2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Synthesize TLB refill handlers at runtime.
8 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
9 * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
11 * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12 * Copyright (C) 2011 MIPS Technologies, Inc.
14 * ... and the days got worse and worse and now you see
15 * I've gone completly out of my mind.
17 * They're coming to take me a away haha
18 * they're coming to take me a away hoho hihi haha
19 * to the funny farm where code is beautiful all the time ...
21 * (Condolences to Napoleon XIV)
24 #include <linux/bug.h>
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/smp.h>
28 #include <linux/string.h>
29 #include <linux/cache.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cpu-type.h>
33 #include <asm/pgtable.h>
36 #include <asm/setup.h>
38 static int mips_xpa_disabled
;
40 static int __init
xpa_disable(char *s
)
42 mips_xpa_disabled
= 1;
47 __setup("noxpa", xpa_disable
);
50 * TLB load/store/modify handlers.
52 * Only the fastpath gets synthesized at runtime, the slowpath for
53 * do_page_fault remains normal asm.
55 extern void tlb_do_page_fault_0(void);
56 extern void tlb_do_page_fault_1(void);
58 struct work_registers
{
67 } ____cacheline_aligned_in_smp
;
69 static struct tlb_reg_save handler_reg_save
[NR_CPUS
];
71 static inline int r45k_bvahwbug(void)
73 /* XXX: We should probe for the presence of this bug, but we don't. */
77 static inline int r4k_250MHZhwbug(void)
79 /* XXX: We should probe for the presence of this bug, but we don't. */
83 static inline int __maybe_unused
bcm1250_m3_war(void)
85 return BCM1250_M3_WAR
;
88 static inline int __maybe_unused
r10000_llsc_war(void)
90 return R10000_LLSC_WAR
;
93 static int use_bbit_insns(void)
95 switch (current_cpu_type()) {
96 case CPU_CAVIUM_OCTEON
:
97 case CPU_CAVIUM_OCTEON_PLUS
:
98 case CPU_CAVIUM_OCTEON2
:
99 case CPU_CAVIUM_OCTEON3
:
106 static int use_lwx_insns(void)
108 switch (current_cpu_type()) {
109 case CPU_CAVIUM_OCTEON2
:
110 case CPU_CAVIUM_OCTEON3
:
116 #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
117 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
118 static bool scratchpad_available(void)
122 static int scratchpad_offset(int i
)
125 * CVMSEG starts at address -32768 and extends for
126 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
128 i
+= 1; /* Kernel use starts at the top and works down. */
129 return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE
* 128 - (8 * i
) - 32768;
132 static bool scratchpad_available(void)
136 static int scratchpad_offset(int i
)
139 /* Really unreachable, but evidently some GCC want this. */
144 * Found by experiment: At least some revisions of the 4kc throw under
145 * some circumstances a machine check exception, triggered by invalid
146 * values in the index register. Delaying the tlbp instruction until
147 * after the next branch, plus adding an additional nop in front of
148 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
149 * why; it's not an issue caused by the core RTL.
152 static int m4kc_tlbp_war(void)
154 return (current_cpu_data
.processor_id
& 0xffff00) ==
155 (PRID_COMP_MIPS
| PRID_IMP_4KC
);
158 /* Handle labels (which must be positive integers). */
160 label_second_part
= 1,
165 label_split
= label_tlbw_hazard_0
+ 8,
166 label_tlbl_goaround1
,
167 label_tlbl_goaround2
,
171 label_smp_pgtable_change
,
172 label_r3000_write_probe_fail
,
173 label_large_segbits_fault
,
174 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
175 label_tlb_huge_update
,
179 UASM_L_LA(_second_part
)
182 UASM_L_LA(_vmalloc_done
)
183 /* _tlbw_hazard_x is handled differently. */
185 UASM_L_LA(_tlbl_goaround1
)
186 UASM_L_LA(_tlbl_goaround2
)
187 UASM_L_LA(_nopage_tlbl
)
188 UASM_L_LA(_nopage_tlbs
)
189 UASM_L_LA(_nopage_tlbm
)
190 UASM_L_LA(_smp_pgtable_change
)
191 UASM_L_LA(_r3000_write_probe_fail
)
192 UASM_L_LA(_large_segbits_fault
)
193 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
194 UASM_L_LA(_tlb_huge_update
)
197 static int hazard_instance
;
199 static void uasm_bgezl_hazard(u32
**p
, struct uasm_reloc
**r
, int instance
)
203 uasm_il_bgezl(p
, r
, 0, label_tlbw_hazard_0
+ instance
);
210 static void uasm_bgezl_label(struct uasm_label
**l
, u32
**p
, int instance
)
214 uasm_build_label(l
, *p
, label_tlbw_hazard_0
+ instance
);
222 * pgtable bits are assigned dynamically depending on processor feature
223 * and statically based on kernel configuration. This spits out the actual
224 * values the kernel is using. Required to make sense from disassembled
225 * TLB exception handlers.
227 static void output_pgtable_bits_defines(void)
229 #define pr_define(fmt, ...) \
230 pr_debug("#define " fmt, ##__VA_ARGS__)
232 pr_debug("#include <asm/asm.h>\n");
233 pr_debug("#include <asm/regdef.h>\n");
236 pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT
);
237 pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT
);
238 pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT
);
239 pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT
);
240 pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT
);
241 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
242 pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT
);
243 pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT
);
245 #ifdef CONFIG_CPU_MIPSR2
247 #ifdef _PAGE_NO_EXEC_SHIFT
248 pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT
);
249 pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT
);
253 pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT
);
254 pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT
);
255 pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT
);
256 pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT
);
260 static inline void dump_handler(const char *symbol
, const u32
*handler
, int count
)
264 pr_debug("LEAF(%s)\n", symbol
);
266 pr_debug("\t.set push\n");
267 pr_debug("\t.set noreorder\n");
269 for (i
= 0; i
< count
; i
++)
270 pr_debug("\t.word\t0x%08x\t\t# %p\n", handler
[i
], &handler
[i
]);
272 pr_debug("\t.set\tpop\n");
274 pr_debug("\tEND(%s)\n", symbol
);
277 /* The only general purpose registers allowed in TLB handlers. */
281 /* Some CP0 registers */
282 #define C0_INDEX 0, 0
283 #define C0_ENTRYLO0 2, 0
284 #define C0_TCBIND 2, 2
285 #define C0_ENTRYLO1 3, 0
286 #define C0_CONTEXT 4, 0
287 #define C0_PAGEMASK 5, 0
288 #define C0_BADVADDR 8, 0
289 #define C0_ENTRYHI 10, 0
291 #define C0_XCONTEXT 20, 0
294 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
296 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
299 /* The worst case length of the handler is around 18 instructions for
300 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
301 * Maximum space available is 32 instructions for R3000 and 64
302 * instructions for R4000.
304 * We deliberately chose a buffer size of 128, so we won't scribble
305 * over anything important on overflow before we panic.
307 static u32 tlb_handler
[128];
309 /* simply assume worst case size for labels and relocs */
310 static struct uasm_label labels
[128];
311 static struct uasm_reloc relocs
[128];
313 static int check_for_high_segbits
;
314 static bool fill_includes_sw_bits
;
316 static unsigned int kscratch_used_mask
;
318 static inline int __maybe_unused
c0_kscratch(void)
320 switch (current_cpu_type()) {
329 static int allocate_kscratch(void)
332 unsigned int a
= cpu_data
[0].kscratch_mask
& ~kscratch_used_mask
;
339 r
--; /* make it zero based */
341 kscratch_used_mask
|= (1 << r
);
346 static int scratch_reg
;
348 enum vmalloc64_mode
{not_refill
, refill_scratch
, refill_noscratch
};
350 static struct work_registers
build_get_work_registers(u32
**p
)
352 struct work_registers r
;
354 if (scratch_reg
>= 0) {
355 /* Save in CPU local C0_KScratch? */
356 UASM_i_MTC0(p
, 1, c0_kscratch(), scratch_reg
);
363 if (num_possible_cpus() > 1) {
364 /* Get smp_processor_id */
365 UASM_i_CPUID_MFC0(p
, K0
, SMP_CPUID_REG
);
366 UASM_i_SRL_SAFE(p
, K0
, K0
, SMP_CPUID_REGSHIFT
);
368 /* handler_reg_save index in K0 */
369 UASM_i_SLL(p
, K0
, K0
, ilog2(sizeof(struct tlb_reg_save
)));
371 UASM_i_LA(p
, K1
, (long)&handler_reg_save
);
372 UASM_i_ADDU(p
, K0
, K0
, K1
);
374 UASM_i_LA(p
, K0
, (long)&handler_reg_save
);
376 /* K0 now points to save area, save $1 and $2 */
377 UASM_i_SW(p
, 1, offsetof(struct tlb_reg_save
, a
), K0
);
378 UASM_i_SW(p
, 2, offsetof(struct tlb_reg_save
, b
), K0
);
386 static void build_restore_work_registers(u32
**p
)
388 if (scratch_reg
>= 0) {
389 UASM_i_MFC0(p
, 1, c0_kscratch(), scratch_reg
);
392 /* K0 already points to save area, restore $1 and $2 */
393 UASM_i_LW(p
, 1, offsetof(struct tlb_reg_save
, a
), K0
);
394 UASM_i_LW(p
, 2, offsetof(struct tlb_reg_save
, b
), K0
);
397 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
400 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
401 * we cannot do r3000 under these circumstances.
403 * Declare pgd_current here instead of including mmu_context.h to avoid type
404 * conflicts for tlbmiss_handler_setup_pgd
406 extern unsigned long pgd_current
[];
409 * The R3000 TLB handler is simple.
411 static void build_r3000_tlb_refill_handler(void)
413 long pgdc
= (long)pgd_current
;
416 memset(tlb_handler
, 0, sizeof(tlb_handler
));
419 uasm_i_mfc0(&p
, K0
, C0_BADVADDR
);
420 uasm_i_lui(&p
, K1
, uasm_rel_hi(pgdc
)); /* cp0 delay */
421 uasm_i_lw(&p
, K1
, uasm_rel_lo(pgdc
), K1
);
422 uasm_i_srl(&p
, K0
, K0
, 22); /* load delay */
423 uasm_i_sll(&p
, K0
, K0
, 2);
424 uasm_i_addu(&p
, K1
, K1
, K0
);
425 uasm_i_mfc0(&p
, K0
, C0_CONTEXT
);
426 uasm_i_lw(&p
, K1
, 0, K1
); /* cp0 delay */
427 uasm_i_andi(&p
, K0
, K0
, 0xffc); /* load delay */
428 uasm_i_addu(&p
, K1
, K1
, K0
);
429 uasm_i_lw(&p
, K0
, 0, K1
);
430 uasm_i_nop(&p
); /* load delay */
431 uasm_i_mtc0(&p
, K0
, C0_ENTRYLO0
);
432 uasm_i_mfc0(&p
, K1
, C0_EPC
); /* cp0 delay */
433 uasm_i_tlbwr(&p
); /* cp0 delay */
435 uasm_i_rfe(&p
); /* branch delay */
437 if (p
> tlb_handler
+ 32)
438 panic("TLB refill handler space exceeded");
440 pr_debug("Wrote TLB refill handler (%u instructions).\n",
441 (unsigned int)(p
- tlb_handler
));
443 memcpy((void *)ebase
, tlb_handler
, 0x80);
444 local_flush_icache_range(ebase
, ebase
+ 0x80);
446 dump_handler("r3000_tlb_refill", (u32
*)ebase
, 32);
448 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
451 * The R4000 TLB handler is much more complicated. We have two
452 * consecutive handler areas with 32 instructions space each.
453 * Since they aren't used at the same time, we can overflow in the
454 * other one.To keep things simple, we first assume linear space,
455 * then we relocate it to the final handler layout as needed.
457 static u32 final_handler
[64];
462 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
463 * 2. A timing hazard exists for the TLBP instruction.
465 * stalling_instruction
468 * The JTLB is being read for the TLBP throughout the stall generated by the
469 * previous instruction. This is not really correct as the stalling instruction
470 * can modify the address used to access the JTLB. The failure symptom is that
471 * the TLBP instruction will use an address created for the stalling instruction
472 * and not the address held in C0_ENHI and thus report the wrong results.
474 * The software work-around is to not allow the instruction preceding the TLBP
475 * to stall - make it an NOP or some other instruction guaranteed not to stall.
477 * Errata 2 will not be fixed. This errata is also on the R5000.
479 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
481 static void __maybe_unused
build_tlb_probe_entry(u32
**p
)
483 switch (current_cpu_type()) {
484 /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
500 * Write random or indexed TLB entry, and care about the hazards from
501 * the preceding mtc0 and for the following eret.
503 enum tlb_write_entry
{ tlb_random
, tlb_indexed
};
505 static void build_tlb_write_entry(u32
**p
, struct uasm_label
**l
,
506 struct uasm_reloc
**r
,
507 enum tlb_write_entry wmode
)
509 void(*tlbw
)(u32
**) = NULL
;
512 case tlb_random
: tlbw
= uasm_i_tlbwr
; break;
513 case tlb_indexed
: tlbw
= uasm_i_tlbwi
; break;
516 if (cpu_has_mips_r2_r6
) {
517 if (cpu_has_mips_r2_exec_hazard
)
523 switch (current_cpu_type()) {
531 * This branch uses up a mtc0 hazard nop slot and saves
532 * two nops after the tlbw instruction.
534 uasm_bgezl_hazard(p
, r
, hazard_instance
);
536 uasm_bgezl_label(l
, p
, hazard_instance
);
550 uasm_i_nop(p
); /* QED specifies 2 nops hazard */
551 uasm_i_nop(p
); /* QED specifies 2 nops hazard */
625 panic("No TLB refill handler yet (CPU type: %d)",
631 static __maybe_unused
void build_convert_pte_to_entrylo(u32
**p
,
634 if (cpu_has_rixi
&& _PAGE_NO_EXEC
) {
635 if (fill_includes_sw_bits
) {
636 UASM_i_ROTR(p
, reg
, reg
, ilog2(_PAGE_GLOBAL
));
638 UASM_i_SRL(p
, reg
, reg
, ilog2(_PAGE_NO_EXEC
));
639 UASM_i_ROTR(p
, reg
, reg
,
640 ilog2(_PAGE_GLOBAL
) - ilog2(_PAGE_NO_EXEC
));
643 #ifdef CONFIG_PHYS_ADDR_T_64BIT
644 uasm_i_dsrl_safe(p
, reg
, reg
, ilog2(_PAGE_GLOBAL
));
646 UASM_i_SRL(p
, reg
, reg
, ilog2(_PAGE_GLOBAL
));
651 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
653 static void build_restore_pagemask(u32
**p
, struct uasm_reloc
**r
,
654 unsigned int tmp
, enum label_id lid
,
657 if (restore_scratch
) {
658 /* Reset default page size */
659 if (PM_DEFAULT_MASK
>> 16) {
660 uasm_i_lui(p
, tmp
, PM_DEFAULT_MASK
>> 16);
661 uasm_i_ori(p
, tmp
, tmp
, PM_DEFAULT_MASK
& 0xffff);
662 uasm_i_mtc0(p
, tmp
, C0_PAGEMASK
);
663 uasm_il_b(p
, r
, lid
);
664 } else if (PM_DEFAULT_MASK
) {
665 uasm_i_ori(p
, tmp
, 0, PM_DEFAULT_MASK
);
666 uasm_i_mtc0(p
, tmp
, C0_PAGEMASK
);
667 uasm_il_b(p
, r
, lid
);
669 uasm_i_mtc0(p
, 0, C0_PAGEMASK
);
670 uasm_il_b(p
, r
, lid
);
672 if (scratch_reg
>= 0)
673 UASM_i_MFC0(p
, 1, c0_kscratch(), scratch_reg
);
675 UASM_i_LW(p
, 1, scratchpad_offset(0), 0);
677 /* Reset default page size */
678 if (PM_DEFAULT_MASK
>> 16) {
679 uasm_i_lui(p
, tmp
, PM_DEFAULT_MASK
>> 16);
680 uasm_i_ori(p
, tmp
, tmp
, PM_DEFAULT_MASK
& 0xffff);
681 uasm_il_b(p
, r
, lid
);
682 uasm_i_mtc0(p
, tmp
, C0_PAGEMASK
);
683 } else if (PM_DEFAULT_MASK
) {
684 uasm_i_ori(p
, tmp
, 0, PM_DEFAULT_MASK
);
685 uasm_il_b(p
, r
, lid
);
686 uasm_i_mtc0(p
, tmp
, C0_PAGEMASK
);
688 uasm_il_b(p
, r
, lid
);
689 uasm_i_mtc0(p
, 0, C0_PAGEMASK
);
694 static void build_huge_tlb_write_entry(u32
**p
, struct uasm_label
**l
,
695 struct uasm_reloc
**r
,
697 enum tlb_write_entry wmode
,
700 /* Set huge page tlb entry size */
701 uasm_i_lui(p
, tmp
, PM_HUGE_MASK
>> 16);
702 uasm_i_ori(p
, tmp
, tmp
, PM_HUGE_MASK
& 0xffff);
703 uasm_i_mtc0(p
, tmp
, C0_PAGEMASK
);
705 build_tlb_write_entry(p
, l
, r
, wmode
);
707 build_restore_pagemask(p
, r
, tmp
, label_leave
, restore_scratch
);
711 * Check if Huge PTE is present, if so then jump to LABEL.
714 build_is_huge_pte(u32
**p
, struct uasm_reloc
**r
, unsigned int tmp
,
715 unsigned int pmd
, int lid
)
717 UASM_i_LW(p
, tmp
, 0, pmd
);
718 if (use_bbit_insns()) {
719 uasm_il_bbit1(p
, r
, tmp
, ilog2(_PAGE_HUGE
), lid
);
721 uasm_i_andi(p
, tmp
, tmp
, _PAGE_HUGE
);
722 uasm_il_bnez(p
, r
, tmp
, lid
);
726 static void build_huge_update_entries(u32
**p
, unsigned int pte
,
732 * A huge PTE describes an area the size of the
733 * configured huge page size. This is twice the
734 * of the large TLB entry size we intend to use.
735 * A TLB entry half the size of the configured
736 * huge page size is configured into entrylo0
737 * and entrylo1 to cover the contiguous huge PTE
740 small_sequence
= (HPAGE_SIZE
>> 7) < 0x10000;
742 /* We can clobber tmp. It isn't used after this.*/
744 uasm_i_lui(p
, tmp
, HPAGE_SIZE
>> (7 + 16));
746 build_convert_pte_to_entrylo(p
, pte
);
747 UASM_i_MTC0(p
, pte
, C0_ENTRYLO0
); /* load it */
748 /* convert to entrylo1 */
750 UASM_i_ADDIU(p
, pte
, pte
, HPAGE_SIZE
>> 7);
752 UASM_i_ADDU(p
, pte
, pte
, tmp
);
754 UASM_i_MTC0(p
, pte
, C0_ENTRYLO1
); /* load it */
757 static void build_huge_handler_tail(u32
**p
, struct uasm_reloc
**r
,
758 struct uasm_label
**l
,
763 UASM_i_SC(p
, pte
, 0, ptr
);
764 uasm_il_beqz(p
, r
, pte
, label_tlb_huge_update
);
765 UASM_i_LW(p
, pte
, 0, ptr
); /* Needed because SC killed our PTE */
767 UASM_i_SW(p
, pte
, 0, ptr
);
769 build_huge_update_entries(p
, pte
, ptr
);
770 build_huge_tlb_write_entry(p
, l
, r
, pte
, tlb_indexed
, 0);
772 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
776 * TMP and PTR are scratch.
777 * TMP will be clobbered, PTR will hold the pmd entry.
780 build_get_pmde64(u32
**p
, struct uasm_label
**l
, struct uasm_reloc
**r
,
781 unsigned int tmp
, unsigned int ptr
)
783 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
784 long pgdc
= (long)pgd_current
;
787 * The vmalloc handling is not in the hotpath.
789 uasm_i_dmfc0(p
, tmp
, C0_BADVADDR
);
791 if (check_for_high_segbits
) {
793 * The kernel currently implicitely assumes that the
794 * MIPS SEGBITS parameter for the processor is
795 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
796 * allocate virtual addresses outside the maximum
797 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
798 * that doesn't prevent user code from accessing the
799 * higher xuseg addresses. Here, we make sure that
800 * everything but the lower xuseg addresses goes down
801 * the module_alloc/vmalloc path.
803 uasm_i_dsrl_safe(p
, ptr
, tmp
, PGDIR_SHIFT
+ PGD_ORDER
+ PAGE_SHIFT
- 3);
804 uasm_il_bnez(p
, r
, ptr
, label_vmalloc
);
806 uasm_il_bltz(p
, r
, tmp
, label_vmalloc
);
808 /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
811 /* pgd is in pgd_reg */
812 UASM_i_MFC0(p
, ptr
, c0_kscratch(), pgd_reg
);
814 #if defined(CONFIG_MIPS_PGD_C0_CONTEXT)
816 * &pgd << 11 stored in CONTEXT [23..63].
818 UASM_i_MFC0(p
, ptr
, C0_CONTEXT
);
820 /* Clear lower 23 bits of context. */
821 uasm_i_dins(p
, ptr
, 0, 0, 23);
823 /* 1 0 1 0 1 << 6 xkphys cached */
824 uasm_i_ori(p
, ptr
, ptr
, 0x540);
825 uasm_i_drotr(p
, ptr
, ptr
, 11);
826 #elif defined(CONFIG_SMP)
827 UASM_i_CPUID_MFC0(p
, ptr
, SMP_CPUID_REG
);
828 uasm_i_dsrl_safe(p
, ptr
, ptr
, SMP_CPUID_PTRSHIFT
);
829 UASM_i_LA_mostly(p
, tmp
, pgdc
);
830 uasm_i_daddu(p
, ptr
, ptr
, tmp
);
831 uasm_i_dmfc0(p
, tmp
, C0_BADVADDR
);
832 uasm_i_ld(p
, ptr
, uasm_rel_lo(pgdc
), ptr
);
834 UASM_i_LA_mostly(p
, ptr
, pgdc
);
835 uasm_i_ld(p
, ptr
, uasm_rel_lo(pgdc
), ptr
);
839 uasm_l_vmalloc_done(l
, *p
);
841 /* get pgd offset in bytes */
842 uasm_i_dsrl_safe(p
, tmp
, tmp
, PGDIR_SHIFT
- 3);
844 uasm_i_andi(p
, tmp
, tmp
, (PTRS_PER_PGD
- 1)<<3);
845 uasm_i_daddu(p
, ptr
, ptr
, tmp
); /* add in pgd offset */
846 #ifndef __PAGETABLE_PMD_FOLDED
847 uasm_i_dmfc0(p
, tmp
, C0_BADVADDR
); /* get faulting address */
848 uasm_i_ld(p
, ptr
, 0, ptr
); /* get pmd pointer */
849 uasm_i_dsrl_safe(p
, tmp
, tmp
, PMD_SHIFT
-3); /* get pmd offset in bytes */
850 uasm_i_andi(p
, tmp
, tmp
, (PTRS_PER_PMD
- 1)<<3);
851 uasm_i_daddu(p
, ptr
, ptr
, tmp
); /* add in pmd offset */
856 * BVADDR is the faulting address, PTR is scratch.
857 * PTR will hold the pgd for vmalloc.
860 build_get_pgd_vmalloc64(u32
**p
, struct uasm_label
**l
, struct uasm_reloc
**r
,
861 unsigned int bvaddr
, unsigned int ptr
,
862 enum vmalloc64_mode mode
)
864 long swpd
= (long)swapper_pg_dir
;
865 int single_insn_swpd
;
866 int did_vmalloc_branch
= 0;
868 single_insn_swpd
= uasm_in_compat_space_p(swpd
) && !uasm_rel_lo(swpd
);
870 uasm_l_vmalloc(l
, *p
);
872 if (mode
!= not_refill
&& check_for_high_segbits
) {
873 if (single_insn_swpd
) {
874 uasm_il_bltz(p
, r
, bvaddr
, label_vmalloc_done
);
875 uasm_i_lui(p
, ptr
, uasm_rel_hi(swpd
));
876 did_vmalloc_branch
= 1;
879 uasm_il_bgez(p
, r
, bvaddr
, label_large_segbits_fault
);
882 if (!did_vmalloc_branch
) {
883 if (uasm_in_compat_space_p(swpd
) && !uasm_rel_lo(swpd
)) {
884 uasm_il_b(p
, r
, label_vmalloc_done
);
885 uasm_i_lui(p
, ptr
, uasm_rel_hi(swpd
));
887 UASM_i_LA_mostly(p
, ptr
, swpd
);
888 uasm_il_b(p
, r
, label_vmalloc_done
);
889 if (uasm_in_compat_space_p(swpd
))
890 uasm_i_addiu(p
, ptr
, ptr
, uasm_rel_lo(swpd
));
892 uasm_i_daddiu(p
, ptr
, ptr
, uasm_rel_lo(swpd
));
895 if (mode
!= not_refill
&& check_for_high_segbits
) {
896 uasm_l_large_segbits_fault(l
, *p
);
898 * We get here if we are an xsseg address, or if we are
899 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
901 * Ignoring xsseg (assume disabled so would generate
902 * (address errors?), the only remaining possibility
903 * is the upper xuseg addresses. On processors with
904 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
905 * addresses would have taken an address error. We try
906 * to mimic that here by taking a load/istream page
909 UASM_i_LA(p
, ptr
, (unsigned long)tlb_do_page_fault_0
);
912 if (mode
== refill_scratch
) {
913 if (scratch_reg
>= 0)
914 UASM_i_MFC0(p
, 1, c0_kscratch(), scratch_reg
);
916 UASM_i_LW(p
, 1, scratchpad_offset(0), 0);
923 #else /* !CONFIG_64BIT */
926 * TMP and PTR are scratch.
927 * TMP will be clobbered, PTR will hold the pgd entry.
929 static void __maybe_unused
930 build_get_pgde32(u32
**p
, unsigned int tmp
, unsigned int ptr
)
933 /* pgd is in pgd_reg */
934 uasm_i_mfc0(p
, ptr
, c0_kscratch(), pgd_reg
);
935 uasm_i_mfc0(p
, tmp
, C0_BADVADDR
); /* get faulting address */
937 long pgdc
= (long)pgd_current
;
939 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
941 uasm_i_mfc0(p
, ptr
, SMP_CPUID_REG
);
942 UASM_i_LA_mostly(p
, tmp
, pgdc
);
943 uasm_i_srl(p
, ptr
, ptr
, SMP_CPUID_PTRSHIFT
);
944 uasm_i_addu(p
, ptr
, tmp
, ptr
);
946 UASM_i_LA_mostly(p
, ptr
, pgdc
);
948 uasm_i_mfc0(p
, tmp
, C0_BADVADDR
); /* get faulting address */
949 uasm_i_lw(p
, ptr
, uasm_rel_lo(pgdc
), ptr
);
951 uasm_i_srl(p
, tmp
, tmp
, PGDIR_SHIFT
); /* get pgd only bits */
952 uasm_i_sll(p
, tmp
, tmp
, PGD_T_LOG2
);
953 uasm_i_addu(p
, ptr
, ptr
, tmp
); /* add in pgd offset */
956 #endif /* !CONFIG_64BIT */
958 static void build_adjust_context(u32
**p
, unsigned int ctx
)
960 unsigned int shift
= 4 - (PTE_T_LOG2
+ 1) + PAGE_SHIFT
- 12;
961 unsigned int mask
= (PTRS_PER_PTE
/ 2 - 1) << (PTE_T_LOG2
+ 1);
963 switch (current_cpu_type()) {
980 UASM_i_SRL(p
, ctx
, ctx
, shift
);
981 uasm_i_andi(p
, ctx
, ctx
, mask
);
984 static void build_get_ptep(u32
**p
, unsigned int tmp
, unsigned int ptr
)
987 * Bug workaround for the Nevada. It seems as if under certain
988 * circumstances the move from cp0_context might produce a
989 * bogus result when the mfc0 instruction and its consumer are
990 * in a different cacheline or a load instruction, probably any
991 * memory reference, is between them.
993 switch (current_cpu_type()) {
995 UASM_i_LW(p
, ptr
, 0, ptr
);
996 GET_CONTEXT(p
, tmp
); /* get context reg */
1000 GET_CONTEXT(p
, tmp
); /* get context reg */
1001 UASM_i_LW(p
, ptr
, 0, ptr
);
1005 build_adjust_context(p
, tmp
);
1006 UASM_i_ADDU(p
, ptr
, ptr
, tmp
); /* add in offset */
1009 static void build_update_entries(u32
**p
, unsigned int tmp
, unsigned int ptep
)
1012 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1013 * Kernel is a special case. Only a few CPUs use it.
1015 if (config_enabled(CONFIG_PHYS_ADDR_T_64BIT
) && !cpu_has_64bits
) {
1016 int pte_off_even
= sizeof(pte_t
) / 2;
1017 int pte_off_odd
= pte_off_even
+ sizeof(pte_t
);
1019 const int scratch
= 1; /* Our extra working register */
1021 uasm_i_addu(p
, scratch
, 0, ptep
);
1023 uasm_i_lw(p
, tmp
, pte_off_even
, ptep
); /* even pte */
1024 uasm_i_lw(p
, ptep
, pte_off_odd
, ptep
); /* odd pte */
1025 UASM_i_ROTR(p
, tmp
, tmp
, ilog2(_PAGE_GLOBAL
));
1026 UASM_i_ROTR(p
, ptep
, ptep
, ilog2(_PAGE_GLOBAL
));
1027 UASM_i_MTC0(p
, tmp
, C0_ENTRYLO0
);
1028 UASM_i_MTC0(p
, ptep
, C0_ENTRYLO1
);
1030 uasm_i_lw(p
, tmp
, 0, scratch
);
1031 uasm_i_lw(p
, ptep
, sizeof(pte_t
), scratch
);
1032 uasm_i_lui(p
, scratch
, 0xff);
1033 uasm_i_ori(p
, scratch
, scratch
, 0xffff);
1034 uasm_i_and(p
, tmp
, scratch
, tmp
);
1035 uasm_i_and(p
, ptep
, scratch
, ptep
);
1036 uasm_i_mthc0(p
, tmp
, C0_ENTRYLO0
);
1037 uasm_i_mthc0(p
, ptep
, C0_ENTRYLO1
);
1042 UASM_i_LW(p
, tmp
, 0, ptep
); /* get even pte */
1043 UASM_i_LW(p
, ptep
, sizeof(pte_t
), ptep
); /* get odd pte */
1044 if (r45k_bvahwbug())
1045 build_tlb_probe_entry(p
);
1046 build_convert_pte_to_entrylo(p
, tmp
);
1047 if (r4k_250MHZhwbug())
1048 UASM_i_MTC0(p
, 0, C0_ENTRYLO0
);
1049 UASM_i_MTC0(p
, tmp
, C0_ENTRYLO0
); /* load it */
1050 build_convert_pte_to_entrylo(p
, ptep
);
1051 if (r45k_bvahwbug())
1052 uasm_i_mfc0(p
, tmp
, C0_INDEX
);
1053 if (r4k_250MHZhwbug())
1054 UASM_i_MTC0(p
, 0, C0_ENTRYLO1
);
1055 UASM_i_MTC0(p
, ptep
, C0_ENTRYLO1
); /* load it */
1058 struct mips_huge_tlb_info
{
1060 int restore_scratch
;
1061 bool need_reload_pte
;
1064 static struct mips_huge_tlb_info
1065 build_fast_tlb_refill_handler (u32
**p
, struct uasm_label
**l
,
1066 struct uasm_reloc
**r
, unsigned int tmp
,
1067 unsigned int ptr
, int c0_scratch_reg
)
1069 struct mips_huge_tlb_info rv
;
1070 unsigned int even
, odd
;
1071 int vmalloc_branch_delay_filled
= 0;
1072 const int scratch
= 1; /* Our extra working register */
1074 rv
.huge_pte
= scratch
;
1075 rv
.restore_scratch
= 0;
1076 rv
.need_reload_pte
= false;
1078 if (check_for_high_segbits
) {
1079 UASM_i_MFC0(p
, tmp
, C0_BADVADDR
);
1082 UASM_i_MFC0(p
, ptr
, c0_kscratch(), pgd_reg
);
1084 UASM_i_MFC0(p
, ptr
, C0_CONTEXT
);
1086 if (c0_scratch_reg
>= 0)
1087 UASM_i_MTC0(p
, scratch
, c0_kscratch(), c0_scratch_reg
);
1089 UASM_i_SW(p
, scratch
, scratchpad_offset(0), 0);
1091 uasm_i_dsrl_safe(p
, scratch
, tmp
,
1092 PGDIR_SHIFT
+ PGD_ORDER
+ PAGE_SHIFT
- 3);
1093 uasm_il_bnez(p
, r
, scratch
, label_vmalloc
);
1095 if (pgd_reg
== -1) {
1096 vmalloc_branch_delay_filled
= 1;
1097 /* Clear lower 23 bits of context. */
1098 uasm_i_dins(p
, ptr
, 0, 0, 23);
1102 UASM_i_MFC0(p
, ptr
, c0_kscratch(), pgd_reg
);
1104 UASM_i_MFC0(p
, ptr
, C0_CONTEXT
);
1106 UASM_i_MFC0(p
, tmp
, C0_BADVADDR
);
1108 if (c0_scratch_reg
>= 0)
1109 UASM_i_MTC0(p
, scratch
, c0_kscratch(), c0_scratch_reg
);
1111 UASM_i_SW(p
, scratch
, scratchpad_offset(0), 0);
1114 /* Clear lower 23 bits of context. */
1115 uasm_i_dins(p
, ptr
, 0, 0, 23);
1117 uasm_il_bltz(p
, r
, tmp
, label_vmalloc
);
1120 if (pgd_reg
== -1) {
1121 vmalloc_branch_delay_filled
= 1;
1122 /* 1 0 1 0 1 << 6 xkphys cached */
1123 uasm_i_ori(p
, ptr
, ptr
, 0x540);
1124 uasm_i_drotr(p
, ptr
, ptr
, 11);
1127 #ifdef __PAGETABLE_PMD_FOLDED
1128 #define LOC_PTEP scratch
1130 #define LOC_PTEP ptr
1133 if (!vmalloc_branch_delay_filled
)
1134 /* get pgd offset in bytes */
1135 uasm_i_dsrl_safe(p
, scratch
, tmp
, PGDIR_SHIFT
- 3);
1137 uasm_l_vmalloc_done(l
, *p
);
1141 * fall-through case = badvaddr *pgd_current
1142 * vmalloc case = badvaddr swapper_pg_dir
1145 if (vmalloc_branch_delay_filled
)
1146 /* get pgd offset in bytes */
1147 uasm_i_dsrl_safe(p
, scratch
, tmp
, PGDIR_SHIFT
- 3);
1149 #ifdef __PAGETABLE_PMD_FOLDED
1150 GET_CONTEXT(p
, tmp
); /* get context reg */
1152 uasm_i_andi(p
, scratch
, scratch
, (PTRS_PER_PGD
- 1) << 3);
1154 if (use_lwx_insns()) {
1155 UASM_i_LWX(p
, LOC_PTEP
, scratch
, ptr
);
1157 uasm_i_daddu(p
, ptr
, ptr
, scratch
); /* add in pgd offset */
1158 uasm_i_ld(p
, LOC_PTEP
, 0, ptr
); /* get pmd pointer */
1161 #ifndef __PAGETABLE_PMD_FOLDED
1162 /* get pmd offset in bytes */
1163 uasm_i_dsrl_safe(p
, scratch
, tmp
, PMD_SHIFT
- 3);
1164 uasm_i_andi(p
, scratch
, scratch
, (PTRS_PER_PMD
- 1) << 3);
1165 GET_CONTEXT(p
, tmp
); /* get context reg */
1167 if (use_lwx_insns()) {
1168 UASM_i_LWX(p
, scratch
, scratch
, ptr
);
1170 uasm_i_daddu(p
, ptr
, ptr
, scratch
); /* add in pmd offset */
1171 UASM_i_LW(p
, scratch
, 0, ptr
);
1174 /* Adjust the context during the load latency. */
1175 build_adjust_context(p
, tmp
);
1177 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1178 uasm_il_bbit1(p
, r
, scratch
, ilog2(_PAGE_HUGE
), label_tlb_huge_update
);
1180 * The in the LWX case we don't want to do the load in the
1181 * delay slot. It cannot issue in the same cycle and may be
1182 * speculative and unneeded.
1184 if (use_lwx_insns())
1186 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1189 /* build_update_entries */
1190 if (use_lwx_insns()) {
1193 UASM_i_LWX(p
, even
, scratch
, tmp
);
1194 UASM_i_ADDIU(p
, tmp
, tmp
, sizeof(pte_t
));
1195 UASM_i_LWX(p
, odd
, scratch
, tmp
);
1197 UASM_i_ADDU(p
, ptr
, scratch
, tmp
); /* add in offset */
1200 UASM_i_LW(p
, even
, 0, ptr
); /* get even pte */
1201 UASM_i_LW(p
, odd
, sizeof(pte_t
), ptr
); /* get odd pte */
1204 uasm_i_drotr(p
, even
, even
, ilog2(_PAGE_GLOBAL
));
1205 UASM_i_MTC0(p
, even
, C0_ENTRYLO0
); /* load it */
1206 uasm_i_drotr(p
, odd
, odd
, ilog2(_PAGE_GLOBAL
));
1208 uasm_i_dsrl_safe(p
, even
, even
, ilog2(_PAGE_GLOBAL
));
1209 UASM_i_MTC0(p
, even
, C0_ENTRYLO0
); /* load it */
1210 uasm_i_dsrl_safe(p
, odd
, odd
, ilog2(_PAGE_GLOBAL
));
1212 UASM_i_MTC0(p
, odd
, C0_ENTRYLO1
); /* load it */
1214 if (c0_scratch_reg
>= 0) {
1215 UASM_i_MFC0(p
, scratch
, c0_kscratch(), c0_scratch_reg
);
1216 build_tlb_write_entry(p
, l
, r
, tlb_random
);
1217 uasm_l_leave(l
, *p
);
1218 rv
.restore_scratch
= 1;
1219 } else if (PAGE_SHIFT
== 14 || PAGE_SHIFT
== 13) {
1220 build_tlb_write_entry(p
, l
, r
, tlb_random
);
1221 uasm_l_leave(l
, *p
);
1222 UASM_i_LW(p
, scratch
, scratchpad_offset(0), 0);
1224 UASM_i_LW(p
, scratch
, scratchpad_offset(0), 0);
1225 build_tlb_write_entry(p
, l
, r
, tlb_random
);
1226 uasm_l_leave(l
, *p
);
1227 rv
.restore_scratch
= 1;
1230 uasm_i_eret(p
); /* return from trap */
1236 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1237 * because EXL == 0. If we wrap, we can also use the 32 instruction
1238 * slots before the XTLB refill exception handler which belong to the
1239 * unused TLB refill exception.
1241 #define MIPS64_REFILL_INSNS 32
1243 static void build_r4000_tlb_refill_handler(void)
1245 u32
*p
= tlb_handler
;
1246 struct uasm_label
*l
= labels
;
1247 struct uasm_reloc
*r
= relocs
;
1249 unsigned int final_len
;
1250 struct mips_huge_tlb_info htlb_info __maybe_unused
;
1251 enum vmalloc64_mode vmalloc_mode __maybe_unused
;
1253 memset(tlb_handler
, 0, sizeof(tlb_handler
));
1254 memset(labels
, 0, sizeof(labels
));
1255 memset(relocs
, 0, sizeof(relocs
));
1256 memset(final_handler
, 0, sizeof(final_handler
));
1258 if (IS_ENABLED(CONFIG_64BIT
) && (scratch_reg
>= 0 || scratchpad_available()) && use_bbit_insns()) {
1259 htlb_info
= build_fast_tlb_refill_handler(&p
, &l
, &r
, K0
, K1
,
1261 vmalloc_mode
= refill_scratch
;
1263 htlb_info
.huge_pte
= K0
;
1264 htlb_info
.restore_scratch
= 0;
1265 htlb_info
.need_reload_pte
= true;
1266 vmalloc_mode
= refill_noscratch
;
1268 * create the plain linear handler
1270 if (bcm1250_m3_war()) {
1271 unsigned int segbits
= 44;
1273 uasm_i_dmfc0(&p
, K0
, C0_BADVADDR
);
1274 uasm_i_dmfc0(&p
, K1
, C0_ENTRYHI
);
1275 uasm_i_xor(&p
, K0
, K0
, K1
);
1276 uasm_i_dsrl_safe(&p
, K1
, K0
, 62);
1277 uasm_i_dsrl_safe(&p
, K0
, K0
, 12 + 1);
1278 uasm_i_dsll_safe(&p
, K0
, K0
, 64 + 12 + 1 - segbits
);
1279 uasm_i_or(&p
, K0
, K0
, K1
);
1280 uasm_il_bnez(&p
, &r
, K0
, label_leave
);
1281 /* No need for uasm_i_nop */
1285 build_get_pmde64(&p
, &l
, &r
, K0
, K1
); /* get pmd in K1 */
1287 build_get_pgde32(&p
, K0
, K1
); /* get pgd in K1 */
1290 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1291 build_is_huge_pte(&p
, &r
, K0
, K1
, label_tlb_huge_update
);
1294 build_get_ptep(&p
, K0
, K1
);
1295 build_update_entries(&p
, K0
, K1
);
1296 build_tlb_write_entry(&p
, &l
, &r
, tlb_random
);
1297 uasm_l_leave(&l
, p
);
1298 uasm_i_eret(&p
); /* return from trap */
1300 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1301 uasm_l_tlb_huge_update(&l
, p
);
1302 if (htlb_info
.need_reload_pte
)
1303 UASM_i_LW(&p
, htlb_info
.huge_pte
, 0, K1
);
1304 build_huge_update_entries(&p
, htlb_info
.huge_pte
, K1
);
1305 build_huge_tlb_write_entry(&p
, &l
, &r
, K0
, tlb_random
,
1306 htlb_info
.restore_scratch
);
1310 build_get_pgd_vmalloc64(&p
, &l
, &r
, K0
, K1
, vmalloc_mode
);
1314 * Overflow check: For the 64bit handler, we need at least one
1315 * free instruction slot for the wrap-around branch. In worst
1316 * case, if the intended insertion point is a delay slot, we
1317 * need three, with the second nop'ed and the third being
1320 switch (boot_cpu_type()) {
1322 if (sizeof(long) == 4) {
1324 /* Loongson2 ebase is different than r4k, we have more space */
1325 if ((p
- tlb_handler
) > 64)
1326 panic("TLB refill handler space exceeded");
1328 * Now fold the handler in the TLB refill handler space.
1331 /* Simplest case, just copy the handler. */
1332 uasm_copy_handler(relocs
, labels
, tlb_handler
, p
, f
);
1333 final_len
= p
- tlb_handler
;
1336 if (((p
- tlb_handler
) > (MIPS64_REFILL_INSNS
* 2) - 1)
1337 || (((p
- tlb_handler
) > (MIPS64_REFILL_INSNS
* 2) - 3)
1338 && uasm_insn_has_bdelay(relocs
,
1339 tlb_handler
+ MIPS64_REFILL_INSNS
- 3)))
1340 panic("TLB refill handler space exceeded");
1342 * Now fold the handler in the TLB refill handler space.
1344 f
= final_handler
+ MIPS64_REFILL_INSNS
;
1345 if ((p
- tlb_handler
) <= MIPS64_REFILL_INSNS
) {
1346 /* Just copy the handler. */
1347 uasm_copy_handler(relocs
, labels
, tlb_handler
, p
, f
);
1348 final_len
= p
- tlb_handler
;
1350 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1351 const enum label_id ls
= label_tlb_huge_update
;
1353 const enum label_id ls
= label_vmalloc
;
1359 for (i
= 0; i
< ARRAY_SIZE(labels
) && labels
[i
].lab
!= ls
; i
++)
1361 BUG_ON(i
== ARRAY_SIZE(labels
));
1362 split
= labels
[i
].addr
;
1365 * See if we have overflown one way or the other.
1367 if (split
> tlb_handler
+ MIPS64_REFILL_INSNS
||
1368 split
< p
- MIPS64_REFILL_INSNS
)
1373 * Split two instructions before the end. One
1374 * for the branch and one for the instruction
1375 * in the delay slot.
1377 split
= tlb_handler
+ MIPS64_REFILL_INSNS
- 2;
1380 * If the branch would fall in a delay slot,
1381 * we must back up an additional instruction
1382 * so that it is no longer in a delay slot.
1384 if (uasm_insn_has_bdelay(relocs
, split
- 1))
1387 /* Copy first part of the handler. */
1388 uasm_copy_handler(relocs
, labels
, tlb_handler
, split
, f
);
1389 f
+= split
- tlb_handler
;
1392 /* Insert branch. */
1393 uasm_l_split(&l
, final_handler
);
1394 uasm_il_b(&f
, &r
, label_split
);
1395 if (uasm_insn_has_bdelay(relocs
, split
))
1398 uasm_copy_handler(relocs
, labels
,
1399 split
, split
+ 1, f
);
1400 uasm_move_labels(labels
, f
, f
+ 1, -1);
1406 /* Copy the rest of the handler. */
1407 uasm_copy_handler(relocs
, labels
, split
, p
, final_handler
);
1408 final_len
= (f
- (final_handler
+ MIPS64_REFILL_INSNS
)) +
1415 uasm_resolve_relocs(relocs
, labels
);
1416 pr_debug("Wrote TLB refill handler (%u instructions).\n",
1419 memcpy((void *)ebase
, final_handler
, 0x100);
1420 local_flush_icache_range(ebase
, ebase
+ 0x100);
1422 dump_handler("r4000_tlb_refill", (u32
*)ebase
, 64);
1425 extern u32 handle_tlbl
[], handle_tlbl_end
[];
1426 extern u32 handle_tlbs
[], handle_tlbs_end
[];
1427 extern u32 handle_tlbm
[], handle_tlbm_end
[];
1428 extern u32 tlbmiss_handler_setup_pgd_start
[], tlbmiss_handler_setup_pgd
[];
1429 extern u32 tlbmiss_handler_setup_pgd_end
[];
1431 static void build_setup_pgd(void)
1434 const int __maybe_unused a1
= 5;
1435 const int __maybe_unused a2
= 6;
1436 u32
*p
= tlbmiss_handler_setup_pgd_start
;
1437 const int tlbmiss_handler_setup_pgd_size
=
1438 tlbmiss_handler_setup_pgd_end
- tlbmiss_handler_setup_pgd_start
;
1439 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1440 long pgdc
= (long)pgd_current
;
1443 memset(tlbmiss_handler_setup_pgd
, 0, tlbmiss_handler_setup_pgd_size
*
1444 sizeof(tlbmiss_handler_setup_pgd
[0]));
1445 memset(labels
, 0, sizeof(labels
));
1446 memset(relocs
, 0, sizeof(relocs
));
1447 pgd_reg
= allocate_kscratch();
1448 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1449 if (pgd_reg
== -1) {
1450 struct uasm_label
*l
= labels
;
1451 struct uasm_reloc
*r
= relocs
;
1453 /* PGD << 11 in c0_Context */
1455 * If it is a ckseg0 address, convert to a physical
1456 * address. Shifting right by 29 and adding 4 will
1457 * result in zero for these addresses.
1460 UASM_i_SRA(&p
, a1
, a0
, 29);
1461 UASM_i_ADDIU(&p
, a1
, a1
, 4);
1462 uasm_il_bnez(&p
, &r
, a1
, label_tlbl_goaround1
);
1464 uasm_i_dinsm(&p
, a0
, 0, 29, 64 - 29);
1465 uasm_l_tlbl_goaround1(&l
, p
);
1466 UASM_i_SLL(&p
, a0
, a0
, 11);
1468 UASM_i_MTC0(&p
, a0
, C0_CONTEXT
);
1470 /* PGD in c0_KScratch */
1472 UASM_i_MTC0(&p
, a0
, c0_kscratch(), pgd_reg
);
1476 /* Save PGD to pgd_current[smp_processor_id()] */
1477 UASM_i_CPUID_MFC0(&p
, a1
, SMP_CPUID_REG
);
1478 UASM_i_SRL_SAFE(&p
, a1
, a1
, SMP_CPUID_PTRSHIFT
);
1479 UASM_i_LA_mostly(&p
, a2
, pgdc
);
1480 UASM_i_ADDU(&p
, a2
, a2
, a1
);
1481 UASM_i_SW(&p
, a0
, uasm_rel_lo(pgdc
), a2
);
1483 UASM_i_LA_mostly(&p
, a2
, pgdc
);
1484 UASM_i_SW(&p
, a0
, uasm_rel_lo(pgdc
), a2
);
1488 /* if pgd_reg is allocated, save PGD also to scratch register */
1490 UASM_i_MTC0(&p
, a0
, c0_kscratch(), pgd_reg
);
1494 if (p
>= tlbmiss_handler_setup_pgd_end
)
1495 panic("tlbmiss_handler_setup_pgd space exceeded");
1497 uasm_resolve_relocs(relocs
, labels
);
1498 pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1499 (unsigned int)(p
- tlbmiss_handler_setup_pgd
));
1501 dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd
,
1502 tlbmiss_handler_setup_pgd_size
);
1506 iPTE_LW(u32
**p
, unsigned int pte
, unsigned int ptr
)
1509 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1511 uasm_i_lld(p
, pte
, 0, ptr
);
1514 UASM_i_LL(p
, pte
, 0, ptr
);
1516 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1518 uasm_i_ld(p
, pte
, 0, ptr
);
1521 UASM_i_LW(p
, pte
, 0, ptr
);
1526 iPTE_SW(u32
**p
, struct uasm_reloc
**r
, unsigned int pte
, unsigned int ptr
,
1529 #ifdef CONFIG_PHYS_ADDR_T_64BIT
1530 unsigned int hwmode
= mode
& (_PAGE_VALID
| _PAGE_DIRTY
);
1532 if (!cpu_has_64bits
) {
1533 const int scratch
= 1; /* Our extra working register */
1535 uasm_i_lui(p
, scratch
, (mode
>> 16));
1536 uasm_i_or(p
, pte
, pte
, scratch
);
1539 uasm_i_ori(p
, pte
, pte
, mode
);
1541 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1543 uasm_i_scd(p
, pte
, 0, ptr
);
1546 UASM_i_SC(p
, pte
, 0, ptr
);
1548 if (r10000_llsc_war())
1549 uasm_il_beqzl(p
, r
, pte
, label_smp_pgtable_change
);
1551 uasm_il_beqz(p
, r
, pte
, label_smp_pgtable_change
);
1553 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1554 if (!cpu_has_64bits
) {
1555 /* no uasm_i_nop needed */
1556 uasm_i_ll(p
, pte
, sizeof(pte_t
) / 2, ptr
);
1557 uasm_i_ori(p
, pte
, pte
, hwmode
);
1558 uasm_i_sc(p
, pte
, sizeof(pte_t
) / 2, ptr
);
1559 uasm_il_beqz(p
, r
, pte
, label_smp_pgtable_change
);
1560 /* no uasm_i_nop needed */
1561 uasm_i_lw(p
, pte
, 0, ptr
);
1568 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1570 uasm_i_sd(p
, pte
, 0, ptr
);
1573 UASM_i_SW(p
, pte
, 0, ptr
);
1575 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1576 if (!cpu_has_64bits
) {
1577 uasm_i_lw(p
, pte
, sizeof(pte_t
) / 2, ptr
);
1578 uasm_i_ori(p
, pte
, pte
, hwmode
);
1579 uasm_i_sw(p
, pte
, sizeof(pte_t
) / 2, ptr
);
1580 uasm_i_lw(p
, pte
, 0, ptr
);
1587 * Check if PTE is present, if not then jump to LABEL. PTR points to
1588 * the page table where this PTE is located, PTE will be re-loaded
1589 * with it's original value.
1592 build_pte_present(u32
**p
, struct uasm_reloc
**r
,
1593 int pte
, int ptr
, int scratch
, enum label_id lid
)
1595 int t
= scratch
>= 0 ? scratch
: pte
;
1599 if (use_bbit_insns()) {
1600 uasm_il_bbit0(p
, r
, pte
, ilog2(_PAGE_PRESENT
), lid
);
1603 if (_PAGE_PRESENT_SHIFT
) {
1604 uasm_i_srl(p
, t
, cur
, _PAGE_PRESENT_SHIFT
);
1607 uasm_i_andi(p
, t
, cur
, 1);
1608 uasm_il_beqz(p
, r
, t
, lid
);
1610 /* You lose the SMP race :-(*/
1611 iPTE_LW(p
, pte
, ptr
);
1614 if (_PAGE_PRESENT_SHIFT
) {
1615 uasm_i_srl(p
, t
, cur
, _PAGE_PRESENT_SHIFT
);
1618 uasm_i_andi(p
, t
, cur
,
1619 (_PAGE_PRESENT
| _PAGE_READ
) >> _PAGE_PRESENT_SHIFT
);
1620 uasm_i_xori(p
, t
, t
,
1621 (_PAGE_PRESENT
| _PAGE_READ
) >> _PAGE_PRESENT_SHIFT
);
1622 uasm_il_bnez(p
, r
, t
, lid
);
1624 /* You lose the SMP race :-(*/
1625 iPTE_LW(p
, pte
, ptr
);
1629 /* Make PTE valid, store result in PTR. */
1631 build_make_valid(u32
**p
, struct uasm_reloc
**r
, unsigned int pte
,
1634 unsigned int mode
= _PAGE_VALID
| _PAGE_ACCESSED
;
1636 iPTE_SW(p
, r
, pte
, ptr
, mode
);
1640 * Check if PTE can be written to, if not branch to LABEL. Regardless
1641 * restore PTE with value from PTR when done.
1644 build_pte_writable(u32
**p
, struct uasm_reloc
**r
,
1645 unsigned int pte
, unsigned int ptr
, int scratch
,
1648 int t
= scratch
>= 0 ? scratch
: pte
;
1651 if (_PAGE_PRESENT_SHIFT
) {
1652 uasm_i_srl(p
, t
, cur
, _PAGE_PRESENT_SHIFT
);
1655 uasm_i_andi(p
, t
, cur
,
1656 (_PAGE_PRESENT
| _PAGE_WRITE
) >> _PAGE_PRESENT_SHIFT
);
1657 uasm_i_xori(p
, t
, t
,
1658 (_PAGE_PRESENT
| _PAGE_WRITE
) >> _PAGE_PRESENT_SHIFT
);
1659 uasm_il_bnez(p
, r
, t
, lid
);
1661 /* You lose the SMP race :-(*/
1662 iPTE_LW(p
, pte
, ptr
);
1667 /* Make PTE writable, update software status bits as well, then store
1671 build_make_write(u32
**p
, struct uasm_reloc
**r
, unsigned int pte
,
1674 unsigned int mode
= (_PAGE_ACCESSED
| _PAGE_MODIFIED
| _PAGE_VALID
1677 iPTE_SW(p
, r
, pte
, ptr
, mode
);
1681 * Check if PTE can be modified, if not branch to LABEL. Regardless
1682 * restore PTE with value from PTR when done.
1685 build_pte_modifiable(u32
**p
, struct uasm_reloc
**r
,
1686 unsigned int pte
, unsigned int ptr
, int scratch
,
1689 if (use_bbit_insns()) {
1690 uasm_il_bbit0(p
, r
, pte
, ilog2(_PAGE_WRITE
), lid
);
1693 int t
= scratch
>= 0 ? scratch
: pte
;
1694 uasm_i_srl(p
, t
, pte
, _PAGE_WRITE_SHIFT
);
1695 uasm_i_andi(p
, t
, t
, 1);
1696 uasm_il_beqz(p
, r
, t
, lid
);
1698 /* You lose the SMP race :-(*/
1699 iPTE_LW(p
, pte
, ptr
);
1703 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1707 * R3000 style TLB load/store/modify handlers.
1711 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1715 build_r3000_pte_reload_tlbwi(u32
**p
, unsigned int pte
, unsigned int tmp
)
1717 uasm_i_mtc0(p
, pte
, C0_ENTRYLO0
); /* cp0 delay */
1718 uasm_i_mfc0(p
, tmp
, C0_EPC
); /* cp0 delay */
1721 uasm_i_rfe(p
); /* branch delay */
1725 * This places the pte into ENTRYLO0 and writes it with tlbwi
1726 * or tlbwr as appropriate. This is because the index register
1727 * may have the probe fail bit set as a result of a trap on a
1728 * kseg2 access, i.e. without refill. Then it returns.
1731 build_r3000_tlb_reload_write(u32
**p
, struct uasm_label
**l
,
1732 struct uasm_reloc
**r
, unsigned int pte
,
1735 uasm_i_mfc0(p
, tmp
, C0_INDEX
);
1736 uasm_i_mtc0(p
, pte
, C0_ENTRYLO0
); /* cp0 delay */
1737 uasm_il_bltz(p
, r
, tmp
, label_r3000_write_probe_fail
); /* cp0 delay */
1738 uasm_i_mfc0(p
, tmp
, C0_EPC
); /* branch delay */
1739 uasm_i_tlbwi(p
); /* cp0 delay */
1741 uasm_i_rfe(p
); /* branch delay */
1742 uasm_l_r3000_write_probe_fail(l
, *p
);
1743 uasm_i_tlbwr(p
); /* cp0 delay */
1745 uasm_i_rfe(p
); /* branch delay */
1749 build_r3000_tlbchange_handler_head(u32
**p
, unsigned int pte
,
1752 long pgdc
= (long)pgd_current
;
1754 uasm_i_mfc0(p
, pte
, C0_BADVADDR
);
1755 uasm_i_lui(p
, ptr
, uasm_rel_hi(pgdc
)); /* cp0 delay */
1756 uasm_i_lw(p
, ptr
, uasm_rel_lo(pgdc
), ptr
);
1757 uasm_i_srl(p
, pte
, pte
, 22); /* load delay */
1758 uasm_i_sll(p
, pte
, pte
, 2);
1759 uasm_i_addu(p
, ptr
, ptr
, pte
);
1760 uasm_i_mfc0(p
, pte
, C0_CONTEXT
);
1761 uasm_i_lw(p
, ptr
, 0, ptr
); /* cp0 delay */
1762 uasm_i_andi(p
, pte
, pte
, 0xffc); /* load delay */
1763 uasm_i_addu(p
, ptr
, ptr
, pte
);
1764 uasm_i_lw(p
, pte
, 0, ptr
);
1765 uasm_i_tlbp(p
); /* load delay */
1768 static void build_r3000_tlb_load_handler(void)
1770 u32
*p
= handle_tlbl
;
1771 const int handle_tlbl_size
= handle_tlbl_end
- handle_tlbl
;
1772 struct uasm_label
*l
= labels
;
1773 struct uasm_reloc
*r
= relocs
;
1775 memset(handle_tlbl
, 0, handle_tlbl_size
* sizeof(handle_tlbl
[0]));
1776 memset(labels
, 0, sizeof(labels
));
1777 memset(relocs
, 0, sizeof(relocs
));
1779 build_r3000_tlbchange_handler_head(&p
, K0
, K1
);
1780 build_pte_present(&p
, &r
, K0
, K1
, -1, label_nopage_tlbl
);
1781 uasm_i_nop(&p
); /* load delay */
1782 build_make_valid(&p
, &r
, K0
, K1
);
1783 build_r3000_tlb_reload_write(&p
, &l
, &r
, K0
, K1
);
1785 uasm_l_nopage_tlbl(&l
, p
);
1786 uasm_i_j(&p
, (unsigned long)tlb_do_page_fault_0
& 0x0fffffff);
1789 if (p
>= handle_tlbl_end
)
1790 panic("TLB load handler fastpath space exceeded");
1792 uasm_resolve_relocs(relocs
, labels
);
1793 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1794 (unsigned int)(p
- handle_tlbl
));
1796 dump_handler("r3000_tlb_load", handle_tlbl
, handle_tlbl_size
);
1799 static void build_r3000_tlb_store_handler(void)
1801 u32
*p
= handle_tlbs
;
1802 const int handle_tlbs_size
= handle_tlbs_end
- handle_tlbs
;
1803 struct uasm_label
*l
= labels
;
1804 struct uasm_reloc
*r
= relocs
;
1806 memset(handle_tlbs
, 0, handle_tlbs_size
* sizeof(handle_tlbs
[0]));
1807 memset(labels
, 0, sizeof(labels
));
1808 memset(relocs
, 0, sizeof(relocs
));
1810 build_r3000_tlbchange_handler_head(&p
, K0
, K1
);
1811 build_pte_writable(&p
, &r
, K0
, K1
, -1, label_nopage_tlbs
);
1812 uasm_i_nop(&p
); /* load delay */
1813 build_make_write(&p
, &r
, K0
, K1
);
1814 build_r3000_tlb_reload_write(&p
, &l
, &r
, K0
, K1
);
1816 uasm_l_nopage_tlbs(&l
, p
);
1817 uasm_i_j(&p
, (unsigned long)tlb_do_page_fault_1
& 0x0fffffff);
1820 if (p
>= handle_tlbs_end
)
1821 panic("TLB store handler fastpath space exceeded");
1823 uasm_resolve_relocs(relocs
, labels
);
1824 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1825 (unsigned int)(p
- handle_tlbs
));
1827 dump_handler("r3000_tlb_store", handle_tlbs
, handle_tlbs_size
);
1830 static void build_r3000_tlb_modify_handler(void)
1832 u32
*p
= handle_tlbm
;
1833 const int handle_tlbm_size
= handle_tlbm_end
- handle_tlbm
;
1834 struct uasm_label
*l
= labels
;
1835 struct uasm_reloc
*r
= relocs
;
1837 memset(handle_tlbm
, 0, handle_tlbm_size
* sizeof(handle_tlbm
[0]));
1838 memset(labels
, 0, sizeof(labels
));
1839 memset(relocs
, 0, sizeof(relocs
));
1841 build_r3000_tlbchange_handler_head(&p
, K0
, K1
);
1842 build_pte_modifiable(&p
, &r
, K0
, K1
, -1, label_nopage_tlbm
);
1843 uasm_i_nop(&p
); /* load delay */
1844 build_make_write(&p
, &r
, K0
, K1
);
1845 build_r3000_pte_reload_tlbwi(&p
, K0
, K1
);
1847 uasm_l_nopage_tlbm(&l
, p
);
1848 uasm_i_j(&p
, (unsigned long)tlb_do_page_fault_1
& 0x0fffffff);
1851 if (p
>= handle_tlbm_end
)
1852 panic("TLB modify handler fastpath space exceeded");
1854 uasm_resolve_relocs(relocs
, labels
);
1855 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1856 (unsigned int)(p
- handle_tlbm
));
1858 dump_handler("r3000_tlb_modify", handle_tlbm
, handle_tlbm_size
);
1860 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1863 * R4000 style TLB load/store/modify handlers.
1865 static struct work_registers
1866 build_r4000_tlbchange_handler_head(u32
**p
, struct uasm_label
**l
,
1867 struct uasm_reloc
**r
)
1869 struct work_registers wr
= build_get_work_registers(p
);
1872 build_get_pmde64(p
, l
, r
, wr
.r1
, wr
.r2
); /* get pmd in ptr */
1874 build_get_pgde32(p
, wr
.r1
, wr
.r2
); /* get pgd in ptr */
1877 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1879 * For huge tlb entries, pmd doesn't contain an address but
1880 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1881 * see if we need to jump to huge tlb processing.
1883 build_is_huge_pte(p
, r
, wr
.r1
, wr
.r2
, label_tlb_huge_update
);
1886 UASM_i_MFC0(p
, wr
.r1
, C0_BADVADDR
);
1887 UASM_i_LW(p
, wr
.r2
, 0, wr
.r2
);
1888 UASM_i_SRL(p
, wr
.r1
, wr
.r1
, PAGE_SHIFT
+ PTE_ORDER
- PTE_T_LOG2
);
1889 uasm_i_andi(p
, wr
.r1
, wr
.r1
, (PTRS_PER_PTE
- 1) << PTE_T_LOG2
);
1890 UASM_i_ADDU(p
, wr
.r2
, wr
.r2
, wr
.r1
);
1893 uasm_l_smp_pgtable_change(l
, *p
);
1895 iPTE_LW(p
, wr
.r1
, wr
.r2
); /* get even pte */
1896 if (!m4kc_tlbp_war()) {
1897 build_tlb_probe_entry(p
);
1899 /* race condition happens, leaving */
1901 uasm_i_mfc0(p
, wr
.r3
, C0_INDEX
);
1902 uasm_il_bltz(p
, r
, wr
.r3
, label_leave
);
1910 build_r4000_tlbchange_handler_tail(u32
**p
, struct uasm_label
**l
,
1911 struct uasm_reloc
**r
, unsigned int tmp
,
1914 uasm_i_ori(p
, ptr
, ptr
, sizeof(pte_t
));
1915 uasm_i_xori(p
, ptr
, ptr
, sizeof(pte_t
));
1916 build_update_entries(p
, tmp
, ptr
);
1917 build_tlb_write_entry(p
, l
, r
, tlb_indexed
);
1918 uasm_l_leave(l
, *p
);
1919 build_restore_work_registers(p
);
1920 uasm_i_eret(p
); /* return from trap */
1923 build_get_pgd_vmalloc64(p
, l
, r
, tmp
, ptr
, not_refill
);
1927 static void build_r4000_tlb_load_handler(void)
1929 u32
*p
= handle_tlbl
;
1930 const int handle_tlbl_size
= handle_tlbl_end
- handle_tlbl
;
1931 struct uasm_label
*l
= labels
;
1932 struct uasm_reloc
*r
= relocs
;
1933 struct work_registers wr
;
1935 memset(handle_tlbl
, 0, handle_tlbl_size
* sizeof(handle_tlbl
[0]));
1936 memset(labels
, 0, sizeof(labels
));
1937 memset(relocs
, 0, sizeof(relocs
));
1939 if (bcm1250_m3_war()) {
1940 unsigned int segbits
= 44;
1942 uasm_i_dmfc0(&p
, K0
, C0_BADVADDR
);
1943 uasm_i_dmfc0(&p
, K1
, C0_ENTRYHI
);
1944 uasm_i_xor(&p
, K0
, K0
, K1
);
1945 uasm_i_dsrl_safe(&p
, K1
, K0
, 62);
1946 uasm_i_dsrl_safe(&p
, K0
, K0
, 12 + 1);
1947 uasm_i_dsll_safe(&p
, K0
, K0
, 64 + 12 + 1 - segbits
);
1948 uasm_i_or(&p
, K0
, K0
, K1
);
1949 uasm_il_bnez(&p
, &r
, K0
, label_leave
);
1950 /* No need for uasm_i_nop */
1953 wr
= build_r4000_tlbchange_handler_head(&p
, &l
, &r
);
1954 build_pte_present(&p
, &r
, wr
.r1
, wr
.r2
, wr
.r3
, label_nopage_tlbl
);
1955 if (m4kc_tlbp_war())
1956 build_tlb_probe_entry(&p
);
1958 if (cpu_has_rixi
&& !cpu_has_rixiex
) {
1960 * If the page is not _PAGE_VALID, RI or XI could not
1961 * have triggered it. Skip the expensive test..
1963 if (use_bbit_insns()) {
1964 uasm_il_bbit0(&p
, &r
, wr
.r1
, ilog2(_PAGE_VALID
),
1965 label_tlbl_goaround1
);
1967 uasm_i_andi(&p
, wr
.r3
, wr
.r1
, _PAGE_VALID
);
1968 uasm_il_beqz(&p
, &r
, wr
.r3
, label_tlbl_goaround1
);
1974 switch (current_cpu_type()) {
1976 if (cpu_has_mips_r2_exec_hazard
) {
1979 case CPU_CAVIUM_OCTEON
:
1980 case CPU_CAVIUM_OCTEON_PLUS
:
1981 case CPU_CAVIUM_OCTEON2
:
1986 /* Examine entrylo 0 or 1 based on ptr. */
1987 if (use_bbit_insns()) {
1988 uasm_i_bbit0(&p
, wr
.r2
, ilog2(sizeof(pte_t
)), 8);
1990 uasm_i_andi(&p
, wr
.r3
, wr
.r2
, sizeof(pte_t
));
1991 uasm_i_beqz(&p
, wr
.r3
, 8);
1993 /* load it in the delay slot*/
1994 UASM_i_MFC0(&p
, wr
.r3
, C0_ENTRYLO0
);
1995 /* load it if ptr is odd */
1996 UASM_i_MFC0(&p
, wr
.r3
, C0_ENTRYLO1
);
1998 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1999 * XI must have triggered it.
2001 if (use_bbit_insns()) {
2002 uasm_il_bbit1(&p
, &r
, wr
.r3
, 1, label_nopage_tlbl
);
2004 uasm_l_tlbl_goaround1(&l
, p
);
2006 uasm_i_andi(&p
, wr
.r3
, wr
.r3
, 2);
2007 uasm_il_bnez(&p
, &r
, wr
.r3
, label_nopage_tlbl
);
2010 uasm_l_tlbl_goaround1(&l
, p
);
2012 build_make_valid(&p
, &r
, wr
.r1
, wr
.r2
);
2013 build_r4000_tlbchange_handler_tail(&p
, &l
, &r
, wr
.r1
, wr
.r2
);
2015 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2017 * This is the entry point when build_r4000_tlbchange_handler_head
2018 * spots a huge page.
2020 uasm_l_tlb_huge_update(&l
, p
);
2021 iPTE_LW(&p
, wr
.r1
, wr
.r2
);
2022 build_pte_present(&p
, &r
, wr
.r1
, wr
.r2
, wr
.r3
, label_nopage_tlbl
);
2023 build_tlb_probe_entry(&p
);
2025 if (cpu_has_rixi
&& !cpu_has_rixiex
) {
2027 * If the page is not _PAGE_VALID, RI or XI could not
2028 * have triggered it. Skip the expensive test..
2030 if (use_bbit_insns()) {
2031 uasm_il_bbit0(&p
, &r
, wr
.r1
, ilog2(_PAGE_VALID
),
2032 label_tlbl_goaround2
);
2034 uasm_i_andi(&p
, wr
.r3
, wr
.r1
, _PAGE_VALID
);
2035 uasm_il_beqz(&p
, &r
, wr
.r3
, label_tlbl_goaround2
);
2041 switch (current_cpu_type()) {
2043 if (cpu_has_mips_r2_exec_hazard
) {
2046 case CPU_CAVIUM_OCTEON
:
2047 case CPU_CAVIUM_OCTEON_PLUS
:
2048 case CPU_CAVIUM_OCTEON2
:
2053 /* Examine entrylo 0 or 1 based on ptr. */
2054 if (use_bbit_insns()) {
2055 uasm_i_bbit0(&p
, wr
.r2
, ilog2(sizeof(pte_t
)), 8);
2057 uasm_i_andi(&p
, wr
.r3
, wr
.r2
, sizeof(pte_t
));
2058 uasm_i_beqz(&p
, wr
.r3
, 8);
2060 /* load it in the delay slot*/
2061 UASM_i_MFC0(&p
, wr
.r3
, C0_ENTRYLO0
);
2062 /* load it if ptr is odd */
2063 UASM_i_MFC0(&p
, wr
.r3
, C0_ENTRYLO1
);
2065 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2066 * XI must have triggered it.
2068 if (use_bbit_insns()) {
2069 uasm_il_bbit0(&p
, &r
, wr
.r3
, 1, label_tlbl_goaround2
);
2071 uasm_i_andi(&p
, wr
.r3
, wr
.r3
, 2);
2072 uasm_il_beqz(&p
, &r
, wr
.r3
, label_tlbl_goaround2
);
2074 if (PM_DEFAULT_MASK
== 0)
2077 * We clobbered C0_PAGEMASK, restore it. On the other branch
2078 * it is restored in build_huge_tlb_write_entry.
2080 build_restore_pagemask(&p
, &r
, wr
.r3
, label_nopage_tlbl
, 0);
2082 uasm_l_tlbl_goaround2(&l
, p
);
2084 uasm_i_ori(&p
, wr
.r1
, wr
.r1
, (_PAGE_ACCESSED
| _PAGE_VALID
));
2085 build_huge_handler_tail(&p
, &r
, &l
, wr
.r1
, wr
.r2
);
2088 uasm_l_nopage_tlbl(&l
, p
);
2089 build_restore_work_registers(&p
);
2090 #ifdef CONFIG_CPU_MICROMIPS
2091 if ((unsigned long)tlb_do_page_fault_0
& 1) {
2092 uasm_i_lui(&p
, K0
, uasm_rel_hi((long)tlb_do_page_fault_0
));
2093 uasm_i_addiu(&p
, K0
, K0
, uasm_rel_lo((long)tlb_do_page_fault_0
));
2097 uasm_i_j(&p
, (unsigned long)tlb_do_page_fault_0
& 0x0fffffff);
2100 if (p
>= handle_tlbl_end
)
2101 panic("TLB load handler fastpath space exceeded");
2103 uasm_resolve_relocs(relocs
, labels
);
2104 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2105 (unsigned int)(p
- handle_tlbl
));
2107 dump_handler("r4000_tlb_load", handle_tlbl
, handle_tlbl_size
);
2110 static void build_r4000_tlb_store_handler(void)
2112 u32
*p
= handle_tlbs
;
2113 const int handle_tlbs_size
= handle_tlbs_end
- handle_tlbs
;
2114 struct uasm_label
*l
= labels
;
2115 struct uasm_reloc
*r
= relocs
;
2116 struct work_registers wr
;
2118 memset(handle_tlbs
, 0, handle_tlbs_size
* sizeof(handle_tlbs
[0]));
2119 memset(labels
, 0, sizeof(labels
));
2120 memset(relocs
, 0, sizeof(relocs
));
2122 wr
= build_r4000_tlbchange_handler_head(&p
, &l
, &r
);
2123 build_pte_writable(&p
, &r
, wr
.r1
, wr
.r2
, wr
.r3
, label_nopage_tlbs
);
2124 if (m4kc_tlbp_war())
2125 build_tlb_probe_entry(&p
);
2126 build_make_write(&p
, &r
, wr
.r1
, wr
.r2
);
2127 build_r4000_tlbchange_handler_tail(&p
, &l
, &r
, wr
.r1
, wr
.r2
);
2129 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2131 * This is the entry point when
2132 * build_r4000_tlbchange_handler_head spots a huge page.
2134 uasm_l_tlb_huge_update(&l
, p
);
2135 iPTE_LW(&p
, wr
.r1
, wr
.r2
);
2136 build_pte_writable(&p
, &r
, wr
.r1
, wr
.r2
, wr
.r3
, label_nopage_tlbs
);
2137 build_tlb_probe_entry(&p
);
2138 uasm_i_ori(&p
, wr
.r1
, wr
.r1
,
2139 _PAGE_ACCESSED
| _PAGE_MODIFIED
| _PAGE_VALID
| _PAGE_DIRTY
);
2140 build_huge_handler_tail(&p
, &r
, &l
, wr
.r1
, wr
.r2
);
2143 uasm_l_nopage_tlbs(&l
, p
);
2144 build_restore_work_registers(&p
);
2145 #ifdef CONFIG_CPU_MICROMIPS
2146 if ((unsigned long)tlb_do_page_fault_1
& 1) {
2147 uasm_i_lui(&p
, K0
, uasm_rel_hi((long)tlb_do_page_fault_1
));
2148 uasm_i_addiu(&p
, K0
, K0
, uasm_rel_lo((long)tlb_do_page_fault_1
));
2152 uasm_i_j(&p
, (unsigned long)tlb_do_page_fault_1
& 0x0fffffff);
2155 if (p
>= handle_tlbs_end
)
2156 panic("TLB store handler fastpath space exceeded");
2158 uasm_resolve_relocs(relocs
, labels
);
2159 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2160 (unsigned int)(p
- handle_tlbs
));
2162 dump_handler("r4000_tlb_store", handle_tlbs
, handle_tlbs_size
);
2165 static void build_r4000_tlb_modify_handler(void)
2167 u32
*p
= handle_tlbm
;
2168 const int handle_tlbm_size
= handle_tlbm_end
- handle_tlbm
;
2169 struct uasm_label
*l
= labels
;
2170 struct uasm_reloc
*r
= relocs
;
2171 struct work_registers wr
;
2173 memset(handle_tlbm
, 0, handle_tlbm_size
* sizeof(handle_tlbm
[0]));
2174 memset(labels
, 0, sizeof(labels
));
2175 memset(relocs
, 0, sizeof(relocs
));
2177 wr
= build_r4000_tlbchange_handler_head(&p
, &l
, &r
);
2178 build_pte_modifiable(&p
, &r
, wr
.r1
, wr
.r2
, wr
.r3
, label_nopage_tlbm
);
2179 if (m4kc_tlbp_war())
2180 build_tlb_probe_entry(&p
);
2181 /* Present and writable bits set, set accessed and dirty bits. */
2182 build_make_write(&p
, &r
, wr
.r1
, wr
.r2
);
2183 build_r4000_tlbchange_handler_tail(&p
, &l
, &r
, wr
.r1
, wr
.r2
);
2185 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2187 * This is the entry point when
2188 * build_r4000_tlbchange_handler_head spots a huge page.
2190 uasm_l_tlb_huge_update(&l
, p
);
2191 iPTE_LW(&p
, wr
.r1
, wr
.r2
);
2192 build_pte_modifiable(&p
, &r
, wr
.r1
, wr
.r2
, wr
.r3
, label_nopage_tlbm
);
2193 build_tlb_probe_entry(&p
);
2194 uasm_i_ori(&p
, wr
.r1
, wr
.r1
,
2195 _PAGE_ACCESSED
| _PAGE_MODIFIED
| _PAGE_VALID
| _PAGE_DIRTY
);
2196 build_huge_handler_tail(&p
, &r
, &l
, wr
.r1
, wr
.r2
);
2199 uasm_l_nopage_tlbm(&l
, p
);
2200 build_restore_work_registers(&p
);
2201 #ifdef CONFIG_CPU_MICROMIPS
2202 if ((unsigned long)tlb_do_page_fault_1
& 1) {
2203 uasm_i_lui(&p
, K0
, uasm_rel_hi((long)tlb_do_page_fault_1
));
2204 uasm_i_addiu(&p
, K0
, K0
, uasm_rel_lo((long)tlb_do_page_fault_1
));
2208 uasm_i_j(&p
, (unsigned long)tlb_do_page_fault_1
& 0x0fffffff);
2211 if (p
>= handle_tlbm_end
)
2212 panic("TLB modify handler fastpath space exceeded");
2214 uasm_resolve_relocs(relocs
, labels
);
2215 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2216 (unsigned int)(p
- handle_tlbm
));
2218 dump_handler("r4000_tlb_modify", handle_tlbm
, handle_tlbm_size
);
2221 static void flush_tlb_handlers(void)
2223 local_flush_icache_range((unsigned long)handle_tlbl
,
2224 (unsigned long)handle_tlbl_end
);
2225 local_flush_icache_range((unsigned long)handle_tlbs
,
2226 (unsigned long)handle_tlbs_end
);
2227 local_flush_icache_range((unsigned long)handle_tlbm
,
2228 (unsigned long)handle_tlbm_end
);
2229 local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd
,
2230 (unsigned long)tlbmiss_handler_setup_pgd_end
);
2233 static void print_htw_config(void)
2235 unsigned long config
;
2237 const int field
= 2 * sizeof(unsigned long);
2239 config
= read_c0_pwfield();
2240 pr_debug("PWField (0x%0*lx): GDI: 0x%02lx UDI: 0x%02lx MDI: 0x%02lx PTI: 0x%02lx PTEI: 0x%02lx\n",
2242 (config
& MIPS_PWFIELD_GDI_MASK
) >> MIPS_PWFIELD_GDI_SHIFT
,
2243 (config
& MIPS_PWFIELD_UDI_MASK
) >> MIPS_PWFIELD_UDI_SHIFT
,
2244 (config
& MIPS_PWFIELD_MDI_MASK
) >> MIPS_PWFIELD_MDI_SHIFT
,
2245 (config
& MIPS_PWFIELD_PTI_MASK
) >> MIPS_PWFIELD_PTI_SHIFT
,
2246 (config
& MIPS_PWFIELD_PTEI_MASK
) >> MIPS_PWFIELD_PTEI_SHIFT
);
2248 config
= read_c0_pwsize();
2249 pr_debug("PWSize (0x%0*lx): GDW: 0x%02lx UDW: 0x%02lx MDW: 0x%02lx PTW: 0x%02lx PTEW: 0x%02lx\n",
2251 (config
& MIPS_PWSIZE_GDW_MASK
) >> MIPS_PWSIZE_GDW_SHIFT
,
2252 (config
& MIPS_PWSIZE_UDW_MASK
) >> MIPS_PWSIZE_UDW_SHIFT
,
2253 (config
& MIPS_PWSIZE_MDW_MASK
) >> MIPS_PWSIZE_MDW_SHIFT
,
2254 (config
& MIPS_PWSIZE_PTW_MASK
) >> MIPS_PWSIZE_PTW_SHIFT
,
2255 (config
& MIPS_PWSIZE_PTEW_MASK
) >> MIPS_PWSIZE_PTEW_SHIFT
);
2257 pwctl
= read_c0_pwctl();
2258 pr_debug("PWCtl (0x%x): PWEn: 0x%x DPH: 0x%x HugePg: 0x%x Psn: 0x%x\n",
2260 (pwctl
& MIPS_PWCTL_PWEN_MASK
) >> MIPS_PWCTL_PWEN_SHIFT
,
2261 (pwctl
& MIPS_PWCTL_DPH_MASK
) >> MIPS_PWCTL_DPH_SHIFT
,
2262 (pwctl
& MIPS_PWCTL_HUGEPG_MASK
) >> MIPS_PWCTL_HUGEPG_SHIFT
,
2263 (pwctl
& MIPS_PWCTL_PSN_MASK
) >> MIPS_PWCTL_PSN_SHIFT
);
2266 static void config_htw_params(void)
2268 unsigned long pwfield
, pwsize
, ptei
;
2269 unsigned int config
;
2272 * We are using 2-level page tables, so we only need to
2273 * setup GDW and PTW appropriately. UDW and MDW will remain 0.
2274 * The default value of GDI/UDI/MDI/PTI is 0xc. It is illegal to
2275 * write values less than 0xc in these fields because the entire
2276 * write will be dropped. As a result of which, we must preserve
2277 * the original reset values and overwrite only what we really want.
2280 pwfield
= read_c0_pwfield();
2281 /* re-initialize the GDI field */
2282 pwfield
&= ~MIPS_PWFIELD_GDI_MASK
;
2283 pwfield
|= PGDIR_SHIFT
<< MIPS_PWFIELD_GDI_SHIFT
;
2284 /* re-initialize the PTI field including the even/odd bit */
2285 pwfield
&= ~MIPS_PWFIELD_PTI_MASK
;
2286 pwfield
|= PAGE_SHIFT
<< MIPS_PWFIELD_PTI_SHIFT
;
2287 if (CONFIG_PGTABLE_LEVELS
>= 3) {
2288 pwfield
&= ~MIPS_PWFIELD_MDI_MASK
;
2289 pwfield
|= PMD_SHIFT
<< MIPS_PWFIELD_MDI_SHIFT
;
2291 /* Set the PTEI right shift */
2292 ptei
= _PAGE_GLOBAL_SHIFT
<< MIPS_PWFIELD_PTEI_SHIFT
;
2294 write_c0_pwfield(pwfield
);
2295 /* Check whether the PTEI value is supported */
2296 back_to_back_c0_hazard();
2297 pwfield
= read_c0_pwfield();
2298 if (((pwfield
& MIPS_PWFIELD_PTEI_MASK
) << MIPS_PWFIELD_PTEI_SHIFT
)
2300 pr_warn("Unsupported PTEI field value: 0x%lx. HTW will not be enabled",
2303 * Drop option to avoid HTW being enabled via another path
2306 current_cpu_data
.options
&= ~MIPS_CPU_HTW
;
2310 pwsize
= ilog2(PTRS_PER_PGD
) << MIPS_PWSIZE_GDW_SHIFT
;
2311 pwsize
|= ilog2(PTRS_PER_PTE
) << MIPS_PWSIZE_PTW_SHIFT
;
2312 if (CONFIG_PGTABLE_LEVELS
>= 3)
2313 pwsize
|= ilog2(PTRS_PER_PMD
) << MIPS_PWSIZE_MDW_SHIFT
;
2315 /* If XPA has been enabled, PTEs are 64-bit in size. */
2316 if (config_enabled(CONFIG_64BITS
) || (read_c0_pagegrain() & PG_ELPA
))
2319 write_c0_pwsize(pwsize
);
2321 /* Make sure everything is set before we enable the HTW */
2322 back_to_back_c0_hazard();
2324 /* Enable HTW and disable the rest of the pwctl fields */
2325 config
= 1 << MIPS_PWCTL_PWEN_SHIFT
;
2326 write_c0_pwctl(config
);
2327 pr_info("Hardware Page Table Walker enabled\n");
2332 static void config_xpa_params(void)
2335 unsigned int pagegrain
;
2337 if (mips_xpa_disabled
) {
2338 pr_info("Extended Physical Addressing (XPA) disabled\n");
2342 pagegrain
= read_c0_pagegrain();
2343 write_c0_pagegrain(pagegrain
| PG_ELPA
);
2344 back_to_back_c0_hazard();
2345 pagegrain
= read_c0_pagegrain();
2347 if (pagegrain
& PG_ELPA
)
2348 pr_info("Extended Physical Addressing (XPA) enabled\n");
2350 panic("Extended Physical Addressing (XPA) disabled");
2354 static void check_pabits(void)
2356 unsigned long entry
;
2357 unsigned pabits
, fillbits
;
2359 if (!cpu_has_rixi
|| !_PAGE_NO_EXEC
) {
2361 * We'll only be making use of the fact that we can rotate bits
2362 * into the fill if the CPU supports RIXI, so don't bother
2363 * probing this for CPUs which don't.
2368 write_c0_entrylo0(~0ul);
2369 back_to_back_c0_hazard();
2370 entry
= read_c0_entrylo0();
2372 /* clear all non-PFN bits */
2373 entry
&= ~((1 << MIPS_ENTRYLO_PFN_SHIFT
) - 1);
2374 entry
&= ~(MIPS_ENTRYLO_RI
| MIPS_ENTRYLO_XI
);
2376 /* find a lower bound on PABITS, and upper bound on fill bits */
2377 pabits
= fls_long(entry
) + 6;
2378 fillbits
= max_t(int, (int)BITS_PER_LONG
- pabits
, 0);
2380 /* minus the RI & XI bits */
2381 fillbits
-= min_t(unsigned, fillbits
, 2);
2383 if (fillbits
>= ilog2(_PAGE_NO_EXEC
))
2384 fill_includes_sw_bits
= true;
2386 pr_debug("Entry* registers contain %u fill bits\n", fillbits
);
2389 void build_tlb_refill_handler(void)
2392 * The refill handler is generated per-CPU, multi-node systems
2393 * may have local storage for it. The other handlers are only
2396 static int run_once
= 0;
2398 output_pgtable_bits_defines();
2402 check_for_high_segbits
= current_cpu_data
.vmbits
> (PGDIR_SHIFT
+ PGD_ORDER
+ PAGE_SHIFT
- 3);
2405 switch (current_cpu_type()) {
2413 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2414 if (cpu_has_local_ebase
)
2415 build_r3000_tlb_refill_handler();
2417 if (!cpu_has_local_ebase
)
2418 build_r3000_tlb_refill_handler();
2420 build_r3000_tlb_load_handler();
2421 build_r3000_tlb_store_handler();
2422 build_r3000_tlb_modify_handler();
2423 flush_tlb_handlers();
2427 panic("No R3000 TLB refill handler");
2433 panic("No R6000 TLB refill handler yet");
2437 panic("No R8000 TLB refill handler yet");
2442 scratch_reg
= allocate_kscratch();
2444 build_r4000_tlb_load_handler();
2445 build_r4000_tlb_store_handler();
2446 build_r4000_tlb_modify_handler();
2447 if (!cpu_has_local_ebase
)
2448 build_r4000_tlb_refill_handler();
2449 flush_tlb_handlers();
2452 if (cpu_has_local_ebase
)
2453 build_r4000_tlb_refill_handler();
2455 config_xpa_params();
2457 config_htw_params();