of: MSI: Simplify irqdomain lookup
[linux/fpc-iii.git] / arch / ia64 / include / asm / pgtable.h
blob9f3ed9ee8f13e0e8feed6483e56b45a541ee7832
1 #ifndef _ASM_IA64_PGTABLE_H
2 #define _ASM_IA64_PGTABLE_H
4 /*
5 * This file contains the functions and defines necessary to modify and use
6 * the IA-64 page table tree.
8 * This hopefully works with any (fixed) IA-64 page-size, as defined
9 * in <asm/page.h>.
11 * Copyright (C) 1998-2005 Hewlett-Packard Co
12 * David Mosberger-Tang <davidm@hpl.hp.com>
16 #include <asm/mman.h>
17 #include <asm/page.h>
18 #include <asm/processor.h>
19 #include <asm/types.h>
21 #define IA64_MAX_PHYS_BITS 50 /* max. number of physical address bits (architected) */
24 * First, define the various bits in a PTE. Note that the PTE format
25 * matches the VHPT short format, the firt doubleword of the VHPD long
26 * format, and the first doubleword of the TLB insertion format.
28 #define _PAGE_P_BIT 0
29 #define _PAGE_A_BIT 5
30 #define _PAGE_D_BIT 6
32 #define _PAGE_P (1 << _PAGE_P_BIT) /* page present bit */
33 #define _PAGE_MA_WB (0x0 << 2) /* write back memory attribute */
34 #define _PAGE_MA_UC (0x4 << 2) /* uncacheable memory attribute */
35 #define _PAGE_MA_UCE (0x5 << 2) /* UC exported attribute */
36 #define _PAGE_MA_WC (0x6 << 2) /* write coalescing memory attribute */
37 #define _PAGE_MA_NAT (0x7 << 2) /* not-a-thing attribute */
38 #define _PAGE_MA_MASK (0x7 << 2)
39 #define _PAGE_PL_0 (0 << 7) /* privilege level 0 (kernel) */
40 #define _PAGE_PL_1 (1 << 7) /* privilege level 1 (unused) */
41 #define _PAGE_PL_2 (2 << 7) /* privilege level 2 (unused) */
42 #define _PAGE_PL_3 (3 << 7) /* privilege level 3 (user) */
43 #define _PAGE_PL_MASK (3 << 7)
44 #define _PAGE_AR_R (0 << 9) /* read only */
45 #define _PAGE_AR_RX (1 << 9) /* read & execute */
46 #define _PAGE_AR_RW (2 << 9) /* read & write */
47 #define _PAGE_AR_RWX (3 << 9) /* read, write & execute */
48 #define _PAGE_AR_R_RW (4 << 9) /* read / read & write */
49 #define _PAGE_AR_RX_RWX (5 << 9) /* read & exec / read, write & exec */
50 #define _PAGE_AR_RWX_RW (6 << 9) /* read, write & exec / read & write */
51 #define _PAGE_AR_X_RX (7 << 9) /* exec & promote / read & exec */
52 #define _PAGE_AR_MASK (7 << 9)
53 #define _PAGE_AR_SHIFT 9
54 #define _PAGE_A (1 << _PAGE_A_BIT) /* page accessed bit */
55 #define _PAGE_D (1 << _PAGE_D_BIT) /* page dirty bit */
56 #define _PAGE_PPN_MASK (((__IA64_UL(1) << IA64_MAX_PHYS_BITS) - 1) & ~0xfffUL)
57 #define _PAGE_ED (__IA64_UL(1) << 52) /* exception deferral */
58 #define _PAGE_PROTNONE (__IA64_UL(1) << 63)
60 #define _PFN_MASK _PAGE_PPN_MASK
61 /* Mask of bits which may be changed by pte_modify(); the odd bits are there for _PAGE_PROTNONE */
62 #define _PAGE_CHG_MASK (_PAGE_P | _PAGE_PROTNONE | _PAGE_PL_MASK | _PAGE_AR_MASK | _PAGE_ED)
64 #define _PAGE_SIZE_4K 12
65 #define _PAGE_SIZE_8K 13
66 #define _PAGE_SIZE_16K 14
67 #define _PAGE_SIZE_64K 16
68 #define _PAGE_SIZE_256K 18
69 #define _PAGE_SIZE_1M 20
70 #define _PAGE_SIZE_4M 22
71 #define _PAGE_SIZE_16M 24
72 #define _PAGE_SIZE_64M 26
73 #define _PAGE_SIZE_256M 28
74 #define _PAGE_SIZE_1G 30
75 #define _PAGE_SIZE_4G 32
77 #define __ACCESS_BITS _PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_MA_WB
78 #define __DIRTY_BITS_NO_ED _PAGE_A | _PAGE_P | _PAGE_D | _PAGE_MA_WB
79 #define __DIRTY_BITS _PAGE_ED | __DIRTY_BITS_NO_ED
82 * How many pointers will a page table level hold expressed in shift
84 #define PTRS_PER_PTD_SHIFT (PAGE_SHIFT-3)
87 * Definitions for fourth level:
89 #define PTRS_PER_PTE (__IA64_UL(1) << (PTRS_PER_PTD_SHIFT))
92 * Definitions for third level:
94 * PMD_SHIFT determines the size of the area a third-level page table
95 * can map.
97 #define PMD_SHIFT (PAGE_SHIFT + (PTRS_PER_PTD_SHIFT))
98 #define PMD_SIZE (1UL << PMD_SHIFT)
99 #define PMD_MASK (~(PMD_SIZE-1))
100 #define PTRS_PER_PMD (1UL << (PTRS_PER_PTD_SHIFT))
102 #if CONFIG_PGTABLE_LEVELS == 4
104 * Definitions for second level:
106 * PUD_SHIFT determines the size of the area a second-level page table
107 * can map.
109 #define PUD_SHIFT (PMD_SHIFT + (PTRS_PER_PTD_SHIFT))
110 #define PUD_SIZE (1UL << PUD_SHIFT)
111 #define PUD_MASK (~(PUD_SIZE-1))
112 #define PTRS_PER_PUD (1UL << (PTRS_PER_PTD_SHIFT))
113 #endif
116 * Definitions for first level:
118 * PGDIR_SHIFT determines what a first-level page table entry can map.
120 #if CONFIG_PGTABLE_LEVELS == 4
121 #define PGDIR_SHIFT (PUD_SHIFT + (PTRS_PER_PTD_SHIFT))
122 #else
123 #define PGDIR_SHIFT (PMD_SHIFT + (PTRS_PER_PTD_SHIFT))
124 #endif
125 #define PGDIR_SIZE (__IA64_UL(1) << PGDIR_SHIFT)
126 #define PGDIR_MASK (~(PGDIR_SIZE-1))
127 #define PTRS_PER_PGD_SHIFT PTRS_PER_PTD_SHIFT
128 #define PTRS_PER_PGD (1UL << PTRS_PER_PGD_SHIFT)
129 #define USER_PTRS_PER_PGD (5*PTRS_PER_PGD/8) /* regions 0-4 are user regions */
130 #define FIRST_USER_ADDRESS 0UL
133 * All the normal masks have the "page accessed" bits on, as any time
134 * they are used, the page is accessed. They are cleared only by the
135 * page-out routines.
137 #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_A)
138 #define PAGE_SHARED __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RW)
139 #define PAGE_READONLY __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R)
140 #define PAGE_COPY __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R)
141 #define PAGE_COPY_EXEC __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX)
142 #define PAGE_GATE __pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_X_RX)
143 #define PAGE_KERNEL __pgprot(__DIRTY_BITS | _PAGE_PL_0 | _PAGE_AR_RWX)
144 #define PAGE_KERNELRX __pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_RX)
145 #define PAGE_KERNEL_UC __pgprot(__DIRTY_BITS | _PAGE_PL_0 | _PAGE_AR_RWX | \
146 _PAGE_MA_UC)
148 # ifndef __ASSEMBLY__
150 #include <linux/sched.h> /* for mm_struct */
151 #include <linux/bitops.h>
152 #include <asm/cacheflush.h>
153 #include <asm/mmu_context.h>
156 * Next come the mappings that determine how mmap() protection bits
157 * (PROT_EXEC, PROT_READ, PROT_WRITE, PROT_NONE) get implemented. The
158 * _P version gets used for a private shared memory segment, the _S
159 * version gets used for a shared memory segment with MAP_SHARED on.
160 * In a private shared memory segment, we do a copy-on-write if a task
161 * attempts to write to the page.
163 /* xwr */
164 #define __P000 PAGE_NONE
165 #define __P001 PAGE_READONLY
166 #define __P010 PAGE_READONLY /* write to priv pg -> copy & make writable */
167 #define __P011 PAGE_READONLY /* ditto */
168 #define __P100 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX)
169 #define __P101 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX)
170 #define __P110 PAGE_COPY_EXEC
171 #define __P111 PAGE_COPY_EXEC
173 #define __S000 PAGE_NONE
174 #define __S001 PAGE_READONLY
175 #define __S010 PAGE_SHARED /* we don't have (and don't need) write-only */
176 #define __S011 PAGE_SHARED
177 #define __S100 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX)
178 #define __S101 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX)
179 #define __S110 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX)
180 #define __S111 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX)
182 #define pgd_ERROR(e) printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
183 #if CONFIG_PGTABLE_LEVELS == 4
184 #define pud_ERROR(e) printk("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
185 #endif
186 #define pmd_ERROR(e) printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
187 #define pte_ERROR(e) printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
191 * Some definitions to translate between mem_map, PTEs, and page addresses:
195 /* Quick test to see if ADDR is a (potentially) valid physical address. */
196 static inline long
197 ia64_phys_addr_valid (unsigned long addr)
199 return (addr & (local_cpu_data->unimpl_pa_mask)) == 0;
203 * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel
204 * memory. For the return value to be meaningful, ADDR must be >=
205 * PAGE_OFFSET. This operation can be relatively expensive (e.g.,
206 * require a hash-, or multi-level tree-lookup or something of that
207 * sort) but it guarantees to return TRUE only if accessing the page
208 * at that address does not cause an error. Note that there may be
209 * addresses for which kern_addr_valid() returns FALSE even though an
210 * access would not cause an error (e.g., this is typically true for
211 * memory mapped I/O regions.
213 * XXX Need to implement this for IA-64.
215 #define kern_addr_valid(addr) (1)
219 * Now come the defines and routines to manage and access the three-level
220 * page table.
224 #define VMALLOC_START (RGN_BASE(RGN_GATE) + 0x200000000UL)
225 #ifdef CONFIG_VIRTUAL_MEM_MAP
226 # define VMALLOC_END_INIT (RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 9)))
227 extern unsigned long VMALLOC_END;
228 #else
229 #if defined(CONFIG_SPARSEMEM) && defined(CONFIG_SPARSEMEM_VMEMMAP)
230 /* SPARSEMEM_VMEMMAP uses half of vmalloc... */
231 # define VMALLOC_END (RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 10)))
232 # define vmemmap ((struct page *)VMALLOC_END)
233 #else
234 # define VMALLOC_END (RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 9)))
235 #endif
236 #endif
238 /* fs/proc/kcore.c */
239 #define kc_vaddr_to_offset(v) ((v) - RGN_BASE(RGN_GATE))
240 #define kc_offset_to_vaddr(o) ((o) + RGN_BASE(RGN_GATE))
242 #define RGN_MAP_SHIFT (PGDIR_SHIFT + PTRS_PER_PGD_SHIFT - 3)
243 #define RGN_MAP_LIMIT ((1UL << RGN_MAP_SHIFT) - PAGE_SIZE) /* per region addr limit */
246 * Conversion functions: convert page frame number (pfn) and a protection value to a page
247 * table entry (pte).
249 #define pfn_pte(pfn, pgprot) \
250 ({ pte_t __pte; pte_val(__pte) = ((pfn) << PAGE_SHIFT) | pgprot_val(pgprot); __pte; })
252 /* Extract pfn from pte. */
253 #define pte_pfn(_pte) ((pte_val(_pte) & _PFN_MASK) >> PAGE_SHIFT)
255 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
257 /* This takes a physical page address that is used by the remapping functions */
258 #define mk_pte_phys(physpage, pgprot) \
259 ({ pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); __pte; })
261 #define pte_modify(_pte, newprot) \
262 (__pte((pte_val(_pte) & ~_PAGE_CHG_MASK) | (pgprot_val(newprot) & _PAGE_CHG_MASK)))
264 #define pte_none(pte) (!pte_val(pte))
265 #define pte_present(pte) (pte_val(pte) & (_PAGE_P | _PAGE_PROTNONE))
266 #define pte_clear(mm,addr,pte) (pte_val(*(pte)) = 0UL)
267 /* pte_page() returns the "struct page *" corresponding to the PTE: */
268 #define pte_page(pte) virt_to_page(((pte_val(pte) & _PFN_MASK) + PAGE_OFFSET))
270 #define pmd_none(pmd) (!pmd_val(pmd))
271 #define pmd_bad(pmd) (!ia64_phys_addr_valid(pmd_val(pmd)))
272 #define pmd_present(pmd) (pmd_val(pmd) != 0UL)
273 #define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0UL)
274 #define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & _PFN_MASK))
275 #define pmd_page(pmd) virt_to_page((pmd_val(pmd) + PAGE_OFFSET))
277 #define pud_none(pud) (!pud_val(pud))
278 #define pud_bad(pud) (!ia64_phys_addr_valid(pud_val(pud)))
279 #define pud_present(pud) (pud_val(pud) != 0UL)
280 #define pud_clear(pudp) (pud_val(*(pudp)) = 0UL)
281 #define pud_page_vaddr(pud) ((unsigned long) __va(pud_val(pud) & _PFN_MASK))
282 #define pud_page(pud) virt_to_page((pud_val(pud) + PAGE_OFFSET))
284 #if CONFIG_PGTABLE_LEVELS == 4
285 #define pgd_none(pgd) (!pgd_val(pgd))
286 #define pgd_bad(pgd) (!ia64_phys_addr_valid(pgd_val(pgd)))
287 #define pgd_present(pgd) (pgd_val(pgd) != 0UL)
288 #define pgd_clear(pgdp) (pgd_val(*(pgdp)) = 0UL)
289 #define pgd_page_vaddr(pgd) ((unsigned long) __va(pgd_val(pgd) & _PFN_MASK))
290 #define pgd_page(pgd) virt_to_page((pgd_val(pgd) + PAGE_OFFSET))
291 #endif
294 * The following have defined behavior only work if pte_present() is true.
296 #define pte_write(pte) ((unsigned) (((pte_val(pte) & _PAGE_AR_MASK) >> _PAGE_AR_SHIFT) - 2) <= 4)
297 #define pte_exec(pte) ((pte_val(pte) & _PAGE_AR_RX) != 0)
298 #define pte_dirty(pte) ((pte_val(pte) & _PAGE_D) != 0)
299 #define pte_young(pte) ((pte_val(pte) & _PAGE_A) != 0)
300 #define pte_special(pte) 0
303 * Note: we convert AR_RWX to AR_RX and AR_RW to AR_R by clearing the 2nd bit in the
304 * access rights:
306 #define pte_wrprotect(pte) (__pte(pte_val(pte) & ~_PAGE_AR_RW))
307 #define pte_mkwrite(pte) (__pte(pte_val(pte) | _PAGE_AR_RW))
308 #define pte_mkold(pte) (__pte(pte_val(pte) & ~_PAGE_A))
309 #define pte_mkyoung(pte) (__pte(pte_val(pte) | _PAGE_A))
310 #define pte_mkclean(pte) (__pte(pte_val(pte) & ~_PAGE_D))
311 #define pte_mkdirty(pte) (__pte(pte_val(pte) | _PAGE_D))
312 #define pte_mkhuge(pte) (__pte(pte_val(pte)))
313 #define pte_mkspecial(pte) (pte)
316 * Because ia64's Icache and Dcache is not coherent (on a cpu), we need to
317 * sync icache and dcache when we insert *new* executable page.
318 * __ia64_sync_icache_dcache() check Pg_arch_1 bit and flush icache
319 * if necessary.
321 * set_pte() is also called by the kernel, but we can expect that the kernel
322 * flushes icache explicitly if necessary.
324 #define pte_present_exec_user(pte)\
325 ((pte_val(pte) & (_PAGE_P | _PAGE_PL_MASK | _PAGE_AR_RX)) == \
326 (_PAGE_P | _PAGE_PL_3 | _PAGE_AR_RX))
328 extern void __ia64_sync_icache_dcache(pte_t pteval);
329 static inline void set_pte(pte_t *ptep, pte_t pteval)
331 /* page is present && page is user && page is executable
332 * && (page swapin or new page or page migraton
333 * || copy_on_write with page copying.)
335 if (pte_present_exec_user(pteval) &&
336 (!pte_present(*ptep) ||
337 pte_pfn(*ptep) != pte_pfn(pteval)))
338 /* load_module() calles flush_icache_range() explicitly*/
339 __ia64_sync_icache_dcache(pteval);
340 *ptep = pteval;
343 #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
346 * Make page protection values cacheable, uncacheable, or write-
347 * combining. Note that "protection" is really a misnomer here as the
348 * protection value contains the memory attribute bits, dirty bits, and
349 * various other bits as well.
351 #define pgprot_cacheable(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_WB)
352 #define pgprot_noncached(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_UC)
353 #define pgprot_writecombine(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_WC)
355 struct file;
356 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
357 unsigned long size, pgprot_t vma_prot);
358 #define __HAVE_PHYS_MEM_ACCESS_PROT
360 static inline unsigned long
361 pgd_index (unsigned long address)
363 unsigned long region = address >> 61;
364 unsigned long l1index = (address >> PGDIR_SHIFT) & ((PTRS_PER_PGD >> 3) - 1);
366 return (region << (PAGE_SHIFT - 6)) | l1index;
369 /* The offset in the 1-level directory is given by the 3 region bits
370 (61..63) and the level-1 bits. */
371 static inline pgd_t*
372 pgd_offset (const struct mm_struct *mm, unsigned long address)
374 return mm->pgd + pgd_index(address);
377 /* In the kernel's mapped region we completely ignore the region number
378 (since we know it's in region number 5). */
379 #define pgd_offset_k(addr) \
380 (init_mm.pgd + (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)))
382 /* Look up a pgd entry in the gate area. On IA-64, the gate-area
383 resides in the kernel-mapped segment, hence we use pgd_offset_k()
384 here. */
385 #define pgd_offset_gate(mm, addr) pgd_offset_k(addr)
387 #if CONFIG_PGTABLE_LEVELS == 4
388 /* Find an entry in the second-level page table.. */
389 #define pud_offset(dir,addr) \
390 ((pud_t *) pgd_page_vaddr(*(dir)) + (((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1)))
391 #endif
393 /* Find an entry in the third-level page table.. */
394 #define pmd_offset(dir,addr) \
395 ((pmd_t *) pud_page_vaddr(*(dir)) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
398 * Find an entry in the third-level page table. This looks more complicated than it
399 * should be because some platforms place page tables in high memory.
401 #define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
402 #define pte_offset_kernel(dir,addr) ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(addr))
403 #define pte_offset_map(dir,addr) pte_offset_kernel(dir, addr)
404 #define pte_unmap(pte) do { } while (0)
406 /* atomic versions of the some PTE manipulations: */
408 static inline int
409 ptep_test_and_clear_young (struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
411 #ifdef CONFIG_SMP
412 if (!pte_young(*ptep))
413 return 0;
414 return test_and_clear_bit(_PAGE_A_BIT, ptep);
415 #else
416 pte_t pte = *ptep;
417 if (!pte_young(pte))
418 return 0;
419 set_pte_at(vma->vm_mm, addr, ptep, pte_mkold(pte));
420 return 1;
421 #endif
424 static inline pte_t
425 ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
427 #ifdef CONFIG_SMP
428 return __pte(xchg((long *) ptep, 0));
429 #else
430 pte_t pte = *ptep;
431 pte_clear(mm, addr, ptep);
432 return pte;
433 #endif
436 static inline void
437 ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
439 #ifdef CONFIG_SMP
440 unsigned long new, old;
442 do {
443 old = pte_val(*ptep);
444 new = pte_val(pte_wrprotect(__pte (old)));
445 } while (cmpxchg((unsigned long *) ptep, old, new) != old);
446 #else
447 pte_t old_pte = *ptep;
448 set_pte_at(mm, addr, ptep, pte_wrprotect(old_pte));
449 #endif
452 static inline int
453 pte_same (pte_t a, pte_t b)
455 return pte_val(a) == pte_val(b);
458 #define update_mmu_cache(vma, address, ptep) do { } while (0)
460 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
461 extern void paging_init (void);
464 * Note: The macros below rely on the fact that MAX_SWAPFILES_SHIFT <= number of
465 * bits in the swap-type field of the swap pte. It would be nice to
466 * enforce that, but we can't easily include <linux/swap.h> here.
467 * (Of course, better still would be to define MAX_SWAPFILES_SHIFT here...).
469 * Format of swap pte:
470 * bit 0 : present bit (must be zero)
471 * bits 1- 7: swap-type
472 * bits 8-62: swap offset
473 * bit 63 : _PAGE_PROTNONE bit
475 #define __swp_type(entry) (((entry).val >> 1) & 0x7f)
476 #define __swp_offset(entry) (((entry).val << 1) >> 9)
477 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << 1) | ((long) (offset) << 8) })
478 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
479 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
482 * ZERO_PAGE is a global shared page that is always zero: used
483 * for zero-mapped memory areas etc..
485 extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)];
486 extern struct page *zero_page_memmap_ptr;
487 #define ZERO_PAGE(vaddr) (zero_page_memmap_ptr)
489 /* We provide our own get_unmapped_area to cope with VA holes for userland */
490 #define HAVE_ARCH_UNMAPPED_AREA
492 #ifdef CONFIG_HUGETLB_PAGE
493 #define HUGETLB_PGDIR_SHIFT (HPAGE_SHIFT + 2*(PAGE_SHIFT-3))
494 #define HUGETLB_PGDIR_SIZE (__IA64_UL(1) << HUGETLB_PGDIR_SHIFT)
495 #define HUGETLB_PGDIR_MASK (~(HUGETLB_PGDIR_SIZE-1))
496 #endif
499 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
501 * Update PTEP with ENTRY, which is guaranteed to be a less
502 * restrictive PTE. That is, ENTRY may have the ACCESSED, DIRTY, and
503 * WRITABLE bits turned on, when the value at PTEP did not. The
504 * WRITABLE bit may only be turned if SAFELY_WRITABLE is TRUE.
506 * SAFELY_WRITABLE is TRUE if we can update the value at PTEP without
507 * having to worry about races. On SMP machines, there are only two
508 * cases where this is true:
510 * (1) *PTEP has the PRESENT bit turned OFF
511 * (2) ENTRY has the DIRTY bit turned ON
513 * On ia64, we could implement this routine with a cmpxchg()-loop
514 * which ORs in the _PAGE_A/_PAGE_D bit if they're set in ENTRY.
515 * However, like on x86, we can get a more streamlined version by
516 * observing that it is OK to drop ACCESSED bit updates when
517 * SAFELY_WRITABLE is FALSE. Besides being rare, all that would do is
518 * result in an extra Access-bit fault, which would then turn on the
519 * ACCESSED bit in the low-level fault handler (iaccess_bit or
520 * daccess_bit in ivt.S).
522 #ifdef CONFIG_SMP
523 # define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable) \
524 ({ \
525 int __changed = !pte_same(*(__ptep), __entry); \
526 if (__changed && __safely_writable) { \
527 set_pte(__ptep, __entry); \
528 flush_tlb_page(__vma, __addr); \
530 __changed; \
532 #else
533 # define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable) \
534 ({ \
535 int __changed = !pte_same(*(__ptep), __entry); \
536 if (__changed) { \
537 set_pte_at((__vma)->vm_mm, (__addr), __ptep, __entry); \
538 flush_tlb_page(__vma, __addr); \
540 __changed; \
542 #endif
544 # ifdef CONFIG_VIRTUAL_MEM_MAP
545 /* arch mem_map init routine is needed due to holes in a virtual mem_map */
546 # define __HAVE_ARCH_MEMMAP_INIT
547 extern void memmap_init (unsigned long size, int nid, unsigned long zone,
548 unsigned long start_pfn);
549 # endif /* CONFIG_VIRTUAL_MEM_MAP */
550 # endif /* !__ASSEMBLY__ */
553 * Identity-mapped regions use a large page size. We'll call such large pages
554 * "granules". If you can think of a better name that's unambiguous, let me
555 * know...
557 #if defined(CONFIG_IA64_GRANULE_64MB)
558 # define IA64_GRANULE_SHIFT _PAGE_SIZE_64M
559 #elif defined(CONFIG_IA64_GRANULE_16MB)
560 # define IA64_GRANULE_SHIFT _PAGE_SIZE_16M
561 #endif
562 #define IA64_GRANULE_SIZE (1 << IA64_GRANULE_SHIFT)
564 * log2() of the page size we use to map the kernel image (IA64_TR_KERNEL):
566 #define KERNEL_TR_PAGE_SHIFT _PAGE_SIZE_64M
567 #define KERNEL_TR_PAGE_SIZE (1 << KERNEL_TR_PAGE_SHIFT)
570 * No page table caches to initialise
572 #define pgtable_cache_init() do { } while (0)
574 /* These tell get_user_pages() that the first gate page is accessible from user-level. */
575 #define FIXADDR_USER_START GATE_ADDR
576 #ifdef HAVE_BUGGY_SEGREL
577 # define FIXADDR_USER_END (GATE_ADDR + 2*PAGE_SIZE)
578 #else
579 # define FIXADDR_USER_END (GATE_ADDR + 2*PERCPU_PAGE_SIZE)
580 #endif
582 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
583 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
584 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
585 #define __HAVE_ARCH_PTE_SAME
586 #define __HAVE_ARCH_PGD_OFFSET_GATE
589 #if CONFIG_PGTABLE_LEVELS == 3
590 #include <asm-generic/pgtable-nopud.h>
591 #endif
592 #include <asm-generic/pgtable.h>
594 #endif /* _ASM_IA64_PGTABLE_H */