of: MSI: Simplify irqdomain lookup
[linux/fpc-iii.git] / arch / parisc / kernel / module.c
blob3c63a820fcda410544a425f7a2debadca093a8e2
1 /* Kernel dynamically loadable module help for PARISC.
3 * The best reference for this stuff is probably the Processor-
4 * Specific ELF Supplement for PA-RISC:
5 * http://ftp.parisc-linux.org/docs/arch/elf-pa-hp.pdf
7 * Linux/PA-RISC Project (http://www.parisc-linux.org/)
8 * Copyright (C) 2003 Randolph Chung <tausq at debian . org>
9 * Copyright (C) 2008 Helge Deller <deller@gmx.de>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
27 * Notes:
28 * - PLT stub handling
29 * On 32bit (and sometimes 64bit) and with big kernel modules like xfs or
30 * ipv6 the relocation types R_PARISC_PCREL17F and R_PARISC_PCREL22F may
31 * fail to reach their PLT stub if we only create one big stub array for
32 * all sections at the beginning of the core or init section.
33 * Instead we now insert individual PLT stub entries directly in front of
34 * of the code sections where the stubs are actually called.
35 * This reduces the distance between the PCREL location and the stub entry
36 * so that the relocations can be fulfilled.
37 * While calculating the final layout of the kernel module in memory, the
38 * kernel module loader calls arch_mod_section_prepend() to request the
39 * to be reserved amount of memory in front of each individual section.
41 * - SEGREL32 handling
42 * We are not doing SEGREL32 handling correctly. According to the ABI, we
43 * should do a value offset, like this:
44 * if (in_init(me, (void *)val))
45 * val -= (uint32_t)me->module_init;
46 * else
47 * val -= (uint32_t)me->module_core;
48 * However, SEGREL32 is used only for PARISC unwind entries, and we want
49 * those entries to have an absolute address, and not just an offset.
51 * The unwind table mechanism has the ability to specify an offset for
52 * the unwind table; however, because we split off the init functions into
53 * a different piece of memory, it is not possible to do this using a
54 * single offset. Instead, we use the above hack for now.
57 #include <linux/moduleloader.h>
58 #include <linux/elf.h>
59 #include <linux/vmalloc.h>
60 #include <linux/fs.h>
61 #include <linux/string.h>
62 #include <linux/kernel.h>
63 #include <linux/bug.h>
64 #include <linux/mm.h>
65 #include <linux/slab.h>
67 #include <asm/pgtable.h>
68 #include <asm/unwind.h>
70 #if 0
71 #define DEBUGP printk
72 #else
73 #define DEBUGP(fmt...)
74 #endif
76 #define RELOC_REACHABLE(val, bits) \
77 (( ( !((val) & (1<<((bits)-1))) && ((val)>>(bits)) != 0 ) || \
78 ( ((val) & (1<<((bits)-1))) && ((val)>>(bits)) != (((__typeof__(val))(~0))>>((bits)+2)))) ? \
79 0 : 1)
81 #define CHECK_RELOC(val, bits) \
82 if (!RELOC_REACHABLE(val, bits)) { \
83 printk(KERN_ERR "module %s relocation of symbol %s is out of range (0x%lx in %d bits)\n", \
84 me->name, strtab + sym->st_name, (unsigned long)val, bits); \
85 return -ENOEXEC; \
88 /* Maximum number of GOT entries. We use a long displacement ldd from
89 * the bottom of the table, which has a maximum signed displacement of
90 * 0x3fff; however, since we're only going forward, this becomes
91 * 0x1fff, and thus, since each GOT entry is 8 bytes long we can have
92 * at most 1023 entries.
93 * To overcome this 14bit displacement with some kernel modules, we'll
94 * use instead the unusal 16bit displacement method (see reassemble_16a)
95 * which gives us a maximum positive displacement of 0x7fff, and as such
96 * allows us to allocate up to 4095 GOT entries. */
97 #define MAX_GOTS 4095
99 /* three functions to determine where in the module core
100 * or init pieces the location is */
101 static inline int in_init(struct module *me, void *loc)
103 return (loc >= me->module_init &&
104 loc <= (me->module_init + me->init_size));
107 static inline int in_core(struct module *me, void *loc)
109 return (loc >= me->module_core &&
110 loc <= (me->module_core + me->core_size));
113 static inline int in_local(struct module *me, void *loc)
115 return in_init(me, loc) || in_core(me, loc);
118 #ifndef CONFIG_64BIT
119 struct got_entry {
120 Elf32_Addr addr;
123 struct stub_entry {
124 Elf32_Word insns[2]; /* each stub entry has two insns */
126 #else
127 struct got_entry {
128 Elf64_Addr addr;
131 struct stub_entry {
132 Elf64_Word insns[4]; /* each stub entry has four insns */
134 #endif
136 /* Field selection types defined by hppa */
137 #define rnd(x) (((x)+0x1000)&~0x1fff)
138 /* fsel: full 32 bits */
139 #define fsel(v,a) ((v)+(a))
140 /* lsel: select left 21 bits */
141 #define lsel(v,a) (((v)+(a))>>11)
142 /* rsel: select right 11 bits */
143 #define rsel(v,a) (((v)+(a))&0x7ff)
144 /* lrsel with rounding of addend to nearest 8k */
145 #define lrsel(v,a) (((v)+rnd(a))>>11)
146 /* rrsel with rounding of addend to nearest 8k */
147 #define rrsel(v,a) ((((v)+rnd(a))&0x7ff)+((a)-rnd(a)))
149 #define mask(x,sz) ((x) & ~((1<<(sz))-1))
152 /* The reassemble_* functions prepare an immediate value for
153 insertion into an opcode. pa-risc uses all sorts of weird bitfields
154 in the instruction to hold the value. */
155 static inline int sign_unext(int x, int len)
157 int len_ones;
159 len_ones = (1 << len) - 1;
160 return x & len_ones;
163 static inline int low_sign_unext(int x, int len)
165 int sign, temp;
167 sign = (x >> (len-1)) & 1;
168 temp = sign_unext(x, len-1);
169 return (temp << 1) | sign;
172 static inline int reassemble_14(int as14)
174 return (((as14 & 0x1fff) << 1) |
175 ((as14 & 0x2000) >> 13));
178 static inline int reassemble_16a(int as16)
180 int s, t;
182 /* Unusual 16-bit encoding, for wide mode only. */
183 t = (as16 << 1) & 0xffff;
184 s = (as16 & 0x8000);
185 return (t ^ s ^ (s >> 1)) | (s >> 15);
189 static inline int reassemble_17(int as17)
191 return (((as17 & 0x10000) >> 16) |
192 ((as17 & 0x0f800) << 5) |
193 ((as17 & 0x00400) >> 8) |
194 ((as17 & 0x003ff) << 3));
197 static inline int reassemble_21(int as21)
199 return (((as21 & 0x100000) >> 20) |
200 ((as21 & 0x0ffe00) >> 8) |
201 ((as21 & 0x000180) << 7) |
202 ((as21 & 0x00007c) << 14) |
203 ((as21 & 0x000003) << 12));
206 static inline int reassemble_22(int as22)
208 return (((as22 & 0x200000) >> 21) |
209 ((as22 & 0x1f0000) << 5) |
210 ((as22 & 0x00f800) << 5) |
211 ((as22 & 0x000400) >> 8) |
212 ((as22 & 0x0003ff) << 3));
215 void *module_alloc(unsigned long size)
217 /* using RWX means less protection for modules, but it's
218 * easier than trying to map the text, data, init_text and
219 * init_data correctly */
220 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
221 GFP_KERNEL | __GFP_HIGHMEM,
222 PAGE_KERNEL_RWX, 0, NUMA_NO_NODE,
223 __builtin_return_address(0));
226 #ifndef CONFIG_64BIT
227 static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
229 return 0;
232 static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
234 return 0;
237 static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
239 unsigned long cnt = 0;
241 for (; n > 0; n--, rela++)
243 switch (ELF32_R_TYPE(rela->r_info)) {
244 case R_PARISC_PCREL17F:
245 case R_PARISC_PCREL22F:
246 cnt++;
250 return cnt;
252 #else
253 static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
255 unsigned long cnt = 0;
257 for (; n > 0; n--, rela++)
259 switch (ELF64_R_TYPE(rela->r_info)) {
260 case R_PARISC_LTOFF21L:
261 case R_PARISC_LTOFF14R:
262 case R_PARISC_PCREL22F:
263 cnt++;
267 return cnt;
270 static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
272 unsigned long cnt = 0;
274 for (; n > 0; n--, rela++)
276 switch (ELF64_R_TYPE(rela->r_info)) {
277 case R_PARISC_FPTR64:
278 cnt++;
282 return cnt;
285 static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
287 unsigned long cnt = 0;
289 for (; n > 0; n--, rela++)
291 switch (ELF64_R_TYPE(rela->r_info)) {
292 case R_PARISC_PCREL22F:
293 cnt++;
297 return cnt;
299 #endif
301 void module_arch_freeing_init(struct module *mod)
303 kfree(mod->arch.section);
304 mod->arch.section = NULL;
307 /* Additional bytes needed in front of individual sections */
308 unsigned int arch_mod_section_prepend(struct module *mod,
309 unsigned int section)
311 /* size needed for all stubs of this section (including
312 * one additional for correct alignment of the stubs) */
313 return (mod->arch.section[section].stub_entries + 1)
314 * sizeof(struct stub_entry);
317 #define CONST
318 int module_frob_arch_sections(CONST Elf_Ehdr *hdr,
319 CONST Elf_Shdr *sechdrs,
320 CONST char *secstrings,
321 struct module *me)
323 unsigned long gots = 0, fdescs = 0, len;
324 unsigned int i;
326 len = hdr->e_shnum * sizeof(me->arch.section[0]);
327 me->arch.section = kzalloc(len, GFP_KERNEL);
328 if (!me->arch.section)
329 return -ENOMEM;
331 for (i = 1; i < hdr->e_shnum; i++) {
332 const Elf_Rela *rels = (void *)sechdrs[i].sh_addr;
333 unsigned long nrels = sechdrs[i].sh_size / sizeof(*rels);
334 unsigned int count, s;
336 if (strncmp(secstrings + sechdrs[i].sh_name,
337 ".PARISC.unwind", 14) == 0)
338 me->arch.unwind_section = i;
340 if (sechdrs[i].sh_type != SHT_RELA)
341 continue;
343 /* some of these are not relevant for 32-bit/64-bit
344 * we leave them here to make the code common. the
345 * compiler will do its thing and optimize out the
346 * stuff we don't need
348 gots += count_gots(rels, nrels);
349 fdescs += count_fdescs(rels, nrels);
351 /* XXX: By sorting the relocs and finding duplicate entries
352 * we could reduce the number of necessary stubs and save
353 * some memory. */
354 count = count_stubs(rels, nrels);
355 if (!count)
356 continue;
358 /* so we need relocation stubs. reserve necessary memory. */
359 /* sh_info gives the section for which we need to add stubs. */
360 s = sechdrs[i].sh_info;
362 /* each code section should only have one relocation section */
363 WARN_ON(me->arch.section[s].stub_entries);
365 /* store number of stubs we need for this section */
366 me->arch.section[s].stub_entries += count;
369 /* align things a bit */
370 me->core_size = ALIGN(me->core_size, 16);
371 me->arch.got_offset = me->core_size;
372 me->core_size += gots * sizeof(struct got_entry);
374 me->core_size = ALIGN(me->core_size, 16);
375 me->arch.fdesc_offset = me->core_size;
376 me->core_size += fdescs * sizeof(Elf_Fdesc);
378 me->arch.got_max = gots;
379 me->arch.fdesc_max = fdescs;
381 return 0;
384 #ifdef CONFIG_64BIT
385 static Elf64_Word get_got(struct module *me, unsigned long value, long addend)
387 unsigned int i;
388 struct got_entry *got;
390 value += addend;
392 BUG_ON(value == 0);
394 got = me->module_core + me->arch.got_offset;
395 for (i = 0; got[i].addr; i++)
396 if (got[i].addr == value)
397 goto out;
399 BUG_ON(++me->arch.got_count > me->arch.got_max);
401 got[i].addr = value;
402 out:
403 DEBUGP("GOT ENTRY %d[%x] val %lx\n", i, i*sizeof(struct got_entry),
404 value);
405 return i * sizeof(struct got_entry);
407 #endif /* CONFIG_64BIT */
409 #ifdef CONFIG_64BIT
410 static Elf_Addr get_fdesc(struct module *me, unsigned long value)
412 Elf_Fdesc *fdesc = me->module_core + me->arch.fdesc_offset;
414 if (!value) {
415 printk(KERN_ERR "%s: zero OPD requested!\n", me->name);
416 return 0;
419 /* Look for existing fdesc entry. */
420 while (fdesc->addr) {
421 if (fdesc->addr == value)
422 return (Elf_Addr)fdesc;
423 fdesc++;
426 BUG_ON(++me->arch.fdesc_count > me->arch.fdesc_max);
428 /* Create new one */
429 fdesc->addr = value;
430 fdesc->gp = (Elf_Addr)me->module_core + me->arch.got_offset;
431 return (Elf_Addr)fdesc;
433 #endif /* CONFIG_64BIT */
435 enum elf_stub_type {
436 ELF_STUB_GOT,
437 ELF_STUB_MILLI,
438 ELF_STUB_DIRECT,
441 static Elf_Addr get_stub(struct module *me, unsigned long value, long addend,
442 enum elf_stub_type stub_type, Elf_Addr loc0, unsigned int targetsec)
444 struct stub_entry *stub;
445 int __maybe_unused d;
447 /* initialize stub_offset to point in front of the section */
448 if (!me->arch.section[targetsec].stub_offset) {
449 loc0 -= (me->arch.section[targetsec].stub_entries + 1) *
450 sizeof(struct stub_entry);
451 /* get correct alignment for the stubs */
452 loc0 = ALIGN(loc0, sizeof(struct stub_entry));
453 me->arch.section[targetsec].stub_offset = loc0;
456 /* get address of stub entry */
457 stub = (void *) me->arch.section[targetsec].stub_offset;
458 me->arch.section[targetsec].stub_offset += sizeof(struct stub_entry);
460 /* do not write outside available stub area */
461 BUG_ON(0 == me->arch.section[targetsec].stub_entries--);
464 #ifndef CONFIG_64BIT
465 /* for 32-bit the stub looks like this:
466 * ldil L'XXX,%r1
467 * be,n R'XXX(%sr4,%r1)
469 //value = *(unsigned long *)((value + addend) & ~3); /* why? */
471 stub->insns[0] = 0x20200000; /* ldil L'XXX,%r1 */
472 stub->insns[1] = 0xe0202002; /* be,n R'XXX(%sr4,%r1) */
474 stub->insns[0] |= reassemble_21(lrsel(value, addend));
475 stub->insns[1] |= reassemble_17(rrsel(value, addend) / 4);
477 #else
478 /* for 64-bit we have three kinds of stubs:
479 * for normal function calls:
480 * ldd 0(%dp),%dp
481 * ldd 10(%dp), %r1
482 * bve (%r1)
483 * ldd 18(%dp), %dp
485 * for millicode:
486 * ldil 0, %r1
487 * ldo 0(%r1), %r1
488 * ldd 10(%r1), %r1
489 * bve,n (%r1)
491 * for direct branches (jumps between different section of the
492 * same module):
493 * ldil 0, %r1
494 * ldo 0(%r1), %r1
495 * bve,n (%r1)
497 switch (stub_type) {
498 case ELF_STUB_GOT:
499 d = get_got(me, value, addend);
500 if (d <= 15) {
501 /* Format 5 */
502 stub->insns[0] = 0x0f6010db; /* ldd 0(%dp),%dp */
503 stub->insns[0] |= low_sign_unext(d, 5) << 16;
504 } else {
505 /* Format 3 */
506 stub->insns[0] = 0x537b0000; /* ldd 0(%dp),%dp */
507 stub->insns[0] |= reassemble_16a(d);
509 stub->insns[1] = 0x53610020; /* ldd 10(%dp),%r1 */
510 stub->insns[2] = 0xe820d000; /* bve (%r1) */
511 stub->insns[3] = 0x537b0030; /* ldd 18(%dp),%dp */
512 break;
513 case ELF_STUB_MILLI:
514 stub->insns[0] = 0x20200000; /* ldil 0,%r1 */
515 stub->insns[1] = 0x34210000; /* ldo 0(%r1), %r1 */
516 stub->insns[2] = 0x50210020; /* ldd 10(%r1),%r1 */
517 stub->insns[3] = 0xe820d002; /* bve,n (%r1) */
519 stub->insns[0] |= reassemble_21(lrsel(value, addend));
520 stub->insns[1] |= reassemble_14(rrsel(value, addend));
521 break;
522 case ELF_STUB_DIRECT:
523 stub->insns[0] = 0x20200000; /* ldil 0,%r1 */
524 stub->insns[1] = 0x34210000; /* ldo 0(%r1), %r1 */
525 stub->insns[2] = 0xe820d002; /* bve,n (%r1) */
527 stub->insns[0] |= reassemble_21(lrsel(value, addend));
528 stub->insns[1] |= reassemble_14(rrsel(value, addend));
529 break;
532 #endif
534 return (Elf_Addr)stub;
537 #ifndef CONFIG_64BIT
538 int apply_relocate_add(Elf_Shdr *sechdrs,
539 const char *strtab,
540 unsigned int symindex,
541 unsigned int relsec,
542 struct module *me)
544 int i;
545 Elf32_Rela *rel = (void *)sechdrs[relsec].sh_addr;
546 Elf32_Sym *sym;
547 Elf32_Word *loc;
548 Elf32_Addr val;
549 Elf32_Sword addend;
550 Elf32_Addr dot;
551 Elf_Addr loc0;
552 unsigned int targetsec = sechdrs[relsec].sh_info;
553 //unsigned long dp = (unsigned long)$global$;
554 register unsigned long dp asm ("r27");
556 DEBUGP("Applying relocate section %u to %u\n", relsec,
557 targetsec);
558 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
559 /* This is where to make the change */
560 loc = (void *)sechdrs[targetsec].sh_addr
561 + rel[i].r_offset;
562 /* This is the start of the target section */
563 loc0 = sechdrs[targetsec].sh_addr;
564 /* This is the symbol it is referring to */
565 sym = (Elf32_Sym *)sechdrs[symindex].sh_addr
566 + ELF32_R_SYM(rel[i].r_info);
567 if (!sym->st_value) {
568 printk(KERN_WARNING "%s: Unknown symbol %s\n",
569 me->name, strtab + sym->st_name);
570 return -ENOENT;
572 //dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
573 dot = (Elf32_Addr)loc & ~0x03;
575 val = sym->st_value;
576 addend = rel[i].r_addend;
578 #if 0
579 #define r(t) ELF32_R_TYPE(rel[i].r_info)==t ? #t :
580 DEBUGP("Symbol %s loc 0x%x val 0x%x addend 0x%x: %s\n",
581 strtab + sym->st_name,
582 (uint32_t)loc, val, addend,
583 r(R_PARISC_PLABEL32)
584 r(R_PARISC_DIR32)
585 r(R_PARISC_DIR21L)
586 r(R_PARISC_DIR14R)
587 r(R_PARISC_SEGREL32)
588 r(R_PARISC_DPREL21L)
589 r(R_PARISC_DPREL14R)
590 r(R_PARISC_PCREL17F)
591 r(R_PARISC_PCREL22F)
592 "UNKNOWN");
593 #undef r
594 #endif
596 switch (ELF32_R_TYPE(rel[i].r_info)) {
597 case R_PARISC_PLABEL32:
598 /* 32-bit function address */
599 /* no function descriptors... */
600 *loc = fsel(val, addend);
601 break;
602 case R_PARISC_DIR32:
603 /* direct 32-bit ref */
604 *loc = fsel(val, addend);
605 break;
606 case R_PARISC_DIR21L:
607 /* left 21 bits of effective address */
608 val = lrsel(val, addend);
609 *loc = mask(*loc, 21) | reassemble_21(val);
610 break;
611 case R_PARISC_DIR14R:
612 /* right 14 bits of effective address */
613 val = rrsel(val, addend);
614 *loc = mask(*loc, 14) | reassemble_14(val);
615 break;
616 case R_PARISC_SEGREL32:
617 /* 32-bit segment relative address */
618 /* See note about special handling of SEGREL32 at
619 * the beginning of this file.
621 *loc = fsel(val, addend);
622 break;
623 case R_PARISC_DPREL21L:
624 /* left 21 bit of relative address */
625 val = lrsel(val - dp, addend);
626 *loc = mask(*loc, 21) | reassemble_21(val);
627 break;
628 case R_PARISC_DPREL14R:
629 /* right 14 bit of relative address */
630 val = rrsel(val - dp, addend);
631 *loc = mask(*loc, 14) | reassemble_14(val);
632 break;
633 case R_PARISC_PCREL17F:
634 /* 17-bit PC relative address */
635 /* calculate direct call offset */
636 val += addend;
637 val = (val - dot - 8)/4;
638 if (!RELOC_REACHABLE(val, 17)) {
639 /* direct distance too far, create
640 * stub entry instead */
641 val = get_stub(me, sym->st_value, addend,
642 ELF_STUB_DIRECT, loc0, targetsec);
643 val = (val - dot - 8)/4;
644 CHECK_RELOC(val, 17);
646 *loc = (*loc & ~0x1f1ffd) | reassemble_17(val);
647 break;
648 case R_PARISC_PCREL22F:
649 /* 22-bit PC relative address; only defined for pa20 */
650 /* calculate direct call offset */
651 val += addend;
652 val = (val - dot - 8)/4;
653 if (!RELOC_REACHABLE(val, 22)) {
654 /* direct distance too far, create
655 * stub entry instead */
656 val = get_stub(me, sym->st_value, addend,
657 ELF_STUB_DIRECT, loc0, targetsec);
658 val = (val - dot - 8)/4;
659 CHECK_RELOC(val, 22);
661 *loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
662 break;
664 default:
665 printk(KERN_ERR "module %s: Unknown relocation: %u\n",
666 me->name, ELF32_R_TYPE(rel[i].r_info));
667 return -ENOEXEC;
671 return 0;
674 #else
675 int apply_relocate_add(Elf_Shdr *sechdrs,
676 const char *strtab,
677 unsigned int symindex,
678 unsigned int relsec,
679 struct module *me)
681 int i;
682 Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
683 Elf64_Sym *sym;
684 Elf64_Word *loc;
685 Elf64_Xword *loc64;
686 Elf64_Addr val;
687 Elf64_Sxword addend;
688 Elf64_Addr dot;
689 Elf_Addr loc0;
690 unsigned int targetsec = sechdrs[relsec].sh_info;
692 DEBUGP("Applying relocate section %u to %u\n", relsec,
693 targetsec);
694 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
695 /* This is where to make the change */
696 loc = (void *)sechdrs[targetsec].sh_addr
697 + rel[i].r_offset;
698 /* This is the start of the target section */
699 loc0 = sechdrs[targetsec].sh_addr;
700 /* This is the symbol it is referring to */
701 sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
702 + ELF64_R_SYM(rel[i].r_info);
703 if (!sym->st_value) {
704 printk(KERN_WARNING "%s: Unknown symbol %s\n",
705 me->name, strtab + sym->st_name);
706 return -ENOENT;
708 //dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
709 dot = (Elf64_Addr)loc & ~0x03;
710 loc64 = (Elf64_Xword *)loc;
712 val = sym->st_value;
713 addend = rel[i].r_addend;
715 #if 0
716 #define r(t) ELF64_R_TYPE(rel[i].r_info)==t ? #t :
717 printk("Symbol %s loc %p val 0x%Lx addend 0x%Lx: %s\n",
718 strtab + sym->st_name,
719 loc, val, addend,
720 r(R_PARISC_LTOFF14R)
721 r(R_PARISC_LTOFF21L)
722 r(R_PARISC_PCREL22F)
723 r(R_PARISC_DIR64)
724 r(R_PARISC_SEGREL32)
725 r(R_PARISC_FPTR64)
726 "UNKNOWN");
727 #undef r
728 #endif
730 switch (ELF64_R_TYPE(rel[i].r_info)) {
731 case R_PARISC_LTOFF21L:
732 /* LT-relative; left 21 bits */
733 val = get_got(me, val, addend);
734 DEBUGP("LTOFF21L Symbol %s loc %p val %lx\n",
735 strtab + sym->st_name,
736 loc, val);
737 val = lrsel(val, 0);
738 *loc = mask(*loc, 21) | reassemble_21(val);
739 break;
740 case R_PARISC_LTOFF14R:
741 /* L(ltoff(val+addend)) */
742 /* LT-relative; right 14 bits */
743 val = get_got(me, val, addend);
744 val = rrsel(val, 0);
745 DEBUGP("LTOFF14R Symbol %s loc %p val %lx\n",
746 strtab + sym->st_name,
747 loc, val);
748 *loc = mask(*loc, 14) | reassemble_14(val);
749 break;
750 case R_PARISC_PCREL22F:
751 /* PC-relative; 22 bits */
752 DEBUGP("PCREL22F Symbol %s loc %p val %lx\n",
753 strtab + sym->st_name,
754 loc, val);
755 val += addend;
756 /* can we reach it locally? */
757 if (in_local(me, (void *)val)) {
758 /* this is the case where the symbol is local
759 * to the module, but in a different section,
760 * so stub the jump in case it's more than 22
761 * bits away */
762 val = (val - dot - 8)/4;
763 if (!RELOC_REACHABLE(val, 22)) {
764 /* direct distance too far, create
765 * stub entry instead */
766 val = get_stub(me, sym->st_value,
767 addend, ELF_STUB_DIRECT,
768 loc0, targetsec);
769 } else {
770 /* Ok, we can reach it directly. */
771 val = sym->st_value;
772 val += addend;
774 } else {
775 val = sym->st_value;
776 if (strncmp(strtab + sym->st_name, "$$", 2)
777 == 0)
778 val = get_stub(me, val, addend, ELF_STUB_MILLI,
779 loc0, targetsec);
780 else
781 val = get_stub(me, val, addend, ELF_STUB_GOT,
782 loc0, targetsec);
784 DEBUGP("STUB FOR %s loc %lx, val %lx+%lx at %lx\n",
785 strtab + sym->st_name, loc, sym->st_value,
786 addend, val);
787 val = (val - dot - 8)/4;
788 CHECK_RELOC(val, 22);
789 *loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
790 break;
791 case R_PARISC_DIR64:
792 /* 64-bit effective address */
793 *loc64 = val + addend;
794 break;
795 case R_PARISC_SEGREL32:
796 /* 32-bit segment relative address */
797 /* See note about special handling of SEGREL32 at
798 * the beginning of this file.
800 *loc = fsel(val, addend);
801 break;
802 case R_PARISC_FPTR64:
803 /* 64-bit function address */
804 if(in_local(me, (void *)(val + addend))) {
805 *loc64 = get_fdesc(me, val+addend);
806 DEBUGP("FDESC for %s at %p points to %lx\n",
807 strtab + sym->st_name, *loc64,
808 ((Elf_Fdesc *)*loc64)->addr);
809 } else {
810 /* if the symbol is not local to this
811 * module then val+addend is a pointer
812 * to the function descriptor */
813 DEBUGP("Non local FPTR64 Symbol %s loc %p val %lx\n",
814 strtab + sym->st_name,
815 loc, val);
816 *loc64 = val + addend;
818 break;
820 default:
821 printk(KERN_ERR "module %s: Unknown relocation: %Lu\n",
822 me->name, ELF64_R_TYPE(rel[i].r_info));
823 return -ENOEXEC;
826 return 0;
828 #endif
830 static void
831 register_unwind_table(struct module *me,
832 const Elf_Shdr *sechdrs)
834 unsigned char *table, *end;
835 unsigned long gp;
837 if (!me->arch.unwind_section)
838 return;
840 table = (unsigned char *)sechdrs[me->arch.unwind_section].sh_addr;
841 end = table + sechdrs[me->arch.unwind_section].sh_size;
842 gp = (Elf_Addr)me->module_core + me->arch.got_offset;
844 DEBUGP("register_unwind_table(), sect = %d at 0x%p - 0x%p (gp=0x%lx)\n",
845 me->arch.unwind_section, table, end, gp);
846 me->arch.unwind = unwind_table_add(me->name, 0, gp, table, end);
849 static void
850 deregister_unwind_table(struct module *me)
852 if (me->arch.unwind)
853 unwind_table_remove(me->arch.unwind);
856 int module_finalize(const Elf_Ehdr *hdr,
857 const Elf_Shdr *sechdrs,
858 struct module *me)
860 int i;
861 unsigned long nsyms;
862 const char *strtab = NULL;
863 Elf_Sym *newptr, *oldptr;
864 Elf_Shdr *symhdr = NULL;
865 #ifdef DEBUG
866 Elf_Fdesc *entry;
867 u32 *addr;
869 entry = (Elf_Fdesc *)me->init;
870 printk("FINALIZE, ->init FPTR is %p, GP %lx ADDR %lx\n", entry,
871 entry->gp, entry->addr);
872 addr = (u32 *)entry->addr;
873 printk("INSNS: %x %x %x %x\n",
874 addr[0], addr[1], addr[2], addr[3]);
875 printk("got entries used %ld, gots max %ld\n"
876 "fdescs used %ld, fdescs max %ld\n",
877 me->arch.got_count, me->arch.got_max,
878 me->arch.fdesc_count, me->arch.fdesc_max);
879 #endif
881 register_unwind_table(me, sechdrs);
883 /* haven't filled in me->symtab yet, so have to find it
884 * ourselves */
885 for (i = 1; i < hdr->e_shnum; i++) {
886 if(sechdrs[i].sh_type == SHT_SYMTAB
887 && (sechdrs[i].sh_flags & SHF_ALLOC)) {
888 int strindex = sechdrs[i].sh_link;
889 /* FIXME: AWFUL HACK
890 * The cast is to drop the const from
891 * the sechdrs pointer */
892 symhdr = (Elf_Shdr *)&sechdrs[i];
893 strtab = (char *)sechdrs[strindex].sh_addr;
894 break;
898 DEBUGP("module %s: strtab %p, symhdr %p\n",
899 me->name, strtab, symhdr);
901 if(me->arch.got_count > MAX_GOTS) {
902 printk(KERN_ERR "%s: Global Offset Table overflow (used %ld, allowed %d)\n",
903 me->name, me->arch.got_count, MAX_GOTS);
904 return -EINVAL;
907 kfree(me->arch.section);
908 me->arch.section = NULL;
910 /* no symbol table */
911 if(symhdr == NULL)
912 return 0;
914 oldptr = (void *)symhdr->sh_addr;
915 newptr = oldptr + 1; /* we start counting at 1 */
916 nsyms = symhdr->sh_size / sizeof(Elf_Sym);
917 DEBUGP("OLD num_symtab %lu\n", nsyms);
919 for (i = 1; i < nsyms; i++) {
920 oldptr++; /* note, count starts at 1 so preincrement */
921 if(strncmp(strtab + oldptr->st_name,
922 ".L", 2) == 0)
923 continue;
925 if(newptr != oldptr)
926 *newptr++ = *oldptr;
927 else
928 newptr++;
931 nsyms = newptr - (Elf_Sym *)symhdr->sh_addr;
932 DEBUGP("NEW num_symtab %lu\n", nsyms);
933 symhdr->sh_size = nsyms * sizeof(Elf_Sym);
934 return 0;
937 void module_arch_cleanup(struct module *mod)
939 deregister_unwind_table(mod);