of: MSI: Simplify irqdomain lookup
[linux/fpc-iii.git] / arch / arm64 / include / asm / kvm_mmu.h
blob61505676d0853bb65710fc9ad7746db8f58e4658
1 /*
2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 #ifndef __ARM64_KVM_MMU_H__
19 #define __ARM64_KVM_MMU_H__
21 #include <asm/page.h>
22 #include <asm/memory.h>
25 * As we only have the TTBR0_EL2 register, we cannot express
26 * "negative" addresses. This makes it impossible to directly share
27 * mappings with the kernel.
29 * Instead, give the HYP mode its own VA region at a fixed offset from
30 * the kernel by just masking the top bits (which are all ones for a
31 * kernel address).
33 #define HYP_PAGE_OFFSET_SHIFT VA_BITS
34 #define HYP_PAGE_OFFSET_MASK ((UL(1) << HYP_PAGE_OFFSET_SHIFT) - 1)
35 #define HYP_PAGE_OFFSET (PAGE_OFFSET & HYP_PAGE_OFFSET_MASK)
38 * Our virtual mapping for the idmap-ed MMU-enable code. Must be
39 * shared across all the page-tables. Conveniently, we use the last
40 * possible page, where no kernel mapping will ever exist.
42 #define TRAMPOLINE_VA (HYP_PAGE_OFFSET_MASK & PAGE_MASK)
45 * KVM_MMU_CACHE_MIN_PAGES is the number of stage2 page table translation
46 * levels in addition to the PGD and potentially the PUD which are
47 * pre-allocated (we pre-allocate the fake PGD and the PUD when the Stage-2
48 * tables use one level of tables less than the kernel.
50 #ifdef CONFIG_ARM64_64K_PAGES
51 #define KVM_MMU_CACHE_MIN_PAGES 1
52 #else
53 #define KVM_MMU_CACHE_MIN_PAGES 2
54 #endif
56 #ifdef __ASSEMBLY__
59 * Convert a kernel VA into a HYP VA.
60 * reg: VA to be converted.
62 .macro kern_hyp_va reg
63 and \reg, \reg, #HYP_PAGE_OFFSET_MASK
64 .endm
66 #else
68 #include <asm/pgalloc.h>
69 #include <asm/cachetype.h>
70 #include <asm/cacheflush.h>
71 #include <asm/mmu_context.h>
72 #include <asm/pgtable.h>
74 #define KERN_TO_HYP(kva) ((unsigned long)kva - PAGE_OFFSET + HYP_PAGE_OFFSET)
77 * We currently only support a 40bit IPA.
79 #define KVM_PHYS_SHIFT (40)
80 #define KVM_PHYS_SIZE (1UL << KVM_PHYS_SHIFT)
81 #define KVM_PHYS_MASK (KVM_PHYS_SIZE - 1UL)
83 int create_hyp_mappings(void *from, void *to);
84 int create_hyp_io_mappings(void *from, void *to, phys_addr_t);
85 void free_boot_hyp_pgd(void);
86 void free_hyp_pgds(void);
88 void stage2_unmap_vm(struct kvm *kvm);
89 int kvm_alloc_stage2_pgd(struct kvm *kvm);
90 void kvm_free_stage2_pgd(struct kvm *kvm);
91 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
92 phys_addr_t pa, unsigned long size, bool writable);
94 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run);
96 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
98 phys_addr_t kvm_mmu_get_httbr(void);
99 phys_addr_t kvm_mmu_get_boot_httbr(void);
100 phys_addr_t kvm_get_idmap_vector(void);
101 int kvm_mmu_init(void);
102 void kvm_clear_hyp_idmap(void);
104 #define kvm_set_pte(ptep, pte) set_pte(ptep, pte)
105 #define kvm_set_pmd(pmdp, pmd) set_pmd(pmdp, pmd)
107 static inline void kvm_clean_pgd(pgd_t *pgd) {}
108 static inline void kvm_clean_pmd(pmd_t *pmd) {}
109 static inline void kvm_clean_pmd_entry(pmd_t *pmd) {}
110 static inline void kvm_clean_pte(pte_t *pte) {}
111 static inline void kvm_clean_pte_entry(pte_t *pte) {}
113 static inline void kvm_set_s2pte_writable(pte_t *pte)
115 pte_val(*pte) |= PTE_S2_RDWR;
118 static inline void kvm_set_s2pmd_writable(pmd_t *pmd)
120 pmd_val(*pmd) |= PMD_S2_RDWR;
123 static inline void kvm_set_s2pte_readonly(pte_t *pte)
125 pte_val(*pte) = (pte_val(*pte) & ~PTE_S2_RDWR) | PTE_S2_RDONLY;
128 static inline bool kvm_s2pte_readonly(pte_t *pte)
130 return (pte_val(*pte) & PTE_S2_RDWR) == PTE_S2_RDONLY;
133 static inline void kvm_set_s2pmd_readonly(pmd_t *pmd)
135 pmd_val(*pmd) = (pmd_val(*pmd) & ~PMD_S2_RDWR) | PMD_S2_RDONLY;
138 static inline bool kvm_s2pmd_readonly(pmd_t *pmd)
140 return (pmd_val(*pmd) & PMD_S2_RDWR) == PMD_S2_RDONLY;
144 #define kvm_pgd_addr_end(addr, end) pgd_addr_end(addr, end)
145 #define kvm_pud_addr_end(addr, end) pud_addr_end(addr, end)
146 #define kvm_pmd_addr_end(addr, end) pmd_addr_end(addr, end)
149 * In the case where PGDIR_SHIFT is larger than KVM_PHYS_SHIFT, we can address
150 * the entire IPA input range with a single pgd entry, and we would only need
151 * one pgd entry. Note that in this case, the pgd is actually not used by
152 * the MMU for Stage-2 translations, but is merely a fake pgd used as a data
153 * structure for the kernel pgtable macros to work.
155 #if PGDIR_SHIFT > KVM_PHYS_SHIFT
156 #define PTRS_PER_S2_PGD_SHIFT 0
157 #else
158 #define PTRS_PER_S2_PGD_SHIFT (KVM_PHYS_SHIFT - PGDIR_SHIFT)
159 #endif
160 #define PTRS_PER_S2_PGD (1 << PTRS_PER_S2_PGD_SHIFT)
161 #define S2_PGD_ORDER get_order(PTRS_PER_S2_PGD * sizeof(pgd_t))
163 #define kvm_pgd_index(addr) (((addr) >> PGDIR_SHIFT) & (PTRS_PER_S2_PGD - 1))
166 * If we are concatenating first level stage-2 page tables, we would have less
167 * than or equal to 16 pointers in the fake PGD, because that's what the
168 * architecture allows. In this case, (4 - CONFIG_PGTABLE_LEVELS)
169 * represents the first level for the host, and we add 1 to go to the next
170 * level (which uses contatenation) for the stage-2 tables.
172 #if PTRS_PER_S2_PGD <= 16
173 #define KVM_PREALLOC_LEVEL (4 - CONFIG_PGTABLE_LEVELS + 1)
174 #else
175 #define KVM_PREALLOC_LEVEL (0)
176 #endif
178 static inline void *kvm_get_hwpgd(struct kvm *kvm)
180 pgd_t *pgd = kvm->arch.pgd;
181 pud_t *pud;
183 if (KVM_PREALLOC_LEVEL == 0)
184 return pgd;
186 pud = pud_offset(pgd, 0);
187 if (KVM_PREALLOC_LEVEL == 1)
188 return pud;
190 BUG_ON(KVM_PREALLOC_LEVEL != 2);
191 return pmd_offset(pud, 0);
194 static inline unsigned int kvm_get_hwpgd_size(void)
196 if (KVM_PREALLOC_LEVEL > 0)
197 return PTRS_PER_S2_PGD * PAGE_SIZE;
198 return PTRS_PER_S2_PGD * sizeof(pgd_t);
201 static inline bool kvm_page_empty(void *ptr)
203 struct page *ptr_page = virt_to_page(ptr);
204 return page_count(ptr_page) == 1;
207 #define kvm_pte_table_empty(kvm, ptep) kvm_page_empty(ptep)
209 #ifdef __PAGETABLE_PMD_FOLDED
210 #define kvm_pmd_table_empty(kvm, pmdp) (0)
211 #else
212 #define kvm_pmd_table_empty(kvm, pmdp) \
213 (kvm_page_empty(pmdp) && (!(kvm) || KVM_PREALLOC_LEVEL < 2))
214 #endif
216 #ifdef __PAGETABLE_PUD_FOLDED
217 #define kvm_pud_table_empty(kvm, pudp) (0)
218 #else
219 #define kvm_pud_table_empty(kvm, pudp) \
220 (kvm_page_empty(pudp) && (!(kvm) || KVM_PREALLOC_LEVEL < 1))
221 #endif
224 struct kvm;
226 #define kvm_flush_dcache_to_poc(a,l) __flush_dcache_area((a), (l))
228 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
230 return (vcpu_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
233 static inline void __coherent_cache_guest_page(struct kvm_vcpu *vcpu, pfn_t pfn,
234 unsigned long size,
235 bool ipa_uncached)
237 void *va = page_address(pfn_to_page(pfn));
239 if (!vcpu_has_cache_enabled(vcpu) || ipa_uncached)
240 kvm_flush_dcache_to_poc(va, size);
242 if (!icache_is_aliasing()) { /* PIPT */
243 flush_icache_range((unsigned long)va,
244 (unsigned long)va + size);
245 } else if (!icache_is_aivivt()) { /* non ASID-tagged VIVT */
246 /* any kind of VIPT cache */
247 __flush_icache_all();
251 static inline void __kvm_flush_dcache_pte(pte_t pte)
253 struct page *page = pte_page(pte);
254 kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE);
257 static inline void __kvm_flush_dcache_pmd(pmd_t pmd)
259 struct page *page = pmd_page(pmd);
260 kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE);
263 static inline void __kvm_flush_dcache_pud(pud_t pud)
265 struct page *page = pud_page(pud);
266 kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE);
269 #define kvm_virt_to_phys(x) __virt_to_phys((unsigned long)(x))
271 void kvm_set_way_flush(struct kvm_vcpu *vcpu);
272 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
274 static inline bool __kvm_cpu_uses_extended_idmap(void)
276 return __cpu_uses_extended_idmap();
279 static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd,
280 pgd_t *hyp_pgd,
281 pgd_t *merged_hyp_pgd,
282 unsigned long hyp_idmap_start)
284 int idmap_idx;
287 * Use the first entry to access the HYP mappings. It is
288 * guaranteed to be free, otherwise we wouldn't use an
289 * extended idmap.
291 VM_BUG_ON(pgd_val(merged_hyp_pgd[0]));
292 merged_hyp_pgd[0] = __pgd(__pa(hyp_pgd) | PMD_TYPE_TABLE);
295 * Create another extended level entry that points to the boot HYP map,
296 * which contains an ID mapping of the HYP init code. We essentially
297 * merge the boot and runtime HYP maps by doing so, but they don't
298 * overlap anyway, so this is fine.
300 idmap_idx = hyp_idmap_start >> VA_BITS;
301 VM_BUG_ON(pgd_val(merged_hyp_pgd[idmap_idx]));
302 merged_hyp_pgd[idmap_idx] = __pgd(__pa(boot_hyp_pgd) | PMD_TYPE_TABLE);
305 #endif /* __ASSEMBLY__ */
306 #endif /* __ARM64_KVM_MMU_H__ */