2 * linux/arch/parisc/mm/init.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright 1999 SuSE GmbH
6 * changed by Philipp Rumpf
7 * Copyright 1999 Philipp Rumpf (prumpf@tux.org)
8 * Copyright 2004 Randolph Chung (tausq@debian.org)
9 * Copyright 2006-2007 Helge Deller (deller@gmx.de)
14 #include <linux/module.h>
16 #include <linux/bootmem.h>
17 #include <linux/gfp.h>
18 #include <linux/delay.h>
19 #include <linux/init.h>
20 #include <linux/pci.h> /* for hppa_dma_ops and pcxl_dma_ops */
21 #include <linux/initrd.h>
22 #include <linux/swap.h>
23 #include <linux/unistd.h>
24 #include <linux/nodemask.h> /* for node_online_map */
25 #include <linux/pagemap.h> /* for release_pages and page_cache_release */
26 #include <linux/compat.h>
28 #include <asm/pgalloc.h>
29 #include <asm/pgtable.h>
31 #include <asm/pdc_chassis.h>
32 #include <asm/mmzone.h>
33 #include <asm/sections.h>
34 #include <asm/msgbuf.h>
36 extern int data_start
;
37 extern void parisc_kernel_start(void); /* Kernel entry point in head.S */
39 #if CONFIG_PGTABLE_LEVELS == 3
40 /* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout
41 * with the first pmd adjacent to the pgd and below it. gcc doesn't actually
42 * guarantee that global objects will be laid out in memory in the same order
43 * as the order of declaration, so put these in different sections and use
44 * the linker script to order them. */
45 pmd_t pmd0
[PTRS_PER_PMD
] __attribute__ ((__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE
)));
48 pgd_t swapper_pg_dir
[PTRS_PER_PGD
] __attribute__ ((__section__ (".data..vm0.pgd"), aligned(PAGE_SIZE
)));
49 pte_t pg0
[PT_INITIAL
* PTRS_PER_PTE
] __attribute__ ((__section__ (".data..vm0.pte"), aligned(PAGE_SIZE
)));
51 #ifdef CONFIG_DISCONTIGMEM
52 struct node_map_data node_data
[MAX_NUMNODES
] __read_mostly
;
53 signed char pfnnid_map
[PFNNID_MAP_MAX
] __read_mostly
;
56 static struct resource data_resource
= {
57 .name
= "Kernel data",
58 .flags
= IORESOURCE_BUSY
| IORESOURCE_MEM
,
61 static struct resource code_resource
= {
62 .name
= "Kernel code",
63 .flags
= IORESOURCE_BUSY
| IORESOURCE_MEM
,
66 static struct resource pdcdata_resource
= {
67 .name
= "PDC data (Page Zero)",
70 .flags
= IORESOURCE_BUSY
| IORESOURCE_MEM
,
73 static struct resource sysram_resources
[MAX_PHYSMEM_RANGES
] __read_mostly
;
75 /* The following array is initialized from the firmware specific
76 * information retrieved in kernel/inventory.c.
79 physmem_range_t pmem_ranges
[MAX_PHYSMEM_RANGES
] __read_mostly
;
80 int npmem_ranges __read_mostly
;
83 #define MAX_MEM (~0UL)
84 #else /* !CONFIG_64BIT */
85 #define MAX_MEM (3584U*1024U*1024U)
86 #endif /* !CONFIG_64BIT */
88 static unsigned long mem_limit __read_mostly
= MAX_MEM
;
90 static void __init
mem_limit_func(void)
95 /* We need this before __setup() functions are called */
98 for (cp
= boot_command_line
; *cp
; ) {
99 if (memcmp(cp
, "mem=", 4) == 0) {
101 limit
= memparse(cp
, &end
);
106 while (*cp
!= ' ' && *cp
)
113 if (limit
< mem_limit
)
117 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
119 static void __init
setup_bootmem(void)
121 unsigned long bootmap_size
;
122 unsigned long mem_max
;
123 unsigned long bootmap_pages
;
124 unsigned long bootmap_start_pfn
;
125 unsigned long bootmap_pfn
;
126 #ifndef CONFIG_DISCONTIGMEM
127 physmem_range_t pmem_holes
[MAX_PHYSMEM_RANGES
- 1];
130 int i
, sysram_resource_count
;
132 disable_sr_hashing(); /* Turn off space register hashing */
135 * Sort the ranges. Since the number of ranges is typically
136 * small, and performance is not an issue here, just do
137 * a simple insertion sort.
140 for (i
= 1; i
< npmem_ranges
; i
++) {
143 for (j
= i
; j
> 0; j
--) {
146 if (pmem_ranges
[j
-1].start_pfn
<
147 pmem_ranges
[j
].start_pfn
) {
151 tmp
= pmem_ranges
[j
-1].start_pfn
;
152 pmem_ranges
[j
-1].start_pfn
= pmem_ranges
[j
].start_pfn
;
153 pmem_ranges
[j
].start_pfn
= tmp
;
154 tmp
= pmem_ranges
[j
-1].pages
;
155 pmem_ranges
[j
-1].pages
= pmem_ranges
[j
].pages
;
156 pmem_ranges
[j
].pages
= tmp
;
160 #ifndef CONFIG_DISCONTIGMEM
162 * Throw out ranges that are too far apart (controlled by
166 for (i
= 1; i
< npmem_ranges
; i
++) {
167 if (pmem_ranges
[i
].start_pfn
-
168 (pmem_ranges
[i
-1].start_pfn
+
169 pmem_ranges
[i
-1].pages
) > MAX_GAP
) {
171 printk("Large gap in memory detected (%ld pages). "
172 "Consider turning on CONFIG_DISCONTIGMEM\n",
173 pmem_ranges
[i
].start_pfn
-
174 (pmem_ranges
[i
-1].start_pfn
+
175 pmem_ranges
[i
-1].pages
));
181 if (npmem_ranges
> 1) {
183 /* Print the memory ranges */
185 printk(KERN_INFO
"Memory Ranges:\n");
187 for (i
= 0; i
< npmem_ranges
; i
++) {
191 size
= (pmem_ranges
[i
].pages
<< PAGE_SHIFT
);
192 start
= (pmem_ranges
[i
].start_pfn
<< PAGE_SHIFT
);
193 printk(KERN_INFO
"%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
194 i
,start
, start
+ (size
- 1), size
>> 20);
198 sysram_resource_count
= npmem_ranges
;
199 for (i
= 0; i
< sysram_resource_count
; i
++) {
200 struct resource
*res
= &sysram_resources
[i
];
201 res
->name
= "System RAM";
202 res
->start
= pmem_ranges
[i
].start_pfn
<< PAGE_SHIFT
;
203 res
->end
= res
->start
+ (pmem_ranges
[i
].pages
<< PAGE_SHIFT
)-1;
204 res
->flags
= IORESOURCE_MEM
| IORESOURCE_BUSY
;
205 request_resource(&iomem_resource
, res
);
209 * For 32 bit kernels we limit the amount of memory we can
210 * support, in order to preserve enough kernel address space
211 * for other purposes. For 64 bit kernels we don't normally
212 * limit the memory, but this mechanism can be used to
213 * artificially limit the amount of memory (and it is written
214 * to work with multiple memory ranges).
217 mem_limit_func(); /* check for "mem=" argument */
220 for (i
= 0; i
< npmem_ranges
; i
++) {
223 rsize
= pmem_ranges
[i
].pages
<< PAGE_SHIFT
;
224 if ((mem_max
+ rsize
) > mem_limit
) {
225 printk(KERN_WARNING
"Memory truncated to %ld MB\n", mem_limit
>> 20);
226 if (mem_max
== mem_limit
)
229 pmem_ranges
[i
].pages
= (mem_limit
>> PAGE_SHIFT
)
230 - (mem_max
>> PAGE_SHIFT
);
231 npmem_ranges
= i
+ 1;
239 printk(KERN_INFO
"Total Memory: %ld MB\n",mem_max
>> 20);
241 #ifndef CONFIG_DISCONTIGMEM
242 /* Merge the ranges, keeping track of the holes */
245 unsigned long end_pfn
;
246 unsigned long hole_pages
;
249 end_pfn
= pmem_ranges
[0].start_pfn
+ pmem_ranges
[0].pages
;
250 for (i
= 1; i
< npmem_ranges
; i
++) {
252 hole_pages
= pmem_ranges
[i
].start_pfn
- end_pfn
;
254 pmem_holes
[npmem_holes
].start_pfn
= end_pfn
;
255 pmem_holes
[npmem_holes
++].pages
= hole_pages
;
256 end_pfn
+= hole_pages
;
258 end_pfn
+= pmem_ranges
[i
].pages
;
261 pmem_ranges
[0].pages
= end_pfn
- pmem_ranges
[0].start_pfn
;
267 for (i
= 0; i
< npmem_ranges
; i
++)
268 bootmap_pages
+= bootmem_bootmap_pages(pmem_ranges
[i
].pages
);
270 bootmap_start_pfn
= PAGE_ALIGN(__pa((unsigned long) &_end
)) >> PAGE_SHIFT
;
272 #ifdef CONFIG_DISCONTIGMEM
273 for (i
= 0; i
< MAX_PHYSMEM_RANGES
; i
++) {
274 memset(NODE_DATA(i
), 0, sizeof(pg_data_t
));
275 NODE_DATA(i
)->bdata
= &bootmem_node_data
[i
];
277 memset(pfnnid_map
, 0xff, sizeof(pfnnid_map
));
279 for (i
= 0; i
< npmem_ranges
; i
++) {
280 node_set_state(i
, N_NORMAL_MEMORY
);
286 * Initialize and free the full range of memory in each range.
287 * Note that the only writing these routines do are to the bootmap,
288 * and we've made sure to locate the bootmap properly so that they
289 * won't be writing over anything important.
292 bootmap_pfn
= bootmap_start_pfn
;
294 for (i
= 0; i
< npmem_ranges
; i
++) {
295 unsigned long start_pfn
;
296 unsigned long npages
;
298 start_pfn
= pmem_ranges
[i
].start_pfn
;
299 npages
= pmem_ranges
[i
].pages
;
301 bootmap_size
= init_bootmem_node(NODE_DATA(i
),
304 (start_pfn
+ npages
) );
305 free_bootmem_node(NODE_DATA(i
),
306 (start_pfn
<< PAGE_SHIFT
),
307 (npages
<< PAGE_SHIFT
) );
308 bootmap_pfn
+= (bootmap_size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
309 if ((start_pfn
+ npages
) > max_pfn
)
310 max_pfn
= start_pfn
+ npages
;
313 /* IOMMU is always used to access "high mem" on those boxes
314 * that can support enough mem that a PCI device couldn't
315 * directly DMA to any physical addresses.
316 * ISA DMA support will need to revisit this.
318 max_low_pfn
= max_pfn
;
320 /* bootmap sizing messed up? */
321 BUG_ON((bootmap_pfn
- bootmap_start_pfn
) != bootmap_pages
);
323 /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
325 #define PDC_CONSOLE_IO_IODC_SIZE 32768
327 reserve_bootmem_node(NODE_DATA(0), 0UL,
328 (unsigned long)(PAGE0
->mem_free
+
329 PDC_CONSOLE_IO_IODC_SIZE
), BOOTMEM_DEFAULT
);
330 reserve_bootmem_node(NODE_DATA(0), __pa(KERNEL_BINARY_TEXT_START
),
331 (unsigned long)(_end
- KERNEL_BINARY_TEXT_START
),
333 reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn
<< PAGE_SHIFT
),
334 ((bootmap_pfn
- bootmap_start_pfn
) << PAGE_SHIFT
),
337 #ifndef CONFIG_DISCONTIGMEM
339 /* reserve the holes */
341 for (i
= 0; i
< npmem_holes
; i
++) {
342 reserve_bootmem_node(NODE_DATA(0),
343 (pmem_holes
[i
].start_pfn
<< PAGE_SHIFT
),
344 (pmem_holes
[i
].pages
<< PAGE_SHIFT
),
349 #ifdef CONFIG_BLK_DEV_INITRD
351 printk(KERN_INFO
"initrd: %08lx-%08lx\n", initrd_start
, initrd_end
);
352 if (__pa(initrd_start
) < mem_max
) {
353 unsigned long initrd_reserve
;
355 if (__pa(initrd_end
) > mem_max
) {
356 initrd_reserve
= mem_max
- __pa(initrd_start
);
358 initrd_reserve
= initrd_end
- initrd_start
;
360 initrd_below_start_ok
= 1;
361 printk(KERN_INFO
"initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start
), __pa(initrd_start
) + initrd_reserve
, mem_max
);
363 reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start
),
364 initrd_reserve
, BOOTMEM_DEFAULT
);
369 data_resource
.start
= virt_to_phys(&data_start
);
370 data_resource
.end
= virt_to_phys(_end
) - 1;
371 code_resource
.start
= virt_to_phys(_text
);
372 code_resource
.end
= virt_to_phys(&data_start
)-1;
374 /* We don't know which region the kernel will be in, so try
377 for (i
= 0; i
< sysram_resource_count
; i
++) {
378 struct resource
*res
= &sysram_resources
[i
];
379 request_resource(res
, &code_resource
);
380 request_resource(res
, &data_resource
);
382 request_resource(&sysram_resources
[0], &pdcdata_resource
);
385 static int __init
parisc_text_address(unsigned long vaddr
)
387 static unsigned long head_ptr __initdata
;
390 head_ptr
= PAGE_MASK
& (unsigned long)
391 dereference_function_descriptor(&parisc_kernel_start
);
393 return core_kernel_text(vaddr
) || vaddr
== head_ptr
;
396 static void __init
map_pages(unsigned long start_vaddr
,
397 unsigned long start_paddr
, unsigned long size
,
398 pgprot_t pgprot
, int force
)
403 unsigned long end_paddr
;
404 unsigned long start_pmd
;
405 unsigned long start_pte
;
408 unsigned long address
;
410 unsigned long ro_start
;
411 unsigned long ro_end
;
412 unsigned long kernel_end
;
414 ro_start
= __pa((unsigned long)_text
);
415 ro_end
= __pa((unsigned long)&data_start
);
416 kernel_end
= __pa((unsigned long)&_end
);
418 end_paddr
= start_paddr
+ size
;
420 pg_dir
= pgd_offset_k(start_vaddr
);
422 #if PTRS_PER_PMD == 1
425 start_pmd
= ((start_vaddr
>> PMD_SHIFT
) & (PTRS_PER_PMD
- 1));
427 start_pte
= ((start_vaddr
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1));
429 address
= start_paddr
;
431 while (address
< end_paddr
) {
432 #if PTRS_PER_PMD == 1
433 pmd
= (pmd_t
*)__pa(pg_dir
);
435 pmd
= (pmd_t
*)pgd_address(*pg_dir
);
438 * pmd is physical at this point
442 pmd
= (pmd_t
*) alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE
<< PMD_ORDER
);
443 pmd
= (pmd_t
*) __pa(pmd
);
446 pgd_populate(NULL
, pg_dir
, __va(pmd
));
450 /* now change pmd to kernel virtual addresses */
452 pmd
= (pmd_t
*)__va(pmd
) + start_pmd
;
453 for (tmp1
= start_pmd
; tmp1
< PTRS_PER_PMD
; tmp1
++, pmd
++) {
456 * pg_table is physical at this point
459 pg_table
= (pte_t
*)pmd_address(*pmd
);
462 alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE
);
463 pg_table
= (pte_t
*) __pa(pg_table
);
466 pmd_populate_kernel(NULL
, pmd
, __va(pg_table
));
468 /* now change pg_table to kernel virtual addresses */
470 pg_table
= (pte_t
*) __va(pg_table
) + start_pte
;
471 for (tmp2
= start_pte
; tmp2
< PTRS_PER_PTE
; tmp2
++, pg_table
++) {
475 pte
= __mk_pte(address
, pgprot
);
476 else if (parisc_text_address(vaddr
)) {
477 pte
= __mk_pte(address
, PAGE_KERNEL_EXEC
);
478 if (address
>= ro_start
&& address
< kernel_end
)
479 pte
= pte_mkhuge(pte
);
482 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
483 if (address
>= ro_start
&& address
< ro_end
) {
484 pte
= __mk_pte(address
, PAGE_KERNEL_EXEC
);
485 pte
= pte_mkhuge(pte
);
489 pte
= __mk_pte(address
, pgprot
);
490 if (address
>= ro_start
&& address
< kernel_end
)
491 pte
= pte_mkhuge(pte
);
494 if (address
>= end_paddr
) {
501 set_pte(pg_table
, pte
);
503 address
+= PAGE_SIZE
;
508 if (address
>= end_paddr
)
515 void free_initmem(void)
517 unsigned long init_begin
= (unsigned long)__init_begin
;
518 unsigned long init_end
= (unsigned long)__init_end
;
520 /* The init text pages are marked R-X. We have to
521 * flush the icache and mark them RW-
523 * This is tricky, because map_pages is in the init section.
524 * Do a dummy remap of the data section first (the data
525 * section is already PAGE_KERNEL) to pull in the TLB entries
527 map_pages(init_begin
, __pa(init_begin
), init_end
- init_begin
,
529 /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
531 map_pages(init_begin
, __pa(init_begin
), init_end
- init_begin
,
534 /* force the kernel to see the new TLB entries */
535 __flush_tlb_range(0, init_begin
, init_end
);
537 /* finally dump all the instructions which were cached, since the
538 * pages are no-longer executable */
539 flush_icache_range(init_begin
, init_end
);
541 free_initmem_default(POISON_FREE_INITMEM
);
543 /* set up a new led state on systems shipped LED State panel */
544 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE
);
548 #ifdef CONFIG_DEBUG_RODATA
549 void mark_rodata_ro(void)
551 /* rodata memory was already mapped with KERNEL_RO access rights by
552 pagetable_init() and map_pages(). No need to do additional stuff here */
553 printk (KERN_INFO
"Write protecting the kernel read-only data: %luk\n",
554 (unsigned long)(__end_rodata
- __start_rodata
) >> 10);
560 * Just an arbitrary offset to serve as a "hole" between mapping areas
561 * (between top of physical memory and a potential pcxl dma mapping
562 * area, and below the vmalloc mapping area).
564 * The current 32K value just means that there will be a 32K "hole"
565 * between mapping areas. That means that any out-of-bounds memory
566 * accesses will hopefully be caught. The vmalloc() routines leaves
567 * a hole of 4kB between each vmalloced area for the same reason.
570 /* Leave room for gateway page expansion */
571 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
572 #error KERNEL_MAP_START is in gateway reserved region
574 #define MAP_START (KERNEL_MAP_START)
576 #define VM_MAP_OFFSET (32*1024)
577 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
578 & ~(VM_MAP_OFFSET-1)))
580 void *parisc_vmalloc_start __read_mostly
;
581 EXPORT_SYMBOL(parisc_vmalloc_start
);
584 unsigned long pcxl_dma_start __read_mostly
;
587 void __init
mem_init(void)
589 /* Do sanity checks on IPC (compat) structures */
590 BUILD_BUG_ON(sizeof(struct ipc64_perm
) != 48);
592 BUILD_BUG_ON(sizeof(struct semid64_ds
) != 80);
593 BUILD_BUG_ON(sizeof(struct msqid64_ds
) != 104);
594 BUILD_BUG_ON(sizeof(struct shmid64_ds
) != 104);
597 BUILD_BUG_ON(sizeof(struct compat_ipc64_perm
) != sizeof(struct ipc64_perm
));
598 BUILD_BUG_ON(sizeof(struct compat_semid64_ds
) != 80);
599 BUILD_BUG_ON(sizeof(struct compat_msqid64_ds
) != 104);
600 BUILD_BUG_ON(sizeof(struct compat_shmid64_ds
) != 104);
603 /* Do sanity checks on page table constants */
604 BUILD_BUG_ON(PTE_ENTRY_SIZE
!= sizeof(pte_t
));
605 BUILD_BUG_ON(PMD_ENTRY_SIZE
!= sizeof(pmd_t
));
606 BUILD_BUG_ON(PGD_ENTRY_SIZE
!= sizeof(pgd_t
));
607 BUILD_BUG_ON(PAGE_SHIFT
+ BITS_PER_PTE
+ BITS_PER_PMD
+ BITS_PER_PGD
610 high_memory
= __va((max_pfn
<< PAGE_SHIFT
));
611 set_max_mapnr(page_to_pfn(virt_to_page(high_memory
- 1)) + 1);
615 if (hppa_dma_ops
== &pcxl_dma_ops
) {
616 pcxl_dma_start
= (unsigned long)SET_MAP_OFFSET(MAP_START
);
617 parisc_vmalloc_start
= SET_MAP_OFFSET(pcxl_dma_start
618 + PCXL_DMA_MAP_SIZE
);
621 parisc_vmalloc_start
= SET_MAP_OFFSET(MAP_START
);
624 parisc_vmalloc_start
= SET_MAP_OFFSET(MAP_START
);
627 mem_init_print_info(NULL
);
628 #ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */
629 printk("virtual kernel memory layout:\n"
630 " vmalloc : 0x%p - 0x%p (%4ld MB)\n"
631 " memory : 0x%p - 0x%p (%4ld MB)\n"
632 " .init : 0x%p - 0x%p (%4ld kB)\n"
633 " .data : 0x%p - 0x%p (%4ld kB)\n"
634 " .text : 0x%p - 0x%p (%4ld kB)\n",
636 (void*)VMALLOC_START
, (void*)VMALLOC_END
,
637 (VMALLOC_END
- VMALLOC_START
) >> 20,
639 __va(0), high_memory
,
640 ((unsigned long)high_memory
- (unsigned long)__va(0)) >> 20,
642 __init_begin
, __init_end
,
643 ((unsigned long)__init_end
- (unsigned long)__init_begin
) >> 10,
646 ((unsigned long)_edata
- (unsigned long)_etext
) >> 10,
649 ((unsigned long)_etext
- (unsigned long)_text
) >> 10);
653 unsigned long *empty_zero_page __read_mostly
;
654 EXPORT_SYMBOL(empty_zero_page
);
656 void show_mem(unsigned int filter
)
658 int total
= 0,reserved
= 0;
661 printk(KERN_INFO
"Mem-info:\n");
662 show_free_areas(filter
);
664 for_each_online_pgdat(pgdat
) {
668 pgdat_resize_lock(pgdat
, &flags
);
669 for (zoneid
= 0; zoneid
< MAX_NR_ZONES
; zoneid
++) {
670 struct zone
*zone
= &pgdat
->node_zones
[zoneid
];
671 if (!populated_zone(zone
))
674 total
+= zone
->present_pages
;
675 reserved
= zone
->present_pages
- zone
->managed_pages
;
677 pgdat_resize_unlock(pgdat
, &flags
);
680 printk(KERN_INFO
"%d pages of RAM\n", total
);
681 printk(KERN_INFO
"%d reserved pages\n", reserved
);
683 #ifdef CONFIG_DISCONTIGMEM
688 for (i
= 0; i
< npmem_ranges
; i
++) {
689 zl
= node_zonelist(i
, 0);
690 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
694 printk("Zone list for zone %d on node %d: ", j
, i
);
695 for_each_zone_zonelist(zone
, z
, zl
, j
)
696 printk("[%d/%s] ", zone_to_nid(zone
),
706 * pagetable_init() sets up the page tables
708 * Note that gateway_init() places the Linux gateway page at page 0.
709 * Since gateway pages cannot be dereferenced this has the desirable
710 * side effect of trapping those pesky NULL-reference errors in the
713 static void __init
pagetable_init(void)
717 /* Map each physical memory range to its kernel vaddr */
719 for (range
= 0; range
< npmem_ranges
; range
++) {
720 unsigned long start_paddr
;
721 unsigned long end_paddr
;
724 start_paddr
= pmem_ranges
[range
].start_pfn
<< PAGE_SHIFT
;
725 size
= pmem_ranges
[range
].pages
<< PAGE_SHIFT
;
726 end_paddr
= start_paddr
+ size
;
728 map_pages((unsigned long)__va(start_paddr
), start_paddr
,
729 size
, PAGE_KERNEL
, 0);
732 #ifdef CONFIG_BLK_DEV_INITRD
733 if (initrd_end
&& initrd_end
> mem_limit
) {
734 printk(KERN_INFO
"initrd: mapping %08lx-%08lx\n", initrd_start
, initrd_end
);
735 map_pages(initrd_start
, __pa(initrd_start
),
736 initrd_end
- initrd_start
, PAGE_KERNEL
, 0);
740 empty_zero_page
= alloc_bootmem_pages(PAGE_SIZE
);
743 static void __init
gateway_init(void)
745 unsigned long linux_gateway_page_addr
;
746 /* FIXME: This is 'const' in order to trick the compiler
747 into not treating it as DP-relative data. */
748 extern void * const linux_gateway_page
;
750 linux_gateway_page_addr
= LINUX_GATEWAY_ADDR
& PAGE_MASK
;
753 * Setup Linux Gateway page.
755 * The Linux gateway page will reside in kernel space (on virtual
756 * page 0), so it doesn't need to be aliased into user space.
759 map_pages(linux_gateway_page_addr
, __pa(&linux_gateway_page
),
760 PAGE_SIZE
, PAGE_GATEWAY
, 1);
763 void __init
paging_init(void)
770 flush_cache_all_local(); /* start with known state */
771 flush_tlb_all_local(NULL
);
773 for (i
= 0; i
< npmem_ranges
; i
++) {
774 unsigned long zones_size
[MAX_NR_ZONES
] = { 0, };
776 zones_size
[ZONE_NORMAL
] = pmem_ranges
[i
].pages
;
778 #ifdef CONFIG_DISCONTIGMEM
779 /* Need to initialize the pfnnid_map before we can initialize
783 for (j
= (pmem_ranges
[i
].start_pfn
>> PFNNID_SHIFT
);
784 j
<= ((pmem_ranges
[i
].start_pfn
+ pmem_ranges
[i
].pages
) >> PFNNID_SHIFT
);
791 free_area_init_node(i
, zones_size
,
792 pmem_ranges
[i
].start_pfn
, NULL
);
799 * Currently, all PA20 chips have 18 bit protection IDs, which is the
800 * limiting factor (space ids are 32 bits).
803 #define NR_SPACE_IDS 262144
808 * Currently we have a one-to-one relationship between space IDs and
809 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
810 * support 15 bit protection IDs, so that is the limiting factor.
811 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
812 * probably not worth the effort for a special case here.
815 #define NR_SPACE_IDS 32768
817 #endif /* !CONFIG_PA20 */
819 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
820 #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long)))
822 static unsigned long space_id
[SID_ARRAY_SIZE
] = { 1 }; /* disallow space 0 */
823 static unsigned long dirty_space_id
[SID_ARRAY_SIZE
];
824 static unsigned long space_id_index
;
825 static unsigned long free_space_ids
= NR_SPACE_IDS
- 1;
826 static unsigned long dirty_space_ids
= 0;
828 static DEFINE_SPINLOCK(sid_lock
);
830 unsigned long alloc_sid(void)
834 spin_lock(&sid_lock
);
836 if (free_space_ids
== 0) {
837 if (dirty_space_ids
!= 0) {
838 spin_unlock(&sid_lock
);
839 flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
840 spin_lock(&sid_lock
);
842 BUG_ON(free_space_ids
== 0);
847 index
= find_next_zero_bit(space_id
, NR_SPACE_IDS
, space_id_index
);
848 space_id
[index
>> SHIFT_PER_LONG
] |= (1L << (index
& (BITS_PER_LONG
- 1)));
849 space_id_index
= index
;
851 spin_unlock(&sid_lock
);
853 return index
<< SPACEID_SHIFT
;
856 void free_sid(unsigned long spaceid
)
858 unsigned long index
= spaceid
>> SPACEID_SHIFT
;
859 unsigned long *dirty_space_offset
;
861 dirty_space_offset
= dirty_space_id
+ (index
>> SHIFT_PER_LONG
);
862 index
&= (BITS_PER_LONG
- 1);
864 spin_lock(&sid_lock
);
866 BUG_ON(*dirty_space_offset
& (1L << index
)); /* attempt to free space id twice */
868 *dirty_space_offset
|= (1L << index
);
871 spin_unlock(&sid_lock
);
876 static void get_dirty_sids(unsigned long *ndirtyptr
,unsigned long *dirty_array
)
880 /* NOTE: sid_lock must be held upon entry */
882 *ndirtyptr
= dirty_space_ids
;
883 if (dirty_space_ids
!= 0) {
884 for (i
= 0; i
< SID_ARRAY_SIZE
; i
++) {
885 dirty_array
[i
] = dirty_space_id
[i
];
886 dirty_space_id
[i
] = 0;
894 static void recycle_sids(unsigned long ndirty
,unsigned long *dirty_array
)
898 /* NOTE: sid_lock must be held upon entry */
901 for (i
= 0; i
< SID_ARRAY_SIZE
; i
++) {
902 space_id
[i
] ^= dirty_array
[i
];
905 free_space_ids
+= ndirty
;
910 #else /* CONFIG_SMP */
912 static void recycle_sids(void)
916 /* NOTE: sid_lock must be held upon entry */
918 if (dirty_space_ids
!= 0) {
919 for (i
= 0; i
< SID_ARRAY_SIZE
; i
++) {
920 space_id
[i
] ^= dirty_space_id
[i
];
921 dirty_space_id
[i
] = 0;
924 free_space_ids
+= dirty_space_ids
;
932 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
933 * purged, we can safely reuse the space ids that were released but
934 * not flushed from the tlb.
939 static unsigned long recycle_ndirty
;
940 static unsigned long recycle_dirty_array
[SID_ARRAY_SIZE
];
941 static unsigned int recycle_inuse
;
943 void flush_tlb_all(void)
947 __inc_irq_stat(irq_tlb_count
);
949 spin_lock(&sid_lock
);
950 if (dirty_space_ids
> RECYCLE_THRESHOLD
) {
951 BUG_ON(recycle_inuse
); /* FIXME: Use a semaphore/wait queue here */
952 get_dirty_sids(&recycle_ndirty
,recycle_dirty_array
);
956 spin_unlock(&sid_lock
);
957 on_each_cpu(flush_tlb_all_local
, NULL
, 1);
959 spin_lock(&sid_lock
);
960 recycle_sids(recycle_ndirty
,recycle_dirty_array
);
962 spin_unlock(&sid_lock
);
966 void flush_tlb_all(void)
968 __inc_irq_stat(irq_tlb_count
);
969 spin_lock(&sid_lock
);
970 flush_tlb_all_local(NULL
);
972 spin_unlock(&sid_lock
);
976 #ifdef CONFIG_BLK_DEV_INITRD
977 void free_initrd_mem(unsigned long start
, unsigned long end
)
979 free_reserved_area((void *)start
, (void *)end
, -1, "initrd");