of: MSI: Simplify irqdomain lookup
[linux/fpc-iii.git] / arch / mips / cavium-octeon / crypto / octeon-sha512.c
blobd5fb3c6f22ae7e3eb8db26246a918b37c06c58e4
1 /*
2 * Cryptographic API.
4 * SHA-512 and SHA-384 Secure Hash Algorithm.
6 * Adapted for OCTEON by Aaro Koskinen <aaro.koskinen@iki.fi>.
8 * Based on crypto/sha512_generic.c, which is:
10 * Copyright (c) Jean-Luc Cooke <jlcooke@certainkey.com>
11 * Copyright (c) Andrew McDonald <andrew@mcdonald.org.uk>
12 * Copyright (c) 2003 Kyle McMartin <kyle@debian.org>
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2, or (at your option) any
17 * later version.
20 #include <linux/mm.h>
21 #include <crypto/sha.h>
22 #include <linux/init.h>
23 #include <linux/types.h>
24 #include <linux/module.h>
25 #include <asm/byteorder.h>
26 #include <asm/octeon/octeon.h>
27 #include <crypto/internal/hash.h>
29 #include "octeon-crypto.h"
32 * We pass everything as 64-bit. OCTEON can handle misaligned data.
35 static void octeon_sha512_store_hash(struct sha512_state *sctx)
37 write_octeon_64bit_hash_sha512(sctx->state[0], 0);
38 write_octeon_64bit_hash_sha512(sctx->state[1], 1);
39 write_octeon_64bit_hash_sha512(sctx->state[2], 2);
40 write_octeon_64bit_hash_sha512(sctx->state[3], 3);
41 write_octeon_64bit_hash_sha512(sctx->state[4], 4);
42 write_octeon_64bit_hash_sha512(sctx->state[5], 5);
43 write_octeon_64bit_hash_sha512(sctx->state[6], 6);
44 write_octeon_64bit_hash_sha512(sctx->state[7], 7);
47 static void octeon_sha512_read_hash(struct sha512_state *sctx)
49 sctx->state[0] = read_octeon_64bit_hash_sha512(0);
50 sctx->state[1] = read_octeon_64bit_hash_sha512(1);
51 sctx->state[2] = read_octeon_64bit_hash_sha512(2);
52 sctx->state[3] = read_octeon_64bit_hash_sha512(3);
53 sctx->state[4] = read_octeon_64bit_hash_sha512(4);
54 sctx->state[5] = read_octeon_64bit_hash_sha512(5);
55 sctx->state[6] = read_octeon_64bit_hash_sha512(6);
56 sctx->state[7] = read_octeon_64bit_hash_sha512(7);
59 static void octeon_sha512_transform(const void *_block)
61 const u64 *block = _block;
63 write_octeon_64bit_block_sha512(block[0], 0);
64 write_octeon_64bit_block_sha512(block[1], 1);
65 write_octeon_64bit_block_sha512(block[2], 2);
66 write_octeon_64bit_block_sha512(block[3], 3);
67 write_octeon_64bit_block_sha512(block[4], 4);
68 write_octeon_64bit_block_sha512(block[5], 5);
69 write_octeon_64bit_block_sha512(block[6], 6);
70 write_octeon_64bit_block_sha512(block[7], 7);
71 write_octeon_64bit_block_sha512(block[8], 8);
72 write_octeon_64bit_block_sha512(block[9], 9);
73 write_octeon_64bit_block_sha512(block[10], 10);
74 write_octeon_64bit_block_sha512(block[11], 11);
75 write_octeon_64bit_block_sha512(block[12], 12);
76 write_octeon_64bit_block_sha512(block[13], 13);
77 write_octeon_64bit_block_sha512(block[14], 14);
78 octeon_sha512_start(block[15]);
81 static int octeon_sha512_init(struct shash_desc *desc)
83 struct sha512_state *sctx = shash_desc_ctx(desc);
85 sctx->state[0] = SHA512_H0;
86 sctx->state[1] = SHA512_H1;
87 sctx->state[2] = SHA512_H2;
88 sctx->state[3] = SHA512_H3;
89 sctx->state[4] = SHA512_H4;
90 sctx->state[5] = SHA512_H5;
91 sctx->state[6] = SHA512_H6;
92 sctx->state[7] = SHA512_H7;
93 sctx->count[0] = sctx->count[1] = 0;
95 return 0;
98 static int octeon_sha384_init(struct shash_desc *desc)
100 struct sha512_state *sctx = shash_desc_ctx(desc);
102 sctx->state[0] = SHA384_H0;
103 sctx->state[1] = SHA384_H1;
104 sctx->state[2] = SHA384_H2;
105 sctx->state[3] = SHA384_H3;
106 sctx->state[4] = SHA384_H4;
107 sctx->state[5] = SHA384_H5;
108 sctx->state[6] = SHA384_H6;
109 sctx->state[7] = SHA384_H7;
110 sctx->count[0] = sctx->count[1] = 0;
112 return 0;
115 static void __octeon_sha512_update(struct sha512_state *sctx, const u8 *data,
116 unsigned int len)
118 unsigned int part_len;
119 unsigned int index;
120 unsigned int i;
122 /* Compute number of bytes mod 128. */
123 index = sctx->count[0] % SHA512_BLOCK_SIZE;
125 /* Update number of bytes. */
126 if ((sctx->count[0] += len) < len)
127 sctx->count[1]++;
129 part_len = SHA512_BLOCK_SIZE - index;
131 /* Transform as many times as possible. */
132 if (len >= part_len) {
133 memcpy(&sctx->buf[index], data, part_len);
134 octeon_sha512_transform(sctx->buf);
136 for (i = part_len; i + SHA512_BLOCK_SIZE <= len;
137 i += SHA512_BLOCK_SIZE)
138 octeon_sha512_transform(&data[i]);
140 index = 0;
141 } else {
142 i = 0;
145 /* Buffer remaining input. */
146 memcpy(&sctx->buf[index], &data[i], len - i);
149 static int octeon_sha512_update(struct shash_desc *desc, const u8 *data,
150 unsigned int len)
152 struct sha512_state *sctx = shash_desc_ctx(desc);
153 struct octeon_cop2_state state;
154 unsigned long flags;
157 * Small updates never reach the crypto engine, so the generic sha512 is
158 * faster because of the heavyweight octeon_crypto_enable() /
159 * octeon_crypto_disable().
161 if ((sctx->count[0] % SHA512_BLOCK_SIZE) + len < SHA512_BLOCK_SIZE)
162 return crypto_sha512_update(desc, data, len);
164 flags = octeon_crypto_enable(&state);
165 octeon_sha512_store_hash(sctx);
167 __octeon_sha512_update(sctx, data, len);
169 octeon_sha512_read_hash(sctx);
170 octeon_crypto_disable(&state, flags);
172 return 0;
175 static int octeon_sha512_final(struct shash_desc *desc, u8 *hash)
177 struct sha512_state *sctx = shash_desc_ctx(desc);
178 static u8 padding[128] = { 0x80, };
179 struct octeon_cop2_state state;
180 __be64 *dst = (__be64 *)hash;
181 unsigned int pad_len;
182 unsigned long flags;
183 unsigned int index;
184 __be64 bits[2];
185 int i;
187 /* Save number of bits. */
188 bits[1] = cpu_to_be64(sctx->count[0] << 3);
189 bits[0] = cpu_to_be64(sctx->count[1] << 3 | sctx->count[0] >> 61);
191 /* Pad out to 112 mod 128. */
192 index = sctx->count[0] & 0x7f;
193 pad_len = (index < 112) ? (112 - index) : ((128+112) - index);
195 flags = octeon_crypto_enable(&state);
196 octeon_sha512_store_hash(sctx);
198 __octeon_sha512_update(sctx, padding, pad_len);
200 /* Append length (before padding). */
201 __octeon_sha512_update(sctx, (const u8 *)bits, sizeof(bits));
203 octeon_sha512_read_hash(sctx);
204 octeon_crypto_disable(&state, flags);
206 /* Store state in digest. */
207 for (i = 0; i < 8; i++)
208 dst[i] = cpu_to_be64(sctx->state[i]);
210 /* Zeroize sensitive information. */
211 memset(sctx, 0, sizeof(struct sha512_state));
213 return 0;
216 static int octeon_sha384_final(struct shash_desc *desc, u8 *hash)
218 u8 D[64];
220 octeon_sha512_final(desc, D);
222 memcpy(hash, D, 48);
223 memzero_explicit(D, 64);
225 return 0;
228 static struct shash_alg octeon_sha512_algs[2] = { {
229 .digestsize = SHA512_DIGEST_SIZE,
230 .init = octeon_sha512_init,
231 .update = octeon_sha512_update,
232 .final = octeon_sha512_final,
233 .descsize = sizeof(struct sha512_state),
234 .base = {
235 .cra_name = "sha512",
236 .cra_driver_name= "octeon-sha512",
237 .cra_priority = OCTEON_CR_OPCODE_PRIORITY,
238 .cra_flags = CRYPTO_ALG_TYPE_SHASH,
239 .cra_blocksize = SHA512_BLOCK_SIZE,
240 .cra_module = THIS_MODULE,
242 }, {
243 .digestsize = SHA384_DIGEST_SIZE,
244 .init = octeon_sha384_init,
245 .update = octeon_sha512_update,
246 .final = octeon_sha384_final,
247 .descsize = sizeof(struct sha512_state),
248 .base = {
249 .cra_name = "sha384",
250 .cra_driver_name= "octeon-sha384",
251 .cra_priority = OCTEON_CR_OPCODE_PRIORITY,
252 .cra_flags = CRYPTO_ALG_TYPE_SHASH,
253 .cra_blocksize = SHA384_BLOCK_SIZE,
254 .cra_module = THIS_MODULE,
256 } };
258 static int __init octeon_sha512_mod_init(void)
260 if (!octeon_has_crypto())
261 return -ENOTSUPP;
262 return crypto_register_shashes(octeon_sha512_algs,
263 ARRAY_SIZE(octeon_sha512_algs));
266 static void __exit octeon_sha512_mod_fini(void)
268 crypto_unregister_shashes(octeon_sha512_algs,
269 ARRAY_SIZE(octeon_sha512_algs));
272 module_init(octeon_sha512_mod_init);
273 module_exit(octeon_sha512_mod_fini);
275 MODULE_LICENSE("GPL");
276 MODULE_DESCRIPTION("SHA-512 and SHA-384 Secure Hash Algorithms (OCTEON)");
277 MODULE_AUTHOR("Aaro Koskinen <aaro.koskinen@iki.fi>");