of: MSI: Simplify irqdomain lookup
[linux/fpc-iii.git] / arch / mips / cavium-octeon / crypto / octeon-sha256.c
blob97e96fead08a2b1a2af2aaa2754fbc0e4d9cd94c
1 /*
2 * Cryptographic API.
4 * SHA-224 and SHA-256 Secure Hash Algorithm.
6 * Adapted for OCTEON by Aaro Koskinen <aaro.koskinen@iki.fi>.
8 * Based on crypto/sha256_generic.c, which is:
10 * Copyright (c) Jean-Luc Cooke <jlcooke@certainkey.com>
11 * Copyright (c) Andrew McDonald <andrew@mcdonald.org.uk>
12 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
13 * SHA224 Support Copyright 2007 Intel Corporation <jonathan.lynch@intel.com>
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the Free
17 * Software Foundation; either version 2 of the License, or (at your option)
18 * any later version.
21 #include <linux/mm.h>
22 #include <crypto/sha.h>
23 #include <linux/init.h>
24 #include <linux/types.h>
25 #include <linux/module.h>
26 #include <asm/byteorder.h>
27 #include <asm/octeon/octeon.h>
28 #include <crypto/internal/hash.h>
30 #include "octeon-crypto.h"
33 * We pass everything as 64-bit. OCTEON can handle misaligned data.
36 static void octeon_sha256_store_hash(struct sha256_state *sctx)
38 u64 *hash = (u64 *)sctx->state;
40 write_octeon_64bit_hash_dword(hash[0], 0);
41 write_octeon_64bit_hash_dword(hash[1], 1);
42 write_octeon_64bit_hash_dword(hash[2], 2);
43 write_octeon_64bit_hash_dword(hash[3], 3);
46 static void octeon_sha256_read_hash(struct sha256_state *sctx)
48 u64 *hash = (u64 *)sctx->state;
50 hash[0] = read_octeon_64bit_hash_dword(0);
51 hash[1] = read_octeon_64bit_hash_dword(1);
52 hash[2] = read_octeon_64bit_hash_dword(2);
53 hash[3] = read_octeon_64bit_hash_dword(3);
56 static void octeon_sha256_transform(const void *_block)
58 const u64 *block = _block;
60 write_octeon_64bit_block_dword(block[0], 0);
61 write_octeon_64bit_block_dword(block[1], 1);
62 write_octeon_64bit_block_dword(block[2], 2);
63 write_octeon_64bit_block_dword(block[3], 3);
64 write_octeon_64bit_block_dword(block[4], 4);
65 write_octeon_64bit_block_dword(block[5], 5);
66 write_octeon_64bit_block_dword(block[6], 6);
67 octeon_sha256_start(block[7]);
70 static int octeon_sha224_init(struct shash_desc *desc)
72 struct sha256_state *sctx = shash_desc_ctx(desc);
74 sctx->state[0] = SHA224_H0;
75 sctx->state[1] = SHA224_H1;
76 sctx->state[2] = SHA224_H2;
77 sctx->state[3] = SHA224_H3;
78 sctx->state[4] = SHA224_H4;
79 sctx->state[5] = SHA224_H5;
80 sctx->state[6] = SHA224_H6;
81 sctx->state[7] = SHA224_H7;
82 sctx->count = 0;
84 return 0;
87 static int octeon_sha256_init(struct shash_desc *desc)
89 struct sha256_state *sctx = shash_desc_ctx(desc);
91 sctx->state[0] = SHA256_H0;
92 sctx->state[1] = SHA256_H1;
93 sctx->state[2] = SHA256_H2;
94 sctx->state[3] = SHA256_H3;
95 sctx->state[4] = SHA256_H4;
96 sctx->state[5] = SHA256_H5;
97 sctx->state[6] = SHA256_H6;
98 sctx->state[7] = SHA256_H7;
99 sctx->count = 0;
101 return 0;
104 static void __octeon_sha256_update(struct sha256_state *sctx, const u8 *data,
105 unsigned int len)
107 unsigned int partial;
108 unsigned int done;
109 const u8 *src;
111 partial = sctx->count % SHA256_BLOCK_SIZE;
112 sctx->count += len;
113 done = 0;
114 src = data;
116 if ((partial + len) >= SHA256_BLOCK_SIZE) {
117 if (partial) {
118 done = -partial;
119 memcpy(sctx->buf + partial, data,
120 done + SHA256_BLOCK_SIZE);
121 src = sctx->buf;
124 do {
125 octeon_sha256_transform(src);
126 done += SHA256_BLOCK_SIZE;
127 src = data + done;
128 } while (done + SHA256_BLOCK_SIZE <= len);
130 partial = 0;
132 memcpy(sctx->buf + partial, src, len - done);
135 static int octeon_sha256_update(struct shash_desc *desc, const u8 *data,
136 unsigned int len)
138 struct sha256_state *sctx = shash_desc_ctx(desc);
139 struct octeon_cop2_state state;
140 unsigned long flags;
143 * Small updates never reach the crypto engine, so the generic sha256 is
144 * faster because of the heavyweight octeon_crypto_enable() /
145 * octeon_crypto_disable().
147 if ((sctx->count % SHA256_BLOCK_SIZE) + len < SHA256_BLOCK_SIZE)
148 return crypto_sha256_update(desc, data, len);
150 flags = octeon_crypto_enable(&state);
151 octeon_sha256_store_hash(sctx);
153 __octeon_sha256_update(sctx, data, len);
155 octeon_sha256_read_hash(sctx);
156 octeon_crypto_disable(&state, flags);
158 return 0;
161 static int octeon_sha256_final(struct shash_desc *desc, u8 *out)
163 struct sha256_state *sctx = shash_desc_ctx(desc);
164 static const u8 padding[64] = { 0x80, };
165 struct octeon_cop2_state state;
166 __be32 *dst = (__be32 *)out;
167 unsigned int pad_len;
168 unsigned long flags;
169 unsigned int index;
170 __be64 bits;
171 int i;
173 /* Save number of bits. */
174 bits = cpu_to_be64(sctx->count << 3);
176 /* Pad out to 56 mod 64. */
177 index = sctx->count & 0x3f;
178 pad_len = (index < 56) ? (56 - index) : ((64+56) - index);
180 flags = octeon_crypto_enable(&state);
181 octeon_sha256_store_hash(sctx);
183 __octeon_sha256_update(sctx, padding, pad_len);
185 /* Append length (before padding). */
186 __octeon_sha256_update(sctx, (const u8 *)&bits, sizeof(bits));
188 octeon_sha256_read_hash(sctx);
189 octeon_crypto_disable(&state, flags);
191 /* Store state in digest */
192 for (i = 0; i < 8; i++)
193 dst[i] = cpu_to_be32(sctx->state[i]);
195 /* Zeroize sensitive information. */
196 memset(sctx, 0, sizeof(*sctx));
198 return 0;
201 static int octeon_sha224_final(struct shash_desc *desc, u8 *hash)
203 u8 D[SHA256_DIGEST_SIZE];
205 octeon_sha256_final(desc, D);
207 memcpy(hash, D, SHA224_DIGEST_SIZE);
208 memzero_explicit(D, SHA256_DIGEST_SIZE);
210 return 0;
213 static int octeon_sha256_export(struct shash_desc *desc, void *out)
215 struct sha256_state *sctx = shash_desc_ctx(desc);
217 memcpy(out, sctx, sizeof(*sctx));
218 return 0;
221 static int octeon_sha256_import(struct shash_desc *desc, const void *in)
223 struct sha256_state *sctx = shash_desc_ctx(desc);
225 memcpy(sctx, in, sizeof(*sctx));
226 return 0;
229 static struct shash_alg octeon_sha256_algs[2] = { {
230 .digestsize = SHA256_DIGEST_SIZE,
231 .init = octeon_sha256_init,
232 .update = octeon_sha256_update,
233 .final = octeon_sha256_final,
234 .export = octeon_sha256_export,
235 .import = octeon_sha256_import,
236 .descsize = sizeof(struct sha256_state),
237 .statesize = sizeof(struct sha256_state),
238 .base = {
239 .cra_name = "sha256",
240 .cra_driver_name= "octeon-sha256",
241 .cra_priority = OCTEON_CR_OPCODE_PRIORITY,
242 .cra_flags = CRYPTO_ALG_TYPE_SHASH,
243 .cra_blocksize = SHA256_BLOCK_SIZE,
244 .cra_module = THIS_MODULE,
246 }, {
247 .digestsize = SHA224_DIGEST_SIZE,
248 .init = octeon_sha224_init,
249 .update = octeon_sha256_update,
250 .final = octeon_sha224_final,
251 .descsize = sizeof(struct sha256_state),
252 .base = {
253 .cra_name = "sha224",
254 .cra_driver_name= "octeon-sha224",
255 .cra_flags = CRYPTO_ALG_TYPE_SHASH,
256 .cra_blocksize = SHA224_BLOCK_SIZE,
257 .cra_module = THIS_MODULE,
259 } };
261 static int __init octeon_sha256_mod_init(void)
263 if (!octeon_has_crypto())
264 return -ENOTSUPP;
265 return crypto_register_shashes(octeon_sha256_algs,
266 ARRAY_SIZE(octeon_sha256_algs));
269 static void __exit octeon_sha256_mod_fini(void)
271 crypto_unregister_shashes(octeon_sha256_algs,
272 ARRAY_SIZE(octeon_sha256_algs));
275 module_init(octeon_sha256_mod_init);
276 module_exit(octeon_sha256_mod_fini);
278 MODULE_LICENSE("GPL");
279 MODULE_DESCRIPTION("SHA-224 and SHA-256 Secure Hash Algorithm (OCTEON)");
280 MODULE_AUTHOR("Aaro Koskinen <aaro.koskinen@iki.fi>");