
, nents
, dir
, attrs
, false);
1630 static void __iommu_unmap_sg(struct device
*dev
, struct scatterlist
*sg
,
1631 int nents
, enum dma_data_direction dir
, struct dma_attrs
*attrs
,
1634 struct scatterlist
*s
;
1637 for_each_sg(sg
, s
, nents
, i
) {
1639 __iommu_remove_mapping(dev
, sg_dma_address(s
),
1642 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC
, attrs
))
1643 __dma_page_dev_to_cpu(sg_page(s
), s
->offset
,
1649 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1650 * @dev: valid struct device pointer
1651 * @sg: list of buffers
1652 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1653 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1655 * Unmap a set of streaming mode DMA translations. Again, CPU access
1656 * rules concerning calls here are the same as for dma_unmap_single().
1658 void arm_coherent_iommu_unmap_sg(struct device
*dev
, struct scatterlist
*sg
,
1659 int nents
, enum dma_data_direction dir
, struct dma_attrs
*attrs
)
1661 __iommu_unmap_sg(dev
, sg
, nents
, dir
, attrs
, true);
1665 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1666 * @dev: valid struct device pointer
1667 * @sg: list of buffers
1668 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1669 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1671 * Unmap a set of streaming mode DMA translations. Again, CPU access
1672 * rules concerning calls here are the same as for dma_unmap_single().
1674 void arm_iommu_unmap_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
1675 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
1677 __iommu_unmap_sg(dev
, sg
, nents
, dir
, attrs
, false);
1681 * arm_iommu_sync_sg_for_cpu
1682 * @dev: valid struct device pointer
1683 * @sg: list of buffers
1684 * @nents: number of buffers to map (returned from dma_map_sg)
1685 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1687 void arm_iommu_sync_sg_for_cpu(struct device
*dev
, struct scatterlist
*sg
,
1688 int nents
, enum dma_data_direction dir
)
1690 struct scatterlist
*s
;
1693 for_each_sg(sg
, s
, nents
, i
)
1694 __dma_page_dev_to_cpu(sg_page(s
), s
->offset
, s
->length
, dir
);
1699 * arm_iommu_sync_sg_for_device
1700 * @dev: valid struct device pointer
1701 * @sg: list of buffers
1702 * @nents: number of buffers to map (returned from dma_map_sg)
1703 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1705 void arm_iommu_sync_sg_for_device(struct device
*dev
, struct scatterlist
*sg
,
1706 int nents
, enum dma_data_direction dir
)
1708 struct scatterlist
*s
;
1711 for_each_sg(sg
, s
, nents
, i
)
1712 __dma_page_cpu_to_dev(sg_page(s
), s
->offset
, s
->length
, dir
);
1717 * arm_coherent_iommu_map_page
1718 * @dev: valid struct device pointer
1719 * @page: page that buffer resides in
1720 * @offset: offset into page for start of buffer
1721 * @size: size of buffer to map
1722 * @dir: DMA transfer direction
1724 * Coherent IOMMU aware version of arm_dma_map_page()
1726 static dma_addr_t
arm_coherent_iommu_map_page(struct device
*dev
, struct page
*page
,
1727 unsigned long offset
, size_t size
, enum dma_data_direction dir
,
1728 struct dma_attrs
*attrs
)
1730 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1731 dma_addr_t dma_addr
;
1732 int ret
, prot
, len
= PAGE_ALIGN(size
+ offset
);
1734 dma_addr
= __alloc_iova(mapping
, len
);
1735 if (dma_addr
== DMA_ERROR_CODE
)
1738 prot
= __dma_direction_to_prot(dir
);
1740 ret
= iommu_map(mapping
->domain
, dma_addr
, page_to_phys(page
), len
, prot
);
1744 return dma_addr
+ offset
;
1746 __free_iova(mapping
, dma_addr
, len
);
1747 return DMA_ERROR_CODE
;
1751 * arm_iommu_map_page
1752 * @dev: valid struct device pointer
1753 * @page: page that buffer resides in
1754 * @offset: offset into page for start of buffer
1755 * @size: size of buffer to map
1756 * @dir: DMA transfer direction
1758 * IOMMU aware version of arm_dma_map_page()
1760 static dma_addr_t
arm_iommu_map_page(struct device
*dev
, struct page
*page
,
1761 unsigned long offset
, size_t size
, enum dma_data_direction dir
,
1762 struct dma_attrs
*attrs
)
1764 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC
, attrs
))
1765 __dma_page_cpu_to_dev(page
, offset
, size
, dir
);
1767 return arm_coherent_iommu_map_page(dev
, page
, offset
, size
, dir
, attrs
);
1771 * arm_coherent_iommu_unmap_page
1772 * @dev: valid struct device pointer
1773 * @handle: DMA address of buffer
1774 * @size: size of buffer (same as passed to dma_map_page)
1775 * @dir: DMA transfer direction (same as passed to dma_map_page)
1777 * Coherent IOMMU aware version of arm_dma_unmap_page()
1779 static void arm_coherent_iommu_unmap_page(struct device
*dev
, dma_addr_t handle
,
1780 size_t size
, enum dma_data_direction dir
,
1781 struct dma_attrs
*attrs
)
1783 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1784 dma_addr_t iova
= handle
& PAGE_MASK
;
1785 int offset
= handle
& ~PAGE_MASK
;
1786 int len
= PAGE_ALIGN(size
+ offset
);
1791 iommu_unmap(mapping
->domain
, iova
, len
);
1792 __free_iova(mapping
, iova
, len
);
1796 * arm_iommu_unmap_page
1797 * @dev: valid struct device pointer
1798 * @handle: DMA address of buffer
1799 * @size: size of buffer (same as passed to dma_map_page)
1800 * @dir: DMA transfer direction (same as passed to dma_map_page)
1802 * IOMMU aware version of arm_dma_unmap_page()
1804 static void arm_iommu_unmap_page(struct device
*dev
, dma_addr_t handle
,
1805 size_t size
, enum dma_data_direction dir
,
1806 struct dma_attrs
*attrs
)
1808 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1809 dma_addr_t iova
= handle
& PAGE_MASK
;
1810 struct page
*page
= phys_to_page(iommu_iova_to_phys(mapping
->domain
, iova
));
1811 int offset
= handle
& ~PAGE_MASK
;
1812 int len
= PAGE_ALIGN(size
+ offset
);
1817 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC
, attrs
))
1818 __dma_page_dev_to_cpu(page
, offset
, size
, dir
);
1820 iommu_unmap(mapping
->domain
, iova
, len
);
1821 __free_iova(mapping
, iova
, len
);
1824 static void arm_iommu_sync_single_for_cpu(struct device
*dev
,
1825 dma_addr_t handle
, size_t size
, enum dma_data_direction dir
)
1827 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1828 dma_addr_t iova
= handle
& PAGE_MASK
;
1829 struct page
*page
= phys_to_page(iommu_iova_to_phys(mapping
->domain
, iova
));
1830 unsigned int offset
= handle
& ~PAGE_MASK
;
1835 __dma_page_dev_to_cpu(page
, offset
, size
, dir
);
1838 static void arm_iommu_sync_single_for_device(struct device
*dev
,
1839 dma_addr_t handle
, size_t size
, enum dma_data_direction dir
)
1841 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1842 dma_addr_t iova
= handle
& PAGE_MASK
;
1843 struct page
*page
= phys_to_page(iommu_iova_to_phys(mapping
->domain
, iova
));
1844 unsigned int offset
= handle
& ~PAGE_MASK
;
1849 __dma_page_cpu_to_dev(page
, offset
, size
, dir
);
1852 struct dma_map_ops iommu_ops
= {
1853 .alloc
= arm_iommu_alloc_attrs
,
1854 .free
= arm_iommu_free_attrs
,
1855 .mmap
= arm_iommu_mmap_attrs
,
1856 .get_sgtable
= arm_iommu_get_sgtable
,
1858 .map_page
= arm_iommu_map_page
,
1859 .unmap_page
= arm_iommu_unmap_page
,
1860 .sync_single_for_cpu
= arm_iommu_sync_single_for_cpu
,
1861 .sync_single_for_device
= arm_iommu_sync_single_for_device
,
1863 .map_sg
= arm_iommu_map_sg
,
1864 .unmap_sg
= arm_iommu_unmap_sg
,
1865 .sync_sg_for_cpu
= arm_iommu_sync_sg_for_cpu
,
1866 .sync_sg_for_device
= arm_iommu_sync_sg_for_device
,
1868 .set_dma_mask
= arm_dma_set_mask
,
1871 struct dma_map_ops iommu_coherent_ops
= {
1872 .alloc
= arm_iommu_alloc_attrs
,
1873 .free
= arm_iommu_free_attrs
,
1874 .mmap
= arm_iommu_mmap_attrs
,
1875 .get_sgtable
= arm_iommu_get_sgtable
,
1877 .map_page
= arm_coherent_iommu_map_page
,
1878 .unmap_page
= arm_coherent_iommu_unmap_page
,
1880 .map_sg
= arm_coherent_iommu_map_sg
,
1881 .unmap_sg
= arm_coherent_iommu_unmap_sg
,
1883 .set_dma_mask
= arm_dma_set_mask
,
1887 * arm_iommu_create_mapping
1888 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1889 * @base: start address of the valid IO address space
1890 * @size: maximum size of the valid IO address space
1892 * Creates a mapping structure which holds information about used/unused
1893 * IO address ranges, which is required to perform memory allocation and
1894 * mapping with IOMMU aware functions.
1896 * The client device need to be attached to the mapping with
1897 * arm_iommu_attach_device function.
1899 struct dma_iommu_mapping
*
1900 arm_iommu_create_mapping(struct bus_type
*bus
, dma_addr_t base
, u64 size
)
1902 unsigned int bits
= size
>> PAGE_SHIFT
;
1903 unsigned int bitmap_size
= BITS_TO_LONGS(bits
) * sizeof(long);
1904 struct dma_iommu_mapping
*mapping
;
1908 /* currently only 32-bit DMA address space is supported */
1909 if (size
> DMA_BIT_MASK(32) + 1)
1910 return ERR_PTR(-ERANGE
);
1913 return ERR_PTR(-EINVAL
);
1915 if (bitmap_size
> PAGE_SIZE
) {
1916 extensions
= bitmap_size
/ PAGE_SIZE
;
1917 bitmap_size
= PAGE_SIZE
;
1920 mapping
= kzalloc(sizeof(struct dma_iommu_mapping
), GFP_KERNEL
);
1924 mapping
->bitmap_size
= bitmap_size
;
1925 mapping
->bitmaps
= kzalloc(extensions
* sizeof(unsigned long *),
1927 if (!mapping
->bitmaps
)
1930 mapping
->bitmaps
[0] = kzalloc(bitmap_size
, GFP_KERNEL
);
1931 if (!mapping
->bitmaps
[0])
1934 mapping
->nr_bitmaps
= 1;
1935 mapping
->extensions
= extensions
;
1936 mapping
->base
= base
;
1937 mapping
->bits
= BITS_PER_BYTE
* bitmap_size
;
1939 spin_lock_init(&mapping
->lock
);
1941 mapping
->domain
= iommu_domain_alloc(bus
);
1942 if (!mapping
->domain
)
1945 kref_init(&mapping
->kref
);
1948 kfree(mapping
->bitmaps
[0]);
1950 kfree(mapping
->bitmaps
);
1954 return ERR_PTR(err
);
1956 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping
);
1958 static void release_iommu_mapping(struct kref
*kref
)
1961 struct dma_iommu_mapping
*mapping
=
1962 container_of(kref
, struct dma_iommu_mapping
, kref
);
1964 iommu_domain_free(mapping
->domain
);
1965 for (i
= 0; i
< mapping
->nr_bitmaps
; i
++)
1966 kfree(mapping
->bitmaps
[i
]);
1967 kfree(mapping
->bitmaps
);
1971 static int extend_iommu_mapping(struct dma_iommu_mapping
*mapping
)
1975 if (mapping
->nr_bitmaps
>= mapping
->extensions
)
1978 next_bitmap
= mapping
->nr_bitmaps
;
1979 mapping
->bitmaps
[next_bitmap
] = kzalloc(mapping
->bitmap_size
,
1981 if (!mapping
->bitmaps
[next_bitmap
])
1984 mapping
->nr_bitmaps
++;
1989 void arm_iommu_release_mapping(struct dma_iommu_mapping
*mapping
)
1992 kref_put(&mapping
->kref
, release_iommu_mapping
);
1994 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping
);
1996 static int __arm_iommu_attach_device(struct device
*dev
,
1997 struct dma_iommu_mapping
*mapping
)
2001 err
= iommu_attach_device(mapping
->domain
, dev
);
2005 kref_get(&mapping
->kref
);
2006 to_dma_iommu_mapping(dev
) = mapping
;
2008 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev
));
2013 * arm_iommu_attach_device
2014 * @dev: valid struct device pointer
2015 * @mapping: io address space mapping structure (returned from
2016 * arm_iommu_create_mapping)
2018 * Attaches specified io address space mapping to the provided device.
2019 * This replaces the dma operations (dma_map_ops pointer) with the
2020 * IOMMU aware version.
2022 * More than one client might be attached to the same io address space
2025 int arm_iommu_attach_device(struct device
*dev
,
2026 struct dma_iommu_mapping
*mapping
)
2030 err
= __arm_iommu_attach_device(dev
, mapping
);
2034 set_dma_ops(dev
, &iommu_ops
);
2037 EXPORT_SYMBOL_GPL(arm_iommu_attach_device
);
2039 static void __arm_iommu_detach_device(struct device
*dev
)
2041 struct dma_iommu_mapping
*mapping
;
2043 mapping
= to_dma_iommu_mapping(dev
);
2045 dev_warn(dev
, "Not attached\n");
2049 iommu_detach_device(mapping
->domain
, dev
);
2050 kref_put(&mapping
->kref
, release_iommu_mapping
);
2051 to_dma_iommu_mapping(dev
) = NULL
;
2053 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev
));
2057 * arm_iommu_detach_device
2058 * @dev: valid struct device pointer
2060 * Detaches the provided device from a previously attached map.
2061 * This voids the dma operations (dma_map_ops pointer)
2063 void arm_iommu_detach_device(struct device
*dev
)
2065 __arm_iommu_detach_device(dev
);
2066 set_dma_ops(dev
, NULL
);
2068 EXPORT_SYMBOL_GPL(arm_iommu_detach_device
);
2070 static struct dma_map_ops
*arm_get_iommu_dma_map_ops(bool coherent
)
2072 return coherent
? &iommu_coherent_ops
: &iommu_ops
;
2075 static bool arm_setup_iommu_dma_ops(struct device
*dev
, u64 dma_base
, u64 size
,
2076 struct iommu_ops
*iommu
)
2078 struct dma_iommu_mapping
*mapping
;
2083 mapping
= arm_iommu_create_mapping(dev
->bus
, dma_base
, size
);
2084 if (IS_ERR(mapping
)) {
2085 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2086 size
, dev_name(dev
));
2090 if (__arm_iommu_attach_device(dev
, mapping
)) {
2091 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2093 arm_iommu_release_mapping(mapping
);
2100 static void arm_teardown_iommu_dma_ops(struct device
*dev
)
2102 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
2107 __arm_iommu_detach_device(dev
);
2108 arm_iommu_release_mapping(mapping
);
2113 static bool arm_setup_iommu_dma_ops(struct device
*dev
, u64 dma_base
, u64 size
,
2114 struct iommu_ops
*iommu
)
2119 static void arm_teardown_iommu_dma_ops(struct device
*dev
) { }
2121 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2123 #endif /* CONFIG_ARM_DMA_USE_IOMMU */
2125 static struct dma_map_ops
*arm_get_dma_map_ops(bool coherent
)
2127 return coherent
? &arm_coherent_dma_ops
: &arm_dma_ops
;
2130 void arch_setup_dma_ops(struct device
*dev
, u64 dma_base
, u64 size
,
2131 struct iommu_ops
*iommu
, bool coherent
)
2133 struct dma_map_ops
*dma_ops
;
2135 dev
->archdata
.dma_coherent
= coherent
;
2136 if (arm_setup_iommu_dma_ops(dev
, dma_base
, size
, iommu
))
2137 dma_ops
= arm_get_iommu_dma_map_ops(coherent
);
2139 dma_ops
= arm_get_dma_map_ops(coherent
);
2141 set_dma_ops(dev
, dma_ops
);
2144 void arch_teardown_dma_ops(struct device
*dev
)
2146 arm_teardown_iommu_dma_ops(dev
);