of: MSI: Simplify irqdomain lookup
[linux/fpc-iii.git] / arch / mips / cavium-octeon / octeon-platform.c
blobd113c8ded6e2f33626ee531fca8d7af3b70c2b47
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 2004-2011 Cavium Networks
7 * Copyright (C) 2008 Wind River Systems
8 */
10 #include <linux/delay.h>
11 #include <linux/init.h>
12 #include <linux/irq.h>
13 #include <linux/i2c.h>
14 #include <linux/usb.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/slab.h>
19 #include <linux/platform_device.h>
20 #include <linux/of_platform.h>
21 #include <linux/of_fdt.h>
22 #include <linux/libfdt.h>
23 #include <linux/usb/ehci_pdriver.h>
24 #include <linux/usb/ohci_pdriver.h>
26 #include <asm/octeon/octeon.h>
27 #include <asm/octeon/cvmx-rnm-defs.h>
28 #include <asm/octeon/cvmx-helper.h>
29 #include <asm/octeon/cvmx-helper-board.h>
30 #include <asm/octeon/cvmx-uctlx-defs.h>
32 /* Octeon Random Number Generator. */
33 static int __init octeon_rng_device_init(void)
35 struct platform_device *pd;
36 int ret = 0;
38 struct resource rng_resources[] = {
40 .flags = IORESOURCE_MEM,
41 .start = XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS),
42 .end = XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS) + 0xf
43 }, {
44 .flags = IORESOURCE_MEM,
45 .start = cvmx_build_io_address(8, 0),
46 .end = cvmx_build_io_address(8, 0) + 0x7
50 pd = platform_device_alloc("octeon_rng", -1);
51 if (!pd) {
52 ret = -ENOMEM;
53 goto out;
56 ret = platform_device_add_resources(pd, rng_resources,
57 ARRAY_SIZE(rng_resources));
58 if (ret)
59 goto fail;
61 ret = platform_device_add(pd);
62 if (ret)
63 goto fail;
65 return ret;
66 fail:
67 platform_device_put(pd);
69 out:
70 return ret;
72 device_initcall(octeon_rng_device_init);
74 #ifdef CONFIG_USB
76 static DEFINE_MUTEX(octeon2_usb_clocks_mutex);
78 static int octeon2_usb_clock_start_cnt;
80 static void octeon2_usb_clocks_start(struct device *dev)
82 u64 div;
83 union cvmx_uctlx_if_ena if_ena;
84 union cvmx_uctlx_clk_rst_ctl clk_rst_ctl;
85 union cvmx_uctlx_uphy_ctl_status uphy_ctl_status;
86 union cvmx_uctlx_uphy_portx_ctl_status port_ctl_status;
87 int i;
88 unsigned long io_clk_64_to_ns;
89 u32 clock_rate = 12000000;
90 bool is_crystal_clock = false;
93 mutex_lock(&octeon2_usb_clocks_mutex);
95 octeon2_usb_clock_start_cnt++;
96 if (octeon2_usb_clock_start_cnt != 1)
97 goto exit;
99 io_clk_64_to_ns = 64000000000ull / octeon_get_io_clock_rate();
101 if (dev->of_node) {
102 struct device_node *uctl_node;
103 const char *clock_type;
105 uctl_node = of_get_parent(dev->of_node);
106 if (!uctl_node) {
107 dev_err(dev, "No UCTL device node\n");
108 goto exit;
110 i = of_property_read_u32(uctl_node,
111 "refclk-frequency", &clock_rate);
112 if (i) {
113 dev_err(dev, "No UCTL \"refclk-frequency\"\n");
114 goto exit;
116 i = of_property_read_string(uctl_node,
117 "refclk-type", &clock_type);
119 if (!i && strcmp("crystal", clock_type) == 0)
120 is_crystal_clock = true;
124 * Step 1: Wait for voltages stable. That surely happened
125 * before starting the kernel.
127 * Step 2: Enable SCLK of UCTL by writing UCTL0_IF_ENA[EN] = 1
129 if_ena.u64 = 0;
130 if_ena.s.en = 1;
131 cvmx_write_csr(CVMX_UCTLX_IF_ENA(0), if_ena.u64);
133 /* Step 3: Configure the reference clock, PHY, and HCLK */
134 clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
137 * If the UCTL looks like it has already been started, skip
138 * the initialization, otherwise bus errors are obtained.
140 if (clk_rst_ctl.s.hrst)
141 goto end_clock;
142 /* 3a */
143 clk_rst_ctl.s.p_por = 1;
144 clk_rst_ctl.s.hrst = 0;
145 clk_rst_ctl.s.p_prst = 0;
146 clk_rst_ctl.s.h_clkdiv_rst = 0;
147 clk_rst_ctl.s.o_clkdiv_rst = 0;
148 clk_rst_ctl.s.h_clkdiv_en = 0;
149 clk_rst_ctl.s.o_clkdiv_en = 0;
150 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
152 /* 3b */
153 clk_rst_ctl.s.p_refclk_sel = is_crystal_clock ? 0 : 1;
154 switch (clock_rate) {
155 default:
156 pr_err("Invalid UCTL clock rate of %u, using 12000000 instead\n",
157 clock_rate);
158 /* Fall through */
159 case 12000000:
160 clk_rst_ctl.s.p_refclk_div = 0;
161 break;
162 case 24000000:
163 clk_rst_ctl.s.p_refclk_div = 1;
164 break;
165 case 48000000:
166 clk_rst_ctl.s.p_refclk_div = 2;
167 break;
169 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
171 /* 3c */
172 div = octeon_get_io_clock_rate() / 130000000ull;
174 switch (div) {
175 case 0:
176 div = 1;
177 break;
178 case 1:
179 case 2:
180 case 3:
181 case 4:
182 break;
183 case 5:
184 div = 4;
185 break;
186 case 6:
187 case 7:
188 div = 6;
189 break;
190 case 8:
191 case 9:
192 case 10:
193 case 11:
194 div = 8;
195 break;
196 default:
197 div = 12;
198 break;
200 clk_rst_ctl.s.h_div = div;
201 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
202 /* Read it back, */
203 clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
204 clk_rst_ctl.s.h_clkdiv_en = 1;
205 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
206 /* 3d */
207 clk_rst_ctl.s.h_clkdiv_rst = 1;
208 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
210 /* 3e: delay 64 io clocks */
211 ndelay(io_clk_64_to_ns);
214 * Step 4: Program the power-on reset field in the UCTL
215 * clock-reset-control register.
217 clk_rst_ctl.s.p_por = 0;
218 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
220 /* Step 5: Wait 1 ms for the PHY clock to start. */
221 mdelay(1);
224 * Step 6: Program the reset input from automatic test
225 * equipment field in the UPHY CSR
227 uphy_ctl_status.u64 = cvmx_read_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0));
228 uphy_ctl_status.s.ate_reset = 1;
229 cvmx_write_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0), uphy_ctl_status.u64);
231 /* Step 7: Wait for at least 10ns. */
232 ndelay(10);
234 /* Step 8: Clear the ATE_RESET field in the UPHY CSR. */
235 uphy_ctl_status.s.ate_reset = 0;
236 cvmx_write_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0), uphy_ctl_status.u64);
239 * Step 9: Wait for at least 20ns for UPHY to output PHY clock
240 * signals and OHCI_CLK48
242 ndelay(20);
244 /* Step 10: Configure the OHCI_CLK48 and OHCI_CLK12 clocks. */
245 /* 10a */
246 clk_rst_ctl.s.o_clkdiv_rst = 1;
247 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
249 /* 10b */
250 clk_rst_ctl.s.o_clkdiv_en = 1;
251 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
253 /* 10c */
254 ndelay(io_clk_64_to_ns);
257 * Step 11: Program the PHY reset field:
258 * UCTL0_CLK_RST_CTL[P_PRST] = 1
260 clk_rst_ctl.s.p_prst = 1;
261 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
263 /* Step 12: Wait 1 uS. */
264 udelay(1);
266 /* Step 13: Program the HRESET_N field: UCTL0_CLK_RST_CTL[HRST] = 1 */
267 clk_rst_ctl.s.hrst = 1;
268 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
270 end_clock:
271 /* Now we can set some other registers. */
273 for (i = 0; i <= 1; i++) {
274 port_ctl_status.u64 =
275 cvmx_read_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0));
276 /* Set txvreftune to 15 to obtain compliant 'eye' diagram. */
277 port_ctl_status.s.txvreftune = 15;
278 port_ctl_status.s.txrisetune = 1;
279 port_ctl_status.s.txpreemphasistune = 1;
280 cvmx_write_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0),
281 port_ctl_status.u64);
284 /* Set uSOF cycle period to 60,000 bits. */
285 cvmx_write_csr(CVMX_UCTLX_EHCI_FLA(0), 0x20ull);
286 exit:
287 mutex_unlock(&octeon2_usb_clocks_mutex);
290 static void octeon2_usb_clocks_stop(void)
292 mutex_lock(&octeon2_usb_clocks_mutex);
293 octeon2_usb_clock_start_cnt--;
294 mutex_unlock(&octeon2_usb_clocks_mutex);
297 static int octeon_ehci_power_on(struct platform_device *pdev)
299 octeon2_usb_clocks_start(&pdev->dev);
300 return 0;
303 static void octeon_ehci_power_off(struct platform_device *pdev)
305 octeon2_usb_clocks_stop();
308 static struct usb_ehci_pdata octeon_ehci_pdata = {
309 /* Octeon EHCI matches CPU endianness. */
310 #ifdef __BIG_ENDIAN
311 .big_endian_mmio = 1,
312 #endif
313 .dma_mask_64 = 1,
314 .power_on = octeon_ehci_power_on,
315 .power_off = octeon_ehci_power_off,
318 static void __init octeon_ehci_hw_start(struct device *dev)
320 union cvmx_uctlx_ehci_ctl ehci_ctl;
322 octeon2_usb_clocks_start(dev);
324 ehci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_EHCI_CTL(0));
325 /* Use 64-bit addressing. */
326 ehci_ctl.s.ehci_64b_addr_en = 1;
327 ehci_ctl.s.l2c_addr_msb = 0;
328 #ifdef __BIG_ENDIAN
329 ehci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
330 ehci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
331 #else
332 ehci_ctl.s.l2c_buff_emod = 0; /* not swapped. */
333 ehci_ctl.s.l2c_desc_emod = 0; /* not swapped. */
334 ehci_ctl.s.inv_reg_a2 = 1;
335 #endif
336 cvmx_write_csr(CVMX_UCTLX_EHCI_CTL(0), ehci_ctl.u64);
338 octeon2_usb_clocks_stop();
341 static int __init octeon_ehci_device_init(void)
343 struct platform_device *pd;
344 struct device_node *ehci_node;
345 int ret = 0;
347 ehci_node = of_find_node_by_name(NULL, "ehci");
348 if (!ehci_node)
349 return 0;
351 pd = of_find_device_by_node(ehci_node);
352 if (!pd)
353 return 0;
355 pd->dev.platform_data = &octeon_ehci_pdata;
356 octeon_ehci_hw_start(&pd->dev);
358 return ret;
360 device_initcall(octeon_ehci_device_init);
362 static int octeon_ohci_power_on(struct platform_device *pdev)
364 octeon2_usb_clocks_start(&pdev->dev);
365 return 0;
368 static void octeon_ohci_power_off(struct platform_device *pdev)
370 octeon2_usb_clocks_stop();
373 static struct usb_ohci_pdata octeon_ohci_pdata = {
374 /* Octeon OHCI matches CPU endianness. */
375 #ifdef __BIG_ENDIAN
376 .big_endian_mmio = 1,
377 #endif
378 .power_on = octeon_ohci_power_on,
379 .power_off = octeon_ohci_power_off,
382 static void __init octeon_ohci_hw_start(struct device *dev)
384 union cvmx_uctlx_ohci_ctl ohci_ctl;
386 octeon2_usb_clocks_start(dev);
388 ohci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_OHCI_CTL(0));
389 ohci_ctl.s.l2c_addr_msb = 0;
390 #ifdef __BIG_ENDIAN
391 ohci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
392 ohci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
393 #else
394 ohci_ctl.s.l2c_buff_emod = 0; /* not swapped. */
395 ohci_ctl.s.l2c_desc_emod = 0; /* not swapped. */
396 ohci_ctl.s.inv_reg_a2 = 1;
397 #endif
398 cvmx_write_csr(CVMX_UCTLX_OHCI_CTL(0), ohci_ctl.u64);
400 octeon2_usb_clocks_stop();
403 static int __init octeon_ohci_device_init(void)
405 struct platform_device *pd;
406 struct device_node *ohci_node;
407 int ret = 0;
409 ohci_node = of_find_node_by_name(NULL, "ohci");
410 if (!ohci_node)
411 return 0;
413 pd = of_find_device_by_node(ohci_node);
414 if (!pd)
415 return 0;
417 pd->dev.platform_data = &octeon_ohci_pdata;
418 octeon_ohci_hw_start(&pd->dev);
420 return ret;
422 device_initcall(octeon_ohci_device_init);
424 #endif /* CONFIG_USB */
427 static struct of_device_id __initdata octeon_ids[] = {
428 { .compatible = "simple-bus", },
429 { .compatible = "cavium,octeon-6335-uctl", },
430 { .compatible = "cavium,octeon-5750-usbn", },
431 { .compatible = "cavium,octeon-3860-bootbus", },
432 { .compatible = "cavium,mdio-mux", },
433 { .compatible = "gpio-leds", },
437 static bool __init octeon_has_88e1145(void)
439 return !OCTEON_IS_MODEL(OCTEON_CN52XX) &&
440 !OCTEON_IS_MODEL(OCTEON_CN6XXX) &&
441 !OCTEON_IS_MODEL(OCTEON_CN56XX);
444 static void __init octeon_fdt_set_phy(int eth, int phy_addr)
446 const __be32 *phy_handle;
447 const __be32 *alt_phy_handle;
448 const __be32 *reg;
449 u32 phandle;
450 int phy;
451 int alt_phy;
452 const char *p;
453 int current_len;
454 char new_name[20];
456 phy_handle = fdt_getprop(initial_boot_params, eth, "phy-handle", NULL);
457 if (!phy_handle)
458 return;
460 phandle = be32_to_cpup(phy_handle);
461 phy = fdt_node_offset_by_phandle(initial_boot_params, phandle);
463 alt_phy_handle = fdt_getprop(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
464 if (alt_phy_handle) {
465 u32 alt_phandle = be32_to_cpup(alt_phy_handle);
466 alt_phy = fdt_node_offset_by_phandle(initial_boot_params, alt_phandle);
467 } else {
468 alt_phy = -1;
471 if (phy_addr < 0 || phy < 0) {
472 /* Delete the PHY things */
473 fdt_nop_property(initial_boot_params, eth, "phy-handle");
474 /* This one may fail */
475 fdt_nop_property(initial_boot_params, eth, "cavium,alt-phy-handle");
476 if (phy >= 0)
477 fdt_nop_node(initial_boot_params, phy);
478 if (alt_phy >= 0)
479 fdt_nop_node(initial_boot_params, alt_phy);
480 return;
483 if (phy_addr >= 256 && alt_phy > 0) {
484 const struct fdt_property *phy_prop;
485 struct fdt_property *alt_prop;
486 u32 phy_handle_name;
488 /* Use the alt phy node instead.*/
489 phy_prop = fdt_get_property(initial_boot_params, eth, "phy-handle", NULL);
490 phy_handle_name = phy_prop->nameoff;
491 fdt_nop_node(initial_boot_params, phy);
492 fdt_nop_property(initial_boot_params, eth, "phy-handle");
493 alt_prop = fdt_get_property_w(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
494 alt_prop->nameoff = phy_handle_name;
495 phy = alt_phy;
498 phy_addr &= 0xff;
500 if (octeon_has_88e1145()) {
501 fdt_nop_property(initial_boot_params, phy, "marvell,reg-init");
502 memset(new_name, 0, sizeof(new_name));
503 strcpy(new_name, "marvell,88e1145");
504 p = fdt_getprop(initial_boot_params, phy, "compatible",
505 &current_len);
506 if (p && current_len >= strlen(new_name))
507 fdt_setprop_inplace(initial_boot_params, phy,
508 "compatible", new_name, current_len);
511 reg = fdt_getprop(initial_boot_params, phy, "reg", NULL);
512 if (phy_addr == be32_to_cpup(reg))
513 return;
515 fdt_setprop_inplace_cell(initial_boot_params, phy, "reg", phy_addr);
517 snprintf(new_name, sizeof(new_name), "ethernet-phy@%x", phy_addr);
519 p = fdt_get_name(initial_boot_params, phy, &current_len);
520 if (p && current_len == strlen(new_name))
521 fdt_set_name(initial_boot_params, phy, new_name);
522 else
523 pr_err("Error: could not rename ethernet phy: <%s>", p);
526 static void __init octeon_fdt_set_mac_addr(int n, u64 *pmac)
528 u8 new_mac[6];
529 u64 mac = *pmac;
530 int r;
532 new_mac[0] = (mac >> 40) & 0xff;
533 new_mac[1] = (mac >> 32) & 0xff;
534 new_mac[2] = (mac >> 24) & 0xff;
535 new_mac[3] = (mac >> 16) & 0xff;
536 new_mac[4] = (mac >> 8) & 0xff;
537 new_mac[5] = mac & 0xff;
539 r = fdt_setprop_inplace(initial_boot_params, n, "local-mac-address",
540 new_mac, sizeof(new_mac));
542 if (r) {
543 pr_err("Setting \"local-mac-address\" failed %d", r);
544 return;
546 *pmac = mac + 1;
549 static void __init octeon_fdt_rm_ethernet(int node)
551 const __be32 *phy_handle;
553 phy_handle = fdt_getprop(initial_boot_params, node, "phy-handle", NULL);
554 if (phy_handle) {
555 u32 ph = be32_to_cpup(phy_handle);
556 int p = fdt_node_offset_by_phandle(initial_boot_params, ph);
557 if (p >= 0)
558 fdt_nop_node(initial_boot_params, p);
560 fdt_nop_node(initial_boot_params, node);
563 static void __init octeon_fdt_pip_port(int iface, int i, int p, int max, u64 *pmac)
565 char name_buffer[20];
566 int eth;
567 int phy_addr;
568 int ipd_port;
570 snprintf(name_buffer, sizeof(name_buffer), "ethernet@%x", p);
571 eth = fdt_subnode_offset(initial_boot_params, iface, name_buffer);
572 if (eth < 0)
573 return;
574 if (p > max) {
575 pr_debug("Deleting port %x:%x\n", i, p);
576 octeon_fdt_rm_ethernet(eth);
577 return;
579 if (OCTEON_IS_MODEL(OCTEON_CN68XX))
580 ipd_port = (0x100 * i) + (0x10 * p) + 0x800;
581 else
582 ipd_port = 16 * i + p;
584 phy_addr = cvmx_helper_board_get_mii_address(ipd_port);
585 octeon_fdt_set_phy(eth, phy_addr);
586 octeon_fdt_set_mac_addr(eth, pmac);
589 static void __init octeon_fdt_pip_iface(int pip, int idx, u64 *pmac)
591 char name_buffer[20];
592 int iface;
593 int p;
594 int count = 0;
596 snprintf(name_buffer, sizeof(name_buffer), "interface@%d", idx);
597 iface = fdt_subnode_offset(initial_boot_params, pip, name_buffer);
598 if (iface < 0)
599 return;
601 if (cvmx_helper_interface_enumerate(idx) == 0)
602 count = cvmx_helper_ports_on_interface(idx);
604 for (p = 0; p < 16; p++)
605 octeon_fdt_pip_port(iface, idx, p, count - 1, pmac);
608 int __init octeon_prune_device_tree(void)
610 int i, max_port, uart_mask;
611 const char *pip_path;
612 const char *alias_prop;
613 char name_buffer[20];
614 int aliases;
615 u64 mac_addr_base;
617 if (fdt_check_header(initial_boot_params))
618 panic("Corrupt Device Tree.");
620 aliases = fdt_path_offset(initial_boot_params, "/aliases");
621 if (aliases < 0) {
622 pr_err("Error: No /aliases node in device tree.");
623 return -EINVAL;
627 mac_addr_base =
628 ((octeon_bootinfo->mac_addr_base[0] & 0xffull)) << 40 |
629 ((octeon_bootinfo->mac_addr_base[1] & 0xffull)) << 32 |
630 ((octeon_bootinfo->mac_addr_base[2] & 0xffull)) << 24 |
631 ((octeon_bootinfo->mac_addr_base[3] & 0xffull)) << 16 |
632 ((octeon_bootinfo->mac_addr_base[4] & 0xffull)) << 8 |
633 (octeon_bootinfo->mac_addr_base[5] & 0xffull);
635 if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN63XX))
636 max_port = 2;
637 else if (OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN68XX))
638 max_port = 1;
639 else
640 max_port = 0;
642 if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E)
643 max_port = 0;
645 for (i = 0; i < 2; i++) {
646 int mgmt;
647 snprintf(name_buffer, sizeof(name_buffer),
648 "mix%d", i);
649 alias_prop = fdt_getprop(initial_boot_params, aliases,
650 name_buffer, NULL);
651 if (alias_prop) {
652 mgmt = fdt_path_offset(initial_boot_params, alias_prop);
653 if (mgmt < 0)
654 continue;
655 if (i >= max_port) {
656 pr_debug("Deleting mix%d\n", i);
657 octeon_fdt_rm_ethernet(mgmt);
658 fdt_nop_property(initial_boot_params, aliases,
659 name_buffer);
660 } else {
661 int phy_addr = cvmx_helper_board_get_mii_address(CVMX_HELPER_BOARD_MGMT_IPD_PORT + i);
662 octeon_fdt_set_phy(mgmt, phy_addr);
663 octeon_fdt_set_mac_addr(mgmt, &mac_addr_base);
668 pip_path = fdt_getprop(initial_boot_params, aliases, "pip", NULL);
669 if (pip_path) {
670 int pip = fdt_path_offset(initial_boot_params, pip_path);
671 if (pip >= 0)
672 for (i = 0; i <= 4; i++)
673 octeon_fdt_pip_iface(pip, i, &mac_addr_base);
676 /* I2C */
677 if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
678 OCTEON_IS_MODEL(OCTEON_CN63XX) ||
679 OCTEON_IS_MODEL(OCTEON_CN68XX) ||
680 OCTEON_IS_MODEL(OCTEON_CN56XX))
681 max_port = 2;
682 else
683 max_port = 1;
685 for (i = 0; i < 2; i++) {
686 int i2c;
687 snprintf(name_buffer, sizeof(name_buffer),
688 "twsi%d", i);
689 alias_prop = fdt_getprop(initial_boot_params, aliases,
690 name_buffer, NULL);
692 if (alias_prop) {
693 i2c = fdt_path_offset(initial_boot_params, alias_prop);
694 if (i2c < 0)
695 continue;
696 if (i >= max_port) {
697 pr_debug("Deleting twsi%d\n", i);
698 fdt_nop_node(initial_boot_params, i2c);
699 fdt_nop_property(initial_boot_params, aliases,
700 name_buffer);
705 /* SMI/MDIO */
706 if (OCTEON_IS_MODEL(OCTEON_CN68XX))
707 max_port = 4;
708 else if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
709 OCTEON_IS_MODEL(OCTEON_CN63XX) ||
710 OCTEON_IS_MODEL(OCTEON_CN56XX))
711 max_port = 2;
712 else
713 max_port = 1;
715 for (i = 0; i < 2; i++) {
716 int i2c;
717 snprintf(name_buffer, sizeof(name_buffer),
718 "smi%d", i);
719 alias_prop = fdt_getprop(initial_boot_params, aliases,
720 name_buffer, NULL);
722 if (alias_prop) {
723 i2c = fdt_path_offset(initial_boot_params, alias_prop);
724 if (i2c < 0)
725 continue;
726 if (i >= max_port) {
727 pr_debug("Deleting smi%d\n", i);
728 fdt_nop_node(initial_boot_params, i2c);
729 fdt_nop_property(initial_boot_params, aliases,
730 name_buffer);
735 /* Serial */
736 uart_mask = 3;
738 /* Right now CN52XX is the only chip with a third uart */
739 if (OCTEON_IS_MODEL(OCTEON_CN52XX))
740 uart_mask |= 4; /* uart2 */
742 for (i = 0; i < 3; i++) {
743 int uart;
744 snprintf(name_buffer, sizeof(name_buffer),
745 "uart%d", i);
746 alias_prop = fdt_getprop(initial_boot_params, aliases,
747 name_buffer, NULL);
749 if (alias_prop) {
750 uart = fdt_path_offset(initial_boot_params, alias_prop);
751 if (uart_mask & (1 << i)) {
752 __be32 f;
754 f = cpu_to_be32(octeon_get_io_clock_rate());
755 fdt_setprop_inplace(initial_boot_params,
756 uart, "clock-frequency",
757 &f, sizeof(f));
758 continue;
760 pr_debug("Deleting uart%d\n", i);
761 fdt_nop_node(initial_boot_params, uart);
762 fdt_nop_property(initial_boot_params, aliases,
763 name_buffer);
767 /* Compact Flash */
768 alias_prop = fdt_getprop(initial_boot_params, aliases,
769 "cf0", NULL);
770 if (alias_prop) {
771 union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
772 unsigned long base_ptr, region_base, region_size;
773 unsigned long region1_base = 0;
774 unsigned long region1_size = 0;
775 int cs, bootbus;
776 bool is_16bit = false;
777 bool is_true_ide = false;
778 __be32 new_reg[6];
779 __be32 *ranges;
780 int len;
782 int cf = fdt_path_offset(initial_boot_params, alias_prop);
783 base_ptr = 0;
784 if (octeon_bootinfo->major_version == 1
785 && octeon_bootinfo->minor_version >= 1) {
786 if (octeon_bootinfo->compact_flash_common_base_addr)
787 base_ptr = octeon_bootinfo->compact_flash_common_base_addr;
788 } else {
789 base_ptr = 0x1d000800;
792 if (!base_ptr)
793 goto no_cf;
795 /* Find CS0 region. */
796 for (cs = 0; cs < 8; cs++) {
797 mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
798 region_base = mio_boot_reg_cfg.s.base << 16;
799 region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
800 if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
801 && base_ptr < region_base + region_size) {
802 is_16bit = mio_boot_reg_cfg.s.width;
803 break;
806 if (cs >= 7) {
807 /* cs and cs + 1 are CS0 and CS1, both must be less than 8. */
808 goto no_cf;
811 if (!(base_ptr & 0xfffful)) {
813 * Boot loader signals availability of DMA (true_ide
814 * mode) by setting low order bits of base_ptr to
815 * zero.
818 /* Asume that CS1 immediately follows. */
819 mio_boot_reg_cfg.u64 =
820 cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs + 1));
821 region1_base = mio_boot_reg_cfg.s.base << 16;
822 region1_size = (mio_boot_reg_cfg.s.size + 1) << 16;
823 if (!mio_boot_reg_cfg.s.en)
824 goto no_cf;
825 is_true_ide = true;
827 } else {
828 fdt_nop_property(initial_boot_params, cf, "cavium,true-ide");
829 fdt_nop_property(initial_boot_params, cf, "cavium,dma-engine-handle");
830 if (!is_16bit) {
831 __be32 width = cpu_to_be32(8);
832 fdt_setprop_inplace(initial_boot_params, cf,
833 "cavium,bus-width", &width, sizeof(width));
836 new_reg[0] = cpu_to_be32(cs);
837 new_reg[1] = cpu_to_be32(0);
838 new_reg[2] = cpu_to_be32(0x10000);
839 new_reg[3] = cpu_to_be32(cs + 1);
840 new_reg[4] = cpu_to_be32(0);
841 new_reg[5] = cpu_to_be32(0x10000);
842 fdt_setprop_inplace(initial_boot_params, cf,
843 "reg", new_reg, sizeof(new_reg));
845 bootbus = fdt_parent_offset(initial_boot_params, cf);
846 if (bootbus < 0)
847 goto no_cf;
848 ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
849 if (!ranges || len < (5 * 8 * sizeof(__be32)))
850 goto no_cf;
852 ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
853 ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
854 ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
855 if (is_true_ide) {
856 cs++;
857 ranges[(cs * 5) + 2] = cpu_to_be32(region1_base >> 32);
858 ranges[(cs * 5) + 3] = cpu_to_be32(region1_base & 0xffffffff);
859 ranges[(cs * 5) + 4] = cpu_to_be32(region1_size);
861 goto end_cf;
862 no_cf:
863 fdt_nop_node(initial_boot_params, cf);
865 end_cf:
869 /* 8 char LED */
870 alias_prop = fdt_getprop(initial_boot_params, aliases,
871 "led0", NULL);
872 if (alias_prop) {
873 union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
874 unsigned long base_ptr, region_base, region_size;
875 int cs, bootbus;
876 __be32 new_reg[6];
877 __be32 *ranges;
878 int len;
879 int led = fdt_path_offset(initial_boot_params, alias_prop);
881 base_ptr = octeon_bootinfo->led_display_base_addr;
882 if (base_ptr == 0)
883 goto no_led;
884 /* Find CS0 region. */
885 for (cs = 0; cs < 8; cs++) {
886 mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
887 region_base = mio_boot_reg_cfg.s.base << 16;
888 region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
889 if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
890 && base_ptr < region_base + region_size)
891 break;
894 if (cs > 7)
895 goto no_led;
897 new_reg[0] = cpu_to_be32(cs);
898 new_reg[1] = cpu_to_be32(0x20);
899 new_reg[2] = cpu_to_be32(0x20);
900 new_reg[3] = cpu_to_be32(cs);
901 new_reg[4] = cpu_to_be32(0);
902 new_reg[5] = cpu_to_be32(0x20);
903 fdt_setprop_inplace(initial_boot_params, led,
904 "reg", new_reg, sizeof(new_reg));
906 bootbus = fdt_parent_offset(initial_boot_params, led);
907 if (bootbus < 0)
908 goto no_led;
909 ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
910 if (!ranges || len < (5 * 8 * sizeof(__be32)))
911 goto no_led;
913 ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
914 ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
915 ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
916 goto end_led;
918 no_led:
919 fdt_nop_node(initial_boot_params, led);
920 end_led:
924 /* OHCI/UHCI USB */
925 alias_prop = fdt_getprop(initial_boot_params, aliases,
926 "uctl", NULL);
927 if (alias_prop) {
928 int uctl = fdt_path_offset(initial_boot_params, alias_prop);
930 if (uctl >= 0 && (!OCTEON_IS_MODEL(OCTEON_CN6XXX) ||
931 octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC2E)) {
932 pr_debug("Deleting uctl\n");
933 fdt_nop_node(initial_boot_params, uctl);
934 fdt_nop_property(initial_boot_params, aliases, "uctl");
935 } else if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E ||
936 octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC4E) {
937 /* Missing "refclk-type" defaults to crystal. */
938 fdt_nop_property(initial_boot_params, uctl, "refclk-type");
942 /* DWC2 USB */
943 alias_prop = fdt_getprop(initial_boot_params, aliases,
944 "usbn", NULL);
945 if (alias_prop) {
946 int usbn = fdt_path_offset(initial_boot_params, alias_prop);
948 if (usbn >= 0 && (current_cpu_type() == CPU_CAVIUM_OCTEON2 ||
949 !octeon_has_feature(OCTEON_FEATURE_USB))) {
950 pr_debug("Deleting usbn\n");
951 fdt_nop_node(initial_boot_params, usbn);
952 fdt_nop_property(initial_boot_params, aliases, "usbn");
953 } else {
954 __be32 new_f[1];
955 enum cvmx_helper_board_usb_clock_types c;
956 c = __cvmx_helper_board_usb_get_clock_type();
957 switch (c) {
958 case USB_CLOCK_TYPE_REF_48:
959 new_f[0] = cpu_to_be32(48000000);
960 fdt_setprop_inplace(initial_boot_params, usbn,
961 "refclk-frequency", new_f, sizeof(new_f));
962 /* Fall through ...*/
963 case USB_CLOCK_TYPE_REF_12:
964 /* Missing "refclk-type" defaults to external. */
965 fdt_nop_property(initial_boot_params, usbn, "refclk-type");
966 break;
967 default:
968 break;
973 if (octeon_bootinfo->board_type != CVMX_BOARD_TYPE_CUST_DSR1000N) {
974 int dsr1000n_leds = fdt_path_offset(initial_boot_params,
975 "/dsr1000n-leds");
976 if (dsr1000n_leds >= 0)
977 fdt_nop_node(initial_boot_params, dsr1000n_leds);
980 return 0;
983 static int __init octeon_publish_devices(void)
985 return of_platform_bus_probe(NULL, octeon_ids, NULL);
987 device_initcall(octeon_publish_devices);
989 MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>");
990 MODULE_LICENSE("GPL");
991 MODULE_DESCRIPTION("Platform driver for Octeon SOC");