of: MSI: Simplify irqdomain lookup
[linux/fpc-iii.git] / arch / blackfin / kernel / setup.c
blobad82468bd94d0dea2dda6472a734ff1745dfe9df
1 /*
2 * Copyright 2004-2010 Analog Devices Inc.
4 * Licensed under the GPL-2 or later.
5 */
7 #include <linux/delay.h>
8 #include <linux/console.h>
9 #include <linux/bootmem.h>
10 #include <linux/seq_file.h>
11 #include <linux/cpu.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/tty.h>
15 #include <linux/pfn.h>
17 #ifdef CONFIG_MTD_UCLINUX
18 #include <linux/mtd/map.h>
19 #include <linux/ext2_fs.h>
20 #include <uapi/linux/cramfs_fs.h>
21 #include <linux/romfs_fs.h>
22 #endif
24 #include <asm/cplb.h>
25 #include <asm/cacheflush.h>
26 #include <asm/blackfin.h>
27 #include <asm/cplbinit.h>
28 #include <asm/clocks.h>
29 #include <asm/div64.h>
30 #include <asm/cpu.h>
31 #include <asm/fixed_code.h>
32 #include <asm/early_printk.h>
33 #include <asm/irq_handler.h>
34 #include <asm/pda.h>
35 #ifdef CONFIG_BF60x
36 #include <mach/pm.h>
37 #endif
38 #ifdef CONFIG_SCB_PRIORITY
39 #include <asm/scb.h>
40 #endif
42 u16 _bfin_swrst;
43 EXPORT_SYMBOL(_bfin_swrst);
45 unsigned long memory_start, memory_end, physical_mem_end;
46 unsigned long _rambase, _ramstart, _ramend;
47 unsigned long reserved_mem_dcache_on;
48 unsigned long reserved_mem_icache_on;
49 EXPORT_SYMBOL(memory_start);
50 EXPORT_SYMBOL(memory_end);
51 EXPORT_SYMBOL(physical_mem_end);
52 EXPORT_SYMBOL(_ramend);
53 EXPORT_SYMBOL(reserved_mem_dcache_on);
55 #ifdef CONFIG_MTD_UCLINUX
56 extern struct map_info uclinux_ram_map;
57 unsigned long memory_mtd_end, memory_mtd_start, mtd_size;
58 EXPORT_SYMBOL(memory_mtd_end);
59 EXPORT_SYMBOL(memory_mtd_start);
60 EXPORT_SYMBOL(mtd_size);
61 #endif
63 char __initdata command_line[COMMAND_LINE_SIZE];
64 struct blackfin_initial_pda __initdata initial_pda;
66 /* boot memmap, for parsing "memmap=" */
67 #define BFIN_MEMMAP_MAX 128 /* number of entries in bfin_memmap */
68 #define BFIN_MEMMAP_RAM 1
69 #define BFIN_MEMMAP_RESERVED 2
70 static struct bfin_memmap {
71 int nr_map;
72 struct bfin_memmap_entry {
73 unsigned long long addr; /* start of memory segment */
74 unsigned long long size;
75 unsigned long type;
76 } map[BFIN_MEMMAP_MAX];
77 } bfin_memmap __initdata;
79 /* for memmap sanitization */
80 struct change_member {
81 struct bfin_memmap_entry *pentry; /* pointer to original entry */
82 unsigned long long addr; /* address for this change point */
84 static struct change_member change_point_list[2*BFIN_MEMMAP_MAX] __initdata;
85 static struct change_member *change_point[2*BFIN_MEMMAP_MAX] __initdata;
86 static struct bfin_memmap_entry *overlap_list[BFIN_MEMMAP_MAX] __initdata;
87 static struct bfin_memmap_entry new_map[BFIN_MEMMAP_MAX] __initdata;
89 DEFINE_PER_CPU(struct blackfin_cpudata, cpu_data);
91 static int early_init_clkin_hz(char *buf);
93 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
94 void __init generate_cplb_tables(void)
96 unsigned int cpu;
98 generate_cplb_tables_all();
99 /* Generate per-CPU I&D CPLB tables */
100 for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
101 generate_cplb_tables_cpu(cpu);
103 #endif
105 void bfin_setup_caches(unsigned int cpu)
107 #ifdef CONFIG_BFIN_ICACHE
108 bfin_icache_init(icplb_tbl[cpu]);
109 #endif
111 #ifdef CONFIG_BFIN_DCACHE
112 bfin_dcache_init(dcplb_tbl[cpu]);
113 #endif
115 bfin_setup_cpudata(cpu);
118 * In cache coherence emulation mode, we need to have the
119 * D-cache enabled before running any atomic operation which
120 * might involve cache invalidation (i.e. spinlock, rwlock).
121 * So printk's are deferred until then.
123 #ifdef CONFIG_BFIN_ICACHE
124 printk(KERN_INFO "Instruction Cache Enabled for CPU%u\n", cpu);
125 printk(KERN_INFO " External memory:"
126 # ifdef CONFIG_BFIN_EXTMEM_ICACHEABLE
127 " cacheable"
128 # else
129 " uncacheable"
130 # endif
131 " in instruction cache\n");
132 if (L2_LENGTH)
133 printk(KERN_INFO " L2 SRAM :"
134 # ifdef CONFIG_BFIN_L2_ICACHEABLE
135 " cacheable"
136 # else
137 " uncacheable"
138 # endif
139 " in instruction cache\n");
141 #else
142 printk(KERN_INFO "Instruction Cache Disabled for CPU%u\n", cpu);
143 #endif
145 #ifdef CONFIG_BFIN_DCACHE
146 printk(KERN_INFO "Data Cache Enabled for CPU%u\n", cpu);
147 printk(KERN_INFO " External memory:"
148 # if defined CONFIG_BFIN_EXTMEM_WRITEBACK
149 " cacheable (write-back)"
150 # elif defined CONFIG_BFIN_EXTMEM_WRITETHROUGH
151 " cacheable (write-through)"
152 # else
153 " uncacheable"
154 # endif
155 " in data cache\n");
156 if (L2_LENGTH)
157 printk(KERN_INFO " L2 SRAM :"
158 # if defined CONFIG_BFIN_L2_WRITEBACK
159 " cacheable (write-back)"
160 # elif defined CONFIG_BFIN_L2_WRITETHROUGH
161 " cacheable (write-through)"
162 # else
163 " uncacheable"
164 # endif
165 " in data cache\n");
166 #else
167 printk(KERN_INFO "Data Cache Disabled for CPU%u\n", cpu);
168 #endif
171 void bfin_setup_cpudata(unsigned int cpu)
173 struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu);
175 cpudata->imemctl = bfin_read_IMEM_CONTROL();
176 cpudata->dmemctl = bfin_read_DMEM_CONTROL();
179 void __init bfin_cache_init(void)
181 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
182 generate_cplb_tables();
183 #endif
184 bfin_setup_caches(0);
187 void __init bfin_relocate_l1_mem(void)
189 unsigned long text_l1_len = (unsigned long)_text_l1_len;
190 unsigned long data_l1_len = (unsigned long)_data_l1_len;
191 unsigned long data_b_l1_len = (unsigned long)_data_b_l1_len;
192 unsigned long l2_len = (unsigned long)_l2_len;
194 early_shadow_stamp();
197 * due to the ALIGN(4) in the arch/blackfin/kernel/vmlinux.lds.S
198 * we know that everything about l1 text/data is nice and aligned,
199 * so copy by 4 byte chunks, and don't worry about overlapping
200 * src/dest.
202 * We can't use the dma_memcpy functions, since they can call
203 * scheduler functions which might be in L1 :( and core writes
204 * into L1 instruction cause bad access errors, so we are stuck,
205 * we are required to use DMA, but can't use the common dma
206 * functions. We can't use memcpy either - since that might be
207 * going to be in the relocated L1
210 blackfin_dma_early_init();
212 /* if necessary, copy L1 text to L1 instruction SRAM */
213 if (L1_CODE_LENGTH && text_l1_len)
214 early_dma_memcpy(_stext_l1, _text_l1_lma, text_l1_len);
216 /* if necessary, copy L1 data to L1 data bank A SRAM */
217 if (L1_DATA_A_LENGTH && data_l1_len)
218 early_dma_memcpy(_sdata_l1, _data_l1_lma, data_l1_len);
220 /* if necessary, copy L1 data B to L1 data bank B SRAM */
221 if (L1_DATA_B_LENGTH && data_b_l1_len)
222 early_dma_memcpy(_sdata_b_l1, _data_b_l1_lma, data_b_l1_len);
224 early_dma_memcpy_done();
226 #if defined(CONFIG_SMP) && defined(CONFIG_ICACHE_FLUSH_L1)
227 blackfin_iflush_l1_entry[0] = (unsigned long)blackfin_icache_flush_range_l1;
228 #endif
230 /* if necessary, copy L2 text/data to L2 SRAM */
231 if (L2_LENGTH && l2_len)
232 memcpy(_stext_l2, _l2_lma, l2_len);
235 #ifdef CONFIG_SMP
236 void __init bfin_relocate_coreb_l1_mem(void)
238 unsigned long text_l1_len = (unsigned long)_text_l1_len;
239 unsigned long data_l1_len = (unsigned long)_data_l1_len;
240 unsigned long data_b_l1_len = (unsigned long)_data_b_l1_len;
242 blackfin_dma_early_init();
244 /* if necessary, copy L1 text to L1 instruction SRAM */
245 if (L1_CODE_LENGTH && text_l1_len)
246 early_dma_memcpy((void *)COREB_L1_CODE_START, _text_l1_lma,
247 text_l1_len);
249 /* if necessary, copy L1 data to L1 data bank A SRAM */
250 if (L1_DATA_A_LENGTH && data_l1_len)
251 early_dma_memcpy((void *)COREB_L1_DATA_A_START, _data_l1_lma,
252 data_l1_len);
254 /* if necessary, copy L1 data B to L1 data bank B SRAM */
255 if (L1_DATA_B_LENGTH && data_b_l1_len)
256 early_dma_memcpy((void *)COREB_L1_DATA_B_START, _data_b_l1_lma,
257 data_b_l1_len);
259 early_dma_memcpy_done();
261 #ifdef CONFIG_ICACHE_FLUSH_L1
262 blackfin_iflush_l1_entry[1] = (unsigned long)blackfin_icache_flush_range_l1 -
263 (unsigned long)_stext_l1 + COREB_L1_CODE_START;
264 #endif
266 #endif
268 #ifdef CONFIG_ROMKERNEL
269 void __init bfin_relocate_xip_data(void)
271 early_shadow_stamp();
273 memcpy(_sdata, _data_lma, (unsigned long)_data_len - THREAD_SIZE + sizeof(struct thread_info));
274 memcpy(_sinitdata, _init_data_lma, (unsigned long)_init_data_len);
276 #endif
278 /* add_memory_region to memmap */
279 static void __init add_memory_region(unsigned long long start,
280 unsigned long long size, int type)
282 int i;
284 i = bfin_memmap.nr_map;
286 if (i == BFIN_MEMMAP_MAX) {
287 printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
288 return;
291 bfin_memmap.map[i].addr = start;
292 bfin_memmap.map[i].size = size;
293 bfin_memmap.map[i].type = type;
294 bfin_memmap.nr_map++;
298 * Sanitize the boot memmap, removing overlaps.
300 static int __init sanitize_memmap(struct bfin_memmap_entry *map, int *pnr_map)
302 struct change_member *change_tmp;
303 unsigned long current_type, last_type;
304 unsigned long long last_addr;
305 int chgidx, still_changing;
306 int overlap_entries;
307 int new_entry;
308 int old_nr, new_nr, chg_nr;
309 int i;
312 Visually we're performing the following (1,2,3,4 = memory types)
314 Sample memory map (w/overlaps):
315 ____22__________________
316 ______________________4_
317 ____1111________________
318 _44_____________________
319 11111111________________
320 ____________________33__
321 ___________44___________
322 __________33333_________
323 ______________22________
324 ___________________2222_
325 _________111111111______
326 _____________________11_
327 _________________4______
329 Sanitized equivalent (no overlap):
330 1_______________________
331 _44_____________________
332 ___1____________________
333 ____22__________________
334 ______11________________
335 _________1______________
336 __________3_____________
337 ___________44___________
338 _____________33_________
339 _______________2________
340 ________________1_______
341 _________________4______
342 ___________________2____
343 ____________________33__
344 ______________________4_
346 /* if there's only one memory region, don't bother */
347 if (*pnr_map < 2)
348 return -1;
350 old_nr = *pnr_map;
352 /* bail out if we find any unreasonable addresses in memmap */
353 for (i = 0; i < old_nr; i++)
354 if (map[i].addr + map[i].size < map[i].addr)
355 return -1;
357 /* create pointers for initial change-point information (for sorting) */
358 for (i = 0; i < 2*old_nr; i++)
359 change_point[i] = &change_point_list[i];
361 /* record all known change-points (starting and ending addresses),
362 omitting those that are for empty memory regions */
363 chgidx = 0;
364 for (i = 0; i < old_nr; i++) {
365 if (map[i].size != 0) {
366 change_point[chgidx]->addr = map[i].addr;
367 change_point[chgidx++]->pentry = &map[i];
368 change_point[chgidx]->addr = map[i].addr + map[i].size;
369 change_point[chgidx++]->pentry = &map[i];
372 chg_nr = chgidx; /* true number of change-points */
374 /* sort change-point list by memory addresses (low -> high) */
375 still_changing = 1;
376 while (still_changing) {
377 still_changing = 0;
378 for (i = 1; i < chg_nr; i++) {
379 /* if <current_addr> > <last_addr>, swap */
380 /* or, if current=<start_addr> & last=<end_addr>, swap */
381 if ((change_point[i]->addr < change_point[i-1]->addr) ||
382 ((change_point[i]->addr == change_point[i-1]->addr) &&
383 (change_point[i]->addr == change_point[i]->pentry->addr) &&
384 (change_point[i-1]->addr != change_point[i-1]->pentry->addr))
386 change_tmp = change_point[i];
387 change_point[i] = change_point[i-1];
388 change_point[i-1] = change_tmp;
389 still_changing = 1;
394 /* create a new memmap, removing overlaps */
395 overlap_entries = 0; /* number of entries in the overlap table */
396 new_entry = 0; /* index for creating new memmap entries */
397 last_type = 0; /* start with undefined memory type */
398 last_addr = 0; /* start with 0 as last starting address */
399 /* loop through change-points, determining affect on the new memmap */
400 for (chgidx = 0; chgidx < chg_nr; chgidx++) {
401 /* keep track of all overlapping memmap entries */
402 if (change_point[chgidx]->addr == change_point[chgidx]->pentry->addr) {
403 /* add map entry to overlap list (> 1 entry implies an overlap) */
404 overlap_list[overlap_entries++] = change_point[chgidx]->pentry;
405 } else {
406 /* remove entry from list (order independent, so swap with last) */
407 for (i = 0; i < overlap_entries; i++) {
408 if (overlap_list[i] == change_point[chgidx]->pentry)
409 overlap_list[i] = overlap_list[overlap_entries-1];
411 overlap_entries--;
413 /* if there are overlapping entries, decide which "type" to use */
414 /* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
415 current_type = 0;
416 for (i = 0; i < overlap_entries; i++)
417 if (overlap_list[i]->type > current_type)
418 current_type = overlap_list[i]->type;
419 /* continue building up new memmap based on this information */
420 if (current_type != last_type) {
421 if (last_type != 0) {
422 new_map[new_entry].size =
423 change_point[chgidx]->addr - last_addr;
424 /* move forward only if the new size was non-zero */
425 if (new_map[new_entry].size != 0)
426 if (++new_entry >= BFIN_MEMMAP_MAX)
427 break; /* no more space left for new entries */
429 if (current_type != 0) {
430 new_map[new_entry].addr = change_point[chgidx]->addr;
431 new_map[new_entry].type = current_type;
432 last_addr = change_point[chgidx]->addr;
434 last_type = current_type;
437 new_nr = new_entry; /* retain count for new entries */
439 /* copy new mapping into original location */
440 memcpy(map, new_map, new_nr*sizeof(struct bfin_memmap_entry));
441 *pnr_map = new_nr;
443 return 0;
446 static void __init print_memory_map(char *who)
448 int i;
450 for (i = 0; i < bfin_memmap.nr_map; i++) {
451 printk(KERN_DEBUG " %s: %016Lx - %016Lx ", who,
452 bfin_memmap.map[i].addr,
453 bfin_memmap.map[i].addr + bfin_memmap.map[i].size);
454 switch (bfin_memmap.map[i].type) {
455 case BFIN_MEMMAP_RAM:
456 printk(KERN_CONT "(usable)\n");
457 break;
458 case BFIN_MEMMAP_RESERVED:
459 printk(KERN_CONT "(reserved)\n");
460 break;
461 default:
462 printk(KERN_CONT "type %lu\n", bfin_memmap.map[i].type);
463 break;
468 static __init int parse_memmap(char *arg)
470 unsigned long long start_at, mem_size;
472 if (!arg)
473 return -EINVAL;
475 mem_size = memparse(arg, &arg);
476 if (*arg == '@') {
477 start_at = memparse(arg+1, &arg);
478 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RAM);
479 } else if (*arg == '$') {
480 start_at = memparse(arg+1, &arg);
481 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RESERVED);
484 return 0;
488 * Initial parsing of the command line. Currently, we support:
489 * - Controlling the linux memory size: mem=xxx[KMG]
490 * - Controlling the physical memory size: max_mem=xxx[KMG][$][#]
491 * $ -> reserved memory is dcacheable
492 * # -> reserved memory is icacheable
493 * - "memmap=XXX[KkmM][@][$]XXX[KkmM]" defines a memory region
494 * @ from <start> to <start>+<mem>, type RAM
495 * $ from <start> to <start>+<mem>, type RESERVED
497 static __init void parse_cmdline_early(char *cmdline_p)
499 char c = ' ', *to = cmdline_p;
500 unsigned int memsize;
501 for (;;) {
502 if (c == ' ') {
503 if (!memcmp(to, "mem=", 4)) {
504 to += 4;
505 memsize = memparse(to, &to);
506 if (memsize)
507 _ramend = memsize;
509 } else if (!memcmp(to, "max_mem=", 8)) {
510 to += 8;
511 memsize = memparse(to, &to);
512 if (memsize) {
513 physical_mem_end = memsize;
514 if (*to != ' ') {
515 if (*to == '$'
516 || *(to + 1) == '$')
517 reserved_mem_dcache_on = 1;
518 if (*to == '#'
519 || *(to + 1) == '#')
520 reserved_mem_icache_on = 1;
523 } else if (!memcmp(to, "clkin_hz=", 9)) {
524 to += 9;
525 early_init_clkin_hz(to);
526 #ifdef CONFIG_EARLY_PRINTK
527 } else if (!memcmp(to, "earlyprintk=", 12)) {
528 to += 12;
529 setup_early_printk(to);
530 #endif
531 } else if (!memcmp(to, "memmap=", 7)) {
532 to += 7;
533 parse_memmap(to);
536 c = *(to++);
537 if (!c)
538 break;
543 * Setup memory defaults from user config.
544 * The physical memory layout looks like:
546 * [_rambase, _ramstart]: kernel image
547 * [memory_start, memory_end]: dynamic memory managed by kernel
548 * [memory_end, _ramend]: reserved memory
549 * [memory_mtd_start(memory_end),
550 * memory_mtd_start + mtd_size]: rootfs (if any)
551 * [_ramend - DMA_UNCACHED_REGION,
552 * _ramend]: uncached DMA region
553 * [_ramend, physical_mem_end]: memory not managed by kernel
555 static __init void memory_setup(void)
557 #ifdef CONFIG_MTD_UCLINUX
558 unsigned long mtd_phys = 0;
559 #endif
560 unsigned long max_mem;
562 _rambase = CONFIG_BOOT_LOAD;
563 _ramstart = (unsigned long)_end;
565 if (DMA_UNCACHED_REGION > (_ramend - _ramstart)) {
566 console_init();
567 panic("DMA region exceeds memory limit: %lu.",
568 _ramend - _ramstart);
570 max_mem = memory_end = _ramend - DMA_UNCACHED_REGION;
572 #if (defined(CONFIG_BFIN_EXTMEM_ICACHEABLE) && ANOMALY_05000263)
573 /* Due to a Hardware Anomaly we need to limit the size of usable
574 * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
575 * 05000263 - Hardware loop corrupted when taking an ICPLB exception
577 # if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
578 if (max_mem >= 56 * 1024 * 1024)
579 max_mem = 56 * 1024 * 1024;
580 # else
581 if (max_mem >= 60 * 1024 * 1024)
582 max_mem = 60 * 1024 * 1024;
583 # endif /* CONFIG_DEBUG_HUNT_FOR_ZERO */
584 #endif /* ANOMALY_05000263 */
587 #ifdef CONFIG_MPU
588 /* Round up to multiple of 4MB */
589 memory_start = (_ramstart + 0x3fffff) & ~0x3fffff;
590 #else
591 memory_start = PAGE_ALIGN(_ramstart);
592 #endif
594 #if defined(CONFIG_MTD_UCLINUX)
595 /* generic memory mapped MTD driver */
596 memory_mtd_end = memory_end;
598 mtd_phys = _ramstart;
599 mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 8)));
601 # if defined(CONFIG_EXT2_FS) || defined(CONFIG_EXT3_FS)
602 if (*((unsigned short *)(mtd_phys + 0x438)) == EXT2_SUPER_MAGIC)
603 mtd_size =
604 PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x404)) << 10);
605 # endif
607 # if defined(CONFIG_CRAMFS)
608 if (*((unsigned long *)(mtd_phys)) == CRAMFS_MAGIC)
609 mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x4)));
610 # endif
612 # if defined(CONFIG_ROMFS_FS)
613 if (((unsigned long *)mtd_phys)[0] == ROMSB_WORD0
614 && ((unsigned long *)mtd_phys)[1] == ROMSB_WORD1) {
615 mtd_size =
616 PAGE_ALIGN(be32_to_cpu(((unsigned long *)mtd_phys)[2]));
618 /* ROM_FS is XIP, so if we found it, we need to limit memory */
619 if (memory_end > max_mem) {
620 pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n",
621 (max_mem - CONFIG_PHY_RAM_BASE_ADDRESS) >> 20);
622 memory_end = max_mem;
625 # endif /* CONFIG_ROMFS_FS */
627 /* Since the default MTD_UCLINUX has no magic number, we just blindly
628 * read 8 past the end of the kernel's image, and look at it.
629 * When no image is attached, mtd_size is set to a random number
630 * Do some basic sanity checks before operating on things
632 if (mtd_size == 0 || memory_end <= mtd_size) {
633 pr_emerg("Could not find valid ram mtd attached.\n");
634 } else {
635 memory_end -= mtd_size;
637 /* Relocate MTD image to the top of memory after the uncached memory area */
638 uclinux_ram_map.phys = memory_mtd_start = memory_end;
639 uclinux_ram_map.size = mtd_size;
640 pr_info("Found mtd parition at 0x%p, (len=0x%lx), moving to 0x%p\n",
641 _end, mtd_size, (void *)memory_mtd_start);
642 dma_memcpy((void *)uclinux_ram_map.phys, _end, uclinux_ram_map.size);
644 #endif /* CONFIG_MTD_UCLINUX */
646 /* We need lo limit memory, since everything could have a text section
647 * of userspace in it, and expose anomaly 05000263. If the anomaly
648 * doesn't exist, or we don't need to - then dont.
650 if (memory_end > max_mem) {
651 pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n",
652 (max_mem - CONFIG_PHY_RAM_BASE_ADDRESS) >> 20);
653 memory_end = max_mem;
656 #ifdef CONFIG_MPU
657 #if defined(CONFIG_ROMFS_ON_MTD) && defined(CONFIG_MTD_ROM)
658 page_mask_nelts = (((_ramend + ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE -
659 ASYNC_BANK0_BASE) >> PAGE_SHIFT) + 31) / 32;
660 #else
661 page_mask_nelts = ((_ramend >> PAGE_SHIFT) + 31) / 32;
662 #endif
663 page_mask_order = get_order(3 * page_mask_nelts * sizeof(long));
664 #endif
666 init_mm.start_code = (unsigned long)_stext;
667 init_mm.end_code = (unsigned long)_etext;
668 init_mm.end_data = (unsigned long)_edata;
669 init_mm.brk = (unsigned long)0;
671 printk(KERN_INFO "Board Memory: %ldMB\n", (physical_mem_end - CONFIG_PHY_RAM_BASE_ADDRESS) >> 20);
672 printk(KERN_INFO "Kernel Managed Memory: %ldMB\n", (_ramend - CONFIG_PHY_RAM_BASE_ADDRESS) >> 20);
674 printk(KERN_INFO "Memory map:\n"
675 " fixedcode = 0x%p-0x%p\n"
676 " text = 0x%p-0x%p\n"
677 " rodata = 0x%p-0x%p\n"
678 " bss = 0x%p-0x%p\n"
679 " data = 0x%p-0x%p\n"
680 " stack = 0x%p-0x%p\n"
681 " init = 0x%p-0x%p\n"
682 " available = 0x%p-0x%p\n"
683 #ifdef CONFIG_MTD_UCLINUX
684 " rootfs = 0x%p-0x%p\n"
685 #endif
686 #if DMA_UNCACHED_REGION > 0
687 " DMA Zone = 0x%p-0x%p\n"
688 #endif
689 , (void *)FIXED_CODE_START, (void *)FIXED_CODE_END,
690 _stext, _etext,
691 __start_rodata, __end_rodata,
692 __bss_start, __bss_stop,
693 _sdata, _edata,
694 (void *)&init_thread_union,
695 (void *)((int)(&init_thread_union) + THREAD_SIZE),
696 __init_begin, __init_end,
697 (void *)_ramstart, (void *)memory_end
698 #ifdef CONFIG_MTD_UCLINUX
699 , (void *)memory_mtd_start, (void *)(memory_mtd_start + mtd_size)
700 #endif
701 #if DMA_UNCACHED_REGION > 0
702 , (void *)(_ramend - DMA_UNCACHED_REGION), (void *)(_ramend)
703 #endif
708 * Find the lowest, highest page frame number we have available
710 void __init find_min_max_pfn(void)
712 int i;
714 max_pfn = 0;
715 min_low_pfn = PFN_DOWN(memory_end);
717 for (i = 0; i < bfin_memmap.nr_map; i++) {
718 unsigned long start, end;
719 /* RAM? */
720 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
721 continue;
722 start = PFN_UP(bfin_memmap.map[i].addr);
723 end = PFN_DOWN(bfin_memmap.map[i].addr +
724 bfin_memmap.map[i].size);
725 if (start >= end)
726 continue;
727 if (end > max_pfn)
728 max_pfn = end;
729 if (start < min_low_pfn)
730 min_low_pfn = start;
734 static __init void setup_bootmem_allocator(void)
736 int bootmap_size;
737 int i;
738 unsigned long start_pfn, end_pfn;
739 unsigned long curr_pfn, last_pfn, size;
741 /* mark memory between memory_start and memory_end usable */
742 add_memory_region(memory_start,
743 memory_end - memory_start, BFIN_MEMMAP_RAM);
744 /* sanity check for overlap */
745 sanitize_memmap(bfin_memmap.map, &bfin_memmap.nr_map);
746 print_memory_map("boot memmap");
748 /* initialize globals in linux/bootmem.h */
749 find_min_max_pfn();
750 /* pfn of the last usable page frame */
751 if (max_pfn > memory_end >> PAGE_SHIFT)
752 max_pfn = memory_end >> PAGE_SHIFT;
753 /* pfn of last page frame directly mapped by kernel */
754 max_low_pfn = max_pfn;
755 /* pfn of the first usable page frame after kernel image*/
756 if (min_low_pfn < memory_start >> PAGE_SHIFT)
757 min_low_pfn = memory_start >> PAGE_SHIFT;
758 start_pfn = CONFIG_PHY_RAM_BASE_ADDRESS >> PAGE_SHIFT;
759 end_pfn = memory_end >> PAGE_SHIFT;
762 * give all the memory to the bootmap allocator, tell it to put the
763 * boot mem_map at the start of memory.
765 bootmap_size = init_bootmem_node(NODE_DATA(0),
766 memory_start >> PAGE_SHIFT, /* map goes here */
767 start_pfn, end_pfn);
769 /* register the memmap regions with the bootmem allocator */
770 for (i = 0; i < bfin_memmap.nr_map; i++) {
772 * Reserve usable memory
774 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
775 continue;
777 * We are rounding up the start address of usable memory:
779 curr_pfn = PFN_UP(bfin_memmap.map[i].addr);
780 if (curr_pfn >= end_pfn)
781 continue;
783 * ... and at the end of the usable range downwards:
785 last_pfn = PFN_DOWN(bfin_memmap.map[i].addr +
786 bfin_memmap.map[i].size);
788 if (last_pfn > end_pfn)
789 last_pfn = end_pfn;
792 * .. finally, did all the rounding and playing
793 * around just make the area go away?
795 if (last_pfn <= curr_pfn)
796 continue;
798 size = last_pfn - curr_pfn;
799 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size));
802 /* reserve memory before memory_start, including bootmap */
803 reserve_bootmem(CONFIG_PHY_RAM_BASE_ADDRESS,
804 memory_start + bootmap_size + PAGE_SIZE - 1 - CONFIG_PHY_RAM_BASE_ADDRESS,
805 BOOTMEM_DEFAULT);
808 #define EBSZ_TO_MEG(ebsz) \
809 ({ \
810 int meg = 0; \
811 switch (ebsz & 0xf) { \
812 case 0x1: meg = 16; break; \
813 case 0x3: meg = 32; break; \
814 case 0x5: meg = 64; break; \
815 case 0x7: meg = 128; break; \
816 case 0x9: meg = 256; break; \
817 case 0xb: meg = 512; break; \
819 meg; \
821 static inline int __init get_mem_size(void)
823 #if defined(EBIU_SDBCTL)
824 # if defined(BF561_FAMILY)
825 int ret = 0;
826 u32 sdbctl = bfin_read_EBIU_SDBCTL();
827 ret += EBSZ_TO_MEG(sdbctl >> 0);
828 ret += EBSZ_TO_MEG(sdbctl >> 8);
829 ret += EBSZ_TO_MEG(sdbctl >> 16);
830 ret += EBSZ_TO_MEG(sdbctl >> 24);
831 return ret;
832 # else
833 return EBSZ_TO_MEG(bfin_read_EBIU_SDBCTL());
834 # endif
835 #elif defined(EBIU_DDRCTL1)
836 u32 ddrctl = bfin_read_EBIU_DDRCTL1();
837 int ret = 0;
838 switch (ddrctl & 0xc0000) {
839 case DEVSZ_64:
840 ret = 64 / 8;
841 break;
842 case DEVSZ_128:
843 ret = 128 / 8;
844 break;
845 case DEVSZ_256:
846 ret = 256 / 8;
847 break;
848 case DEVSZ_512:
849 ret = 512 / 8;
850 break;
852 switch (ddrctl & 0x30000) {
853 case DEVWD_4:
854 ret *= 2;
855 case DEVWD_8:
856 ret *= 2;
857 case DEVWD_16:
858 break;
860 if ((ddrctl & 0xc000) == 0x4000)
861 ret *= 2;
862 return ret;
863 #elif defined(CONFIG_BF60x)
864 u32 ddrctl = bfin_read_DMC0_CFG();
865 int ret;
866 switch (ddrctl & 0xf00) {
867 case DEVSZ_64:
868 ret = 64 / 8;
869 break;
870 case DEVSZ_128:
871 ret = 128 / 8;
872 break;
873 case DEVSZ_256:
874 ret = 256 / 8;
875 break;
876 case DEVSZ_512:
877 ret = 512 / 8;
878 break;
879 case DEVSZ_1G:
880 ret = 1024 / 8;
881 break;
882 case DEVSZ_2G:
883 ret = 2048 / 8;
884 break;
886 return ret;
887 #endif
888 BUG();
891 __attribute__((weak))
892 void __init native_machine_early_platform_add_devices(void)
896 #ifdef CONFIG_BF60x
897 static inline u_long bfin_get_clk(char *name)
899 struct clk *clk;
900 u_long clk_rate;
902 clk = clk_get(NULL, name);
903 if (IS_ERR(clk))
904 return 0;
906 clk_rate = clk_get_rate(clk);
907 clk_put(clk);
908 return clk_rate;
910 #endif
912 void __init setup_arch(char **cmdline_p)
914 u32 mmr;
915 unsigned long sclk, cclk;
917 native_machine_early_platform_add_devices();
919 enable_shadow_console();
921 /* Check to make sure we are running on the right processor */
922 mmr = bfin_cpuid();
923 if (unlikely(CPUID != bfin_cpuid()))
924 printk(KERN_ERR "ERROR: Not running on ADSP-%s: unknown CPUID 0x%04x Rev 0.%d\n",
925 CPU, bfin_cpuid(), bfin_revid());
927 #ifdef CONFIG_DUMMY_CONSOLE
928 conswitchp = &dummy_con;
929 #endif
931 #if defined(CONFIG_CMDLINE_BOOL)
932 strncpy(&command_line[0], CONFIG_CMDLINE, sizeof(command_line));
933 command_line[sizeof(command_line) - 1] = 0;
934 #endif
936 /* Keep a copy of command line */
937 *cmdline_p = &command_line[0];
938 memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
939 boot_command_line[COMMAND_LINE_SIZE - 1] = '\0';
941 memset(&bfin_memmap, 0, sizeof(bfin_memmap));
943 #ifdef CONFIG_BF60x
944 /* Should init clock device before parse command early */
945 clk_init();
946 #endif
947 /* If the user does not specify things on the command line, use
948 * what the bootloader set things up as
950 physical_mem_end = 0;
951 parse_cmdline_early(&command_line[0]);
953 if (_ramend == 0)
954 _ramend = get_mem_size() * 1024 * 1024;
956 if (physical_mem_end == 0)
957 physical_mem_end = _ramend;
959 memory_setup();
961 #ifndef CONFIG_BF60x
962 /* Initialize Async memory banks */
963 bfin_write_EBIU_AMBCTL0(AMBCTL0VAL);
964 bfin_write_EBIU_AMBCTL1(AMBCTL1VAL);
965 bfin_write_EBIU_AMGCTL(AMGCTLVAL);
966 #ifdef CONFIG_EBIU_MBSCTLVAL
967 bfin_write_EBIU_MBSCTL(CONFIG_EBIU_MBSCTLVAL);
968 bfin_write_EBIU_MODE(CONFIG_EBIU_MODEVAL);
969 bfin_write_EBIU_FCTL(CONFIG_EBIU_FCTLVAL);
970 #endif
971 #endif
972 #ifdef CONFIG_BFIN_HYSTERESIS_CONTROL
973 bfin_write_PORTF_HYSTERESIS(HYST_PORTF_0_15);
974 bfin_write_PORTG_HYSTERESIS(HYST_PORTG_0_15);
975 bfin_write_PORTH_HYSTERESIS(HYST_PORTH_0_15);
976 bfin_write_MISCPORT_HYSTERESIS((bfin_read_MISCPORT_HYSTERESIS() &
977 ~HYST_NONEGPIO_MASK) | HYST_NONEGPIO);
978 #endif
980 cclk = get_cclk();
981 sclk = get_sclk();
983 if ((ANOMALY_05000273 || ANOMALY_05000274) && (cclk >> 1) < sclk)
984 panic("ANOMALY 05000273 or 05000274: CCLK must be >= 2*SCLK");
986 #ifdef BF561_FAMILY
987 if (ANOMALY_05000266) {
988 bfin_read_IMDMA_D0_IRQ_STATUS();
989 bfin_read_IMDMA_D1_IRQ_STATUS();
991 #endif
993 mmr = bfin_read_TBUFCTL();
994 printk(KERN_INFO "Hardware Trace %s and %sabled\n",
995 (mmr & 0x1) ? "active" : "off",
996 (mmr & 0x2) ? "en" : "dis");
997 #ifndef CONFIG_BF60x
998 mmr = bfin_read_SYSCR();
999 printk(KERN_INFO "Boot Mode: %i\n", mmr & 0xF);
1001 /* Newer parts mirror SWRST bits in SYSCR */
1002 #if defined(CONFIG_BF53x) || defined(CONFIG_BF561) || \
1003 defined(CONFIG_BF538) || defined(CONFIG_BF539)
1004 _bfin_swrst = bfin_read_SWRST();
1005 #else
1006 /* Clear boot mode field */
1007 _bfin_swrst = mmr & ~0xf;
1008 #endif
1010 #ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT
1011 bfin_write_SWRST(_bfin_swrst & ~DOUBLE_FAULT);
1012 #endif
1013 #ifdef CONFIG_DEBUG_DOUBLEFAULT_RESET
1014 bfin_write_SWRST(_bfin_swrst | DOUBLE_FAULT);
1015 #endif
1017 #ifdef CONFIG_SMP
1018 if (_bfin_swrst & SWRST_DBL_FAULT_A) {
1019 #else
1020 if (_bfin_swrst & RESET_DOUBLE) {
1021 #endif
1022 printk(KERN_EMERG "Recovering from DOUBLE FAULT event\n");
1023 #ifdef CONFIG_DEBUG_DOUBLEFAULT
1024 /* We assume the crashing kernel, and the current symbol table match */
1025 printk(KERN_EMERG " While handling exception (EXCAUSE = %#x) at %pF\n",
1026 initial_pda.seqstat_doublefault & SEQSTAT_EXCAUSE,
1027 initial_pda.retx_doublefault);
1028 printk(KERN_NOTICE " DCPLB_FAULT_ADDR: %pF\n",
1029 initial_pda.dcplb_doublefault_addr);
1030 printk(KERN_NOTICE " ICPLB_FAULT_ADDR: %pF\n",
1031 initial_pda.icplb_doublefault_addr);
1032 #endif
1033 printk(KERN_NOTICE " The instruction at %pF caused a double exception\n",
1034 initial_pda.retx);
1035 } else if (_bfin_swrst & RESET_WDOG)
1036 printk(KERN_INFO "Recovering from Watchdog event\n");
1037 else if (_bfin_swrst & RESET_SOFTWARE)
1038 printk(KERN_NOTICE "Reset caused by Software reset\n");
1039 #endif
1040 printk(KERN_INFO "Blackfin support (C) 2004-2010 Analog Devices, Inc.\n");
1041 if (bfin_compiled_revid() == 0xffff)
1042 printk(KERN_INFO "Compiled for ADSP-%s Rev any, running on 0.%d\n", CPU, bfin_revid());
1043 else if (bfin_compiled_revid() == -1)
1044 printk(KERN_INFO "Compiled for ADSP-%s Rev none\n", CPU);
1045 else
1046 printk(KERN_INFO "Compiled for ADSP-%s Rev 0.%d\n", CPU, bfin_compiled_revid());
1048 if (likely(CPUID == bfin_cpuid())) {
1049 if (bfin_revid() != bfin_compiled_revid()) {
1050 if (bfin_compiled_revid() == -1)
1051 printk(KERN_ERR "Warning: Compiled for Rev none, but running on Rev %d\n",
1052 bfin_revid());
1053 else if (bfin_compiled_revid() != 0xffff) {
1054 printk(KERN_ERR "Warning: Compiled for Rev %d, but running on Rev %d\n",
1055 bfin_compiled_revid(), bfin_revid());
1056 if (bfin_compiled_revid() > bfin_revid())
1057 panic("Error: you are missing anomaly workarounds for this rev");
1060 if (bfin_revid() < CONFIG_BF_REV_MIN || bfin_revid() > CONFIG_BF_REV_MAX)
1061 printk(KERN_ERR "Warning: Unsupported Chip Revision ADSP-%s Rev 0.%d detected\n",
1062 CPU, bfin_revid());
1065 printk(KERN_INFO "Blackfin Linux support by http://blackfin.uclinux.org/\n");
1067 #ifdef CONFIG_BF60x
1068 printk(KERN_INFO "Processor Speed: %lu MHz core clock, %lu MHz SCLk, %lu MHz SCLK0, %lu MHz SCLK1 and %lu MHz DCLK\n",
1069 cclk / 1000000, bfin_get_clk("SYSCLK") / 1000000, get_sclk0() / 1000000, get_sclk1() / 1000000, get_dclk() / 1000000);
1070 #else
1071 printk(KERN_INFO "Processor Speed: %lu MHz core clock and %lu MHz System Clock\n",
1072 cclk / 1000000, sclk / 1000000);
1073 #endif
1075 setup_bootmem_allocator();
1077 paging_init();
1079 /* Copy atomic sequences to their fixed location, and sanity check that
1080 these locations are the ones that we advertise to userspace. */
1081 memcpy((void *)FIXED_CODE_START, &fixed_code_start,
1082 FIXED_CODE_END - FIXED_CODE_START);
1083 BUG_ON((char *)&sigreturn_stub - (char *)&fixed_code_start
1084 != SIGRETURN_STUB - FIXED_CODE_START);
1085 BUG_ON((char *)&atomic_xchg32 - (char *)&fixed_code_start
1086 != ATOMIC_XCHG32 - FIXED_CODE_START);
1087 BUG_ON((char *)&atomic_cas32 - (char *)&fixed_code_start
1088 != ATOMIC_CAS32 - FIXED_CODE_START);
1089 BUG_ON((char *)&atomic_add32 - (char *)&fixed_code_start
1090 != ATOMIC_ADD32 - FIXED_CODE_START);
1091 BUG_ON((char *)&atomic_sub32 - (char *)&fixed_code_start
1092 != ATOMIC_SUB32 - FIXED_CODE_START);
1093 BUG_ON((char *)&atomic_ior32 - (char *)&fixed_code_start
1094 != ATOMIC_IOR32 - FIXED_CODE_START);
1095 BUG_ON((char *)&atomic_and32 - (char *)&fixed_code_start
1096 != ATOMIC_AND32 - FIXED_CODE_START);
1097 BUG_ON((char *)&atomic_xor32 - (char *)&fixed_code_start
1098 != ATOMIC_XOR32 - FIXED_CODE_START);
1099 BUG_ON((char *)&safe_user_instruction - (char *)&fixed_code_start
1100 != SAFE_USER_INSTRUCTION - FIXED_CODE_START);
1102 #ifdef CONFIG_SMP
1103 platform_init_cpus();
1104 #endif
1105 init_exception_vectors();
1106 bfin_cache_init(); /* Initialize caches for the boot CPU */
1107 #ifdef CONFIG_SCB_PRIORITY
1108 init_scb();
1109 #endif
1112 static int __init topology_init(void)
1114 unsigned int cpu;
1116 for_each_possible_cpu(cpu) {
1117 register_cpu(&per_cpu(cpu_data, cpu).cpu, cpu);
1120 return 0;
1123 subsys_initcall(topology_init);
1125 /* Get the input clock frequency */
1126 static u_long cached_clkin_hz = CONFIG_CLKIN_HZ;
1127 #ifndef CONFIG_BF60x
1128 static u_long get_clkin_hz(void)
1130 return cached_clkin_hz;
1132 #endif
1133 static int __init early_init_clkin_hz(char *buf)
1135 cached_clkin_hz = simple_strtoul(buf, NULL, 0);
1136 #ifdef BFIN_KERNEL_CLOCK
1137 if (cached_clkin_hz != CONFIG_CLKIN_HZ)
1138 panic("cannot change clkin_hz when reprogramming clocks");
1139 #endif
1140 return 1;
1142 early_param("clkin_hz=", early_init_clkin_hz);
1144 #ifndef CONFIG_BF60x
1145 /* Get the voltage input multiplier */
1146 static u_long get_vco(void)
1148 static u_long cached_vco;
1149 u_long msel, pll_ctl;
1151 /* The assumption here is that VCO never changes at runtime.
1152 * If, someday, we support that, then we'll have to change this.
1154 if (cached_vco)
1155 return cached_vco;
1157 pll_ctl = bfin_read_PLL_CTL();
1158 msel = (pll_ctl >> 9) & 0x3F;
1159 if (0 == msel)
1160 msel = 64;
1162 cached_vco = get_clkin_hz();
1163 cached_vco >>= (1 & pll_ctl); /* DF bit */
1164 cached_vco *= msel;
1165 return cached_vco;
1167 #endif
1169 /* Get the Core clock */
1170 u_long get_cclk(void)
1172 #ifdef CONFIG_BF60x
1173 return bfin_get_clk("CCLK");
1174 #else
1175 static u_long cached_cclk_pll_div, cached_cclk;
1176 u_long csel, ssel;
1178 if (bfin_read_PLL_STAT() & 0x1)
1179 return get_clkin_hz();
1181 ssel = bfin_read_PLL_DIV();
1182 if (ssel == cached_cclk_pll_div)
1183 return cached_cclk;
1184 else
1185 cached_cclk_pll_div = ssel;
1187 csel = ((ssel >> 4) & 0x03);
1188 ssel &= 0xf;
1189 if (ssel && ssel < (1 << csel)) /* SCLK > CCLK */
1190 cached_cclk = get_vco() / ssel;
1191 else
1192 cached_cclk = get_vco() >> csel;
1193 return cached_cclk;
1194 #endif
1196 EXPORT_SYMBOL(get_cclk);
1198 #ifdef CONFIG_BF60x
1199 /* Get the bf60x clock of SCLK0 domain */
1200 u_long get_sclk0(void)
1202 return bfin_get_clk("SCLK0");
1204 EXPORT_SYMBOL(get_sclk0);
1206 /* Get the bf60x clock of SCLK1 domain */
1207 u_long get_sclk1(void)
1209 return bfin_get_clk("SCLK1");
1211 EXPORT_SYMBOL(get_sclk1);
1213 /* Get the bf60x DRAM clock */
1214 u_long get_dclk(void)
1216 return bfin_get_clk("DCLK");
1218 EXPORT_SYMBOL(get_dclk);
1219 #endif
1221 /* Get the default system clock */
1222 u_long get_sclk(void)
1224 #ifdef CONFIG_BF60x
1225 return get_sclk0();
1226 #else
1227 static u_long cached_sclk;
1228 u_long ssel;
1230 /* The assumption here is that SCLK never changes at runtime.
1231 * If, someday, we support that, then we'll have to change this.
1233 if (cached_sclk)
1234 return cached_sclk;
1236 if (bfin_read_PLL_STAT() & 0x1)
1237 return get_clkin_hz();
1239 ssel = bfin_read_PLL_DIV() & 0xf;
1240 if (0 == ssel) {
1241 printk(KERN_WARNING "Invalid System Clock\n");
1242 ssel = 1;
1245 cached_sclk = get_vco() / ssel;
1246 return cached_sclk;
1247 #endif
1249 EXPORT_SYMBOL(get_sclk);
1251 unsigned long sclk_to_usecs(unsigned long sclk)
1253 u64 tmp = USEC_PER_SEC * (u64)sclk;
1254 do_div(tmp, get_sclk());
1255 return tmp;
1257 EXPORT_SYMBOL(sclk_to_usecs);
1259 unsigned long usecs_to_sclk(unsigned long usecs)
1261 u64 tmp = get_sclk() * (u64)usecs;
1262 do_div(tmp, USEC_PER_SEC);
1263 return tmp;
1265 EXPORT_SYMBOL(usecs_to_sclk);
1268 * Get CPU information for use by the procfs.
1270 static int show_cpuinfo(struct seq_file *m, void *v)
1272 char *cpu, *mmu, *fpu, *vendor, *cache;
1273 uint32_t revid;
1274 int cpu_num = *(unsigned int *)v;
1275 u_long sclk, cclk;
1276 u_int icache_size = BFIN_ICACHESIZE / 1024, dcache_size = 0, dsup_banks = 0;
1277 struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu_num);
1279 cpu = CPU;
1280 mmu = "none";
1281 fpu = "none";
1282 revid = bfin_revid();
1284 sclk = get_sclk();
1285 cclk = get_cclk();
1287 switch (bfin_read_CHIPID() & CHIPID_MANUFACTURE) {
1288 case 0xca:
1289 vendor = "Analog Devices";
1290 break;
1291 default:
1292 vendor = "unknown";
1293 break;
1296 seq_printf(m, "processor\t: %d\n" "vendor_id\t: %s\n", cpu_num, vendor);
1298 if (CPUID == bfin_cpuid())
1299 seq_printf(m, "cpu family\t: 0x%04x\n", CPUID);
1300 else
1301 seq_printf(m, "cpu family\t: Compiled for:0x%04x, running on:0x%04x\n",
1302 CPUID, bfin_cpuid());
1304 seq_printf(m, "model name\t: ADSP-%s %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n"
1305 "stepping\t: %d ",
1306 cpu, cclk/1000000, sclk/1000000,
1307 #ifdef CONFIG_MPU
1308 "mpu on",
1309 #else
1310 "mpu off",
1311 #endif
1312 revid);
1314 if (bfin_revid() != bfin_compiled_revid()) {
1315 if (bfin_compiled_revid() == -1)
1316 seq_printf(m, "(Compiled for Rev none)");
1317 else if (bfin_compiled_revid() == 0xffff)
1318 seq_printf(m, "(Compiled for Rev any)");
1319 else
1320 seq_printf(m, "(Compiled for Rev %d)", bfin_compiled_revid());
1323 seq_printf(m, "\ncpu MHz\t\t: %lu.%06lu/%lu.%06lu\n",
1324 cclk/1000000, cclk%1000000,
1325 sclk/1000000, sclk%1000000);
1326 seq_printf(m, "bogomips\t: %lu.%02lu\n"
1327 "Calibration\t: %lu loops\n",
1328 (loops_per_jiffy * HZ) / 500000,
1329 ((loops_per_jiffy * HZ) / 5000) % 100,
1330 (loops_per_jiffy * HZ));
1332 /* Check Cache configutation */
1333 switch (cpudata->dmemctl & (1 << DMC0_P | 1 << DMC1_P)) {
1334 case ACACHE_BSRAM:
1335 cache = "dbank-A/B\t: cache/sram";
1336 dcache_size = 16;
1337 dsup_banks = 1;
1338 break;
1339 case ACACHE_BCACHE:
1340 cache = "dbank-A/B\t: cache/cache";
1341 dcache_size = 32;
1342 dsup_banks = 2;
1343 break;
1344 case ASRAM_BSRAM:
1345 cache = "dbank-A/B\t: sram/sram";
1346 dcache_size = 0;
1347 dsup_banks = 0;
1348 break;
1349 default:
1350 cache = "unknown";
1351 dcache_size = 0;
1352 dsup_banks = 0;
1353 break;
1356 /* Is it turned on? */
1357 if ((cpudata->dmemctl & (ENDCPLB | DMC_ENABLE)) != (ENDCPLB | DMC_ENABLE))
1358 dcache_size = 0;
1360 if ((cpudata->imemctl & (IMC | ENICPLB)) != (IMC | ENICPLB))
1361 icache_size = 0;
1363 seq_printf(m, "cache size\t: %d KB(L1 icache) "
1364 "%d KB(L1 dcache) %d KB(L2 cache)\n",
1365 icache_size, dcache_size, 0);
1366 seq_printf(m, "%s\n", cache);
1367 seq_printf(m, "external memory\t: "
1368 #if defined(CONFIG_BFIN_EXTMEM_ICACHEABLE)
1369 "cacheable"
1370 #else
1371 "uncacheable"
1372 #endif
1373 " in instruction cache\n");
1374 seq_printf(m, "external memory\t: "
1375 #if defined(CONFIG_BFIN_EXTMEM_WRITEBACK)
1376 "cacheable (write-back)"
1377 #elif defined(CONFIG_BFIN_EXTMEM_WRITETHROUGH)
1378 "cacheable (write-through)"
1379 #else
1380 "uncacheable"
1381 #endif
1382 " in data cache\n");
1384 if (icache_size)
1385 seq_printf(m, "icache setup\t: %d Sub-banks/%d Ways, %d Lines/Way\n",
1386 BFIN_ISUBBANKS, BFIN_IWAYS, BFIN_ILINES);
1387 else
1388 seq_printf(m, "icache setup\t: off\n");
1390 seq_printf(m,
1391 "dcache setup\t: %d Super-banks/%d Sub-banks/%d Ways, %d Lines/Way\n",
1392 dsup_banks, BFIN_DSUBBANKS, BFIN_DWAYS,
1393 BFIN_DLINES);
1394 #ifdef __ARCH_SYNC_CORE_DCACHE
1395 seq_printf(m, "dcache flushes\t: %lu\n", dcache_invld_count[cpu_num]);
1396 #endif
1397 #ifdef __ARCH_SYNC_CORE_ICACHE
1398 seq_printf(m, "icache flushes\t: %lu\n", icache_invld_count[cpu_num]);
1399 #endif
1401 seq_printf(m, "\n");
1403 if (cpu_num != num_possible_cpus() - 1)
1404 return 0;
1406 if (L2_LENGTH) {
1407 seq_printf(m, "L2 SRAM\t\t: %dKB\n", L2_LENGTH/0x400);
1408 seq_printf(m, "L2 SRAM\t\t: "
1409 #if defined(CONFIG_BFIN_L2_ICACHEABLE)
1410 "cacheable"
1411 #else
1412 "uncacheable"
1413 #endif
1414 " in instruction cache\n");
1415 seq_printf(m, "L2 SRAM\t\t: "
1416 #if defined(CONFIG_BFIN_L2_WRITEBACK)
1417 "cacheable (write-back)"
1418 #elif defined(CONFIG_BFIN_L2_WRITETHROUGH)
1419 "cacheable (write-through)"
1420 #else
1421 "uncacheable"
1422 #endif
1423 " in data cache\n");
1425 seq_printf(m, "board name\t: %s\n", bfin_board_name);
1426 seq_printf(m, "board memory\t: %ld kB (0x%08lx -> 0x%08lx)\n",
1427 physical_mem_end >> 10, 0ul, physical_mem_end);
1428 seq_printf(m, "kernel memory\t: %d kB (0x%08lx -> 0x%08lx)\n",
1429 ((int)memory_end - (int)_rambase) >> 10,
1430 _rambase, memory_end);
1432 return 0;
1435 static void *c_start(struct seq_file *m, loff_t *pos)
1437 if (*pos == 0)
1438 *pos = cpumask_first(cpu_online_mask);
1439 if (*pos >= num_online_cpus())
1440 return NULL;
1442 return pos;
1445 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1447 *pos = cpumask_next(*pos, cpu_online_mask);
1449 return c_start(m, pos);
1452 static void c_stop(struct seq_file *m, void *v)
1456 const struct seq_operations cpuinfo_op = {
1457 .start = c_start,
1458 .next = c_next,
1459 .stop = c_stop,
1460 .show = show_cpuinfo,
1463 void __init cmdline_init(const char *r0)
1465 early_shadow_stamp();
1466 if (r0)
1467 strlcpy(command_line, r0, COMMAND_LINE_SIZE);