of: MSI: Simplify irqdomain lookup
[linux/fpc-iii.git] / arch / powerpc / platforms / powernv / eeh-powernv.c
blobe1c90725522a1a8bf263ed3b7bb0c25e1317518a
1 /*
2 * The file intends to implement the platform dependent EEH operations on
3 * powernv platform. Actually, the powernv was created in order to fully
4 * hypervisor support.
6 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2013.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
14 #include <linux/atomic.h>
15 #include <linux/debugfs.h>
16 #include <linux/delay.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/interrupt.h>
20 #include <linux/list.h>
21 #include <linux/msi.h>
22 #include <linux/of.h>
23 #include <linux/pci.h>
24 #include <linux/proc_fs.h>
25 #include <linux/rbtree.h>
26 #include <linux/sched.h>
27 #include <linux/seq_file.h>
28 #include <linux/spinlock.h>
30 #include <asm/eeh.h>
31 #include <asm/eeh_event.h>
32 #include <asm/firmware.h>
33 #include <asm/io.h>
34 #include <asm/iommu.h>
35 #include <asm/machdep.h>
36 #include <asm/msi_bitmap.h>
37 #include <asm/opal.h>
38 #include <asm/ppc-pci.h>
40 #include "powernv.h"
41 #include "pci.h"
43 static bool pnv_eeh_nb_init = false;
44 static int eeh_event_irq = -EINVAL;
46 static int pnv_eeh_init(void)
48 struct pci_controller *hose;
49 struct pnv_phb *phb;
51 if (!firmware_has_feature(FW_FEATURE_OPALv3)) {
52 pr_warn("%s: OPALv3 is required !\n",
53 __func__);
54 return -EINVAL;
57 /* Set probe mode */
58 eeh_add_flag(EEH_PROBE_MODE_DEV);
61 * P7IOC blocks PCI config access to frozen PE, but PHB3
62 * doesn't do that. So we have to selectively enable I/O
63 * prior to collecting error log.
65 list_for_each_entry(hose, &hose_list, list_node) {
66 phb = hose->private_data;
68 if (phb->model == PNV_PHB_MODEL_P7IOC)
69 eeh_add_flag(EEH_ENABLE_IO_FOR_LOG);
72 * PE#0 should be regarded as valid by EEH core
73 * if it's not the reserved one. Currently, we
74 * have the reserved PE#255 and PE#127 for PHB3
75 * and P7IOC separately. So we should regard
76 * PE#0 as valid for PHB3 and P7IOC.
78 if (phb->ioda.reserved_pe != 0)
79 eeh_add_flag(EEH_VALID_PE_ZERO);
81 break;
84 return 0;
87 static irqreturn_t pnv_eeh_event(int irq, void *data)
90 * We simply send a special EEH event if EEH has been
91 * enabled. We don't care about EEH events until we've
92 * finished processing the outstanding ones. Event processing
93 * gets unmasked in next_error() if EEH is enabled.
95 disable_irq_nosync(irq);
97 if (eeh_enabled())
98 eeh_send_failure_event(NULL);
100 return IRQ_HANDLED;
103 #ifdef CONFIG_DEBUG_FS
104 static ssize_t pnv_eeh_ei_write(struct file *filp,
105 const char __user *user_buf,
106 size_t count, loff_t *ppos)
108 struct pci_controller *hose = filp->private_data;
109 struct eeh_dev *edev;
110 struct eeh_pe *pe;
111 int pe_no, type, func;
112 unsigned long addr, mask;
113 char buf[50];
114 int ret;
116 if (!eeh_ops || !eeh_ops->err_inject)
117 return -ENXIO;
119 /* Copy over argument buffer */
120 ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count);
121 if (!ret)
122 return -EFAULT;
124 /* Retrieve parameters */
125 ret = sscanf(buf, "%x:%x:%x:%lx:%lx",
126 &pe_no, &type, &func, &addr, &mask);
127 if (ret != 5)
128 return -EINVAL;
130 /* Retrieve PE */
131 edev = kzalloc(sizeof(*edev), GFP_KERNEL);
132 if (!edev)
133 return -ENOMEM;
134 edev->phb = hose;
135 edev->pe_config_addr = pe_no;
136 pe = eeh_pe_get(edev);
137 kfree(edev);
138 if (!pe)
139 return -ENODEV;
141 /* Do error injection */
142 ret = eeh_ops->err_inject(pe, type, func, addr, mask);
143 return ret < 0 ? ret : count;
146 static const struct file_operations pnv_eeh_ei_fops = {
147 .open = simple_open,
148 .llseek = no_llseek,
149 .write = pnv_eeh_ei_write,
152 static int pnv_eeh_dbgfs_set(void *data, int offset, u64 val)
154 struct pci_controller *hose = data;
155 struct pnv_phb *phb = hose->private_data;
157 out_be64(phb->regs + offset, val);
158 return 0;
161 static int pnv_eeh_dbgfs_get(void *data, int offset, u64 *val)
163 struct pci_controller *hose = data;
164 struct pnv_phb *phb = hose->private_data;
166 *val = in_be64(phb->regs + offset);
167 return 0;
170 static int pnv_eeh_outb_dbgfs_set(void *data, u64 val)
172 return pnv_eeh_dbgfs_set(data, 0xD10, val);
175 static int pnv_eeh_outb_dbgfs_get(void *data, u64 *val)
177 return pnv_eeh_dbgfs_get(data, 0xD10, val);
180 static int pnv_eeh_inbA_dbgfs_set(void *data, u64 val)
182 return pnv_eeh_dbgfs_set(data, 0xD90, val);
185 static int pnv_eeh_inbA_dbgfs_get(void *data, u64 *val)
187 return pnv_eeh_dbgfs_get(data, 0xD90, val);
190 static int pnv_eeh_inbB_dbgfs_set(void *data, u64 val)
192 return pnv_eeh_dbgfs_set(data, 0xE10, val);
195 static int pnv_eeh_inbB_dbgfs_get(void *data, u64 *val)
197 return pnv_eeh_dbgfs_get(data, 0xE10, val);
200 DEFINE_SIMPLE_ATTRIBUTE(pnv_eeh_outb_dbgfs_ops, pnv_eeh_outb_dbgfs_get,
201 pnv_eeh_outb_dbgfs_set, "0x%llx\n");
202 DEFINE_SIMPLE_ATTRIBUTE(pnv_eeh_inbA_dbgfs_ops, pnv_eeh_inbA_dbgfs_get,
203 pnv_eeh_inbA_dbgfs_set, "0x%llx\n");
204 DEFINE_SIMPLE_ATTRIBUTE(pnv_eeh_inbB_dbgfs_ops, pnv_eeh_inbB_dbgfs_get,
205 pnv_eeh_inbB_dbgfs_set, "0x%llx\n");
206 #endif /* CONFIG_DEBUG_FS */
209 * pnv_eeh_post_init - EEH platform dependent post initialization
211 * EEH platform dependent post initialization on powernv. When
212 * the function is called, the EEH PEs and devices should have
213 * been built. If the I/O cache staff has been built, EEH is
214 * ready to supply service.
216 static int pnv_eeh_post_init(void)
218 struct pci_controller *hose;
219 struct pnv_phb *phb;
220 int ret = 0;
222 /* Register OPAL event notifier */
223 if (!pnv_eeh_nb_init) {
224 eeh_event_irq = opal_event_request(ilog2(OPAL_EVENT_PCI_ERROR));
225 if (eeh_event_irq < 0) {
226 pr_err("%s: Can't register OPAL event interrupt (%d)\n",
227 __func__, eeh_event_irq);
228 return eeh_event_irq;
231 ret = request_irq(eeh_event_irq, pnv_eeh_event,
232 IRQ_TYPE_LEVEL_HIGH, "opal-eeh", NULL);
233 if (ret < 0) {
234 irq_dispose_mapping(eeh_event_irq);
235 pr_err("%s: Can't request OPAL event interrupt (%d)\n",
236 __func__, eeh_event_irq);
237 return ret;
240 pnv_eeh_nb_init = true;
243 if (!eeh_enabled())
244 disable_irq(eeh_event_irq);
246 list_for_each_entry(hose, &hose_list, list_node) {
247 phb = hose->private_data;
250 * If EEH is enabled, we're going to rely on that.
251 * Otherwise, we restore to conventional mechanism
252 * to clear frozen PE during PCI config access.
254 if (eeh_enabled())
255 phb->flags |= PNV_PHB_FLAG_EEH;
256 else
257 phb->flags &= ~PNV_PHB_FLAG_EEH;
259 /* Create debugfs entries */
260 #ifdef CONFIG_DEBUG_FS
261 if (phb->has_dbgfs || !phb->dbgfs)
262 continue;
264 phb->has_dbgfs = 1;
265 debugfs_create_file("err_injct", 0200,
266 phb->dbgfs, hose,
267 &pnv_eeh_ei_fops);
269 debugfs_create_file("err_injct_outbound", 0600,
270 phb->dbgfs, hose,
271 &pnv_eeh_outb_dbgfs_ops);
272 debugfs_create_file("err_injct_inboundA", 0600,
273 phb->dbgfs, hose,
274 &pnv_eeh_inbA_dbgfs_ops);
275 debugfs_create_file("err_injct_inboundB", 0600,
276 phb->dbgfs, hose,
277 &pnv_eeh_inbB_dbgfs_ops);
278 #endif /* CONFIG_DEBUG_FS */
281 return ret;
284 static int pnv_eeh_find_cap(struct pci_dn *pdn, int cap)
286 int pos = PCI_CAPABILITY_LIST;
287 int cnt = 48; /* Maximal number of capabilities */
288 u32 status, id;
290 if (!pdn)
291 return 0;
293 /* Check if the device supports capabilities */
294 pnv_pci_cfg_read(pdn, PCI_STATUS, 2, &status);
295 if (!(status & PCI_STATUS_CAP_LIST))
296 return 0;
298 while (cnt--) {
299 pnv_pci_cfg_read(pdn, pos, 1, &pos);
300 if (pos < 0x40)
301 break;
303 pos &= ~3;
304 pnv_pci_cfg_read(pdn, pos + PCI_CAP_LIST_ID, 1, &id);
305 if (id == 0xff)
306 break;
308 /* Found */
309 if (id == cap)
310 return pos;
312 /* Next one */
313 pos += PCI_CAP_LIST_NEXT;
316 return 0;
319 static int pnv_eeh_find_ecap(struct pci_dn *pdn, int cap)
321 struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
322 u32 header;
323 int pos = 256, ttl = (4096 - 256) / 8;
325 if (!edev || !edev->pcie_cap)
326 return 0;
327 if (pnv_pci_cfg_read(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
328 return 0;
329 else if (!header)
330 return 0;
332 while (ttl-- > 0) {
333 if (PCI_EXT_CAP_ID(header) == cap && pos)
334 return pos;
336 pos = PCI_EXT_CAP_NEXT(header);
337 if (pos < 256)
338 break;
340 if (pnv_pci_cfg_read(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
341 break;
344 return 0;
348 * pnv_eeh_probe - Do probe on PCI device
349 * @pdn: PCI device node
350 * @data: unused
352 * When EEH module is installed during system boot, all PCI devices
353 * are checked one by one to see if it supports EEH. The function
354 * is introduced for the purpose. By default, EEH has been enabled
355 * on all PCI devices. That's to say, we only need do necessary
356 * initialization on the corresponding eeh device and create PE
357 * accordingly.
359 * It's notable that's unsafe to retrieve the EEH device through
360 * the corresponding PCI device. During the PCI device hotplug, which
361 * was possiblly triggered by EEH core, the binding between EEH device
362 * and the PCI device isn't built yet.
364 static void *pnv_eeh_probe(struct pci_dn *pdn, void *data)
366 struct pci_controller *hose = pdn->phb;
367 struct pnv_phb *phb = hose->private_data;
368 struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
369 uint32_t pcie_flags;
370 int ret;
373 * When probing the root bridge, which doesn't have any
374 * subordinate PCI devices. We don't have OF node for
375 * the root bridge. So it's not reasonable to continue
376 * the probing.
378 if (!edev || edev->pe)
379 return NULL;
381 /* Skip for PCI-ISA bridge */
382 if ((pdn->class_code >> 8) == PCI_CLASS_BRIDGE_ISA)
383 return NULL;
385 /* Initialize eeh device */
386 edev->class_code = pdn->class_code;
387 edev->mode &= 0xFFFFFF00;
388 edev->pcix_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_PCIX);
389 edev->pcie_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_EXP);
390 edev->aer_cap = pnv_eeh_find_ecap(pdn, PCI_EXT_CAP_ID_ERR);
391 if ((edev->class_code >> 8) == PCI_CLASS_BRIDGE_PCI) {
392 edev->mode |= EEH_DEV_BRIDGE;
393 if (edev->pcie_cap) {
394 pnv_pci_cfg_read(pdn, edev->pcie_cap + PCI_EXP_FLAGS,
395 2, &pcie_flags);
396 pcie_flags = (pcie_flags & PCI_EXP_FLAGS_TYPE) >> 4;
397 if (pcie_flags == PCI_EXP_TYPE_ROOT_PORT)
398 edev->mode |= EEH_DEV_ROOT_PORT;
399 else if (pcie_flags == PCI_EXP_TYPE_DOWNSTREAM)
400 edev->mode |= EEH_DEV_DS_PORT;
404 edev->config_addr = (pdn->busno << 8) | (pdn->devfn);
405 edev->pe_config_addr = phb->ioda.pe_rmap[edev->config_addr];
407 /* Create PE */
408 ret = eeh_add_to_parent_pe(edev);
409 if (ret) {
410 pr_warn("%s: Can't add PCI dev %04x:%02x:%02x.%01x to parent PE (%d)\n",
411 __func__, hose->global_number, pdn->busno,
412 PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn), ret);
413 return NULL;
417 * If the PE contains any one of following adapters, the
418 * PCI config space can't be accessed when dumping EEH log.
419 * Otherwise, we will run into fenced PHB caused by shortage
420 * of outbound credits in the adapter. The PCI config access
421 * should be blocked until PE reset. MMIO access is dropped
422 * by hardware certainly. In order to drop PCI config requests,
423 * one more flag (EEH_PE_CFG_RESTRICTED) is introduced, which
424 * will be checked in the backend for PE state retrival. If
425 * the PE becomes frozen for the first time and the flag has
426 * been set for the PE, we will set EEH_PE_CFG_BLOCKED for
427 * that PE to block its config space.
429 * Broadcom Austin 4-ports NICs (14e4:1657)
430 * Broadcom Shiner 4-ports 1G NICs (14e4:168a)
431 * Broadcom Shiner 2-ports 10G NICs (14e4:168e)
433 if ((pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
434 pdn->device_id == 0x1657) ||
435 (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
436 pdn->device_id == 0x168a) ||
437 (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
438 pdn->device_id == 0x168e))
439 edev->pe->state |= EEH_PE_CFG_RESTRICTED;
442 * Cache the PE primary bus, which can't be fetched when
443 * full hotplug is in progress. In that case, all child
444 * PCI devices of the PE are expected to be removed prior
445 * to PE reset.
447 if (!edev->pe->bus)
448 edev->pe->bus = pci_find_bus(hose->global_number,
449 pdn->busno);
452 * Enable EEH explicitly so that we will do EEH check
453 * while accessing I/O stuff
455 eeh_add_flag(EEH_ENABLED);
457 /* Save memory bars */
458 eeh_save_bars(edev);
460 return NULL;
464 * pnv_eeh_set_option - Initialize EEH or MMIO/DMA reenable
465 * @pe: EEH PE
466 * @option: operation to be issued
468 * The function is used to control the EEH functionality globally.
469 * Currently, following options are support according to PAPR:
470 * Enable EEH, Disable EEH, Enable MMIO and Enable DMA
472 static int pnv_eeh_set_option(struct eeh_pe *pe, int option)
474 struct pci_controller *hose = pe->phb;
475 struct pnv_phb *phb = hose->private_data;
476 bool freeze_pe = false;
477 int opt;
478 s64 rc;
480 switch (option) {
481 case EEH_OPT_DISABLE:
482 return -EPERM;
483 case EEH_OPT_ENABLE:
484 return 0;
485 case EEH_OPT_THAW_MMIO:
486 opt = OPAL_EEH_ACTION_CLEAR_FREEZE_MMIO;
487 break;
488 case EEH_OPT_THAW_DMA:
489 opt = OPAL_EEH_ACTION_CLEAR_FREEZE_DMA;
490 break;
491 case EEH_OPT_FREEZE_PE:
492 freeze_pe = true;
493 opt = OPAL_EEH_ACTION_SET_FREEZE_ALL;
494 break;
495 default:
496 pr_warn("%s: Invalid option %d\n", __func__, option);
497 return -EINVAL;
500 /* Freeze master and slave PEs if PHB supports compound PEs */
501 if (freeze_pe) {
502 if (phb->freeze_pe) {
503 phb->freeze_pe(phb, pe->addr);
504 return 0;
507 rc = opal_pci_eeh_freeze_set(phb->opal_id, pe->addr, opt);
508 if (rc != OPAL_SUCCESS) {
509 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
510 __func__, rc, phb->hose->global_number,
511 pe->addr);
512 return -EIO;
515 return 0;
518 /* Unfreeze master and slave PEs if PHB supports */
519 if (phb->unfreeze_pe)
520 return phb->unfreeze_pe(phb, pe->addr, opt);
522 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe->addr, opt);
523 if (rc != OPAL_SUCCESS) {
524 pr_warn("%s: Failure %lld enable %d for PHB#%x-PE#%x\n",
525 __func__, rc, option, phb->hose->global_number,
526 pe->addr);
527 return -EIO;
530 return 0;
534 * pnv_eeh_get_pe_addr - Retrieve PE address
535 * @pe: EEH PE
537 * Retrieve the PE address according to the given tranditional
538 * PCI BDF (Bus/Device/Function) address.
540 static int pnv_eeh_get_pe_addr(struct eeh_pe *pe)
542 return pe->addr;
545 static void pnv_eeh_get_phb_diag(struct eeh_pe *pe)
547 struct pnv_phb *phb = pe->phb->private_data;
548 s64 rc;
550 rc = opal_pci_get_phb_diag_data2(phb->opal_id, pe->data,
551 PNV_PCI_DIAG_BUF_SIZE);
552 if (rc != OPAL_SUCCESS)
553 pr_warn("%s: Failure %lld getting PHB#%x diag-data\n",
554 __func__, rc, pe->phb->global_number);
557 static int pnv_eeh_get_phb_state(struct eeh_pe *pe)
559 struct pnv_phb *phb = pe->phb->private_data;
560 u8 fstate;
561 __be16 pcierr;
562 s64 rc;
563 int result = 0;
565 rc = opal_pci_eeh_freeze_status(phb->opal_id,
566 pe->addr,
567 &fstate,
568 &pcierr,
569 NULL);
570 if (rc != OPAL_SUCCESS) {
571 pr_warn("%s: Failure %lld getting PHB#%x state\n",
572 __func__, rc, phb->hose->global_number);
573 return EEH_STATE_NOT_SUPPORT;
577 * Check PHB state. If the PHB is frozen for the
578 * first time, to dump the PHB diag-data.
580 if (be16_to_cpu(pcierr) != OPAL_EEH_PHB_ERROR) {
581 result = (EEH_STATE_MMIO_ACTIVE |
582 EEH_STATE_DMA_ACTIVE |
583 EEH_STATE_MMIO_ENABLED |
584 EEH_STATE_DMA_ENABLED);
585 } else if (!(pe->state & EEH_PE_ISOLATED)) {
586 eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
587 pnv_eeh_get_phb_diag(pe);
589 if (eeh_has_flag(EEH_EARLY_DUMP_LOG))
590 pnv_pci_dump_phb_diag_data(pe->phb, pe->data);
593 return result;
596 static int pnv_eeh_get_pe_state(struct eeh_pe *pe)
598 struct pnv_phb *phb = pe->phb->private_data;
599 u8 fstate;
600 __be16 pcierr;
601 s64 rc;
602 int result;
605 * We don't clobber hardware frozen state until PE
606 * reset is completed. In order to keep EEH core
607 * moving forward, we have to return operational
608 * state during PE reset.
610 if (pe->state & EEH_PE_RESET) {
611 result = (EEH_STATE_MMIO_ACTIVE |
612 EEH_STATE_DMA_ACTIVE |
613 EEH_STATE_MMIO_ENABLED |
614 EEH_STATE_DMA_ENABLED);
615 return result;
619 * Fetch PE state from hardware. If the PHB
620 * supports compound PE, let it handle that.
622 if (phb->get_pe_state) {
623 fstate = phb->get_pe_state(phb, pe->addr);
624 } else {
625 rc = opal_pci_eeh_freeze_status(phb->opal_id,
626 pe->addr,
627 &fstate,
628 &pcierr,
629 NULL);
630 if (rc != OPAL_SUCCESS) {
631 pr_warn("%s: Failure %lld getting PHB#%x-PE%x state\n",
632 __func__, rc, phb->hose->global_number,
633 pe->addr);
634 return EEH_STATE_NOT_SUPPORT;
638 /* Figure out state */
639 switch (fstate) {
640 case OPAL_EEH_STOPPED_NOT_FROZEN:
641 result = (EEH_STATE_MMIO_ACTIVE |
642 EEH_STATE_DMA_ACTIVE |
643 EEH_STATE_MMIO_ENABLED |
644 EEH_STATE_DMA_ENABLED);
645 break;
646 case OPAL_EEH_STOPPED_MMIO_FREEZE:
647 result = (EEH_STATE_DMA_ACTIVE |
648 EEH_STATE_DMA_ENABLED);
649 break;
650 case OPAL_EEH_STOPPED_DMA_FREEZE:
651 result = (EEH_STATE_MMIO_ACTIVE |
652 EEH_STATE_MMIO_ENABLED);
653 break;
654 case OPAL_EEH_STOPPED_MMIO_DMA_FREEZE:
655 result = 0;
656 break;
657 case OPAL_EEH_STOPPED_RESET:
658 result = EEH_STATE_RESET_ACTIVE;
659 break;
660 case OPAL_EEH_STOPPED_TEMP_UNAVAIL:
661 result = EEH_STATE_UNAVAILABLE;
662 break;
663 case OPAL_EEH_STOPPED_PERM_UNAVAIL:
664 result = EEH_STATE_NOT_SUPPORT;
665 break;
666 default:
667 result = EEH_STATE_NOT_SUPPORT;
668 pr_warn("%s: Invalid PHB#%x-PE#%x state %x\n",
669 __func__, phb->hose->global_number,
670 pe->addr, fstate);
674 * If PHB supports compound PE, to freeze all
675 * slave PEs for consistency.
677 * If the PE is switching to frozen state for the
678 * first time, to dump the PHB diag-data.
680 if (!(result & EEH_STATE_NOT_SUPPORT) &&
681 !(result & EEH_STATE_UNAVAILABLE) &&
682 !(result & EEH_STATE_MMIO_ACTIVE) &&
683 !(result & EEH_STATE_DMA_ACTIVE) &&
684 !(pe->state & EEH_PE_ISOLATED)) {
685 if (phb->freeze_pe)
686 phb->freeze_pe(phb, pe->addr);
688 eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
689 pnv_eeh_get_phb_diag(pe);
691 if (eeh_has_flag(EEH_EARLY_DUMP_LOG))
692 pnv_pci_dump_phb_diag_data(pe->phb, pe->data);
695 return result;
699 * pnv_eeh_get_state - Retrieve PE state
700 * @pe: EEH PE
701 * @delay: delay while PE state is temporarily unavailable
703 * Retrieve the state of the specified PE. For IODA-compitable
704 * platform, it should be retrieved from IODA table. Therefore,
705 * we prefer passing down to hardware implementation to handle
706 * it.
708 static int pnv_eeh_get_state(struct eeh_pe *pe, int *delay)
710 int ret;
712 if (pe->type & EEH_PE_PHB)
713 ret = pnv_eeh_get_phb_state(pe);
714 else
715 ret = pnv_eeh_get_pe_state(pe);
717 if (!delay)
718 return ret;
721 * If the PE state is temporarily unavailable,
722 * to inform the EEH core delay for default
723 * period (1 second)
725 *delay = 0;
726 if (ret & EEH_STATE_UNAVAILABLE)
727 *delay = 1000;
729 return ret;
732 static s64 pnv_eeh_phb_poll(struct pnv_phb *phb)
734 s64 rc = OPAL_HARDWARE;
736 while (1) {
737 rc = opal_pci_poll(phb->opal_id);
738 if (rc <= 0)
739 break;
741 if (system_state < SYSTEM_RUNNING)
742 udelay(1000 * rc);
743 else
744 msleep(rc);
747 return rc;
750 int pnv_eeh_phb_reset(struct pci_controller *hose, int option)
752 struct pnv_phb *phb = hose->private_data;
753 s64 rc = OPAL_HARDWARE;
755 pr_debug("%s: Reset PHB#%x, option=%d\n",
756 __func__, hose->global_number, option);
758 /* Issue PHB complete reset request */
759 if (option == EEH_RESET_FUNDAMENTAL ||
760 option == EEH_RESET_HOT)
761 rc = opal_pci_reset(phb->opal_id,
762 OPAL_RESET_PHB_COMPLETE,
763 OPAL_ASSERT_RESET);
764 else if (option == EEH_RESET_DEACTIVATE)
765 rc = opal_pci_reset(phb->opal_id,
766 OPAL_RESET_PHB_COMPLETE,
767 OPAL_DEASSERT_RESET);
768 if (rc < 0)
769 goto out;
772 * Poll state of the PHB until the request is done
773 * successfully. The PHB reset is usually PHB complete
774 * reset followed by hot reset on root bus. So we also
775 * need the PCI bus settlement delay.
777 rc = pnv_eeh_phb_poll(phb);
778 if (option == EEH_RESET_DEACTIVATE) {
779 if (system_state < SYSTEM_RUNNING)
780 udelay(1000 * EEH_PE_RST_SETTLE_TIME);
781 else
782 msleep(EEH_PE_RST_SETTLE_TIME);
784 out:
785 if (rc != OPAL_SUCCESS)
786 return -EIO;
788 return 0;
791 static int pnv_eeh_root_reset(struct pci_controller *hose, int option)
793 struct pnv_phb *phb = hose->private_data;
794 s64 rc = OPAL_HARDWARE;
796 pr_debug("%s: Reset PHB#%x, option=%d\n",
797 __func__, hose->global_number, option);
800 * During the reset deassert time, we needn't care
801 * the reset scope because the firmware does nothing
802 * for fundamental or hot reset during deassert phase.
804 if (option == EEH_RESET_FUNDAMENTAL)
805 rc = opal_pci_reset(phb->opal_id,
806 OPAL_RESET_PCI_FUNDAMENTAL,
807 OPAL_ASSERT_RESET);
808 else if (option == EEH_RESET_HOT)
809 rc = opal_pci_reset(phb->opal_id,
810 OPAL_RESET_PCI_HOT,
811 OPAL_ASSERT_RESET);
812 else if (option == EEH_RESET_DEACTIVATE)
813 rc = opal_pci_reset(phb->opal_id,
814 OPAL_RESET_PCI_HOT,
815 OPAL_DEASSERT_RESET);
816 if (rc < 0)
817 goto out;
819 /* Poll state of the PHB until the request is done */
820 rc = pnv_eeh_phb_poll(phb);
821 if (option == EEH_RESET_DEACTIVATE)
822 msleep(EEH_PE_RST_SETTLE_TIME);
823 out:
824 if (rc != OPAL_SUCCESS)
825 return -EIO;
827 return 0;
830 static int pnv_eeh_bridge_reset(struct pci_dev *dev, int option)
832 struct pci_dn *pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
833 struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
834 int aer = edev ? edev->aer_cap : 0;
835 u32 ctrl;
837 pr_debug("%s: Reset PCI bus %04x:%02x with option %d\n",
838 __func__, pci_domain_nr(dev->bus),
839 dev->bus->number, option);
841 switch (option) {
842 case EEH_RESET_FUNDAMENTAL:
843 case EEH_RESET_HOT:
844 /* Don't report linkDown event */
845 if (aer) {
846 eeh_ops->read_config(pdn, aer + PCI_ERR_UNCOR_MASK,
847 4, &ctrl);
848 ctrl |= PCI_ERR_UNC_SURPDN;
849 eeh_ops->write_config(pdn, aer + PCI_ERR_UNCOR_MASK,
850 4, ctrl);
853 eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &ctrl);
854 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
855 eeh_ops->write_config(pdn, PCI_BRIDGE_CONTROL, 2, ctrl);
857 msleep(EEH_PE_RST_HOLD_TIME);
858 break;
859 case EEH_RESET_DEACTIVATE:
860 eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &ctrl);
861 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
862 eeh_ops->write_config(pdn, PCI_BRIDGE_CONTROL, 2, ctrl);
864 msleep(EEH_PE_RST_SETTLE_TIME);
866 /* Continue reporting linkDown event */
867 if (aer) {
868 eeh_ops->read_config(pdn, aer + PCI_ERR_UNCOR_MASK,
869 4, &ctrl);
870 ctrl &= ~PCI_ERR_UNC_SURPDN;
871 eeh_ops->write_config(pdn, aer + PCI_ERR_UNCOR_MASK,
872 4, ctrl);
875 break;
878 return 0;
881 void pnv_pci_reset_secondary_bus(struct pci_dev *dev)
883 struct pci_controller *hose;
885 if (pci_is_root_bus(dev->bus)) {
886 hose = pci_bus_to_host(dev->bus);
887 pnv_eeh_root_reset(hose, EEH_RESET_HOT);
888 pnv_eeh_root_reset(hose, EEH_RESET_DEACTIVATE);
889 } else {
890 pnv_eeh_bridge_reset(dev, EEH_RESET_HOT);
891 pnv_eeh_bridge_reset(dev, EEH_RESET_DEACTIVATE);
896 * pnv_eeh_reset - Reset the specified PE
897 * @pe: EEH PE
898 * @option: reset option
900 * Do reset on the indicated PE. For PCI bus sensitive PE,
901 * we need to reset the parent p2p bridge. The PHB has to
902 * be reinitialized if the p2p bridge is root bridge. For
903 * PCI device sensitive PE, we will try to reset the device
904 * through FLR. For now, we don't have OPAL APIs to do HARD
905 * reset yet, so all reset would be SOFT (HOT) reset.
907 static int pnv_eeh_reset(struct eeh_pe *pe, int option)
909 struct pci_controller *hose = pe->phb;
910 struct pci_bus *bus;
911 int ret;
914 * For PHB reset, we always have complete reset. For those PEs whose
915 * primary bus derived from root complex (root bus) or root port
916 * (usually bus#1), we apply hot or fundamental reset on the root port.
917 * For other PEs, we always have hot reset on the PE primary bus.
919 * Here, we have different design to pHyp, which always clear the
920 * frozen state during PE reset. However, the good idea here from
921 * benh is to keep frozen state before we get PE reset done completely
922 * (until BAR restore). With the frozen state, HW drops illegal IO
923 * or MMIO access, which can incur recrusive frozen PE during PE
924 * reset. The side effect is that EEH core has to clear the frozen
925 * state explicitly after BAR restore.
927 if (pe->type & EEH_PE_PHB) {
928 ret = pnv_eeh_phb_reset(hose, option);
929 } else {
930 struct pnv_phb *phb;
931 s64 rc;
934 * The frozen PE might be caused by PAPR error injection
935 * registers, which are expected to be cleared after hitting
936 * frozen PE as stated in the hardware spec. Unfortunately,
937 * that's not true on P7IOC. So we have to clear it manually
938 * to avoid recursive EEH errors during recovery.
940 phb = hose->private_data;
941 if (phb->model == PNV_PHB_MODEL_P7IOC &&
942 (option == EEH_RESET_HOT ||
943 option == EEH_RESET_FUNDAMENTAL)) {
944 rc = opal_pci_reset(phb->opal_id,
945 OPAL_RESET_PHB_ERROR,
946 OPAL_ASSERT_RESET);
947 if (rc != OPAL_SUCCESS) {
948 pr_warn("%s: Failure %lld clearing "
949 "error injection registers\n",
950 __func__, rc);
951 return -EIO;
955 bus = eeh_pe_bus_get(pe);
956 if (pci_is_root_bus(bus) ||
957 pci_is_root_bus(bus->parent))
958 ret = pnv_eeh_root_reset(hose, option);
959 else
960 ret = pnv_eeh_bridge_reset(bus->self, option);
963 return ret;
967 * pnv_eeh_wait_state - Wait for PE state
968 * @pe: EEH PE
969 * @max_wait: maximal period in millisecond
971 * Wait for the state of associated PE. It might take some time
972 * to retrieve the PE's state.
974 static int pnv_eeh_wait_state(struct eeh_pe *pe, int max_wait)
976 int ret;
977 int mwait;
979 while (1) {
980 ret = pnv_eeh_get_state(pe, &mwait);
983 * If the PE's state is temporarily unavailable,
984 * we have to wait for the specified time. Otherwise,
985 * the PE's state will be returned immediately.
987 if (ret != EEH_STATE_UNAVAILABLE)
988 return ret;
990 if (max_wait <= 0) {
991 pr_warn("%s: Timeout getting PE#%x's state (%d)\n",
992 __func__, pe->addr, max_wait);
993 return EEH_STATE_NOT_SUPPORT;
996 max_wait -= mwait;
997 msleep(mwait);
1000 return EEH_STATE_NOT_SUPPORT;
1004 * pnv_eeh_get_log - Retrieve error log
1005 * @pe: EEH PE
1006 * @severity: temporary or permanent error log
1007 * @drv_log: driver log to be combined with retrieved error log
1008 * @len: length of driver log
1010 * Retrieve the temporary or permanent error from the PE.
1012 static int pnv_eeh_get_log(struct eeh_pe *pe, int severity,
1013 char *drv_log, unsigned long len)
1015 if (!eeh_has_flag(EEH_EARLY_DUMP_LOG))
1016 pnv_pci_dump_phb_diag_data(pe->phb, pe->data);
1018 return 0;
1022 * pnv_eeh_configure_bridge - Configure PCI bridges in the indicated PE
1023 * @pe: EEH PE
1025 * The function will be called to reconfigure the bridges included
1026 * in the specified PE so that the mulfunctional PE would be recovered
1027 * again.
1029 static int pnv_eeh_configure_bridge(struct eeh_pe *pe)
1031 return 0;
1035 * pnv_pe_err_inject - Inject specified error to the indicated PE
1036 * @pe: the indicated PE
1037 * @type: error type
1038 * @func: specific error type
1039 * @addr: address
1040 * @mask: address mask
1042 * The routine is called to inject specified error, which is
1043 * determined by @type and @func, to the indicated PE for
1044 * testing purpose.
1046 static int pnv_eeh_err_inject(struct eeh_pe *pe, int type, int func,
1047 unsigned long addr, unsigned long mask)
1049 struct pci_controller *hose = pe->phb;
1050 struct pnv_phb *phb = hose->private_data;
1051 s64 rc;
1053 if (type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR &&
1054 type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR64) {
1055 pr_warn("%s: Invalid error type %d\n",
1056 __func__, type);
1057 return -ERANGE;
1060 if (func < OPAL_ERR_INJECT_FUNC_IOA_LD_MEM_ADDR ||
1061 func > OPAL_ERR_INJECT_FUNC_IOA_DMA_WR_TARGET) {
1062 pr_warn("%s: Invalid error function %d\n",
1063 __func__, func);
1064 return -ERANGE;
1067 /* Firmware supports error injection ? */
1068 if (!opal_check_token(OPAL_PCI_ERR_INJECT)) {
1069 pr_warn("%s: Firmware doesn't support error injection\n",
1070 __func__);
1071 return -ENXIO;
1074 /* Do error injection */
1075 rc = opal_pci_err_inject(phb->opal_id, pe->addr,
1076 type, func, addr, mask);
1077 if (rc != OPAL_SUCCESS) {
1078 pr_warn("%s: Failure %lld injecting error "
1079 "%d-%d to PHB#%x-PE#%x\n",
1080 __func__, rc, type, func,
1081 hose->global_number, pe->addr);
1082 return -EIO;
1085 return 0;
1088 static inline bool pnv_eeh_cfg_blocked(struct pci_dn *pdn)
1090 struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1092 if (!edev || !edev->pe)
1093 return false;
1095 if (edev->pe->state & EEH_PE_CFG_BLOCKED)
1096 return true;
1098 return false;
1101 static int pnv_eeh_read_config(struct pci_dn *pdn,
1102 int where, int size, u32 *val)
1104 if (!pdn)
1105 return PCIBIOS_DEVICE_NOT_FOUND;
1107 if (pnv_eeh_cfg_blocked(pdn)) {
1108 *val = 0xFFFFFFFF;
1109 return PCIBIOS_SET_FAILED;
1112 return pnv_pci_cfg_read(pdn, where, size, val);
1115 static int pnv_eeh_write_config(struct pci_dn *pdn,
1116 int where, int size, u32 val)
1118 if (!pdn)
1119 return PCIBIOS_DEVICE_NOT_FOUND;
1121 if (pnv_eeh_cfg_blocked(pdn))
1122 return PCIBIOS_SET_FAILED;
1124 return pnv_pci_cfg_write(pdn, where, size, val);
1127 static void pnv_eeh_dump_hub_diag_common(struct OpalIoP7IOCErrorData *data)
1129 /* GEM */
1130 if (data->gemXfir || data->gemRfir ||
1131 data->gemRirqfir || data->gemMask || data->gemRwof)
1132 pr_info(" GEM: %016llx %016llx %016llx %016llx %016llx\n",
1133 be64_to_cpu(data->gemXfir),
1134 be64_to_cpu(data->gemRfir),
1135 be64_to_cpu(data->gemRirqfir),
1136 be64_to_cpu(data->gemMask),
1137 be64_to_cpu(data->gemRwof));
1139 /* LEM */
1140 if (data->lemFir || data->lemErrMask ||
1141 data->lemAction0 || data->lemAction1 || data->lemWof)
1142 pr_info(" LEM: %016llx %016llx %016llx %016llx %016llx\n",
1143 be64_to_cpu(data->lemFir),
1144 be64_to_cpu(data->lemErrMask),
1145 be64_to_cpu(data->lemAction0),
1146 be64_to_cpu(data->lemAction1),
1147 be64_to_cpu(data->lemWof));
1150 static void pnv_eeh_get_and_dump_hub_diag(struct pci_controller *hose)
1152 struct pnv_phb *phb = hose->private_data;
1153 struct OpalIoP7IOCErrorData *data = &phb->diag.hub_diag;
1154 long rc;
1156 rc = opal_pci_get_hub_diag_data(phb->hub_id, data, sizeof(*data));
1157 if (rc != OPAL_SUCCESS) {
1158 pr_warn("%s: Failed to get HUB#%llx diag-data (%ld)\n",
1159 __func__, phb->hub_id, rc);
1160 return;
1163 switch (data->type) {
1164 case OPAL_P7IOC_DIAG_TYPE_RGC:
1165 pr_info("P7IOC diag-data for RGC\n\n");
1166 pnv_eeh_dump_hub_diag_common(data);
1167 if (data->rgc.rgcStatus || data->rgc.rgcLdcp)
1168 pr_info(" RGC: %016llx %016llx\n",
1169 be64_to_cpu(data->rgc.rgcStatus),
1170 be64_to_cpu(data->rgc.rgcLdcp));
1171 break;
1172 case OPAL_P7IOC_DIAG_TYPE_BI:
1173 pr_info("P7IOC diag-data for BI %s\n\n",
1174 data->bi.biDownbound ? "Downbound" : "Upbound");
1175 pnv_eeh_dump_hub_diag_common(data);
1176 if (data->bi.biLdcp0 || data->bi.biLdcp1 ||
1177 data->bi.biLdcp2 || data->bi.biFenceStatus)
1178 pr_info(" BI: %016llx %016llx %016llx %016llx\n",
1179 be64_to_cpu(data->bi.biLdcp0),
1180 be64_to_cpu(data->bi.biLdcp1),
1181 be64_to_cpu(data->bi.biLdcp2),
1182 be64_to_cpu(data->bi.biFenceStatus));
1183 break;
1184 case OPAL_P7IOC_DIAG_TYPE_CI:
1185 pr_info("P7IOC diag-data for CI Port %d\n\n",
1186 data->ci.ciPort);
1187 pnv_eeh_dump_hub_diag_common(data);
1188 if (data->ci.ciPortStatus || data->ci.ciPortLdcp)
1189 pr_info(" CI: %016llx %016llx\n",
1190 be64_to_cpu(data->ci.ciPortStatus),
1191 be64_to_cpu(data->ci.ciPortLdcp));
1192 break;
1193 case OPAL_P7IOC_DIAG_TYPE_MISC:
1194 pr_info("P7IOC diag-data for MISC\n\n");
1195 pnv_eeh_dump_hub_diag_common(data);
1196 break;
1197 case OPAL_P7IOC_DIAG_TYPE_I2C:
1198 pr_info("P7IOC diag-data for I2C\n\n");
1199 pnv_eeh_dump_hub_diag_common(data);
1200 break;
1201 default:
1202 pr_warn("%s: Invalid type of HUB#%llx diag-data (%d)\n",
1203 __func__, phb->hub_id, data->type);
1207 static int pnv_eeh_get_pe(struct pci_controller *hose,
1208 u16 pe_no, struct eeh_pe **pe)
1210 struct pnv_phb *phb = hose->private_data;
1211 struct pnv_ioda_pe *pnv_pe;
1212 struct eeh_pe *dev_pe;
1213 struct eeh_dev edev;
1216 * If PHB supports compound PE, to fetch
1217 * the master PE because slave PE is invisible
1218 * to EEH core.
1220 pnv_pe = &phb->ioda.pe_array[pe_no];
1221 if (pnv_pe->flags & PNV_IODA_PE_SLAVE) {
1222 pnv_pe = pnv_pe->master;
1223 WARN_ON(!pnv_pe ||
1224 !(pnv_pe->flags & PNV_IODA_PE_MASTER));
1225 pe_no = pnv_pe->pe_number;
1228 /* Find the PE according to PE# */
1229 memset(&edev, 0, sizeof(struct eeh_dev));
1230 edev.phb = hose;
1231 edev.pe_config_addr = pe_no;
1232 dev_pe = eeh_pe_get(&edev);
1233 if (!dev_pe)
1234 return -EEXIST;
1236 /* Freeze the (compound) PE */
1237 *pe = dev_pe;
1238 if (!(dev_pe->state & EEH_PE_ISOLATED))
1239 phb->freeze_pe(phb, pe_no);
1242 * At this point, we're sure the (compound) PE should
1243 * have been frozen. However, we still need poke until
1244 * hitting the frozen PE on top level.
1246 dev_pe = dev_pe->parent;
1247 while (dev_pe && !(dev_pe->type & EEH_PE_PHB)) {
1248 int ret;
1249 int active_flags = (EEH_STATE_MMIO_ACTIVE |
1250 EEH_STATE_DMA_ACTIVE);
1252 ret = eeh_ops->get_state(dev_pe, NULL);
1253 if (ret <= 0 || (ret & active_flags) == active_flags) {
1254 dev_pe = dev_pe->parent;
1255 continue;
1258 /* Frozen parent PE */
1259 *pe = dev_pe;
1260 if (!(dev_pe->state & EEH_PE_ISOLATED))
1261 phb->freeze_pe(phb, dev_pe->addr);
1263 /* Next one */
1264 dev_pe = dev_pe->parent;
1267 return 0;
1271 * pnv_eeh_next_error - Retrieve next EEH error to handle
1272 * @pe: Affected PE
1274 * The function is expected to be called by EEH core while it gets
1275 * special EEH event (without binding PE). The function calls to
1276 * OPAL APIs for next error to handle. The informational error is
1277 * handled internally by platform. However, the dead IOC, dead PHB,
1278 * fenced PHB and frozen PE should be handled by EEH core eventually.
1280 static int pnv_eeh_next_error(struct eeh_pe **pe)
1282 struct pci_controller *hose;
1283 struct pnv_phb *phb;
1284 struct eeh_pe *phb_pe, *parent_pe;
1285 __be64 frozen_pe_no;
1286 __be16 err_type, severity;
1287 int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
1288 long rc;
1289 int state, ret = EEH_NEXT_ERR_NONE;
1292 * While running here, it's safe to purge the event queue. The
1293 * event should still be masked.
1295 eeh_remove_event(NULL, false);
1297 list_for_each_entry(hose, &hose_list, list_node) {
1299 * If the subordinate PCI buses of the PHB has been
1300 * removed or is exactly under error recovery, we
1301 * needn't take care of it any more.
1303 phb = hose->private_data;
1304 phb_pe = eeh_phb_pe_get(hose);
1305 if (!phb_pe || (phb_pe->state & EEH_PE_ISOLATED))
1306 continue;
1308 rc = opal_pci_next_error(phb->opal_id,
1309 &frozen_pe_no, &err_type, &severity);
1310 if (rc != OPAL_SUCCESS) {
1311 pr_devel("%s: Invalid return value on "
1312 "PHB#%x (0x%lx) from opal_pci_next_error",
1313 __func__, hose->global_number, rc);
1314 continue;
1317 /* If the PHB doesn't have error, stop processing */
1318 if (be16_to_cpu(err_type) == OPAL_EEH_NO_ERROR ||
1319 be16_to_cpu(severity) == OPAL_EEH_SEV_NO_ERROR) {
1320 pr_devel("%s: No error found on PHB#%x\n",
1321 __func__, hose->global_number);
1322 continue;
1326 * Processing the error. We're expecting the error with
1327 * highest priority reported upon multiple errors on the
1328 * specific PHB.
1330 pr_devel("%s: Error (%d, %d, %llu) on PHB#%x\n",
1331 __func__, be16_to_cpu(err_type),
1332 be16_to_cpu(severity), be64_to_cpu(frozen_pe_no),
1333 hose->global_number);
1334 switch (be16_to_cpu(err_type)) {
1335 case OPAL_EEH_IOC_ERROR:
1336 if (be16_to_cpu(severity) == OPAL_EEH_SEV_IOC_DEAD) {
1337 pr_err("EEH: dead IOC detected\n");
1338 ret = EEH_NEXT_ERR_DEAD_IOC;
1339 } else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) {
1340 pr_info("EEH: IOC informative error "
1341 "detected\n");
1342 pnv_eeh_get_and_dump_hub_diag(hose);
1343 ret = EEH_NEXT_ERR_NONE;
1346 break;
1347 case OPAL_EEH_PHB_ERROR:
1348 if (be16_to_cpu(severity) == OPAL_EEH_SEV_PHB_DEAD) {
1349 *pe = phb_pe;
1350 pr_err("EEH: dead PHB#%x detected, "
1351 "location: %s\n",
1352 hose->global_number,
1353 eeh_pe_loc_get(phb_pe));
1354 ret = EEH_NEXT_ERR_DEAD_PHB;
1355 } else if (be16_to_cpu(severity) ==
1356 OPAL_EEH_SEV_PHB_FENCED) {
1357 *pe = phb_pe;
1358 pr_err("EEH: Fenced PHB#%x detected, "
1359 "location: %s\n",
1360 hose->global_number,
1361 eeh_pe_loc_get(phb_pe));
1362 ret = EEH_NEXT_ERR_FENCED_PHB;
1363 } else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) {
1364 pr_info("EEH: PHB#%x informative error "
1365 "detected, location: %s\n",
1366 hose->global_number,
1367 eeh_pe_loc_get(phb_pe));
1368 pnv_eeh_get_phb_diag(phb_pe);
1369 pnv_pci_dump_phb_diag_data(hose, phb_pe->data);
1370 ret = EEH_NEXT_ERR_NONE;
1373 break;
1374 case OPAL_EEH_PE_ERROR:
1376 * If we can't find the corresponding PE, we
1377 * just try to unfreeze.
1379 if (pnv_eeh_get_pe(hose,
1380 be64_to_cpu(frozen_pe_no), pe)) {
1381 pr_info("EEH: Clear non-existing PHB#%x-PE#%llx\n",
1382 hose->global_number, be64_to_cpu(frozen_pe_no));
1383 pr_info("EEH: PHB location: %s\n",
1384 eeh_pe_loc_get(phb_pe));
1386 /* Dump PHB diag-data */
1387 rc = opal_pci_get_phb_diag_data2(phb->opal_id,
1388 phb->diag.blob, PNV_PCI_DIAG_BUF_SIZE);
1389 if (rc == OPAL_SUCCESS)
1390 pnv_pci_dump_phb_diag_data(hose,
1391 phb->diag.blob);
1393 /* Try best to clear it */
1394 opal_pci_eeh_freeze_clear(phb->opal_id,
1395 frozen_pe_no,
1396 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
1397 ret = EEH_NEXT_ERR_NONE;
1398 } else if ((*pe)->state & EEH_PE_ISOLATED ||
1399 eeh_pe_passed(*pe)) {
1400 ret = EEH_NEXT_ERR_NONE;
1401 } else {
1402 pr_err("EEH: Frozen PE#%x "
1403 "on PHB#%x detected\n",
1404 (*pe)->addr,
1405 (*pe)->phb->global_number);
1406 pr_err("EEH: PE location: %s, "
1407 "PHB location: %s\n",
1408 eeh_pe_loc_get(*pe),
1409 eeh_pe_loc_get(phb_pe));
1410 ret = EEH_NEXT_ERR_FROZEN_PE;
1413 break;
1414 default:
1415 pr_warn("%s: Unexpected error type %d\n",
1416 __func__, be16_to_cpu(err_type));
1420 * EEH core will try recover from fenced PHB or
1421 * frozen PE. In the time for frozen PE, EEH core
1422 * enable IO path for that before collecting logs,
1423 * but it ruins the site. So we have to dump the
1424 * log in advance here.
1426 if ((ret == EEH_NEXT_ERR_FROZEN_PE ||
1427 ret == EEH_NEXT_ERR_FENCED_PHB) &&
1428 !((*pe)->state & EEH_PE_ISOLATED)) {
1429 eeh_pe_state_mark(*pe, EEH_PE_ISOLATED);
1430 pnv_eeh_get_phb_diag(*pe);
1432 if (eeh_has_flag(EEH_EARLY_DUMP_LOG))
1433 pnv_pci_dump_phb_diag_data((*pe)->phb,
1434 (*pe)->data);
1438 * We probably have the frozen parent PE out there and
1439 * we need have to handle frozen parent PE firstly.
1441 if (ret == EEH_NEXT_ERR_FROZEN_PE) {
1442 parent_pe = (*pe)->parent;
1443 while (parent_pe) {
1444 /* Hit the ceiling ? */
1445 if (parent_pe->type & EEH_PE_PHB)
1446 break;
1448 /* Frozen parent PE ? */
1449 state = eeh_ops->get_state(parent_pe, NULL);
1450 if (state > 0 &&
1451 (state & active_flags) != active_flags)
1452 *pe = parent_pe;
1454 /* Next parent level */
1455 parent_pe = parent_pe->parent;
1458 /* We possibly migrate to another PE */
1459 eeh_pe_state_mark(*pe, EEH_PE_ISOLATED);
1463 * If we have no errors on the specific PHB or only
1464 * informative error there, we continue poking it.
1465 * Otherwise, we need actions to be taken by upper
1466 * layer.
1468 if (ret > EEH_NEXT_ERR_INF)
1469 break;
1472 /* Unmask the event */
1473 if (ret == EEH_NEXT_ERR_NONE && eeh_enabled())
1474 enable_irq(eeh_event_irq);
1476 return ret;
1479 static int pnv_eeh_restore_config(struct pci_dn *pdn)
1481 struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1482 struct pnv_phb *phb;
1483 s64 ret;
1485 if (!edev)
1486 return -EEXIST;
1488 phb = edev->phb->private_data;
1489 ret = opal_pci_reinit(phb->opal_id,
1490 OPAL_REINIT_PCI_DEV, edev->config_addr);
1491 if (ret) {
1492 pr_warn("%s: Can't reinit PCI dev 0x%x (%lld)\n",
1493 __func__, edev->config_addr, ret);
1494 return -EIO;
1497 return 0;
1500 static struct eeh_ops pnv_eeh_ops = {
1501 .name = "powernv",
1502 .init = pnv_eeh_init,
1503 .post_init = pnv_eeh_post_init,
1504 .probe = pnv_eeh_probe,
1505 .set_option = pnv_eeh_set_option,
1506 .get_pe_addr = pnv_eeh_get_pe_addr,
1507 .get_state = pnv_eeh_get_state,
1508 .reset = pnv_eeh_reset,
1509 .wait_state = pnv_eeh_wait_state,
1510 .get_log = pnv_eeh_get_log,
1511 .configure_bridge = pnv_eeh_configure_bridge,
1512 .err_inject = pnv_eeh_err_inject,
1513 .read_config = pnv_eeh_read_config,
1514 .write_config = pnv_eeh_write_config,
1515 .next_error = pnv_eeh_next_error,
1516 .restore_config = pnv_eeh_restore_config
1520 * eeh_powernv_init - Register platform dependent EEH operations
1522 * EEH initialization on powernv platform. This function should be
1523 * called before any EEH related functions.
1525 static int __init eeh_powernv_init(void)
1527 int ret = -EINVAL;
1529 eeh_set_pe_aux_size(PNV_PCI_DIAG_BUF_SIZE);
1530 ret = eeh_ops_register(&pnv_eeh_ops);
1531 if (!ret)
1532 pr_info("EEH: PowerNV platform initialized\n");
1533 else
1534 pr_info("EEH: Failed to initialize PowerNV platform (%d)\n", ret);
1536 return ret;
1538 machine_early_initcall(powernv, eeh_powernv_init);