2 * Port on Texas Instruments TMS320C6x architecture
4 * Copyright (C) 2004, 2006, 2009, 2010, 2011 Texas Instruments Incorporated
5 * Author: Aurelien Jacquiot (aurelien.jacquiot@jaluna.com)
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/dma-mapping.h>
12 #include <linux/memblock.h>
13 #include <linux/seq_file.h>
14 #include <linux/bootmem.h>
15 #include <linux/clkdev.h>
16 #include <linux/initrd.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/of_fdt.h>
20 #include <linux/string.h>
21 #include <linux/errno.h>
22 #include <linux/cache.h>
23 #include <linux/delay.h>
24 #include <linux/sched.h>
25 #include <linux/clk.h>
26 #include <linux/cpu.h>
29 #include <linux/console.h>
30 #include <linux/screen_info.h>
32 #include <asm/sections.h>
33 #include <asm/div64.h>
34 #include <asm/setup.h>
36 #include <asm/clock.h>
38 #include <asm/special_insns.h>
40 static const char *c6x_soc_name
;
42 struct screen_info screen_info
;
45 EXPORT_SYMBOL_GPL(c6x_num_cores
);
47 unsigned int c6x_silicon_rev
;
48 EXPORT_SYMBOL_GPL(c6x_silicon_rev
);
51 * Device status register. This holds information
52 * about device configuration needed by some drivers.
54 unsigned int c6x_devstat
;
55 EXPORT_SYMBOL_GPL(c6x_devstat
);
58 * Some SoCs have fuse registers holding a unique MAC
59 * address. This is parsed out of the device tree with
60 * the resulting MAC being held here.
62 unsigned char c6x_fuse_mac
[6];
64 unsigned long memory_start
;
65 unsigned long memory_end
;
66 EXPORT_SYMBOL(memory_end
);
68 unsigned long ram_start
;
69 unsigned long ram_end
;
71 /* Uncached memory for DMA consistent use (memdma=) */
72 static unsigned long dma_start __initdata
;
73 static unsigned long dma_size __initdata
;
77 const char *cpu_voltage
;
85 static DEFINE_PER_CPU(struct cpuinfo_c6x
, cpu_data
);
87 unsigned int ticks_per_ns_scaled
;
88 EXPORT_SYMBOL(ticks_per_ns_scaled
);
90 unsigned int c6x_core_freq
;
92 static void __init
get_cpuinfo(void)
94 unsigned cpu_id
, rev_id
, csr
;
95 struct clk
*coreclk
= clk_get_sys(NULL
, "core");
96 unsigned long core_khz
;
98 struct cpuinfo_c6x
*p
;
99 struct device_node
*node
, *np
;
101 p
= &per_cpu(cpu_data
, smp_processor_id());
103 if (!IS_ERR(coreclk
))
104 c6x_core_freq
= clk_get_rate(coreclk
);
107 "Cannot find core clock frequency. Using 700MHz\n");
108 c6x_core_freq
= 700000000;
111 core_khz
= c6x_core_freq
/ 1000;
113 tmp
= (uint64_t)core_khz
<< C6X_NDELAY_SCALE
;
114 do_div(tmp
, 1000000);
115 ticks_per_ns_scaled
= tmp
;
119 rev_id
= (csr
>> 16) & 0xff;
123 p
->cpu_voltage
= "unknown";
127 p
->cpu_name
= "C67x";
131 p
->cpu_name
= "C62x";
134 p
->cpu_name
= "C64x";
137 p
->cpu_name
= "C64x";
140 p
->cpu_name
= "C64x+";
141 p
->cpu_voltage
= "1.2";
144 p
->cpu_name
= "C66X";
145 p
->cpu_voltage
= "1.2";
148 p
->cpu_name
= "unknown";
156 p
->cpu_rev
= "DM640/DM641/DM642/DM643";
157 p
->cpu_voltage
= "1.2 - 1.4";
159 p
->cpu_rev
= "C6201";
160 p
->cpu_voltage
= "2.5";
164 p
->cpu_rev
= "C6201B/C6202/C6211";
165 p
->cpu_voltage
= "1.8";
168 p
->cpu_rev
= "C6202B/C6203/C6204/C6205";
169 p
->cpu_voltage
= "1.5";
172 p
->cpu_rev
= "C6701 revision 0 (early CPU)";
173 p
->cpu_voltage
= "1.8";
176 p
->cpu_rev
= "C6701/C6711/C6712";
177 p
->cpu_voltage
= "1.8";
181 p
->cpu_voltage
= "1.5";
184 p
->cpu_rev
= "unknown";
187 p
->cpu_rev
= p
->__cpu_rev
;
188 snprintf(p
->__cpu_rev
, sizeof(p
->__cpu_rev
), "0x%x", cpu_id
);
191 p
->core_id
= get_coreid();
193 node
= of_find_node_by_name(NULL
, "cpus");
195 for_each_child_of_node(node
, np
)
196 if (!strcmp("cpu", np
->name
))
201 node
= of_find_node_by_name(NULL
, "soc");
203 if (of_property_read_string(node
, "model", &c6x_soc_name
))
204 c6x_soc_name
= "unknown";
207 c6x_soc_name
= "unknown";
209 printk(KERN_INFO
"CPU%d: %s rev %s, %s volts, %uMHz\n",
210 p
->core_id
, p
->cpu_name
, p
->cpu_rev
,
211 p
->cpu_voltage
, c6x_core_freq
/ 1000000);
215 * Early parsing of the command line
217 static u32 mem_size __initdata
;
219 /* "mem=" parsing. */
220 static int __init
early_mem(char *p
)
225 mem_size
= memparse(p
, &p
);
226 /* don't remove all of memory when handling "mem={invalid}" */
232 early_param("mem", early_mem
);
234 /* "memdma=<size>[@<address>]" parsing. */
235 static int __init
early_memdma(char *p
)
240 dma_size
= memparse(p
, &p
);
242 dma_start
= memparse(p
, &p
);
246 early_param("memdma", early_memdma
);
248 int __init
c6x_add_memory(phys_addr_t start
, unsigned long size
)
250 static int ram_found __initdata
;
252 /* We only handle one bank (the one with PAGE_OFFSET) for now */
256 if (start
> PAGE_OFFSET
|| PAGE_OFFSET
>= (start
+ size
))
260 ram_end
= start
+ size
;
267 * Do early machine setup and device tree parsing. This is called very
268 * early on the boot process.
270 notrace
void __init
machine_init(unsigned long dt_ptr
)
272 void *dtb
= __va(dt_ptr
);
273 void *fdt
= _fdt_start
;
275 /* interrupts must be masked */
279 * Set the Interrupt Service Table (IST) to the beginning of the
282 set_ist(_vectors_start
);
287 * dtb is passed in from bootloader.
288 * fdt is linked in blob.
290 if (dtb
&& dtb
!= fdt
)
293 /* Do some early initialization based on the flat device tree */
294 early_init_dt_scan(fdt
);
299 void __init
setup_arch(char **cmdline_p
)
302 struct memblock_region
*reg
;
304 printk(KERN_INFO
"Initializing kernel\n");
306 /* Initialize command line */
307 *cmdline_p
= boot_command_line
;
309 memory_end
= ram_end
;
310 memory_end
&= ~(PAGE_SIZE
- 1);
312 if (mem_size
&& (PAGE_OFFSET
+ PAGE_ALIGN(mem_size
)) < memory_end
)
313 memory_end
= PAGE_OFFSET
+ PAGE_ALIGN(mem_size
);
315 /* add block that this kernel can use */
316 memblock_add(PAGE_OFFSET
, memory_end
- PAGE_OFFSET
);
318 /* reserve kernel text/data/bss */
319 memblock_reserve(PAGE_OFFSET
,
320 PAGE_ALIGN((unsigned long)&_end
- PAGE_OFFSET
));
323 /* align to cacheability granularity */
324 dma_size
= CACHE_REGION_END(dma_size
);
327 dma_start
= memory_end
- dma_size
;
329 /* align to cacheability granularity */
330 dma_start
= CACHE_REGION_START(dma_start
);
332 /* reserve DMA memory taken from kernel memory */
333 if (memblock_is_region_memory(dma_start
, dma_size
))
334 memblock_reserve(dma_start
, dma_size
);
337 memory_start
= PAGE_ALIGN((unsigned int) &_end
);
339 printk(KERN_INFO
"Memory Start=%08lx, Memory End=%08lx\n",
340 memory_start
, memory_end
);
342 #ifdef CONFIG_BLK_DEV_INITRD
344 * Reserve initrd memory if in kernel memory.
346 if (initrd_start
< initrd_end
)
347 if (memblock_is_region_memory(initrd_start
,
348 initrd_end
- initrd_start
))
349 memblock_reserve(initrd_start
,
350 initrd_end
- initrd_start
);
353 init_mm
.start_code
= (unsigned long) &_stext
;
354 init_mm
.end_code
= (unsigned long) &_etext
;
355 init_mm
.end_data
= memory_start
;
356 init_mm
.brk
= memory_start
;
359 * Give all the memory to the bootmap allocator, tell it to put the
360 * boot mem_map at the start of memory
362 bootmap_size
= init_bootmem_node(NODE_DATA(0),
363 memory_start
>> PAGE_SHIFT
,
364 PAGE_OFFSET
>> PAGE_SHIFT
,
365 memory_end
>> PAGE_SHIFT
);
366 memblock_reserve(memory_start
, bootmap_size
);
368 unflatten_device_tree();
372 /* Set the whole external memory as non-cacheable */
373 disable_caching(ram_start
, ram_end
- 1);
375 /* Set caching of external RAM used by Linux */
376 for_each_memblock(memory
, reg
)
377 enable_caching(CACHE_REGION_START(reg
->base
),
378 CACHE_REGION_START(reg
->base
+ reg
->size
- 1));
380 #ifdef CONFIG_BLK_DEV_INITRD
382 * Enable caching for initrd which falls outside kernel memory.
384 if (initrd_start
< initrd_end
) {
385 if (!memblock_is_region_memory(initrd_start
,
386 initrd_end
- initrd_start
))
387 enable_caching(CACHE_REGION_START(initrd_start
),
388 CACHE_REGION_START(initrd_end
- 1));
393 * Disable caching for dma coherent memory taken from kernel memory.
395 if (dma_size
&& memblock_is_region_memory(dma_start
, dma_size
))
396 disable_caching(dma_start
,
397 CACHE_REGION_START(dma_start
+ dma_size
- 1));
399 /* Initialize the coherent memory allocator */
400 coherent_mem_init(dma_start
, dma_size
);
403 * Free all memory as a starting point.
405 free_bootmem(PAGE_OFFSET
, memory_end
- PAGE_OFFSET
);
408 * Then reserve memory which is already being used.
410 for_each_memblock(reserved
, reg
) {
411 pr_debug("reserved - 0x%08x-0x%08x\n",
412 (u32
) reg
->base
, (u32
) reg
->size
);
413 reserve_bootmem(reg
->base
, reg
->size
, BOOTMEM_DEFAULT
);
416 max_low_pfn
= PFN_DOWN(memory_end
);
417 min_low_pfn
= PFN_UP(memory_start
);
418 max_mapnr
= max_low_pfn
- min_low_pfn
;
420 /* Get kmalloc into gear */
424 * Probe for Device State Configuration Registers.
425 * We have to do this early in case timer needs to be enabled
430 /* We do this early for timer and core clock frequency */
436 #if defined(CONFIG_VT) && defined(CONFIG_DUMMY_CONSOLE)
437 conswitchp
= &dummy_con
;
441 #define cpu_to_ptr(n) ((void *)((long)(n)+1))
442 #define ptr_to_cpu(p) ((long)(p) - 1)
444 static int show_cpuinfo(struct seq_file
*m
, void *v
)
446 int n
= ptr_to_cpu(v
);
447 struct cpuinfo_c6x
*p
= &per_cpu(cpu_data
, n
);
452 "soc revision\t: 0x%x\n"
454 c6x_soc_name
, c6x_silicon_rev
, c6x_num_cores
);
461 "core revision\t: %s\n"
462 "core voltage\t: %s\n"
467 "bogomips\t: %lu.%02lu\n\n",
469 p
->cpu_name
, p
->cpu_rev
, p
->cpu_voltage
,
470 p
->core_id
, p
->mmu
, p
->fpu
,
471 (c6x_core_freq
+ 500000) / 1000000,
472 (loops_per_jiffy
/(500000/HZ
)),
473 (loops_per_jiffy
/(5000/HZ
))%100);
478 static void *c_start(struct seq_file
*m
, loff_t
*pos
)
480 return *pos
< nr_cpu_ids
? cpu_to_ptr(*pos
) : NULL
;
482 static void *c_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
487 static void c_stop(struct seq_file
*m
, void *v
)
491 const struct seq_operations cpuinfo_op
= {
498 static struct cpu cpu_devices
[NR_CPUS
];
500 static int __init
topology_init(void)
504 for_each_present_cpu(i
)
505 register_cpu(&cpu_devices
[i
], i
);
510 subsys_initcall(topology_init
);