2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (c) 2000-2007 Silicon Graphics, Inc. All Rights Reserved.
9 #include <linux/module.h>
10 #include <asm/sn/nodepda.h>
11 #include <asm/sn/addrs.h>
12 #include <asm/sn/arch.h>
13 #include <asm/sn/sn_cpuid.h>
14 #include <asm/sn/pda.h>
15 #include <asm/sn/shubio.h>
16 #include <asm/nodedata.h>
17 #include <asm/delay.h>
19 #include <linux/bootmem.h>
20 #include <linux/string.h>
21 #include <linux/sched.h>
22 #include <linux/slab.h>
24 #include <asm/sn/bte.h>
27 #define L1_CACHE_MASK (L1_CACHE_BYTES - 1)
30 /* two interfaces on two btes */
31 #define MAX_INTERFACES_TO_TRY 4
32 #define MAX_NODES_TO_TRY 2
34 static struct bteinfo_s
*bte_if_on_node(nasid_t nasid
, int interface
)
36 nodepda_t
*tmp_nodepda
;
38 if (nasid_to_cnodeid(nasid
) == -1)
39 return (struct bteinfo_s
*)NULL
;
41 tmp_nodepda
= NODEPDA(nasid_to_cnodeid(nasid
));
42 return &tmp_nodepda
->bte_if
[interface
];
46 static inline void bte_start_transfer(struct bteinfo_s
*bte
, u64 len
, u64 mode
)
49 BTE_CTRL_STORE(bte
, (IBLS_BUSY
| ((len
) | (mode
) << 24)));
51 BTE_LNSTAT_STORE(bte
, len
);
52 BTE_CTRL_STORE(bte
, mode
);
56 /************************************************************************
57 * Block Transfer Engine copy related functions.
59 ***********************************************************************/
62 * bte_copy(src, dest, len, mode, notification)
64 * Use the block transfer engine to move kernel memory from src to dest
65 * using the assigned mode.
68 * src - physical address of the transfer source.
69 * dest - physical address of the transfer destination.
70 * len - number of bytes to transfer from source to dest.
71 * mode - hardware defined. See reference information
72 * for IBCT0/1 in the SHUB Programmers Reference
73 * notification - kernel virtual address of the notification cache
74 * line. If NULL, the default is used and
75 * the bte_copy is synchronous.
77 * NOTE: This function requires src, dest, and len to
78 * be cacheline aligned.
80 bte_result_t
bte_copy(u64 src
, u64 dest
, u64 len
, u64 mode
, void *notification
)
85 struct bteinfo_s
*bte
;
86 bte_result_t bte_status
;
87 unsigned long irq_flags
;
88 unsigned long itc_end
= 0;
89 int nasid_to_try
[MAX_NODES_TO_TRY
];
90 int my_nasid
= cpuid_to_nasid(raw_smp_processor_id());
91 int bte_if_index
, nasid_index
;
92 int bte_first
, btes_per_node
= BTES_PER_NODE
;
94 BTE_PRINTK(("bte_copy(0x%lx, 0x%lx, 0x%lx, 0x%lx, 0x%p)\n",
95 src
, dest
, len
, mode
, notification
));
101 BUG_ON(len
& L1_CACHE_MASK
);
102 BUG_ON(src
& L1_CACHE_MASK
);
103 BUG_ON(dest
& L1_CACHE_MASK
);
104 BUG_ON(len
> BTE_MAX_XFER
);
107 * Start with interface corresponding to cpu number
109 bte_first
= raw_smp_processor_id() % btes_per_node
;
111 if (mode
& BTE_USE_DEST
) {
112 /* try remote then local */
113 nasid_to_try
[0] = NASID_GET(dest
);
114 if (mode
& BTE_USE_ANY
) {
115 nasid_to_try
[1] = my_nasid
;
120 /* try local then remote */
121 nasid_to_try
[0] = my_nasid
;
122 if (mode
& BTE_USE_ANY
) {
123 nasid_to_try
[1] = NASID_GET(dest
);
131 local_irq_save(irq_flags
);
133 bte_if_index
= bte_first
;
136 /* Attempt to lock one of the BTE interfaces. */
137 while (nasid_index
< MAX_NODES_TO_TRY
) {
138 bte
= bte_if_on_node(nasid_to_try
[nasid_index
],bte_if_index
);
145 if (spin_trylock(&bte
->spinlock
)) {
146 if (!(*bte
->most_rcnt_na
& BTE_WORD_AVAILABLE
) ||
147 (BTE_LNSTAT_LOAD(bte
) & BTE_ACTIVE
)) {
148 /* Got the lock but BTE still busy */
149 spin_unlock(&bte
->spinlock
);
151 /* we got the lock and it's not busy */
156 bte_if_index
= (bte_if_index
+ 1) % btes_per_node
; /* Next interface */
157 if (bte_if_index
== bte_first
) {
159 * We've tried all interfaces on this node
171 local_irq_restore(irq_flags
);
173 if (!(mode
& BTE_WACQUIRE
)) {
174 return BTEFAIL_NOTAVAIL
;
178 if (notification
== NULL
) {
179 /* User does not want to be notified. */
180 bte
->most_rcnt_na
= &bte
->notify
;
182 bte
->most_rcnt_na
= notification
;
185 /* Calculate the number of cache lines to transfer. */
186 transfer_size
= ((len
>> L1_CACHE_SHIFT
) & BTE_LEN_MASK
);
188 /* Initialize the notification to a known value. */
189 *bte
->most_rcnt_na
= BTE_WORD_BUSY
;
190 notif_phys_addr
= (u64
)bte
->most_rcnt_na
;
192 /* Set the source and destination registers */
193 BTE_PRINTKV(("IBSA = 0x%lx)\n", src
));
194 BTE_SRC_STORE(bte
, src
);
195 BTE_PRINTKV(("IBDA = 0x%lx)\n", dest
));
196 BTE_DEST_STORE(bte
, dest
);
198 /* Set the notification register */
199 BTE_PRINTKV(("IBNA = 0x%lx)\n", notif_phys_addr
));
200 BTE_NOTIF_STORE(bte
, notif_phys_addr
);
202 /* Initiate the transfer */
203 BTE_PRINTK(("IBCT = 0x%lx)\n", BTE_VALID_MODE(mode
)));
204 bte_start_transfer(bte
, transfer_size
, BTE_VALID_MODE(mode
));
206 itc_end
= ia64_get_itc() + (40000000 * local_cpu_data
->cyc_per_usec
);
208 spin_unlock_irqrestore(&bte
->spinlock
, irq_flags
);
210 if (notification
!= NULL
) {
214 while ((transfer_stat
= *bte
->most_rcnt_na
) == BTE_WORD_BUSY
) {
216 if (ia64_get_itc() > itc_end
) {
217 BTE_PRINTK(("BTE timeout nasid 0x%x bte%d IBLS = 0x%lx na 0x%lx\n",
218 NASID_GET(bte
->bte_base_addr
), bte
->bte_num
,
219 BTE_LNSTAT_LOAD(bte
), *bte
->most_rcnt_na
) );
220 bte
->bte_error_count
++;
221 bte
->bh_error
= IBLS_ERROR
;
222 bte_error_handler((unsigned long)NODEPDA(bte
->bte_cnode
));
223 *bte
->most_rcnt_na
= BTE_WORD_AVAILABLE
;
228 BTE_PRINTKV((" Delay Done. IBLS = 0x%lx, most_rcnt_na = 0x%lx\n",
229 BTE_LNSTAT_LOAD(bte
), *bte
->most_rcnt_na
));
231 if (transfer_stat
& IBLS_ERROR
) {
232 bte_status
= BTE_GET_ERROR_STATUS(transfer_stat
);
234 bte_status
= BTE_SUCCESS
;
236 *bte
->most_rcnt_na
= BTE_WORD_AVAILABLE
;
238 BTE_PRINTK(("Returning status is 0x%lx and most_rcnt_na is 0x%lx\n",
239 BTE_LNSTAT_LOAD(bte
), *bte
->most_rcnt_na
));
244 EXPORT_SYMBOL(bte_copy
);
247 * bte_unaligned_copy(src, dest, len, mode)
249 * use the block transfer engine to move kernel
250 * memory from src to dest using the assigned mode.
253 * src - physical address of the transfer source.
254 * dest - physical address of the transfer destination.
255 * len - number of bytes to transfer from source to dest.
256 * mode - hardware defined. See reference information
257 * for IBCT0/1 in the SGI documentation.
259 * NOTE: If the source, dest, and len are all cache line aligned,
260 * then it would be _FAR_ preferable to use bte_copy instead.
262 bte_result_t
bte_unaligned_copy(u64 src
, u64 dest
, u64 len
, u64 mode
)
264 int destFirstCacheOffset
;
267 u64 headBcopySrcOffset
;
275 char *bteBlock
, *bteBlock_unaligned
;
281 /* temporary buffer used during unaligned transfers */
282 bteBlock_unaligned
= kmalloc(len
+ 3 * L1_CACHE_BYTES
, GFP_KERNEL
);
283 if (bteBlock_unaligned
== NULL
) {
284 return BTEFAIL_NOTAVAIL
;
286 bteBlock
= (char *)L1_CACHE_ALIGN((u64
) bteBlock_unaligned
);
288 headBcopySrcOffset
= src
& L1_CACHE_MASK
;
289 destFirstCacheOffset
= dest
& L1_CACHE_MASK
;
292 * At this point, the transfer is broken into
293 * (up to) three sections. The first section is
294 * from the start address to the first physical
295 * cache line, the second is from the first physical
296 * cache line to the last complete cache line,
297 * and the third is from the last cache line to the
298 * end of the buffer. The first and third sections
299 * are handled by bte copying into a temporary buffer
300 * and then bcopy'ing the necessary section into the
301 * final location. The middle section is handled with
302 * a standard bte copy.
304 * One nasty exception to the above rule is when the
305 * source and destination are not symmetrically
306 * mis-aligned. If the source offset from the first
307 * cache line is different from the destination offset,
308 * we make the first section be the entire transfer
309 * and the bcopy the entire block into place.
311 if (headBcopySrcOffset
== destFirstCacheOffset
) {
314 * Both the source and destination are the same
315 * distance from a cache line boundary so we can
316 * use the bte to transfer the bulk of the
319 headBteSource
= src
& ~L1_CACHE_MASK
;
320 headBcopyDest
= dest
;
321 if (headBcopySrcOffset
) {
325 headBcopySrcOffset
) ? L1_CACHE_BYTES
326 - headBcopySrcOffset
: len
);
327 headBteLen
= L1_CACHE_BYTES
;
333 if (len
> headBcopyLen
) {
334 footBcopyLen
= (len
- headBcopyLen
) & L1_CACHE_MASK
;
335 footBteLen
= L1_CACHE_BYTES
;
337 footBteSource
= src
+ len
- footBcopyLen
;
338 footBcopyDest
= dest
+ len
- footBcopyLen
;
340 if (footBcopyDest
== (headBcopyDest
+ headBcopyLen
)) {
342 * We have two contiguous bcopy
343 * blocks. Merge them.
345 headBcopyLen
+= footBcopyLen
;
346 headBteLen
+= footBteLen
;
347 } else if (footBcopyLen
> 0) {
348 rv
= bte_copy(footBteSource
,
349 ia64_tpa((unsigned long)bteBlock
),
350 footBteLen
, mode
, NULL
);
351 if (rv
!= BTE_SUCCESS
) {
352 kfree(bteBlock_unaligned
);
356 memcpy(__va(footBcopyDest
),
357 (char *)bteBlock
, footBcopyLen
);
364 if (len
> (headBcopyLen
+ footBcopyLen
)) {
365 /* now transfer the middle. */
366 rv
= bte_copy((src
+ headBcopyLen
),
369 (len
- headBcopyLen
-
370 footBcopyLen
), mode
, NULL
);
371 if (rv
!= BTE_SUCCESS
) {
372 kfree(bteBlock_unaligned
);
380 * The transfer is not symmetric, we will
381 * allocate a buffer large enough for all the
382 * data, bte_copy into that buffer and then
383 * bcopy to the destination.
386 headBcopySrcOffset
= src
& L1_CACHE_MASK
;
387 headBcopyDest
= dest
;
390 headBteSource
= src
- headBcopySrcOffset
;
391 /* Add the leading and trailing bytes from source */
392 headBteLen
= L1_CACHE_ALIGN(len
+ headBcopySrcOffset
);
395 if (headBcopyLen
> 0) {
396 rv
= bte_copy(headBteSource
,
397 ia64_tpa((unsigned long)bteBlock
), headBteLen
,
399 if (rv
!= BTE_SUCCESS
) {
400 kfree(bteBlock_unaligned
);
404 memcpy(__va(headBcopyDest
), ((char *)bteBlock
+
405 headBcopySrcOffset
), headBcopyLen
);
407 kfree(bteBlock_unaligned
);
411 EXPORT_SYMBOL(bte_unaligned_copy
);
413 /************************************************************************
414 * Block Transfer Engine initialization functions.
416 ***********************************************************************/
419 * bte_init_node(nodepda, cnode)
421 * Initialize the nodepda structure with BTE base addresses and
424 void bte_init_node(nodepda_t
* mynodepda
, cnodeid_t cnode
)
429 * Indicate that all the block transfer engines on this node
434 * Allocate one bte_recover_t structure per node. It holds
435 * the recovery lock for node. All the bte interface structures
436 * will point at this one bte_recover structure to get the lock.
438 spin_lock_init(&mynodepda
->bte_recovery_lock
);
439 init_timer(&mynodepda
->bte_recovery_timer
);
440 mynodepda
->bte_recovery_timer
.function
= bte_error_handler
;
441 mynodepda
->bte_recovery_timer
.data
= (unsigned long)mynodepda
;
443 for (i
= 0; i
< BTES_PER_NODE
; i
++) {
446 /* Which link status register should we use? */
448 REMOTE_HUB_ADDR(cnodeid_to_nasid(cnode
), BTE_BASE_ADDR(i
));
449 mynodepda
->bte_if
[i
].bte_base_addr
= base_addr
;
450 mynodepda
->bte_if
[i
].bte_source_addr
= BTE_SOURCE_ADDR(base_addr
);
451 mynodepda
->bte_if
[i
].bte_destination_addr
= BTE_DEST_ADDR(base_addr
);
452 mynodepda
->bte_if
[i
].bte_control_addr
= BTE_CTRL_ADDR(base_addr
);
453 mynodepda
->bte_if
[i
].bte_notify_addr
= BTE_NOTIF_ADDR(base_addr
);
456 * Initialize the notification and spinlock
457 * so the first transfer can occur.
459 mynodepda
->bte_if
[i
].most_rcnt_na
=
460 &(mynodepda
->bte_if
[i
].notify
);
461 mynodepda
->bte_if
[i
].notify
= BTE_WORD_AVAILABLE
;
462 spin_lock_init(&mynodepda
->bte_if
[i
].spinlock
);
464 mynodepda
->bte_if
[i
].bte_cnode
= cnode
;
465 mynodepda
->bte_if
[i
].bte_error_count
= 0;
466 mynodepda
->bte_if
[i
].bte_num
= i
;
467 mynodepda
->bte_if
[i
].cleanup_active
= 0;
468 mynodepda
->bte_if
[i
].bh_error
= 0;