2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 * Derived from arch/arm/kvm/coproc.c:
6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7 * Authors: Rusty Russell <rusty@rustcorp.com.au>
8 * Christoffer Dall <c.dall@virtualopensystems.com>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License, version 2, as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
23 #include <linux/kvm_host.h>
25 #include <linux/uaccess.h>
27 #include <asm/cacheflush.h>
28 #include <asm/cputype.h>
29 #include <asm/debug-monitors.h>
31 #include <asm/kvm_arm.h>
32 #include <asm/kvm_coproc.h>
33 #include <asm/kvm_emulate.h>
34 #include <asm/kvm_host.h>
35 #include <asm/kvm_mmu.h>
37 #include <trace/events/kvm.h>
44 * All of this file is extremly similar to the ARM coproc.c, but the
45 * types are different. My gut feeling is that it should be pretty
46 * easy to merge, but that would be an ABI breakage -- again. VFP
47 * would also need to be abstracted.
49 * For AArch32, we only take care of what is being trapped. Anything
50 * that has to do with init and userspace access has to go via the
54 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
55 static u32 cache_levels
;
57 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
60 /* Which cache CCSIDR represents depends on CSSELR value. */
61 static u32
get_ccsidr(u32 csselr
)
65 /* Make sure noone else changes CSSELR during this! */
67 /* Put value into CSSELR */
68 asm volatile("msr csselr_el1, %x0" : : "r" (csselr
));
70 /* Read result out of CCSIDR */
71 asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr
));
78 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
80 static bool access_dcsw(struct kvm_vcpu
*vcpu
,
81 struct sys_reg_params
*p
,
82 const struct sys_reg_desc
*r
)
85 return read_from_write_only(vcpu
, p
);
87 kvm_set_way_flush(vcpu
);
92 * Generic accessor for VM registers. Only called as long as HCR_TVM
93 * is set. If the guest enables the MMU, we stop trapping the VM
94 * sys_regs and leave it in complete control of the caches.
96 static bool access_vm_reg(struct kvm_vcpu
*vcpu
,
97 struct sys_reg_params
*p
,
98 const struct sys_reg_desc
*r
)
100 bool was_enabled
= vcpu_has_cache_enabled(vcpu
);
102 BUG_ON(!p
->is_write
);
104 if (!p
->is_aarch32
) {
105 vcpu_sys_reg(vcpu
, r
->reg
) = p
->regval
;
108 vcpu_cp15_64_high(vcpu
, r
->reg
) = upper_32_bits(p
->regval
);
109 vcpu_cp15_64_low(vcpu
, r
->reg
) = lower_32_bits(p
->regval
);
112 kvm_toggle_cache(vcpu
, was_enabled
);
117 * Trap handler for the GICv3 SGI generation system register.
118 * Forward the request to the VGIC emulation.
119 * The cp15_64 code makes sure this automatically works
120 * for both AArch64 and AArch32 accesses.
122 static bool access_gic_sgi(struct kvm_vcpu
*vcpu
,
123 struct sys_reg_params
*p
,
124 const struct sys_reg_desc
*r
)
127 return read_from_write_only(vcpu
, p
);
129 vgic_v3_dispatch_sgi(vcpu
, p
->regval
);
134 static bool trap_raz_wi(struct kvm_vcpu
*vcpu
,
135 struct sys_reg_params
*p
,
136 const struct sys_reg_desc
*r
)
139 return ignore_write(vcpu
, p
);
141 return read_zero(vcpu
, p
);
144 static bool trap_oslsr_el1(struct kvm_vcpu
*vcpu
,
145 struct sys_reg_params
*p
,
146 const struct sys_reg_desc
*r
)
149 return ignore_write(vcpu
, p
);
151 p
->regval
= (1 << 3);
156 static bool trap_dbgauthstatus_el1(struct kvm_vcpu
*vcpu
,
157 struct sys_reg_params
*p
,
158 const struct sys_reg_desc
*r
)
161 return ignore_write(vcpu
, p
);
164 asm volatile("mrs %0, dbgauthstatus_el1" : "=r" (val
));
171 * We want to avoid world-switching all the DBG registers all the
174 * - If we've touched any debug register, it is likely that we're
175 * going to touch more of them. It then makes sense to disable the
176 * traps and start doing the save/restore dance
177 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
178 * then mandatory to save/restore the registers, as the guest
181 * For this, we use a DIRTY bit, indicating the guest has modified the
182 * debug registers, used as follow:
185 * - If the dirty bit is set (because we're coming back from trapping),
186 * disable the traps, save host registers, restore guest registers.
187 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
188 * set the dirty bit, disable the traps, save host registers,
189 * restore guest registers.
190 * - Otherwise, enable the traps
193 * - If the dirty bit is set, save guest registers, restore host
194 * registers and clear the dirty bit. This ensure that the host can
195 * now use the debug registers.
197 static bool trap_debug_regs(struct kvm_vcpu
*vcpu
,
198 struct sys_reg_params
*p
,
199 const struct sys_reg_desc
*r
)
202 vcpu_sys_reg(vcpu
, r
->reg
) = p
->regval
;
203 vcpu
->arch
.debug_flags
|= KVM_ARM64_DEBUG_DIRTY
;
205 p
->regval
= vcpu_sys_reg(vcpu
, r
->reg
);
208 trace_trap_reg(__func__
, r
->reg
, p
->is_write
, p
->regval
);
214 * reg_to_dbg/dbg_to_reg
216 * A 32 bit write to a debug register leave top bits alone
217 * A 32 bit read from a debug register only returns the bottom bits
219 * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
220 * hyp.S code switches between host and guest values in future.
222 static inline void reg_to_dbg(struct kvm_vcpu
*vcpu
,
223 struct sys_reg_params
*p
,
230 val
|= ((*dbg_reg
>> 32) << 32);
234 vcpu
->arch
.debug_flags
|= KVM_ARM64_DEBUG_DIRTY
;
237 static inline void dbg_to_reg(struct kvm_vcpu
*vcpu
,
238 struct sys_reg_params
*p
,
241 p
->regval
= *dbg_reg
;
243 p
->regval
&= 0xffffffffUL
;
246 static inline bool trap_bvr(struct kvm_vcpu
*vcpu
,
247 struct sys_reg_params
*p
,
248 const struct sys_reg_desc
*rd
)
250 u64
*dbg_reg
= &vcpu
->arch
.vcpu_debug_state
.dbg_bvr
[rd
->reg
];
253 reg_to_dbg(vcpu
, p
, dbg_reg
);
255 dbg_to_reg(vcpu
, p
, dbg_reg
);
257 trace_trap_reg(__func__
, rd
->reg
, p
->is_write
, *dbg_reg
);
262 static int set_bvr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
263 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
265 __u64
*r
= &vcpu
->arch
.vcpu_debug_state
.dbg_bvr
[rd
->reg
];
267 if (copy_from_user(r
, uaddr
, KVM_REG_SIZE(reg
->id
)) != 0)
272 static int get_bvr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
273 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
275 __u64
*r
= &vcpu
->arch
.vcpu_debug_state
.dbg_bvr
[rd
->reg
];
277 if (copy_to_user(uaddr
, r
, KVM_REG_SIZE(reg
->id
)) != 0)
282 static inline void reset_bvr(struct kvm_vcpu
*vcpu
,
283 const struct sys_reg_desc
*rd
)
285 vcpu
->arch
.vcpu_debug_state
.dbg_bvr
[rd
->reg
] = rd
->val
;
288 static inline bool trap_bcr(struct kvm_vcpu
*vcpu
,
289 struct sys_reg_params
*p
,
290 const struct sys_reg_desc
*rd
)
292 u64
*dbg_reg
= &vcpu
->arch
.vcpu_debug_state
.dbg_bcr
[rd
->reg
];
295 reg_to_dbg(vcpu
, p
, dbg_reg
);
297 dbg_to_reg(vcpu
, p
, dbg_reg
);
299 trace_trap_reg(__func__
, rd
->reg
, p
->is_write
, *dbg_reg
);
304 static int set_bcr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
305 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
307 __u64
*r
= &vcpu
->arch
.vcpu_debug_state
.dbg_bcr
[rd
->reg
];
309 if (copy_from_user(r
, uaddr
, KVM_REG_SIZE(reg
->id
)) != 0)
315 static int get_bcr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
316 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
318 __u64
*r
= &vcpu
->arch
.vcpu_debug_state
.dbg_bcr
[rd
->reg
];
320 if (copy_to_user(uaddr
, r
, KVM_REG_SIZE(reg
->id
)) != 0)
325 static inline void reset_bcr(struct kvm_vcpu
*vcpu
,
326 const struct sys_reg_desc
*rd
)
328 vcpu
->arch
.vcpu_debug_state
.dbg_bcr
[rd
->reg
] = rd
->val
;
331 static inline bool trap_wvr(struct kvm_vcpu
*vcpu
,
332 struct sys_reg_params
*p
,
333 const struct sys_reg_desc
*rd
)
335 u64
*dbg_reg
= &vcpu
->arch
.vcpu_debug_state
.dbg_wvr
[rd
->reg
];
338 reg_to_dbg(vcpu
, p
, dbg_reg
);
340 dbg_to_reg(vcpu
, p
, dbg_reg
);
342 trace_trap_reg(__func__
, rd
->reg
, p
->is_write
,
343 vcpu
->arch
.vcpu_debug_state
.dbg_wvr
[rd
->reg
]);
348 static int set_wvr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
349 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
351 __u64
*r
= &vcpu
->arch
.vcpu_debug_state
.dbg_wvr
[rd
->reg
];
353 if (copy_from_user(r
, uaddr
, KVM_REG_SIZE(reg
->id
)) != 0)
358 static int get_wvr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
359 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
361 __u64
*r
= &vcpu
->arch
.vcpu_debug_state
.dbg_wvr
[rd
->reg
];
363 if (copy_to_user(uaddr
, r
, KVM_REG_SIZE(reg
->id
)) != 0)
368 static inline void reset_wvr(struct kvm_vcpu
*vcpu
,
369 const struct sys_reg_desc
*rd
)
371 vcpu
->arch
.vcpu_debug_state
.dbg_wvr
[rd
->reg
] = rd
->val
;
374 static inline bool trap_wcr(struct kvm_vcpu
*vcpu
,
375 struct sys_reg_params
*p
,
376 const struct sys_reg_desc
*rd
)
378 u64
*dbg_reg
= &vcpu
->arch
.vcpu_debug_state
.dbg_wcr
[rd
->reg
];
381 reg_to_dbg(vcpu
, p
, dbg_reg
);
383 dbg_to_reg(vcpu
, p
, dbg_reg
);
385 trace_trap_reg(__func__
, rd
->reg
, p
->is_write
, *dbg_reg
);
390 static int set_wcr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
391 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
393 __u64
*r
= &vcpu
->arch
.vcpu_debug_state
.dbg_wcr
[rd
->reg
];
395 if (copy_from_user(r
, uaddr
, KVM_REG_SIZE(reg
->id
)) != 0)
400 static int get_wcr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
401 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
403 __u64
*r
= &vcpu
->arch
.vcpu_debug_state
.dbg_wcr
[rd
->reg
];
405 if (copy_to_user(uaddr
, r
, KVM_REG_SIZE(reg
->id
)) != 0)
410 static inline void reset_wcr(struct kvm_vcpu
*vcpu
,
411 const struct sys_reg_desc
*rd
)
413 vcpu
->arch
.vcpu_debug_state
.dbg_wcr
[rd
->reg
] = rd
->val
;
416 static void reset_amair_el1(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*r
)
420 asm volatile("mrs %0, amair_el1\n" : "=r" (amair
));
421 vcpu_sys_reg(vcpu
, AMAIR_EL1
) = amair
;
424 static void reset_mpidr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*r
)
429 * Map the vcpu_id into the first three affinity level fields of
430 * the MPIDR. We limit the number of VCPUs in level 0 due to a
431 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
432 * of the GICv3 to be able to address each CPU directly when
435 mpidr
= (vcpu
->vcpu_id
& 0x0f) << MPIDR_LEVEL_SHIFT(0);
436 mpidr
|= ((vcpu
->vcpu_id
>> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
437 mpidr
|= ((vcpu
->vcpu_id
>> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
438 vcpu_sys_reg(vcpu
, MPIDR_EL1
) = (1ULL << 31) | mpidr
;
441 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
442 #define DBG_BCR_BVR_WCR_WVR_EL1(n) \
444 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100), \
445 trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr }, \
447 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101), \
448 trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr }, \
450 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110), \
451 trap_wvr, reset_wvr, n, 0, get_wvr, set_wvr }, \
453 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111), \
454 trap_wcr, reset_wcr, n, 0, get_wcr, set_wcr }
457 * Architected system registers.
458 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
460 * We could trap ID_DFR0 and tell the guest we don't support performance
461 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
462 * NAKed, so it will read the PMCR anyway.
464 * Therefore we tell the guest we have 0 counters. Unfortunately, we
465 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
466 * all PM registers, which doesn't crash the guest kernel at least.
468 * Debug handling: We do trap most, if not all debug related system
469 * registers. The implementation is good enough to ensure that a guest
470 * can use these with minimal performance degradation. The drawback is
471 * that we don't implement any of the external debug, none of the
472 * OSlock protocol. This should be revisited if we ever encounter a
473 * more demanding guest...
475 static const struct sys_reg_desc sys_reg_descs
[] = {
477 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
480 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
483 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
486 DBG_BCR_BVR_WCR_WVR_EL1(0),
487 DBG_BCR_BVR_WCR_WVR_EL1(1),
489 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
490 trap_debug_regs
, reset_val
, MDCCINT_EL1
, 0 },
492 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
493 trap_debug_regs
, reset_val
, MDSCR_EL1
, 0 },
494 DBG_BCR_BVR_WCR_WVR_EL1(2),
495 DBG_BCR_BVR_WCR_WVR_EL1(3),
496 DBG_BCR_BVR_WCR_WVR_EL1(4),
497 DBG_BCR_BVR_WCR_WVR_EL1(5),
498 DBG_BCR_BVR_WCR_WVR_EL1(6),
499 DBG_BCR_BVR_WCR_WVR_EL1(7),
500 DBG_BCR_BVR_WCR_WVR_EL1(8),
501 DBG_BCR_BVR_WCR_WVR_EL1(9),
502 DBG_BCR_BVR_WCR_WVR_EL1(10),
503 DBG_BCR_BVR_WCR_WVR_EL1(11),
504 DBG_BCR_BVR_WCR_WVR_EL1(12),
505 DBG_BCR_BVR_WCR_WVR_EL1(13),
506 DBG_BCR_BVR_WCR_WVR_EL1(14),
507 DBG_BCR_BVR_WCR_WVR_EL1(15),
510 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
513 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
516 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
519 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
522 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
524 /* DBGCLAIMSET_EL1 */
525 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
527 /* DBGCLAIMCLR_EL1 */
528 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
530 /* DBGAUTHSTATUS_EL1 */
531 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
532 trap_dbgauthstatus_el1
},
535 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
538 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
540 /* DBGDTR[TR]X_EL0 */
541 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
545 { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
546 NULL
, reset_val
, DBGVCR32_EL2
, 0 },
549 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
550 NULL
, reset_mpidr
, MPIDR_EL1
},
552 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
553 access_vm_reg
, reset_val
, SCTLR_EL1
, 0x00C50078 },
555 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
556 NULL
, reset_val
, CPACR_EL1
, 0 },
558 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
559 access_vm_reg
, reset_unknown
, TTBR0_EL1
},
561 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
562 access_vm_reg
, reset_unknown
, TTBR1_EL1
},
564 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
565 access_vm_reg
, reset_val
, TCR_EL1
, 0 },
568 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
569 access_vm_reg
, reset_unknown
, AFSR0_EL1
},
571 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
572 access_vm_reg
, reset_unknown
, AFSR1_EL1
},
574 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
575 access_vm_reg
, reset_unknown
, ESR_EL1
},
577 { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
578 access_vm_reg
, reset_unknown
, FAR_EL1
},
580 { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
581 NULL
, reset_unknown
, PAR_EL1
},
584 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
587 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
591 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
592 access_vm_reg
, reset_unknown
, MAIR_EL1
},
594 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
595 access_vm_reg
, reset_amair_el1
, AMAIR_EL1
},
598 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
599 NULL
, reset_val
, VBAR_EL1
, 0 },
602 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1011), Op2(0b101),
605 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
609 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
610 access_vm_reg
, reset_val
, CONTEXTIDR_EL1
, 0 },
612 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
613 NULL
, reset_unknown
, TPIDR_EL1
},
616 { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
617 NULL
, reset_val
, CNTKCTL_EL1
, 0},
620 { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
621 NULL
, reset_unknown
, CSSELR_EL1
},
624 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
627 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
630 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
633 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
636 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
639 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
642 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
645 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
648 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
651 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
654 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
657 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
660 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
664 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
665 NULL
, reset_unknown
, TPIDR_EL0
},
667 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
668 NULL
, reset_unknown
, TPIDRRO_EL0
},
671 { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
672 NULL
, reset_unknown
, DACR32_EL2
},
674 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
675 NULL
, reset_unknown
, IFSR32_EL2
},
677 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
678 NULL
, reset_val
, FPEXC32_EL2
, 0x70 },
681 static bool trap_dbgidr(struct kvm_vcpu
*vcpu
,
682 struct sys_reg_params
*p
,
683 const struct sys_reg_desc
*r
)
686 return ignore_write(vcpu
, p
);
688 u64 dfr
= read_system_reg(SYS_ID_AA64DFR0_EL1
);
689 u64 pfr
= read_system_reg(SYS_ID_AA64PFR0_EL1
);
690 u32 el3
= !!cpuid_feature_extract_field(pfr
, ID_AA64PFR0_EL3_SHIFT
);
692 p
->regval
= ((((dfr
>> ID_AA64DFR0_WRPS_SHIFT
) & 0xf) << 28) |
693 (((dfr
>> ID_AA64DFR0_BRPS_SHIFT
) & 0xf) << 24) |
694 (((dfr
>> ID_AA64DFR0_CTX_CMPS_SHIFT
) & 0xf) << 20)
695 | (6 << 16) | (el3
<< 14) | (el3
<< 12));
700 static bool trap_debug32(struct kvm_vcpu
*vcpu
,
701 struct sys_reg_params
*p
,
702 const struct sys_reg_desc
*r
)
705 vcpu_cp14(vcpu
, r
->reg
) = p
->regval
;
706 vcpu
->arch
.debug_flags
|= KVM_ARM64_DEBUG_DIRTY
;
708 p
->regval
= vcpu_cp14(vcpu
, r
->reg
);
714 /* AArch32 debug register mappings
716 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
717 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
719 * All control registers and watchpoint value registers are mapped to
720 * the lower 32 bits of their AArch64 equivalents. We share the trap
721 * handlers with the above AArch64 code which checks what mode the
725 static inline bool trap_xvr(struct kvm_vcpu
*vcpu
,
726 struct sys_reg_params
*p
,
727 const struct sys_reg_desc
*rd
)
729 u64
*dbg_reg
= &vcpu
->arch
.vcpu_debug_state
.dbg_bvr
[rd
->reg
];
735 val
|= p
->regval
<< 32;
738 vcpu
->arch
.debug_flags
|= KVM_ARM64_DEBUG_DIRTY
;
740 p
->regval
= *dbg_reg
>> 32;
743 trace_trap_reg(__func__
, rd
->reg
, p
->is_write
, *dbg_reg
);
748 #define DBG_BCR_BVR_WCR_WVR(n) \
750 { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
752 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
754 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
756 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
759 { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
762 * Trapped cp14 registers. We generally ignore most of the external
763 * debug, on the principle that they don't really make sense to a
764 * guest. Revisit this one day, would this principle change.
766 static const struct sys_reg_desc cp14_regs
[] = {
768 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr
},
770 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi
},
772 DBG_BCR_BVR_WCR_WVR(0),
774 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi
},
775 DBG_BCR_BVR_WCR_WVR(1),
777 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32
},
779 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32
},
780 DBG_BCR_BVR_WCR_WVR(2),
782 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi
},
784 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi
},
785 DBG_BCR_BVR_WCR_WVR(3),
786 DBG_BCR_BVR_WCR_WVR(4),
787 DBG_BCR_BVR_WCR_WVR(5),
789 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi
},
791 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi
},
792 DBG_BCR_BVR_WCR_WVR(6),
794 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32
},
795 DBG_BCR_BVR_WCR_WVR(7),
796 DBG_BCR_BVR_WCR_WVR(8),
797 DBG_BCR_BVR_WCR_WVR(9),
798 DBG_BCR_BVR_WCR_WVR(10),
799 DBG_BCR_BVR_WCR_WVR(11),
800 DBG_BCR_BVR_WCR_WVR(12),
801 DBG_BCR_BVR_WCR_WVR(13),
802 DBG_BCR_BVR_WCR_WVR(14),
803 DBG_BCR_BVR_WCR_WVR(15),
805 /* DBGDRAR (32bit) */
806 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi
},
810 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi
},
813 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1
},
817 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi
},
820 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi
},
833 /* DBGDSAR (32bit) */
834 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi
},
837 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi
},
839 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi
},
841 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi
},
843 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi
},
845 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi
},
847 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1
},
850 /* Trapped cp14 64bit registers */
851 static const struct sys_reg_desc cp14_64_regs
[] = {
852 /* DBGDRAR (64bit) */
853 { Op1( 0), CRm( 1), .access
= trap_raz_wi
},
855 /* DBGDSAR (64bit) */
856 { Op1( 0), CRm( 2), .access
= trap_raz_wi
},
860 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
861 * depending on the way they are accessed (as a 32bit or a 64bit
864 static const struct sys_reg_desc cp15_regs
[] = {
865 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi
},
867 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg
, NULL
, c1_SCTLR
},
868 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg
, NULL
, c2_TTBR0
},
869 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg
, NULL
, c2_TTBR1
},
870 { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg
, NULL
, c2_TTBCR
},
871 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg
, NULL
, c3_DACR
},
872 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg
, NULL
, c5_DFSR
},
873 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg
, NULL
, c5_IFSR
},
874 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg
, NULL
, c5_ADFSR
},
875 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg
, NULL
, c5_AIFSR
},
876 { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg
, NULL
, c6_DFAR
},
877 { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg
, NULL
, c6_IFAR
},
880 * DC{C,I,CI}SW operations:
882 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw
},
883 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw
},
884 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw
},
887 { Op1( 0), CRn( 9), CRm(12), Op2( 0), trap_raz_wi
},
888 { Op1( 0), CRn( 9), CRm(12), Op2( 1), trap_raz_wi
},
889 { Op1( 0), CRn( 9), CRm(12), Op2( 2), trap_raz_wi
},
890 { Op1( 0), CRn( 9), CRm(12), Op2( 3), trap_raz_wi
},
891 { Op1( 0), CRn( 9), CRm(12), Op2( 5), trap_raz_wi
},
892 { Op1( 0), CRn( 9), CRm(12), Op2( 6), trap_raz_wi
},
893 { Op1( 0), CRn( 9), CRm(12), Op2( 7), trap_raz_wi
},
894 { Op1( 0), CRn( 9), CRm(13), Op2( 0), trap_raz_wi
},
895 { Op1( 0), CRn( 9), CRm(13), Op2( 1), trap_raz_wi
},
896 { Op1( 0), CRn( 9), CRm(13), Op2( 2), trap_raz_wi
},
897 { Op1( 0), CRn( 9), CRm(14), Op2( 0), trap_raz_wi
},
898 { Op1( 0), CRn( 9), CRm(14), Op2( 1), trap_raz_wi
},
899 { Op1( 0), CRn( 9), CRm(14), Op2( 2), trap_raz_wi
},
901 { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg
, NULL
, c10_PRRR
},
902 { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg
, NULL
, c10_NMRR
},
903 { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg
, NULL
, c10_AMAIR0
},
904 { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg
, NULL
, c10_AMAIR1
},
907 { Op1( 0), CRn(12), CRm(12), Op2( 5), trap_raz_wi
},
909 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg
, NULL
, c13_CID
},
912 static const struct sys_reg_desc cp15_64_regs
[] = {
913 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg
, NULL
, c2_TTBR0
},
914 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi
},
915 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg
, NULL
, c2_TTBR1
},
918 /* Target specific emulation tables */
919 static struct kvm_sys_reg_target_table
*target_tables
[KVM_ARM_NUM_TARGETS
];
921 void kvm_register_target_sys_reg_table(unsigned int target
,
922 struct kvm_sys_reg_target_table
*table
)
924 target_tables
[target
] = table
;
927 /* Get specific register table for this target. */
928 static const struct sys_reg_desc
*get_target_table(unsigned target
,
932 struct kvm_sys_reg_target_table
*table
;
934 table
= target_tables
[target
];
936 *num
= table
->table64
.num
;
937 return table
->table64
.table
;
939 *num
= table
->table32
.num
;
940 return table
->table32
.table
;
944 static const struct sys_reg_desc
*find_reg(const struct sys_reg_params
*params
,
945 const struct sys_reg_desc table
[],
950 for (i
= 0; i
< num
; i
++) {
951 const struct sys_reg_desc
*r
= &table
[i
];
953 if (params
->Op0
!= r
->Op0
)
955 if (params
->Op1
!= r
->Op1
)
957 if (params
->CRn
!= r
->CRn
)
959 if (params
->CRm
!= r
->CRm
)
961 if (params
->Op2
!= r
->Op2
)
969 int kvm_handle_cp14_load_store(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
971 kvm_inject_undefined(vcpu
);
976 * emulate_cp -- tries to match a sys_reg access in a handling table, and
977 * call the corresponding trap handler.
979 * @params: pointer to the descriptor of the access
980 * @table: array of trap descriptors
981 * @num: size of the trap descriptor array
983 * Return 0 if the access has been handled, and -1 if not.
985 static int emulate_cp(struct kvm_vcpu
*vcpu
,
986 struct sys_reg_params
*params
,
987 const struct sys_reg_desc
*table
,
990 const struct sys_reg_desc
*r
;
993 return -1; /* Not handled */
995 r
= find_reg(params
, table
, num
);
999 * Not having an accessor means that we have
1000 * configured a trap that we don't know how to
1001 * handle. This certainly qualifies as a gross bug
1002 * that should be fixed right away.
1006 if (likely(r
->access(vcpu
, params
, r
))) {
1007 /* Skip instruction, since it was emulated */
1008 kvm_skip_instr(vcpu
, kvm_vcpu_trap_il_is32bit(vcpu
));
1019 static void unhandled_cp_access(struct kvm_vcpu
*vcpu
,
1020 struct sys_reg_params
*params
)
1022 u8 hsr_ec
= kvm_vcpu_trap_get_class(vcpu
);
1026 case ESR_ELx_EC_CP15_32
:
1027 case ESR_ELx_EC_CP15_64
:
1030 case ESR_ELx_EC_CP14_MR
:
1031 case ESR_ELx_EC_CP14_64
:
1038 kvm_err("Unsupported guest CP%d access at: %08lx\n",
1039 cp
, *vcpu_pc(vcpu
));
1040 print_sys_reg_instr(params
);
1041 kvm_inject_undefined(vcpu
);
1045 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP15 access
1046 * @vcpu: The VCPU pointer
1047 * @run: The kvm_run struct
1049 static int kvm_handle_cp_64(struct kvm_vcpu
*vcpu
,
1050 const struct sys_reg_desc
*global
,
1052 const struct sys_reg_desc
*target_specific
,
1055 struct sys_reg_params params
;
1056 u32 hsr
= kvm_vcpu_get_hsr(vcpu
);
1057 int Rt
= (hsr
>> 5) & 0xf;
1058 int Rt2
= (hsr
>> 10) & 0xf;
1060 params
.is_aarch32
= true;
1061 params
.is_32bit
= false;
1062 params
.CRm
= (hsr
>> 1) & 0xf;
1063 params
.is_write
= ((hsr
& 1) == 0);
1066 params
.Op1
= (hsr
>> 16) & 0xf;
1071 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
1072 * backends between AArch32 and AArch64, we get away with it.
1074 if (params
.is_write
) {
1075 params
.regval
= vcpu_get_reg(vcpu
, Rt
) & 0xffffffff;
1076 params
.regval
|= vcpu_get_reg(vcpu
, Rt2
) << 32;
1079 if (!emulate_cp(vcpu
, ¶ms
, target_specific
, nr_specific
))
1081 if (!emulate_cp(vcpu
, ¶ms
, global
, nr_global
))
1084 unhandled_cp_access(vcpu
, ¶ms
);
1087 /* Split up the value between registers for the read side */
1088 if (!params
.is_write
) {
1089 vcpu_set_reg(vcpu
, Rt
, lower_32_bits(params
.regval
));
1090 vcpu_set_reg(vcpu
, Rt2
, upper_32_bits(params
.regval
));
1097 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
1098 * @vcpu: The VCPU pointer
1099 * @run: The kvm_run struct
1101 static int kvm_handle_cp_32(struct kvm_vcpu
*vcpu
,
1102 const struct sys_reg_desc
*global
,
1104 const struct sys_reg_desc
*target_specific
,
1107 struct sys_reg_params params
;
1108 u32 hsr
= kvm_vcpu_get_hsr(vcpu
);
1109 int Rt
= (hsr
>> 5) & 0xf;
1111 params
.is_aarch32
= true;
1112 params
.is_32bit
= true;
1113 params
.CRm
= (hsr
>> 1) & 0xf;
1114 params
.regval
= vcpu_get_reg(vcpu
, Rt
);
1115 params
.is_write
= ((hsr
& 1) == 0);
1116 params
.CRn
= (hsr
>> 10) & 0xf;
1118 params
.Op1
= (hsr
>> 14) & 0x7;
1119 params
.Op2
= (hsr
>> 17) & 0x7;
1121 if (!emulate_cp(vcpu
, ¶ms
, target_specific
, nr_specific
) ||
1122 !emulate_cp(vcpu
, ¶ms
, global
, nr_global
)) {
1123 if (!params
.is_write
)
1124 vcpu_set_reg(vcpu
, Rt
, params
.regval
);
1128 unhandled_cp_access(vcpu
, ¶ms
);
1132 int kvm_handle_cp15_64(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
1134 const struct sys_reg_desc
*target_specific
;
1137 target_specific
= get_target_table(vcpu
->arch
.target
, false, &num
);
1138 return kvm_handle_cp_64(vcpu
,
1139 cp15_64_regs
, ARRAY_SIZE(cp15_64_regs
),
1140 target_specific
, num
);
1143 int kvm_handle_cp15_32(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
1145 const struct sys_reg_desc
*target_specific
;
1148 target_specific
= get_target_table(vcpu
->arch
.target
, false, &num
);
1149 return kvm_handle_cp_32(vcpu
,
1150 cp15_regs
, ARRAY_SIZE(cp15_regs
),
1151 target_specific
, num
);
1154 int kvm_handle_cp14_64(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
1156 return kvm_handle_cp_64(vcpu
,
1157 cp14_64_regs
, ARRAY_SIZE(cp14_64_regs
),
1161 int kvm_handle_cp14_32(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
1163 return kvm_handle_cp_32(vcpu
,
1164 cp14_regs
, ARRAY_SIZE(cp14_regs
),
1168 static int emulate_sys_reg(struct kvm_vcpu
*vcpu
,
1169 struct sys_reg_params
*params
)
1172 const struct sys_reg_desc
*table
, *r
;
1174 table
= get_target_table(vcpu
->arch
.target
, true, &num
);
1176 /* Search target-specific then generic table. */
1177 r
= find_reg(params
, table
, num
);
1179 r
= find_reg(params
, sys_reg_descs
, ARRAY_SIZE(sys_reg_descs
));
1183 * Not having an accessor means that we have
1184 * configured a trap that we don't know how to
1185 * handle. This certainly qualifies as a gross bug
1186 * that should be fixed right away.
1190 if (likely(r
->access(vcpu
, params
, r
))) {
1191 /* Skip instruction, since it was emulated */
1192 kvm_skip_instr(vcpu
, kvm_vcpu_trap_il_is32bit(vcpu
));
1195 /* If access function fails, it should complain. */
1197 kvm_err("Unsupported guest sys_reg access at: %lx\n",
1199 print_sys_reg_instr(params
);
1201 kvm_inject_undefined(vcpu
);
1205 static void reset_sys_reg_descs(struct kvm_vcpu
*vcpu
,
1206 const struct sys_reg_desc
*table
, size_t num
)
1210 for (i
= 0; i
< num
; i
++)
1212 table
[i
].reset(vcpu
, &table
[i
]);
1216 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
1217 * @vcpu: The VCPU pointer
1218 * @run: The kvm_run struct
1220 int kvm_handle_sys_reg(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
1222 struct sys_reg_params params
;
1223 unsigned long esr
= kvm_vcpu_get_hsr(vcpu
);
1224 int Rt
= (esr
>> 5) & 0x1f;
1227 trace_kvm_handle_sys_reg(esr
);
1229 params
.is_aarch32
= false;
1230 params
.is_32bit
= false;
1231 params
.Op0
= (esr
>> 20) & 3;
1232 params
.Op1
= (esr
>> 14) & 0x7;
1233 params
.CRn
= (esr
>> 10) & 0xf;
1234 params
.CRm
= (esr
>> 1) & 0xf;
1235 params
.Op2
= (esr
>> 17) & 0x7;
1236 params
.regval
= vcpu_get_reg(vcpu
, Rt
);
1237 params
.is_write
= !(esr
& 1);
1239 ret
= emulate_sys_reg(vcpu
, ¶ms
);
1241 if (!params
.is_write
)
1242 vcpu_set_reg(vcpu
, Rt
, params
.regval
);
1246 /******************************************************************************
1248 *****************************************************************************/
1250 static bool index_to_params(u64 id
, struct sys_reg_params
*params
)
1252 switch (id
& KVM_REG_SIZE_MASK
) {
1253 case KVM_REG_SIZE_U64
:
1254 /* Any unused index bits means it's not valid. */
1255 if (id
& ~(KVM_REG_ARCH_MASK
| KVM_REG_SIZE_MASK
1256 | KVM_REG_ARM_COPROC_MASK
1257 | KVM_REG_ARM64_SYSREG_OP0_MASK
1258 | KVM_REG_ARM64_SYSREG_OP1_MASK
1259 | KVM_REG_ARM64_SYSREG_CRN_MASK
1260 | KVM_REG_ARM64_SYSREG_CRM_MASK
1261 | KVM_REG_ARM64_SYSREG_OP2_MASK
))
1263 params
->Op0
= ((id
& KVM_REG_ARM64_SYSREG_OP0_MASK
)
1264 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT
);
1265 params
->Op1
= ((id
& KVM_REG_ARM64_SYSREG_OP1_MASK
)
1266 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT
);
1267 params
->CRn
= ((id
& KVM_REG_ARM64_SYSREG_CRN_MASK
)
1268 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT
);
1269 params
->CRm
= ((id
& KVM_REG_ARM64_SYSREG_CRM_MASK
)
1270 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT
);
1271 params
->Op2
= ((id
& KVM_REG_ARM64_SYSREG_OP2_MASK
)
1272 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT
);
1279 /* Decode an index value, and find the sys_reg_desc entry. */
1280 static const struct sys_reg_desc
*index_to_sys_reg_desc(struct kvm_vcpu
*vcpu
,
1284 const struct sys_reg_desc
*table
, *r
;
1285 struct sys_reg_params params
;
1287 /* We only do sys_reg for now. */
1288 if ((id
& KVM_REG_ARM_COPROC_MASK
) != KVM_REG_ARM64_SYSREG
)
1291 if (!index_to_params(id
, ¶ms
))
1294 table
= get_target_table(vcpu
->arch
.target
, true, &num
);
1295 r
= find_reg(¶ms
, table
, num
);
1297 r
= find_reg(¶ms
, sys_reg_descs
, ARRAY_SIZE(sys_reg_descs
));
1299 /* Not saved in the sys_reg array? */
1307 * These are the invariant sys_reg registers: we let the guest see the
1308 * host versions of these, so they're part of the guest state.
1310 * A future CPU may provide a mechanism to present different values to
1311 * the guest, or a future kvm may trap them.
1314 #define FUNCTION_INVARIANT(reg) \
1315 static void get_##reg(struct kvm_vcpu *v, \
1316 const struct sys_reg_desc *r) \
1320 asm volatile("mrs %0, " __stringify(reg) "\n" \
1322 ((struct sys_reg_desc *)r)->val = val; \
1325 FUNCTION_INVARIANT(midr_el1
)
1326 FUNCTION_INVARIANT(ctr_el0
)
1327 FUNCTION_INVARIANT(revidr_el1
)
1328 FUNCTION_INVARIANT(id_pfr0_el1
)
1329 FUNCTION_INVARIANT(id_pfr1_el1
)
1330 FUNCTION_INVARIANT(id_dfr0_el1
)
1331 FUNCTION_INVARIANT(id_afr0_el1
)
1332 FUNCTION_INVARIANT(id_mmfr0_el1
)
1333 FUNCTION_INVARIANT(id_mmfr1_el1
)
1334 FUNCTION_INVARIANT(id_mmfr2_el1
)
1335 FUNCTION_INVARIANT(id_mmfr3_el1
)
1336 FUNCTION_INVARIANT(id_isar0_el1
)
1337 FUNCTION_INVARIANT(id_isar1_el1
)
1338 FUNCTION_INVARIANT(id_isar2_el1
)
1339 FUNCTION_INVARIANT(id_isar3_el1
)
1340 FUNCTION_INVARIANT(id_isar4_el1
)
1341 FUNCTION_INVARIANT(id_isar5_el1
)
1342 FUNCTION_INVARIANT(clidr_el1
)
1343 FUNCTION_INVARIANT(aidr_el1
)
1345 /* ->val is filled in by kvm_sys_reg_table_init() */
1346 static struct sys_reg_desc invariant_sys_regs
[] = {
1347 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
1348 NULL
, get_midr_el1
},
1349 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
1350 NULL
, get_revidr_el1
},
1351 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
1352 NULL
, get_id_pfr0_el1
},
1353 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
1354 NULL
, get_id_pfr1_el1
},
1355 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
1356 NULL
, get_id_dfr0_el1
},
1357 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
1358 NULL
, get_id_afr0_el1
},
1359 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
1360 NULL
, get_id_mmfr0_el1
},
1361 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
1362 NULL
, get_id_mmfr1_el1
},
1363 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
1364 NULL
, get_id_mmfr2_el1
},
1365 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
1366 NULL
, get_id_mmfr3_el1
},
1367 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
1368 NULL
, get_id_isar0_el1
},
1369 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
1370 NULL
, get_id_isar1_el1
},
1371 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
1372 NULL
, get_id_isar2_el1
},
1373 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
1374 NULL
, get_id_isar3_el1
},
1375 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
1376 NULL
, get_id_isar4_el1
},
1377 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
1378 NULL
, get_id_isar5_el1
},
1379 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
1380 NULL
, get_clidr_el1
},
1381 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
1382 NULL
, get_aidr_el1
},
1383 { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
1384 NULL
, get_ctr_el0
},
1387 static int reg_from_user(u64
*val
, const void __user
*uaddr
, u64 id
)
1389 if (copy_from_user(val
, uaddr
, KVM_REG_SIZE(id
)) != 0)
1394 static int reg_to_user(void __user
*uaddr
, const u64
*val
, u64 id
)
1396 if (copy_to_user(uaddr
, val
, KVM_REG_SIZE(id
)) != 0)
1401 static int get_invariant_sys_reg(u64 id
, void __user
*uaddr
)
1403 struct sys_reg_params params
;
1404 const struct sys_reg_desc
*r
;
1406 if (!index_to_params(id
, ¶ms
))
1409 r
= find_reg(¶ms
, invariant_sys_regs
, ARRAY_SIZE(invariant_sys_regs
));
1413 return reg_to_user(uaddr
, &r
->val
, id
);
1416 static int set_invariant_sys_reg(u64 id
, void __user
*uaddr
)
1418 struct sys_reg_params params
;
1419 const struct sys_reg_desc
*r
;
1421 u64 val
= 0; /* Make sure high bits are 0 for 32-bit regs */
1423 if (!index_to_params(id
, ¶ms
))
1425 r
= find_reg(¶ms
, invariant_sys_regs
, ARRAY_SIZE(invariant_sys_regs
));
1429 err
= reg_from_user(&val
, uaddr
, id
);
1433 /* This is what we mean by invariant: you can't change it. */
1440 static bool is_valid_cache(u32 val
)
1444 if (val
>= CSSELR_MAX
)
1447 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
1449 ctype
= (cache_levels
>> (level
* 3)) & 7;
1452 case 0: /* No cache */
1454 case 1: /* Instruction cache only */
1456 case 2: /* Data cache only */
1457 case 4: /* Unified cache */
1459 case 3: /* Separate instruction and data caches */
1461 default: /* Reserved: we can't know instruction or data. */
1466 static int demux_c15_get(u64 id
, void __user
*uaddr
)
1469 u32 __user
*uval
= uaddr
;
1471 /* Fail if we have unknown bits set. */
1472 if (id
& ~(KVM_REG_ARCH_MASK
|KVM_REG_SIZE_MASK
|KVM_REG_ARM_COPROC_MASK
1473 | ((1 << KVM_REG_ARM_COPROC_SHIFT
)-1)))
1476 switch (id
& KVM_REG_ARM_DEMUX_ID_MASK
) {
1477 case KVM_REG_ARM_DEMUX_ID_CCSIDR
:
1478 if (KVM_REG_SIZE(id
) != 4)
1480 val
= (id
& KVM_REG_ARM_DEMUX_VAL_MASK
)
1481 >> KVM_REG_ARM_DEMUX_VAL_SHIFT
;
1482 if (!is_valid_cache(val
))
1485 return put_user(get_ccsidr(val
), uval
);
1491 static int demux_c15_set(u64 id
, void __user
*uaddr
)
1494 u32 __user
*uval
= uaddr
;
1496 /* Fail if we have unknown bits set. */
1497 if (id
& ~(KVM_REG_ARCH_MASK
|KVM_REG_SIZE_MASK
|KVM_REG_ARM_COPROC_MASK
1498 | ((1 << KVM_REG_ARM_COPROC_SHIFT
)-1)))
1501 switch (id
& KVM_REG_ARM_DEMUX_ID_MASK
) {
1502 case KVM_REG_ARM_DEMUX_ID_CCSIDR
:
1503 if (KVM_REG_SIZE(id
) != 4)
1505 val
= (id
& KVM_REG_ARM_DEMUX_VAL_MASK
)
1506 >> KVM_REG_ARM_DEMUX_VAL_SHIFT
;
1507 if (!is_valid_cache(val
))
1510 if (get_user(newval
, uval
))
1513 /* This is also invariant: you can't change it. */
1514 if (newval
!= get_ccsidr(val
))
1522 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu
*vcpu
, const struct kvm_one_reg
*reg
)
1524 const struct sys_reg_desc
*r
;
1525 void __user
*uaddr
= (void __user
*)(unsigned long)reg
->addr
;
1527 if ((reg
->id
& KVM_REG_ARM_COPROC_MASK
) == KVM_REG_ARM_DEMUX
)
1528 return demux_c15_get(reg
->id
, uaddr
);
1530 if (KVM_REG_SIZE(reg
->id
) != sizeof(__u64
))
1533 r
= index_to_sys_reg_desc(vcpu
, reg
->id
);
1535 return get_invariant_sys_reg(reg
->id
, uaddr
);
1538 return (r
->get_user
)(vcpu
, r
, reg
, uaddr
);
1540 return reg_to_user(uaddr
, &vcpu_sys_reg(vcpu
, r
->reg
), reg
->id
);
1543 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu
*vcpu
, const struct kvm_one_reg
*reg
)
1545 const struct sys_reg_desc
*r
;
1546 void __user
*uaddr
= (void __user
*)(unsigned long)reg
->addr
;
1548 if ((reg
->id
& KVM_REG_ARM_COPROC_MASK
) == KVM_REG_ARM_DEMUX
)
1549 return demux_c15_set(reg
->id
, uaddr
);
1551 if (KVM_REG_SIZE(reg
->id
) != sizeof(__u64
))
1554 r
= index_to_sys_reg_desc(vcpu
, reg
->id
);
1556 return set_invariant_sys_reg(reg
->id
, uaddr
);
1559 return (r
->set_user
)(vcpu
, r
, reg
, uaddr
);
1561 return reg_from_user(&vcpu_sys_reg(vcpu
, r
->reg
), uaddr
, reg
->id
);
1564 static unsigned int num_demux_regs(void)
1566 unsigned int i
, count
= 0;
1568 for (i
= 0; i
< CSSELR_MAX
; i
++)
1569 if (is_valid_cache(i
))
1575 static int write_demux_regids(u64 __user
*uindices
)
1577 u64 val
= KVM_REG_ARM64
| KVM_REG_SIZE_U32
| KVM_REG_ARM_DEMUX
;
1580 val
|= KVM_REG_ARM_DEMUX_ID_CCSIDR
;
1581 for (i
= 0; i
< CSSELR_MAX
; i
++) {
1582 if (!is_valid_cache(i
))
1584 if (put_user(val
| i
, uindices
))
1591 static u64
sys_reg_to_index(const struct sys_reg_desc
*reg
)
1593 return (KVM_REG_ARM64
| KVM_REG_SIZE_U64
|
1594 KVM_REG_ARM64_SYSREG
|
1595 (reg
->Op0
<< KVM_REG_ARM64_SYSREG_OP0_SHIFT
) |
1596 (reg
->Op1
<< KVM_REG_ARM64_SYSREG_OP1_SHIFT
) |
1597 (reg
->CRn
<< KVM_REG_ARM64_SYSREG_CRN_SHIFT
) |
1598 (reg
->CRm
<< KVM_REG_ARM64_SYSREG_CRM_SHIFT
) |
1599 (reg
->Op2
<< KVM_REG_ARM64_SYSREG_OP2_SHIFT
));
1602 static bool copy_reg_to_user(const struct sys_reg_desc
*reg
, u64 __user
**uind
)
1607 if (put_user(sys_reg_to_index(reg
), *uind
))
1614 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
1615 static int walk_sys_regs(struct kvm_vcpu
*vcpu
, u64 __user
*uind
)
1617 const struct sys_reg_desc
*i1
, *i2
, *end1
, *end2
;
1618 unsigned int total
= 0;
1621 /* We check for duplicates here, to allow arch-specific overrides. */
1622 i1
= get_target_table(vcpu
->arch
.target
, true, &num
);
1625 end2
= sys_reg_descs
+ ARRAY_SIZE(sys_reg_descs
);
1627 BUG_ON(i1
== end1
|| i2
== end2
);
1629 /* Walk carefully, as both tables may refer to the same register. */
1631 int cmp
= cmp_sys_reg(i1
, i2
);
1632 /* target-specific overrides generic entry. */
1634 /* Ignore registers we trap but don't save. */
1636 if (!copy_reg_to_user(i1
, &uind
))
1641 /* Ignore registers we trap but don't save. */
1643 if (!copy_reg_to_user(i2
, &uind
))
1649 if (cmp
<= 0 && ++i1
== end1
)
1651 if (cmp
>= 0 && ++i2
== end2
)
1657 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu
*vcpu
)
1659 return ARRAY_SIZE(invariant_sys_regs
)
1661 + walk_sys_regs(vcpu
, (u64 __user
*)NULL
);
1664 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu
*vcpu
, u64 __user
*uindices
)
1669 /* Then give them all the invariant registers' indices. */
1670 for (i
= 0; i
< ARRAY_SIZE(invariant_sys_regs
); i
++) {
1671 if (put_user(sys_reg_to_index(&invariant_sys_regs
[i
]), uindices
))
1676 err
= walk_sys_regs(vcpu
, uindices
);
1681 return write_demux_regids(uindices
);
1684 static int check_sysreg_table(const struct sys_reg_desc
*table
, unsigned int n
)
1688 for (i
= 1; i
< n
; i
++) {
1689 if (cmp_sys_reg(&table
[i
-1], &table
[i
]) >= 0) {
1690 kvm_err("sys_reg table %p out of order (%d)\n", table
, i
- 1);
1698 void kvm_sys_reg_table_init(void)
1701 struct sys_reg_desc clidr
;
1703 /* Make sure tables are unique and in order. */
1704 BUG_ON(check_sysreg_table(sys_reg_descs
, ARRAY_SIZE(sys_reg_descs
)));
1705 BUG_ON(check_sysreg_table(cp14_regs
, ARRAY_SIZE(cp14_regs
)));
1706 BUG_ON(check_sysreg_table(cp14_64_regs
, ARRAY_SIZE(cp14_64_regs
)));
1707 BUG_ON(check_sysreg_table(cp15_regs
, ARRAY_SIZE(cp15_regs
)));
1708 BUG_ON(check_sysreg_table(cp15_64_regs
, ARRAY_SIZE(cp15_64_regs
)));
1709 BUG_ON(check_sysreg_table(invariant_sys_regs
, ARRAY_SIZE(invariant_sys_regs
)));
1711 /* We abuse the reset function to overwrite the table itself. */
1712 for (i
= 0; i
< ARRAY_SIZE(invariant_sys_regs
); i
++)
1713 invariant_sys_regs
[i
].reset(NULL
, &invariant_sys_regs
[i
]);
1716 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1718 * If software reads the Cache Type fields from Ctype1
1719 * upwards, once it has seen a value of 0b000, no caches
1720 * exist at further-out levels of the hierarchy. So, for
1721 * example, if Ctype3 is the first Cache Type field with a
1722 * value of 0b000, the values of Ctype4 to Ctype7 must be
1725 get_clidr_el1(NULL
, &clidr
); /* Ugly... */
1726 cache_levels
= clidr
.val
;
1727 for (i
= 0; i
< 7; i
++)
1728 if (((cache_levels
>> (i
*3)) & 7) == 0)
1730 /* Clear all higher bits. */
1731 cache_levels
&= (1 << (i
*3))-1;
1735 * kvm_reset_sys_regs - sets system registers to reset value
1736 * @vcpu: The VCPU pointer
1738 * This function finds the right table above and sets the registers on the
1739 * virtual CPU struct to their architecturally defined reset values.
1741 void kvm_reset_sys_regs(struct kvm_vcpu
*vcpu
)
1744 const struct sys_reg_desc
*table
;
1746 /* Catch someone adding a register without putting in reset entry. */
1747 memset(&vcpu
->arch
.ctxt
.sys_regs
, 0x42, sizeof(vcpu
->arch
.ctxt
.sys_regs
));
1749 /* Generic chip reset first (so target could override). */
1750 reset_sys_reg_descs(vcpu
, sys_reg_descs
, ARRAY_SIZE(sys_reg_descs
));
1752 table
= get_target_table(vcpu
->arch
.target
, true, &num
);
1753 reset_sys_reg_descs(vcpu
, table
, num
);
1755 for (num
= 1; num
< NR_SYS_REGS
; num
++)
1756 if (vcpu_sys_reg(vcpu
, num
) == 0x4242424242424242)
1757 panic("Didn't reset vcpu_sys_reg(%zi)", num
);