of: MSI: Simplify irqdomain lookup
[linux/fpc-iii.git] / arch / powerpc / platforms / powernv / pci-ioda.c
blob414fd1a00fda85b243dcb2839a4929b09be4a52c
1 /*
2 * Support PCI/PCIe on PowerNV platforms
4 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
12 #undef DEBUG
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
26 #include <linux/iommu.h>
27 #include <linux/rculist.h>
28 #include <linux/sizes.h>
30 #include <asm/sections.h>
31 #include <asm/io.h>
32 #include <asm/prom.h>
33 #include <asm/pci-bridge.h>
34 #include <asm/machdep.h>
35 #include <asm/msi_bitmap.h>
36 #include <asm/ppc-pci.h>
37 #include <asm/opal.h>
38 #include <asm/iommu.h>
39 #include <asm/tce.h>
40 #include <asm/xics.h>
41 #include <asm/debug.h>
42 #include <asm/firmware.h>
43 #include <asm/pnv-pci.h>
44 #include <asm/mmzone.h>
46 #include <misc/cxl-base.h>
48 #include "powernv.h"
49 #include "pci.h"
51 /* 256M DMA window, 4K TCE pages, 8 bytes TCE */
52 #define TCE32_TABLE_SIZE ((0x10000000 / 0x1000) * 8)
54 #define POWERNV_IOMMU_DEFAULT_LEVELS 1
55 #define POWERNV_IOMMU_MAX_LEVELS 5
57 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
59 static void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
60 const char *fmt, ...)
62 struct va_format vaf;
63 va_list args;
64 char pfix[32];
66 va_start(args, fmt);
68 vaf.fmt = fmt;
69 vaf.va = &args;
71 if (pe->flags & PNV_IODA_PE_DEV)
72 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
73 else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
74 sprintf(pfix, "%04x:%02x ",
75 pci_domain_nr(pe->pbus), pe->pbus->number);
76 #ifdef CONFIG_PCI_IOV
77 else if (pe->flags & PNV_IODA_PE_VF)
78 sprintf(pfix, "%04x:%02x:%2x.%d",
79 pci_domain_nr(pe->parent_dev->bus),
80 (pe->rid & 0xff00) >> 8,
81 PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
82 #endif /* CONFIG_PCI_IOV*/
84 printk("%spci %s: [PE# %.3d] %pV",
85 level, pfix, pe->pe_number, &vaf);
87 va_end(args);
90 #define pe_err(pe, fmt, ...) \
91 pe_level_printk(pe, KERN_ERR, fmt, ##__VA_ARGS__)
92 #define pe_warn(pe, fmt, ...) \
93 pe_level_printk(pe, KERN_WARNING, fmt, ##__VA_ARGS__)
94 #define pe_info(pe, fmt, ...) \
95 pe_level_printk(pe, KERN_INFO, fmt, ##__VA_ARGS__)
97 static bool pnv_iommu_bypass_disabled __read_mostly;
99 static int __init iommu_setup(char *str)
101 if (!str)
102 return -EINVAL;
104 while (*str) {
105 if (!strncmp(str, "nobypass", 8)) {
106 pnv_iommu_bypass_disabled = true;
107 pr_info("PowerNV: IOMMU bypass window disabled.\n");
108 break;
110 str += strcspn(str, ",");
111 if (*str == ',')
112 str++;
115 return 0;
117 early_param("iommu", iommu_setup);
120 * stdcix is only supposed to be used in hypervisor real mode as per
121 * the architecture spec
123 static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
125 __asm__ __volatile__("stdcix %0,0,%1"
126 : : "r" (val), "r" (paddr) : "memory");
129 static inline bool pnv_pci_is_mem_pref_64(unsigned long flags)
131 return ((flags & (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH)) ==
132 (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH));
135 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
137 if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe)) {
138 pr_warn("%s: Invalid PE %d on PHB#%x\n",
139 __func__, pe_no, phb->hose->global_number);
140 return;
143 if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
144 pr_debug("%s: PE %d was reserved on PHB#%x\n",
145 __func__, pe_no, phb->hose->global_number);
147 phb->ioda.pe_array[pe_no].phb = phb;
148 phb->ioda.pe_array[pe_no].pe_number = pe_no;
151 static int pnv_ioda_alloc_pe(struct pnv_phb *phb)
153 unsigned long pe;
155 do {
156 pe = find_next_zero_bit(phb->ioda.pe_alloc,
157 phb->ioda.total_pe, 0);
158 if (pe >= phb->ioda.total_pe)
159 return IODA_INVALID_PE;
160 } while(test_and_set_bit(pe, phb->ioda.pe_alloc));
162 phb->ioda.pe_array[pe].phb = phb;
163 phb->ioda.pe_array[pe].pe_number = pe;
164 return pe;
167 static void pnv_ioda_free_pe(struct pnv_phb *phb, int pe)
169 WARN_ON(phb->ioda.pe_array[pe].pdev);
171 memset(&phb->ioda.pe_array[pe], 0, sizeof(struct pnv_ioda_pe));
172 clear_bit(pe, phb->ioda.pe_alloc);
175 /* The default M64 BAR is shared by all PEs */
176 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
178 const char *desc;
179 struct resource *r;
180 s64 rc;
182 /* Configure the default M64 BAR */
183 rc = opal_pci_set_phb_mem_window(phb->opal_id,
184 OPAL_M64_WINDOW_TYPE,
185 phb->ioda.m64_bar_idx,
186 phb->ioda.m64_base,
187 0, /* unused */
188 phb->ioda.m64_size);
189 if (rc != OPAL_SUCCESS) {
190 desc = "configuring";
191 goto fail;
194 /* Enable the default M64 BAR */
195 rc = opal_pci_phb_mmio_enable(phb->opal_id,
196 OPAL_M64_WINDOW_TYPE,
197 phb->ioda.m64_bar_idx,
198 OPAL_ENABLE_M64_SPLIT);
199 if (rc != OPAL_SUCCESS) {
200 desc = "enabling";
201 goto fail;
204 /* Mark the M64 BAR assigned */
205 set_bit(phb->ioda.m64_bar_idx, &phb->ioda.m64_bar_alloc);
208 * Strip off the segment used by the reserved PE, which is
209 * expected to be 0 or last one of PE capabicity.
211 r = &phb->hose->mem_resources[1];
212 if (phb->ioda.reserved_pe == 0)
213 r->start += phb->ioda.m64_segsize;
214 else if (phb->ioda.reserved_pe == (phb->ioda.total_pe - 1))
215 r->end -= phb->ioda.m64_segsize;
216 else
217 pr_warn(" Cannot strip M64 segment for reserved PE#%d\n",
218 phb->ioda.reserved_pe);
220 return 0;
222 fail:
223 pr_warn(" Failure %lld %s M64 BAR#%d\n",
224 rc, desc, phb->ioda.m64_bar_idx);
225 opal_pci_phb_mmio_enable(phb->opal_id,
226 OPAL_M64_WINDOW_TYPE,
227 phb->ioda.m64_bar_idx,
228 OPAL_DISABLE_M64);
229 return -EIO;
232 static void pnv_ioda2_reserve_dev_m64_pe(struct pci_dev *pdev,
233 unsigned long *pe_bitmap)
235 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
236 struct pnv_phb *phb = hose->private_data;
237 struct resource *r;
238 resource_size_t base, sgsz, start, end;
239 int segno, i;
241 base = phb->ioda.m64_base;
242 sgsz = phb->ioda.m64_segsize;
243 for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
244 r = &pdev->resource[i];
245 if (!r->parent || !pnv_pci_is_mem_pref_64(r->flags))
246 continue;
248 start = _ALIGN_DOWN(r->start - base, sgsz);
249 end = _ALIGN_UP(r->end - base, sgsz);
250 for (segno = start / sgsz; segno < end / sgsz; segno++) {
251 if (pe_bitmap)
252 set_bit(segno, pe_bitmap);
253 else
254 pnv_ioda_reserve_pe(phb, segno);
259 static void pnv_ioda2_reserve_m64_pe(struct pci_bus *bus,
260 unsigned long *pe_bitmap,
261 bool all)
263 struct pci_dev *pdev;
265 list_for_each_entry(pdev, &bus->devices, bus_list) {
266 pnv_ioda2_reserve_dev_m64_pe(pdev, pe_bitmap);
268 if (all && pdev->subordinate)
269 pnv_ioda2_reserve_m64_pe(pdev->subordinate,
270 pe_bitmap, all);
274 static int pnv_ioda2_pick_m64_pe(struct pci_bus *bus, bool all)
276 struct pci_controller *hose = pci_bus_to_host(bus);
277 struct pnv_phb *phb = hose->private_data;
278 struct pnv_ioda_pe *master_pe, *pe;
279 unsigned long size, *pe_alloc;
280 int i;
282 /* Root bus shouldn't use M64 */
283 if (pci_is_root_bus(bus))
284 return IODA_INVALID_PE;
286 /* Allocate bitmap */
287 size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
288 pe_alloc = kzalloc(size, GFP_KERNEL);
289 if (!pe_alloc) {
290 pr_warn("%s: Out of memory !\n",
291 __func__);
292 return IODA_INVALID_PE;
295 /* Figure out reserved PE numbers by the PE */
296 pnv_ioda2_reserve_m64_pe(bus, pe_alloc, all);
299 * the current bus might not own M64 window and that's all
300 * contributed by its child buses. For the case, we needn't
301 * pick M64 dependent PE#.
303 if (bitmap_empty(pe_alloc, phb->ioda.total_pe)) {
304 kfree(pe_alloc);
305 return IODA_INVALID_PE;
309 * Figure out the master PE and put all slave PEs to master
310 * PE's list to form compound PE.
312 master_pe = NULL;
313 i = -1;
314 while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe, i + 1)) <
315 phb->ioda.total_pe) {
316 pe = &phb->ioda.pe_array[i];
318 if (!master_pe) {
319 pe->flags |= PNV_IODA_PE_MASTER;
320 INIT_LIST_HEAD(&pe->slaves);
321 master_pe = pe;
322 } else {
323 pe->flags |= PNV_IODA_PE_SLAVE;
324 pe->master = master_pe;
325 list_add_tail(&pe->list, &master_pe->slaves);
329 kfree(pe_alloc);
330 return master_pe->pe_number;
333 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
335 struct pci_controller *hose = phb->hose;
336 struct device_node *dn = hose->dn;
337 struct resource *res;
338 const u32 *r;
339 u64 pci_addr;
341 /* FIXME: Support M64 for P7IOC */
342 if (phb->type != PNV_PHB_IODA2) {
343 pr_info(" Not support M64 window\n");
344 return;
347 if (!firmware_has_feature(FW_FEATURE_OPALv3)) {
348 pr_info(" Firmware too old to support M64 window\n");
349 return;
352 r = of_get_property(dn, "ibm,opal-m64-window", NULL);
353 if (!r) {
354 pr_info(" No <ibm,opal-m64-window> on %s\n",
355 dn->full_name);
356 return;
359 res = &hose->mem_resources[1];
360 res->start = of_translate_address(dn, r + 2);
361 res->end = res->start + of_read_number(r + 4, 2) - 1;
362 res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
363 pci_addr = of_read_number(r, 2);
364 hose->mem_offset[1] = res->start - pci_addr;
366 phb->ioda.m64_size = resource_size(res);
367 phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe;
368 phb->ioda.m64_base = pci_addr;
370 pr_info(" MEM64 0x%016llx..0x%016llx -> 0x%016llx\n",
371 res->start, res->end, pci_addr);
373 /* Use last M64 BAR to cover M64 window */
374 phb->ioda.m64_bar_idx = 15;
375 phb->init_m64 = pnv_ioda2_init_m64;
376 phb->reserve_m64_pe = pnv_ioda2_reserve_m64_pe;
377 phb->pick_m64_pe = pnv_ioda2_pick_m64_pe;
380 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
382 struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
383 struct pnv_ioda_pe *slave;
384 s64 rc;
386 /* Fetch master PE */
387 if (pe->flags & PNV_IODA_PE_SLAVE) {
388 pe = pe->master;
389 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
390 return;
392 pe_no = pe->pe_number;
395 /* Freeze master PE */
396 rc = opal_pci_eeh_freeze_set(phb->opal_id,
397 pe_no,
398 OPAL_EEH_ACTION_SET_FREEZE_ALL);
399 if (rc != OPAL_SUCCESS) {
400 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
401 __func__, rc, phb->hose->global_number, pe_no);
402 return;
405 /* Freeze slave PEs */
406 if (!(pe->flags & PNV_IODA_PE_MASTER))
407 return;
409 list_for_each_entry(slave, &pe->slaves, list) {
410 rc = opal_pci_eeh_freeze_set(phb->opal_id,
411 slave->pe_number,
412 OPAL_EEH_ACTION_SET_FREEZE_ALL);
413 if (rc != OPAL_SUCCESS)
414 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
415 __func__, rc, phb->hose->global_number,
416 slave->pe_number);
420 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
422 struct pnv_ioda_pe *pe, *slave;
423 s64 rc;
425 /* Find master PE */
426 pe = &phb->ioda.pe_array[pe_no];
427 if (pe->flags & PNV_IODA_PE_SLAVE) {
428 pe = pe->master;
429 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
430 pe_no = pe->pe_number;
433 /* Clear frozen state for master PE */
434 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
435 if (rc != OPAL_SUCCESS) {
436 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
437 __func__, rc, opt, phb->hose->global_number, pe_no);
438 return -EIO;
441 if (!(pe->flags & PNV_IODA_PE_MASTER))
442 return 0;
444 /* Clear frozen state for slave PEs */
445 list_for_each_entry(slave, &pe->slaves, list) {
446 rc = opal_pci_eeh_freeze_clear(phb->opal_id,
447 slave->pe_number,
448 opt);
449 if (rc != OPAL_SUCCESS) {
450 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
451 __func__, rc, opt, phb->hose->global_number,
452 slave->pe_number);
453 return -EIO;
457 return 0;
460 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
462 struct pnv_ioda_pe *slave, *pe;
463 u8 fstate, state;
464 __be16 pcierr;
465 s64 rc;
467 /* Sanity check on PE number */
468 if (pe_no < 0 || pe_no >= phb->ioda.total_pe)
469 return OPAL_EEH_STOPPED_PERM_UNAVAIL;
472 * Fetch the master PE and the PE instance might be
473 * not initialized yet.
475 pe = &phb->ioda.pe_array[pe_no];
476 if (pe->flags & PNV_IODA_PE_SLAVE) {
477 pe = pe->master;
478 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
479 pe_no = pe->pe_number;
482 /* Check the master PE */
483 rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
484 &state, &pcierr, NULL);
485 if (rc != OPAL_SUCCESS) {
486 pr_warn("%s: Failure %lld getting "
487 "PHB#%x-PE#%x state\n",
488 __func__, rc,
489 phb->hose->global_number, pe_no);
490 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
493 /* Check the slave PE */
494 if (!(pe->flags & PNV_IODA_PE_MASTER))
495 return state;
497 list_for_each_entry(slave, &pe->slaves, list) {
498 rc = opal_pci_eeh_freeze_status(phb->opal_id,
499 slave->pe_number,
500 &fstate,
501 &pcierr,
502 NULL);
503 if (rc != OPAL_SUCCESS) {
504 pr_warn("%s: Failure %lld getting "
505 "PHB#%x-PE#%x state\n",
506 __func__, rc,
507 phb->hose->global_number, slave->pe_number);
508 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
512 * Override the result based on the ascending
513 * priority.
515 if (fstate > state)
516 state = fstate;
519 return state;
522 /* Currently those 2 are only used when MSIs are enabled, this will change
523 * but in the meantime, we need to protect them to avoid warnings
525 #ifdef CONFIG_PCI_MSI
526 static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
528 struct pci_controller *hose = pci_bus_to_host(dev->bus);
529 struct pnv_phb *phb = hose->private_data;
530 struct pci_dn *pdn = pci_get_pdn(dev);
532 if (!pdn)
533 return NULL;
534 if (pdn->pe_number == IODA_INVALID_PE)
535 return NULL;
536 return &phb->ioda.pe_array[pdn->pe_number];
538 #endif /* CONFIG_PCI_MSI */
540 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
541 struct pnv_ioda_pe *parent,
542 struct pnv_ioda_pe *child,
543 bool is_add)
545 const char *desc = is_add ? "adding" : "removing";
546 uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
547 OPAL_REMOVE_PE_FROM_DOMAIN;
548 struct pnv_ioda_pe *slave;
549 long rc;
551 /* Parent PE affects child PE */
552 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
553 child->pe_number, op);
554 if (rc != OPAL_SUCCESS) {
555 pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
556 rc, desc);
557 return -ENXIO;
560 if (!(child->flags & PNV_IODA_PE_MASTER))
561 return 0;
563 /* Compound case: parent PE affects slave PEs */
564 list_for_each_entry(slave, &child->slaves, list) {
565 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
566 slave->pe_number, op);
567 if (rc != OPAL_SUCCESS) {
568 pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
569 rc, desc);
570 return -ENXIO;
574 return 0;
577 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
578 struct pnv_ioda_pe *pe,
579 bool is_add)
581 struct pnv_ioda_pe *slave;
582 struct pci_dev *pdev = NULL;
583 int ret;
586 * Clear PE frozen state. If it's master PE, we need
587 * clear slave PE frozen state as well.
589 if (is_add) {
590 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
591 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
592 if (pe->flags & PNV_IODA_PE_MASTER) {
593 list_for_each_entry(slave, &pe->slaves, list)
594 opal_pci_eeh_freeze_clear(phb->opal_id,
595 slave->pe_number,
596 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
601 * Associate PE in PELT. We need add the PE into the
602 * corresponding PELT-V as well. Otherwise, the error
603 * originated from the PE might contribute to other
604 * PEs.
606 ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
607 if (ret)
608 return ret;
610 /* For compound PEs, any one affects all of them */
611 if (pe->flags & PNV_IODA_PE_MASTER) {
612 list_for_each_entry(slave, &pe->slaves, list) {
613 ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
614 if (ret)
615 return ret;
619 if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
620 pdev = pe->pbus->self;
621 else if (pe->flags & PNV_IODA_PE_DEV)
622 pdev = pe->pdev->bus->self;
623 #ifdef CONFIG_PCI_IOV
624 else if (pe->flags & PNV_IODA_PE_VF)
625 pdev = pe->parent_dev;
626 #endif /* CONFIG_PCI_IOV */
627 while (pdev) {
628 struct pci_dn *pdn = pci_get_pdn(pdev);
629 struct pnv_ioda_pe *parent;
631 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
632 parent = &phb->ioda.pe_array[pdn->pe_number];
633 ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
634 if (ret)
635 return ret;
638 pdev = pdev->bus->self;
641 return 0;
644 #ifdef CONFIG_PCI_IOV
645 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
647 struct pci_dev *parent;
648 uint8_t bcomp, dcomp, fcomp;
649 int64_t rc;
650 long rid_end, rid;
652 /* Currently, we just deconfigure VF PE. Bus PE will always there.*/
653 if (pe->pbus) {
654 int count;
656 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
657 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
658 parent = pe->pbus->self;
659 if (pe->flags & PNV_IODA_PE_BUS_ALL)
660 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
661 else
662 count = 1;
664 switch(count) {
665 case 1: bcomp = OpalPciBusAll; break;
666 case 2: bcomp = OpalPciBus7Bits; break;
667 case 4: bcomp = OpalPciBus6Bits; break;
668 case 8: bcomp = OpalPciBus5Bits; break;
669 case 16: bcomp = OpalPciBus4Bits; break;
670 case 32: bcomp = OpalPciBus3Bits; break;
671 default:
672 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
673 count);
674 /* Do an exact match only */
675 bcomp = OpalPciBusAll;
677 rid_end = pe->rid + (count << 8);
678 } else {
679 if (pe->flags & PNV_IODA_PE_VF)
680 parent = pe->parent_dev;
681 else
682 parent = pe->pdev->bus->self;
683 bcomp = OpalPciBusAll;
684 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
685 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
686 rid_end = pe->rid + 1;
689 /* Clear the reverse map */
690 for (rid = pe->rid; rid < rid_end; rid++)
691 phb->ioda.pe_rmap[rid] = 0;
693 /* Release from all parents PELT-V */
694 while (parent) {
695 struct pci_dn *pdn = pci_get_pdn(parent);
696 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
697 rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
698 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
699 /* XXX What to do in case of error ? */
701 parent = parent->bus->self;
704 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
705 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
707 /* Disassociate PE in PELT */
708 rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
709 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
710 if (rc)
711 pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
712 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
713 bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
714 if (rc)
715 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
717 pe->pbus = NULL;
718 pe->pdev = NULL;
719 pe->parent_dev = NULL;
721 return 0;
723 #endif /* CONFIG_PCI_IOV */
725 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
727 struct pci_dev *parent;
728 uint8_t bcomp, dcomp, fcomp;
729 long rc, rid_end, rid;
731 /* Bus validation ? */
732 if (pe->pbus) {
733 int count;
735 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
736 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
737 parent = pe->pbus->self;
738 if (pe->flags & PNV_IODA_PE_BUS_ALL)
739 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
740 else
741 count = 1;
743 switch(count) {
744 case 1: bcomp = OpalPciBusAll; break;
745 case 2: bcomp = OpalPciBus7Bits; break;
746 case 4: bcomp = OpalPciBus6Bits; break;
747 case 8: bcomp = OpalPciBus5Bits; break;
748 case 16: bcomp = OpalPciBus4Bits; break;
749 case 32: bcomp = OpalPciBus3Bits; break;
750 default:
751 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
752 count);
753 /* Do an exact match only */
754 bcomp = OpalPciBusAll;
756 rid_end = pe->rid + (count << 8);
757 } else {
758 #ifdef CONFIG_PCI_IOV
759 if (pe->flags & PNV_IODA_PE_VF)
760 parent = pe->parent_dev;
761 else
762 #endif /* CONFIG_PCI_IOV */
763 parent = pe->pdev->bus->self;
764 bcomp = OpalPciBusAll;
765 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
766 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
767 rid_end = pe->rid + 1;
771 * Associate PE in PELT. We need add the PE into the
772 * corresponding PELT-V as well. Otherwise, the error
773 * originated from the PE might contribute to other
774 * PEs.
776 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
777 bcomp, dcomp, fcomp, OPAL_MAP_PE);
778 if (rc) {
779 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
780 return -ENXIO;
783 /* Configure PELTV */
784 pnv_ioda_set_peltv(phb, pe, true);
786 /* Setup reverse map */
787 for (rid = pe->rid; rid < rid_end; rid++)
788 phb->ioda.pe_rmap[rid] = pe->pe_number;
790 /* Setup one MVTs on IODA1 */
791 if (phb->type != PNV_PHB_IODA1) {
792 pe->mve_number = 0;
793 goto out;
796 pe->mve_number = pe->pe_number;
797 rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
798 if (rc != OPAL_SUCCESS) {
799 pe_err(pe, "OPAL error %ld setting up MVE %d\n",
800 rc, pe->mve_number);
801 pe->mve_number = -1;
802 } else {
803 rc = opal_pci_set_mve_enable(phb->opal_id,
804 pe->mve_number, OPAL_ENABLE_MVE);
805 if (rc) {
806 pe_err(pe, "OPAL error %ld enabling MVE %d\n",
807 rc, pe->mve_number);
808 pe->mve_number = -1;
812 out:
813 return 0;
816 static void pnv_ioda_link_pe_by_weight(struct pnv_phb *phb,
817 struct pnv_ioda_pe *pe)
819 struct pnv_ioda_pe *lpe;
821 list_for_each_entry(lpe, &phb->ioda.pe_dma_list, dma_link) {
822 if (lpe->dma_weight < pe->dma_weight) {
823 list_add_tail(&pe->dma_link, &lpe->dma_link);
824 return;
827 list_add_tail(&pe->dma_link, &phb->ioda.pe_dma_list);
830 static unsigned int pnv_ioda_dma_weight(struct pci_dev *dev)
832 /* This is quite simplistic. The "base" weight of a device
833 * is 10. 0 means no DMA is to be accounted for it.
836 /* If it's a bridge, no DMA */
837 if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
838 return 0;
840 /* Reduce the weight of slow USB controllers */
841 if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
842 dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
843 dev->class == PCI_CLASS_SERIAL_USB_EHCI)
844 return 3;
846 /* Increase the weight of RAID (includes Obsidian) */
847 if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
848 return 15;
850 /* Default */
851 return 10;
854 #ifdef CONFIG_PCI_IOV
855 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
857 struct pci_dn *pdn = pci_get_pdn(dev);
858 int i;
859 struct resource *res, res2;
860 resource_size_t size;
861 u16 num_vfs;
863 if (!dev->is_physfn)
864 return -EINVAL;
867 * "offset" is in VFs. The M64 windows are sized so that when they
868 * are segmented, each segment is the same size as the IOV BAR.
869 * Each segment is in a separate PE, and the high order bits of the
870 * address are the PE number. Therefore, each VF's BAR is in a
871 * separate PE, and changing the IOV BAR start address changes the
872 * range of PEs the VFs are in.
874 num_vfs = pdn->num_vfs;
875 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
876 res = &dev->resource[i + PCI_IOV_RESOURCES];
877 if (!res->flags || !res->parent)
878 continue;
880 if (!pnv_pci_is_mem_pref_64(res->flags))
881 continue;
884 * The actual IOV BAR range is determined by the start address
885 * and the actual size for num_vfs VFs BAR. This check is to
886 * make sure that after shifting, the range will not overlap
887 * with another device.
889 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
890 res2.flags = res->flags;
891 res2.start = res->start + (size * offset);
892 res2.end = res2.start + (size * num_vfs) - 1;
894 if (res2.end > res->end) {
895 dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
896 i, &res2, res, num_vfs, offset);
897 return -EBUSY;
902 * After doing so, there would be a "hole" in the /proc/iomem when
903 * offset is a positive value. It looks like the device return some
904 * mmio back to the system, which actually no one could use it.
906 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
907 res = &dev->resource[i + PCI_IOV_RESOURCES];
908 if (!res->flags || !res->parent)
909 continue;
911 if (!pnv_pci_is_mem_pref_64(res->flags))
912 continue;
914 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
915 res2 = *res;
916 res->start += size * offset;
918 dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
919 i, &res2, res, (offset > 0) ? "En" : "Dis",
920 num_vfs, offset);
921 pci_update_resource(dev, i + PCI_IOV_RESOURCES);
923 return 0;
925 #endif /* CONFIG_PCI_IOV */
927 #if 0
928 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
930 struct pci_controller *hose = pci_bus_to_host(dev->bus);
931 struct pnv_phb *phb = hose->private_data;
932 struct pci_dn *pdn = pci_get_pdn(dev);
933 struct pnv_ioda_pe *pe;
934 int pe_num;
936 if (!pdn) {
937 pr_err("%s: Device tree node not associated properly\n",
938 pci_name(dev));
939 return NULL;
941 if (pdn->pe_number != IODA_INVALID_PE)
942 return NULL;
944 /* PE#0 has been pre-set */
945 if (dev->bus->number == 0)
946 pe_num = 0;
947 else
948 pe_num = pnv_ioda_alloc_pe(phb);
949 if (pe_num == IODA_INVALID_PE) {
950 pr_warning("%s: Not enough PE# available, disabling device\n",
951 pci_name(dev));
952 return NULL;
955 /* NOTE: We get only one ref to the pci_dev for the pdn, not for the
956 * pointer in the PE data structure, both should be destroyed at the
957 * same time. However, this needs to be looked at more closely again
958 * once we actually start removing things (Hotplug, SR-IOV, ...)
960 * At some point we want to remove the PDN completely anyways
962 pe = &phb->ioda.pe_array[pe_num];
963 pci_dev_get(dev);
964 pdn->pcidev = dev;
965 pdn->pe_number = pe_num;
966 pe->pdev = dev;
967 pe->pbus = NULL;
968 pe->tce32_seg = -1;
969 pe->mve_number = -1;
970 pe->rid = dev->bus->number << 8 | pdn->devfn;
972 pe_info(pe, "Associated device to PE\n");
974 if (pnv_ioda_configure_pe(phb, pe)) {
975 /* XXX What do we do here ? */
976 if (pe_num)
977 pnv_ioda_free_pe(phb, pe_num);
978 pdn->pe_number = IODA_INVALID_PE;
979 pe->pdev = NULL;
980 pci_dev_put(dev);
981 return NULL;
984 /* Assign a DMA weight to the device */
985 pe->dma_weight = pnv_ioda_dma_weight(dev);
986 if (pe->dma_weight != 0) {
987 phb->ioda.dma_weight += pe->dma_weight;
988 phb->ioda.dma_pe_count++;
991 /* Link the PE */
992 pnv_ioda_link_pe_by_weight(phb, pe);
994 return pe;
996 #endif /* Useful for SRIOV case */
998 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1000 struct pci_dev *dev;
1002 list_for_each_entry(dev, &bus->devices, bus_list) {
1003 struct pci_dn *pdn = pci_get_pdn(dev);
1005 if (pdn == NULL) {
1006 pr_warn("%s: No device node associated with device !\n",
1007 pci_name(dev));
1008 continue;
1010 pdn->pe_number = pe->pe_number;
1011 pe->dma_weight += pnv_ioda_dma_weight(dev);
1012 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1013 pnv_ioda_setup_same_PE(dev->subordinate, pe);
1018 * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1019 * single PCI bus. Another one that contains the primary PCI bus and its
1020 * subordinate PCI devices and buses. The second type of PE is normally
1021 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1023 static void pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1025 struct pci_controller *hose = pci_bus_to_host(bus);
1026 struct pnv_phb *phb = hose->private_data;
1027 struct pnv_ioda_pe *pe;
1028 int pe_num = IODA_INVALID_PE;
1030 /* Check if PE is determined by M64 */
1031 if (phb->pick_m64_pe)
1032 pe_num = phb->pick_m64_pe(bus, all);
1034 /* The PE number isn't pinned by M64 */
1035 if (pe_num == IODA_INVALID_PE)
1036 pe_num = pnv_ioda_alloc_pe(phb);
1038 if (pe_num == IODA_INVALID_PE) {
1039 pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1040 __func__, pci_domain_nr(bus), bus->number);
1041 return;
1044 pe = &phb->ioda.pe_array[pe_num];
1045 pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1046 pe->pbus = bus;
1047 pe->pdev = NULL;
1048 pe->tce32_seg = -1;
1049 pe->mve_number = -1;
1050 pe->rid = bus->busn_res.start << 8;
1051 pe->dma_weight = 0;
1053 if (all)
1054 pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
1055 bus->busn_res.start, bus->busn_res.end, pe_num);
1056 else
1057 pe_info(pe, "Secondary bus %d associated with PE#%d\n",
1058 bus->busn_res.start, pe_num);
1060 if (pnv_ioda_configure_pe(phb, pe)) {
1061 /* XXX What do we do here ? */
1062 if (pe_num)
1063 pnv_ioda_free_pe(phb, pe_num);
1064 pe->pbus = NULL;
1065 return;
1068 /* Associate it with all child devices */
1069 pnv_ioda_setup_same_PE(bus, pe);
1071 /* Put PE to the list */
1072 list_add_tail(&pe->list, &phb->ioda.pe_list);
1074 /* Account for one DMA PE if at least one DMA capable device exist
1075 * below the bridge
1077 if (pe->dma_weight != 0) {
1078 phb->ioda.dma_weight += pe->dma_weight;
1079 phb->ioda.dma_pe_count++;
1082 /* Link the PE */
1083 pnv_ioda_link_pe_by_weight(phb, pe);
1086 static void pnv_ioda_setup_PEs(struct pci_bus *bus)
1088 struct pci_dev *dev;
1090 pnv_ioda_setup_bus_PE(bus, false);
1092 list_for_each_entry(dev, &bus->devices, bus_list) {
1093 if (dev->subordinate) {
1094 if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
1095 pnv_ioda_setup_bus_PE(dev->subordinate, true);
1096 else
1097 pnv_ioda_setup_PEs(dev->subordinate);
1103 * Configure PEs so that the downstream PCI buses and devices
1104 * could have their associated PE#. Unfortunately, we didn't
1105 * figure out the way to identify the PLX bridge yet. So we
1106 * simply put the PCI bus and the subordinate behind the root
1107 * port to PE# here. The game rule here is expected to be changed
1108 * as soon as we can detected PLX bridge correctly.
1110 static void pnv_pci_ioda_setup_PEs(void)
1112 struct pci_controller *hose, *tmp;
1113 struct pnv_phb *phb;
1115 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1116 phb = hose->private_data;
1118 /* M64 layout might affect PE allocation */
1119 if (phb->reserve_m64_pe)
1120 phb->reserve_m64_pe(hose->bus, NULL, true);
1122 pnv_ioda_setup_PEs(hose->bus);
1126 #ifdef CONFIG_PCI_IOV
1127 static int pnv_pci_vf_release_m64(struct pci_dev *pdev)
1129 struct pci_bus *bus;
1130 struct pci_controller *hose;
1131 struct pnv_phb *phb;
1132 struct pci_dn *pdn;
1133 int i, j;
1135 bus = pdev->bus;
1136 hose = pci_bus_to_host(bus);
1137 phb = hose->private_data;
1138 pdn = pci_get_pdn(pdev);
1140 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1141 for (j = 0; j < M64_PER_IOV; j++) {
1142 if (pdn->m64_wins[i][j] == IODA_INVALID_M64)
1143 continue;
1144 opal_pci_phb_mmio_enable(phb->opal_id,
1145 OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 0);
1146 clear_bit(pdn->m64_wins[i][j], &phb->ioda.m64_bar_alloc);
1147 pdn->m64_wins[i][j] = IODA_INVALID_M64;
1150 return 0;
1153 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1155 struct pci_bus *bus;
1156 struct pci_controller *hose;
1157 struct pnv_phb *phb;
1158 struct pci_dn *pdn;
1159 unsigned int win;
1160 struct resource *res;
1161 int i, j;
1162 int64_t rc;
1163 int total_vfs;
1164 resource_size_t size, start;
1165 int pe_num;
1166 int vf_groups;
1167 int vf_per_group;
1169 bus = pdev->bus;
1170 hose = pci_bus_to_host(bus);
1171 phb = hose->private_data;
1172 pdn = pci_get_pdn(pdev);
1173 total_vfs = pci_sriov_get_totalvfs(pdev);
1175 /* Initialize the m64_wins to IODA_INVALID_M64 */
1176 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1177 for (j = 0; j < M64_PER_IOV; j++)
1178 pdn->m64_wins[i][j] = IODA_INVALID_M64;
1180 if (pdn->m64_per_iov == M64_PER_IOV) {
1181 vf_groups = (num_vfs <= M64_PER_IOV) ? num_vfs: M64_PER_IOV;
1182 vf_per_group = (num_vfs <= M64_PER_IOV)? 1:
1183 roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
1184 } else {
1185 vf_groups = 1;
1186 vf_per_group = 1;
1189 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1190 res = &pdev->resource[i + PCI_IOV_RESOURCES];
1191 if (!res->flags || !res->parent)
1192 continue;
1194 if (!pnv_pci_is_mem_pref_64(res->flags))
1195 continue;
1197 for (j = 0; j < vf_groups; j++) {
1198 do {
1199 win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1200 phb->ioda.m64_bar_idx + 1, 0);
1202 if (win >= phb->ioda.m64_bar_idx + 1)
1203 goto m64_failed;
1204 } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1206 pdn->m64_wins[i][j] = win;
1208 if (pdn->m64_per_iov == M64_PER_IOV) {
1209 size = pci_iov_resource_size(pdev,
1210 PCI_IOV_RESOURCES + i);
1211 size = size * vf_per_group;
1212 start = res->start + size * j;
1213 } else {
1214 size = resource_size(res);
1215 start = res->start;
1218 /* Map the M64 here */
1219 if (pdn->m64_per_iov == M64_PER_IOV) {
1220 pe_num = pdn->offset + j;
1221 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1222 pe_num, OPAL_M64_WINDOW_TYPE,
1223 pdn->m64_wins[i][j], 0);
1226 rc = opal_pci_set_phb_mem_window(phb->opal_id,
1227 OPAL_M64_WINDOW_TYPE,
1228 pdn->m64_wins[i][j],
1229 start,
1230 0, /* unused */
1231 size);
1234 if (rc != OPAL_SUCCESS) {
1235 dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1236 win, rc);
1237 goto m64_failed;
1240 if (pdn->m64_per_iov == M64_PER_IOV)
1241 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1242 OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 2);
1243 else
1244 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1245 OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 1);
1247 if (rc != OPAL_SUCCESS) {
1248 dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1249 win, rc);
1250 goto m64_failed;
1254 return 0;
1256 m64_failed:
1257 pnv_pci_vf_release_m64(pdev);
1258 return -EBUSY;
1261 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1262 int num);
1263 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
1265 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1267 struct iommu_table *tbl;
1268 int64_t rc;
1270 tbl = pe->table_group.tables[0];
1271 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1272 if (rc)
1273 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1275 pnv_pci_ioda2_set_bypass(pe, false);
1276 if (pe->table_group.group) {
1277 iommu_group_put(pe->table_group.group);
1278 BUG_ON(pe->table_group.group);
1280 pnv_pci_ioda2_table_free_pages(tbl);
1281 iommu_free_table(tbl, of_node_full_name(dev->dev.of_node));
1284 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1286 struct pci_bus *bus;
1287 struct pci_controller *hose;
1288 struct pnv_phb *phb;
1289 struct pnv_ioda_pe *pe, *pe_n;
1290 struct pci_dn *pdn;
1291 u16 vf_index;
1292 int64_t rc;
1294 bus = pdev->bus;
1295 hose = pci_bus_to_host(bus);
1296 phb = hose->private_data;
1297 pdn = pci_get_pdn(pdev);
1299 if (!pdev->is_physfn)
1300 return;
1302 if (pdn->m64_per_iov == M64_PER_IOV && num_vfs > M64_PER_IOV) {
1303 int vf_group;
1304 int vf_per_group;
1305 int vf_index1;
1307 vf_per_group = roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
1309 for (vf_group = 0; vf_group < M64_PER_IOV; vf_group++)
1310 for (vf_index = vf_group * vf_per_group;
1311 vf_index < (vf_group + 1) * vf_per_group &&
1312 vf_index < num_vfs;
1313 vf_index++)
1314 for (vf_index1 = vf_group * vf_per_group;
1315 vf_index1 < (vf_group + 1) * vf_per_group &&
1316 vf_index1 < num_vfs;
1317 vf_index1++){
1319 rc = opal_pci_set_peltv(phb->opal_id,
1320 pdn->offset + vf_index,
1321 pdn->offset + vf_index1,
1322 OPAL_REMOVE_PE_FROM_DOMAIN);
1324 if (rc)
1325 dev_warn(&pdev->dev, "%s: Failed to unlink same group PE#%d(%lld)\n",
1326 __func__,
1327 pdn->offset + vf_index1, rc);
1331 list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1332 if (pe->parent_dev != pdev)
1333 continue;
1335 pnv_pci_ioda2_release_dma_pe(pdev, pe);
1337 /* Remove from list */
1338 mutex_lock(&phb->ioda.pe_list_mutex);
1339 list_del(&pe->list);
1340 mutex_unlock(&phb->ioda.pe_list_mutex);
1342 pnv_ioda_deconfigure_pe(phb, pe);
1344 pnv_ioda_free_pe(phb, pe->pe_number);
1348 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1350 struct pci_bus *bus;
1351 struct pci_controller *hose;
1352 struct pnv_phb *phb;
1353 struct pci_dn *pdn;
1354 struct pci_sriov *iov;
1355 u16 num_vfs;
1357 bus = pdev->bus;
1358 hose = pci_bus_to_host(bus);
1359 phb = hose->private_data;
1360 pdn = pci_get_pdn(pdev);
1361 iov = pdev->sriov;
1362 num_vfs = pdn->num_vfs;
1364 /* Release VF PEs */
1365 pnv_ioda_release_vf_PE(pdev, num_vfs);
1367 if (phb->type == PNV_PHB_IODA2) {
1368 if (pdn->m64_per_iov == 1)
1369 pnv_pci_vf_resource_shift(pdev, -pdn->offset);
1371 /* Release M64 windows */
1372 pnv_pci_vf_release_m64(pdev);
1374 /* Release PE numbers */
1375 bitmap_clear(phb->ioda.pe_alloc, pdn->offset, num_vfs);
1376 pdn->offset = 0;
1380 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1381 struct pnv_ioda_pe *pe);
1382 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1384 struct pci_bus *bus;
1385 struct pci_controller *hose;
1386 struct pnv_phb *phb;
1387 struct pnv_ioda_pe *pe;
1388 int pe_num;
1389 u16 vf_index;
1390 struct pci_dn *pdn;
1391 int64_t rc;
1393 bus = pdev->bus;
1394 hose = pci_bus_to_host(bus);
1395 phb = hose->private_data;
1396 pdn = pci_get_pdn(pdev);
1398 if (!pdev->is_physfn)
1399 return;
1401 /* Reserve PE for each VF */
1402 for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1403 pe_num = pdn->offset + vf_index;
1405 pe = &phb->ioda.pe_array[pe_num];
1406 pe->pe_number = pe_num;
1407 pe->phb = phb;
1408 pe->flags = PNV_IODA_PE_VF;
1409 pe->pbus = NULL;
1410 pe->parent_dev = pdev;
1411 pe->tce32_seg = -1;
1412 pe->mve_number = -1;
1413 pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1414 pci_iov_virtfn_devfn(pdev, vf_index);
1416 pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%d\n",
1417 hose->global_number, pdev->bus->number,
1418 PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1419 PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1421 if (pnv_ioda_configure_pe(phb, pe)) {
1422 /* XXX What do we do here ? */
1423 if (pe_num)
1424 pnv_ioda_free_pe(phb, pe_num);
1425 pe->pdev = NULL;
1426 continue;
1429 /* Put PE to the list */
1430 mutex_lock(&phb->ioda.pe_list_mutex);
1431 list_add_tail(&pe->list, &phb->ioda.pe_list);
1432 mutex_unlock(&phb->ioda.pe_list_mutex);
1434 pnv_pci_ioda2_setup_dma_pe(phb, pe);
1437 if (pdn->m64_per_iov == M64_PER_IOV && num_vfs > M64_PER_IOV) {
1438 int vf_group;
1439 int vf_per_group;
1440 int vf_index1;
1442 vf_per_group = roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
1444 for (vf_group = 0; vf_group < M64_PER_IOV; vf_group++) {
1445 for (vf_index = vf_group * vf_per_group;
1446 vf_index < (vf_group + 1) * vf_per_group &&
1447 vf_index < num_vfs;
1448 vf_index++) {
1449 for (vf_index1 = vf_group * vf_per_group;
1450 vf_index1 < (vf_group + 1) * vf_per_group &&
1451 vf_index1 < num_vfs;
1452 vf_index1++) {
1454 rc = opal_pci_set_peltv(phb->opal_id,
1455 pdn->offset + vf_index,
1456 pdn->offset + vf_index1,
1457 OPAL_ADD_PE_TO_DOMAIN);
1459 if (rc)
1460 dev_warn(&pdev->dev, "%s: Failed to link same group PE#%d(%lld)\n",
1461 __func__,
1462 pdn->offset + vf_index1, rc);
1469 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1471 struct pci_bus *bus;
1472 struct pci_controller *hose;
1473 struct pnv_phb *phb;
1474 struct pci_dn *pdn;
1475 int ret;
1477 bus = pdev->bus;
1478 hose = pci_bus_to_host(bus);
1479 phb = hose->private_data;
1480 pdn = pci_get_pdn(pdev);
1482 if (phb->type == PNV_PHB_IODA2) {
1483 /* Calculate available PE for required VFs */
1484 mutex_lock(&phb->ioda.pe_alloc_mutex);
1485 pdn->offset = bitmap_find_next_zero_area(
1486 phb->ioda.pe_alloc, phb->ioda.total_pe,
1487 0, num_vfs, 0);
1488 if (pdn->offset >= phb->ioda.total_pe) {
1489 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1490 dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1491 pdn->offset = 0;
1492 return -EBUSY;
1494 bitmap_set(phb->ioda.pe_alloc, pdn->offset, num_vfs);
1495 pdn->num_vfs = num_vfs;
1496 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1498 /* Assign M64 window accordingly */
1499 ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1500 if (ret) {
1501 dev_info(&pdev->dev, "Not enough M64 window resources\n");
1502 goto m64_failed;
1506 * When using one M64 BAR to map one IOV BAR, we need to shift
1507 * the IOV BAR according to the PE# allocated to the VFs.
1508 * Otherwise, the PE# for the VF will conflict with others.
1510 if (pdn->m64_per_iov == 1) {
1511 ret = pnv_pci_vf_resource_shift(pdev, pdn->offset);
1512 if (ret)
1513 goto m64_failed;
1517 /* Setup VF PEs */
1518 pnv_ioda_setup_vf_PE(pdev, num_vfs);
1520 return 0;
1522 m64_failed:
1523 bitmap_clear(phb->ioda.pe_alloc, pdn->offset, num_vfs);
1524 pdn->offset = 0;
1526 return ret;
1529 int pcibios_sriov_disable(struct pci_dev *pdev)
1531 pnv_pci_sriov_disable(pdev);
1533 /* Release PCI data */
1534 remove_dev_pci_data(pdev);
1535 return 0;
1538 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1540 /* Allocate PCI data */
1541 add_dev_pci_data(pdev);
1543 pnv_pci_sriov_enable(pdev, num_vfs);
1544 return 0;
1546 #endif /* CONFIG_PCI_IOV */
1548 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1550 struct pci_dn *pdn = pci_get_pdn(pdev);
1551 struct pnv_ioda_pe *pe;
1554 * The function can be called while the PE#
1555 * hasn't been assigned. Do nothing for the
1556 * case.
1558 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1559 return;
1561 pe = &phb->ioda.pe_array[pdn->pe_number];
1562 WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1563 set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1564 set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1566 * Note: iommu_add_device() will fail here as
1567 * for physical PE: the device is already added by now;
1568 * for virtual PE: sysfs entries are not ready yet and
1569 * tce_iommu_bus_notifier will add the device to a group later.
1573 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1575 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1576 struct pnv_phb *phb = hose->private_data;
1577 struct pci_dn *pdn = pci_get_pdn(pdev);
1578 struct pnv_ioda_pe *pe;
1579 uint64_t top;
1580 bool bypass = false;
1582 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1583 return -ENODEV;;
1585 pe = &phb->ioda.pe_array[pdn->pe_number];
1586 if (pe->tce_bypass_enabled) {
1587 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1588 bypass = (dma_mask >= top);
1591 if (bypass) {
1592 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1593 set_dma_ops(&pdev->dev, &dma_direct_ops);
1594 } else {
1595 dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1596 set_dma_ops(&pdev->dev, &dma_iommu_ops);
1598 *pdev->dev.dma_mask = dma_mask;
1599 return 0;
1602 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1604 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1605 struct pnv_phb *phb = hose->private_data;
1606 struct pci_dn *pdn = pci_get_pdn(pdev);
1607 struct pnv_ioda_pe *pe;
1608 u64 end, mask;
1610 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1611 return 0;
1613 pe = &phb->ioda.pe_array[pdn->pe_number];
1614 if (!pe->tce_bypass_enabled)
1615 return __dma_get_required_mask(&pdev->dev);
1618 end = pe->tce_bypass_base + memblock_end_of_DRAM();
1619 mask = 1ULL << (fls64(end) - 1);
1620 mask += mask - 1;
1622 return mask;
1625 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1626 struct pci_bus *bus)
1628 struct pci_dev *dev;
1630 list_for_each_entry(dev, &bus->devices, bus_list) {
1631 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1632 set_dma_offset(&dev->dev, pe->tce_bypass_base);
1633 iommu_add_device(&dev->dev);
1635 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1636 pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1640 static void pnv_pci_ioda1_tce_invalidate(struct iommu_table *tbl,
1641 unsigned long index, unsigned long npages, bool rm)
1643 struct iommu_table_group_link *tgl = list_first_entry_or_null(
1644 &tbl->it_group_list, struct iommu_table_group_link,
1645 next);
1646 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1647 struct pnv_ioda_pe, table_group);
1648 __be64 __iomem *invalidate = rm ?
1649 (__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys :
1650 pe->phb->ioda.tce_inval_reg;
1651 unsigned long start, end, inc;
1652 const unsigned shift = tbl->it_page_shift;
1654 start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1655 end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1656 npages - 1);
1658 /* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
1659 if (tbl->it_busno) {
1660 start <<= shift;
1661 end <<= shift;
1662 inc = 128ull << shift;
1663 start |= tbl->it_busno;
1664 end |= tbl->it_busno;
1665 } else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
1666 /* p7ioc-style invalidation, 2 TCEs per write */
1667 start |= (1ull << 63);
1668 end |= (1ull << 63);
1669 inc = 16;
1670 } else {
1671 /* Default (older HW) */
1672 inc = 128;
1675 end |= inc - 1; /* round up end to be different than start */
1677 mb(); /* Ensure above stores are visible */
1678 while (start <= end) {
1679 if (rm)
1680 __raw_rm_writeq(cpu_to_be64(start), invalidate);
1681 else
1682 __raw_writeq(cpu_to_be64(start), invalidate);
1683 start += inc;
1687 * The iommu layer will do another mb() for us on build()
1688 * and we don't care on free()
1692 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1693 long npages, unsigned long uaddr,
1694 enum dma_data_direction direction,
1695 struct dma_attrs *attrs)
1697 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1698 attrs);
1700 if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
1701 pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
1703 return ret;
1706 #ifdef CONFIG_IOMMU_API
1707 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
1708 unsigned long *hpa, enum dma_data_direction *direction)
1710 long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1712 if (!ret && (tbl->it_type &
1713 (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE)))
1714 pnv_pci_ioda1_tce_invalidate(tbl, index, 1, false);
1716 return ret;
1718 #endif
1720 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1721 long npages)
1723 pnv_tce_free(tbl, index, npages);
1725 if (tbl->it_type & TCE_PCI_SWINV_FREE)
1726 pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
1729 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1730 .set = pnv_ioda1_tce_build,
1731 #ifdef CONFIG_IOMMU_API
1732 .exchange = pnv_ioda1_tce_xchg,
1733 #endif
1734 .clear = pnv_ioda1_tce_free,
1735 .get = pnv_tce_get,
1738 static inline void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_ioda_pe *pe)
1740 /* 01xb - invalidate TCEs that match the specified PE# */
1741 unsigned long val = (0x4ull << 60) | (pe->pe_number & 0xFF);
1742 struct pnv_phb *phb = pe->phb;
1744 if (!phb->ioda.tce_inval_reg)
1745 return;
1747 mb(); /* Ensure above stores are visible */
1748 __raw_writeq(cpu_to_be64(val), phb->ioda.tce_inval_reg);
1751 static void pnv_pci_ioda2_do_tce_invalidate(unsigned pe_number, bool rm,
1752 __be64 __iomem *invalidate, unsigned shift,
1753 unsigned long index, unsigned long npages)
1755 unsigned long start, end, inc;
1757 /* We'll invalidate DMA address in PE scope */
1758 start = 0x2ull << 60;
1759 start |= (pe_number & 0xFF);
1760 end = start;
1762 /* Figure out the start, end and step */
1763 start |= (index << shift);
1764 end |= ((index + npages - 1) << shift);
1765 inc = (0x1ull << shift);
1766 mb();
1768 while (start <= end) {
1769 if (rm)
1770 __raw_rm_writeq(cpu_to_be64(start), invalidate);
1771 else
1772 __raw_writeq(cpu_to_be64(start), invalidate);
1773 start += inc;
1777 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1778 unsigned long index, unsigned long npages, bool rm)
1780 struct iommu_table_group_link *tgl;
1782 list_for_each_entry_rcu(tgl, &tbl->it_group_list, next) {
1783 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1784 struct pnv_ioda_pe, table_group);
1785 __be64 __iomem *invalidate = rm ?
1786 (__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys :
1787 pe->phb->ioda.tce_inval_reg;
1789 pnv_pci_ioda2_do_tce_invalidate(pe->pe_number, rm,
1790 invalidate, tbl->it_page_shift,
1791 index, npages);
1795 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1796 long npages, unsigned long uaddr,
1797 enum dma_data_direction direction,
1798 struct dma_attrs *attrs)
1800 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1801 attrs);
1803 if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
1804 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1806 return ret;
1809 #ifdef CONFIG_IOMMU_API
1810 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
1811 unsigned long *hpa, enum dma_data_direction *direction)
1813 long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1815 if (!ret && (tbl->it_type &
1816 (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE)))
1817 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
1819 return ret;
1821 #endif
1823 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
1824 long npages)
1826 pnv_tce_free(tbl, index, npages);
1828 if (tbl->it_type & TCE_PCI_SWINV_FREE)
1829 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1832 static void pnv_ioda2_table_free(struct iommu_table *tbl)
1834 pnv_pci_ioda2_table_free_pages(tbl);
1835 iommu_free_table(tbl, "pnv");
1838 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
1839 .set = pnv_ioda2_tce_build,
1840 #ifdef CONFIG_IOMMU_API
1841 .exchange = pnv_ioda2_tce_xchg,
1842 #endif
1843 .clear = pnv_ioda2_tce_free,
1844 .get = pnv_tce_get,
1845 .free = pnv_ioda2_table_free,
1848 static void pnv_pci_ioda_setup_dma_pe(struct pnv_phb *phb,
1849 struct pnv_ioda_pe *pe, unsigned int base,
1850 unsigned int segs)
1853 struct page *tce_mem = NULL;
1854 struct iommu_table *tbl;
1855 unsigned int i;
1856 int64_t rc;
1857 void *addr;
1859 /* XXX FIXME: Handle 64-bit only DMA devices */
1860 /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
1861 /* XXX FIXME: Allocate multi-level tables on PHB3 */
1863 /* We shouldn't already have a 32-bit DMA associated */
1864 if (WARN_ON(pe->tce32_seg >= 0))
1865 return;
1867 tbl = pnv_pci_table_alloc(phb->hose->node);
1868 iommu_register_group(&pe->table_group, phb->hose->global_number,
1869 pe->pe_number);
1870 pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
1872 /* Grab a 32-bit TCE table */
1873 pe->tce32_seg = base;
1874 pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
1875 (base << 28), ((base + segs) << 28) - 1);
1877 /* XXX Currently, we allocate one big contiguous table for the
1878 * TCEs. We only really need one chunk per 256M of TCE space
1879 * (ie per segment) but that's an optimization for later, it
1880 * requires some added smarts with our get/put_tce implementation
1882 tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
1883 get_order(TCE32_TABLE_SIZE * segs));
1884 if (!tce_mem) {
1885 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
1886 goto fail;
1888 addr = page_address(tce_mem);
1889 memset(addr, 0, TCE32_TABLE_SIZE * segs);
1891 /* Configure HW */
1892 for (i = 0; i < segs; i++) {
1893 rc = opal_pci_map_pe_dma_window(phb->opal_id,
1894 pe->pe_number,
1895 base + i, 1,
1896 __pa(addr) + TCE32_TABLE_SIZE * i,
1897 TCE32_TABLE_SIZE, 0x1000);
1898 if (rc) {
1899 pe_err(pe, " Failed to configure 32-bit TCE table,"
1900 " err %ld\n", rc);
1901 goto fail;
1905 /* Setup linux iommu table */
1906 pnv_pci_setup_iommu_table(tbl, addr, TCE32_TABLE_SIZE * segs,
1907 base << 28, IOMMU_PAGE_SHIFT_4K);
1909 /* OPAL variant of P7IOC SW invalidated TCEs */
1910 if (phb->ioda.tce_inval_reg)
1911 tbl->it_type |= (TCE_PCI_SWINV_CREATE |
1912 TCE_PCI_SWINV_FREE |
1913 TCE_PCI_SWINV_PAIR);
1915 tbl->it_ops = &pnv_ioda1_iommu_ops;
1916 pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
1917 pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
1918 iommu_init_table(tbl, phb->hose->node);
1920 if (pe->flags & PNV_IODA_PE_DEV) {
1922 * Setting table base here only for carrying iommu_group
1923 * further down to let iommu_add_device() do the job.
1924 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
1926 set_iommu_table_base(&pe->pdev->dev, tbl);
1927 iommu_add_device(&pe->pdev->dev);
1928 } else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
1929 pnv_ioda_setup_bus_dma(pe, pe->pbus);
1931 return;
1932 fail:
1933 /* XXX Failure: Try to fallback to 64-bit only ? */
1934 if (pe->tce32_seg >= 0)
1935 pe->tce32_seg = -1;
1936 if (tce_mem)
1937 __free_pages(tce_mem, get_order(TCE32_TABLE_SIZE * segs));
1938 if (tbl) {
1939 pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
1940 iommu_free_table(tbl, "pnv");
1944 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
1945 int num, struct iommu_table *tbl)
1947 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1948 table_group);
1949 struct pnv_phb *phb = pe->phb;
1950 int64_t rc;
1951 const unsigned long size = tbl->it_indirect_levels ?
1952 tbl->it_level_size : tbl->it_size;
1953 const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
1954 const __u64 win_size = tbl->it_size << tbl->it_page_shift;
1956 pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
1957 start_addr, start_addr + win_size - 1,
1958 IOMMU_PAGE_SIZE(tbl));
1961 * Map TCE table through TVT. The TVE index is the PE number
1962 * shifted by 1 bit for 32-bits DMA space.
1964 rc = opal_pci_map_pe_dma_window(phb->opal_id,
1965 pe->pe_number,
1966 (pe->pe_number << 1) + num,
1967 tbl->it_indirect_levels + 1,
1968 __pa(tbl->it_base),
1969 size << 3,
1970 IOMMU_PAGE_SIZE(tbl));
1971 if (rc) {
1972 pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
1973 return rc;
1976 pnv_pci_link_table_and_group(phb->hose->node, num,
1977 tbl, &pe->table_group);
1978 pnv_pci_ioda2_tce_invalidate_entire(pe);
1980 return 0;
1983 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
1985 uint16_t window_id = (pe->pe_number << 1 ) + 1;
1986 int64_t rc;
1988 pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
1989 if (enable) {
1990 phys_addr_t top = memblock_end_of_DRAM();
1992 top = roundup_pow_of_two(top);
1993 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1994 pe->pe_number,
1995 window_id,
1996 pe->tce_bypass_base,
1997 top);
1998 } else {
1999 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2000 pe->pe_number,
2001 window_id,
2002 pe->tce_bypass_base,
2005 if (rc)
2006 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2007 else
2008 pe->tce_bypass_enabled = enable;
2011 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2012 __u32 page_shift, __u64 window_size, __u32 levels,
2013 struct iommu_table *tbl);
2015 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2016 int num, __u32 page_shift, __u64 window_size, __u32 levels,
2017 struct iommu_table **ptbl)
2019 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2020 table_group);
2021 int nid = pe->phb->hose->node;
2022 __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2023 long ret;
2024 struct iommu_table *tbl;
2026 tbl = pnv_pci_table_alloc(nid);
2027 if (!tbl)
2028 return -ENOMEM;
2030 ret = pnv_pci_ioda2_table_alloc_pages(nid,
2031 bus_offset, page_shift, window_size,
2032 levels, tbl);
2033 if (ret) {
2034 iommu_free_table(tbl, "pnv");
2035 return ret;
2038 tbl->it_ops = &pnv_ioda2_iommu_ops;
2039 if (pe->phb->ioda.tce_inval_reg)
2040 tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
2042 *ptbl = tbl;
2044 return 0;
2047 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2049 struct iommu_table *tbl = NULL;
2050 long rc;
2053 * crashkernel= specifies the kdump kernel's maximum memory at
2054 * some offset and there is no guaranteed the result is a power
2055 * of 2, which will cause errors later.
2057 const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2060 * In memory constrained environments, e.g. kdump kernel, the
2061 * DMA window can be larger than available memory, which will
2062 * cause errors later.
2064 const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2066 rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2067 IOMMU_PAGE_SHIFT_4K,
2068 window_size,
2069 POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
2070 if (rc) {
2071 pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2072 rc);
2073 return rc;
2076 iommu_init_table(tbl, pe->phb->hose->node);
2078 rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2079 if (rc) {
2080 pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2081 rc);
2082 pnv_ioda2_table_free(tbl);
2083 return rc;
2086 if (!pnv_iommu_bypass_disabled)
2087 pnv_pci_ioda2_set_bypass(pe, true);
2089 /* OPAL variant of PHB3 invalidated TCEs */
2090 if (pe->phb->ioda.tce_inval_reg)
2091 tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
2094 * Setting table base here only for carrying iommu_group
2095 * further down to let iommu_add_device() do the job.
2096 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2098 if (pe->flags & PNV_IODA_PE_DEV)
2099 set_iommu_table_base(&pe->pdev->dev, tbl);
2101 return 0;
2104 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2105 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2106 int num)
2108 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2109 table_group);
2110 struct pnv_phb *phb = pe->phb;
2111 long ret;
2113 pe_info(pe, "Removing DMA window #%d\n", num);
2115 ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2116 (pe->pe_number << 1) + num,
2117 0/* levels */, 0/* table address */,
2118 0/* table size */, 0/* page size */);
2119 if (ret)
2120 pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2121 else
2122 pnv_pci_ioda2_tce_invalidate_entire(pe);
2124 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2126 return ret;
2128 #endif
2130 #ifdef CONFIG_IOMMU_API
2131 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2132 __u64 window_size, __u32 levels)
2134 unsigned long bytes = 0;
2135 const unsigned window_shift = ilog2(window_size);
2136 unsigned entries_shift = window_shift - page_shift;
2137 unsigned table_shift = entries_shift + 3;
2138 unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2139 unsigned long direct_table_size;
2141 if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2142 (window_size > memory_hotplug_max()) ||
2143 !is_power_of_2(window_size))
2144 return 0;
2146 /* Calculate a direct table size from window_size and levels */
2147 entries_shift = (entries_shift + levels - 1) / levels;
2148 table_shift = entries_shift + 3;
2149 table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2150 direct_table_size = 1UL << table_shift;
2152 for ( ; levels; --levels) {
2153 bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2155 tce_table_size /= direct_table_size;
2156 tce_table_size <<= 3;
2157 tce_table_size = _ALIGN_UP(tce_table_size, direct_table_size);
2160 return bytes;
2163 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2165 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2166 table_group);
2167 /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2168 struct iommu_table *tbl = pe->table_group.tables[0];
2170 pnv_pci_ioda2_set_bypass(pe, false);
2171 pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2172 pnv_ioda2_table_free(tbl);
2175 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2177 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2178 table_group);
2180 pnv_pci_ioda2_setup_default_config(pe);
2183 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2184 .get_table_size = pnv_pci_ioda2_get_table_size,
2185 .create_table = pnv_pci_ioda2_create_table,
2186 .set_window = pnv_pci_ioda2_set_window,
2187 .unset_window = pnv_pci_ioda2_unset_window,
2188 .take_ownership = pnv_ioda2_take_ownership,
2189 .release_ownership = pnv_ioda2_release_ownership,
2191 #endif
2193 static void pnv_pci_ioda_setup_opal_tce_kill(struct pnv_phb *phb)
2195 const __be64 *swinvp;
2197 /* OPAL variant of PHB3 invalidated TCEs */
2198 swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
2199 if (!swinvp)
2200 return;
2202 phb->ioda.tce_inval_reg_phys = be64_to_cpup(swinvp);
2203 phb->ioda.tce_inval_reg = ioremap(phb->ioda.tce_inval_reg_phys, 8);
2206 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
2207 unsigned levels, unsigned long limit,
2208 unsigned long *current_offset, unsigned long *total_allocated)
2210 struct page *tce_mem = NULL;
2211 __be64 *addr, *tmp;
2212 unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
2213 unsigned long allocated = 1UL << (order + PAGE_SHIFT);
2214 unsigned entries = 1UL << (shift - 3);
2215 long i;
2217 tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
2218 if (!tce_mem) {
2219 pr_err("Failed to allocate a TCE memory, order=%d\n", order);
2220 return NULL;
2222 addr = page_address(tce_mem);
2223 memset(addr, 0, allocated);
2224 *total_allocated += allocated;
2226 --levels;
2227 if (!levels) {
2228 *current_offset += allocated;
2229 return addr;
2232 for (i = 0; i < entries; ++i) {
2233 tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
2234 levels, limit, current_offset, total_allocated);
2235 if (!tmp)
2236 break;
2238 addr[i] = cpu_to_be64(__pa(tmp) |
2239 TCE_PCI_READ | TCE_PCI_WRITE);
2241 if (*current_offset >= limit)
2242 break;
2245 return addr;
2248 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2249 unsigned long size, unsigned level);
2251 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2252 __u32 page_shift, __u64 window_size, __u32 levels,
2253 struct iommu_table *tbl)
2255 void *addr;
2256 unsigned long offset = 0, level_shift, total_allocated = 0;
2257 const unsigned window_shift = ilog2(window_size);
2258 unsigned entries_shift = window_shift - page_shift;
2259 unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
2260 const unsigned long tce_table_size = 1UL << table_shift;
2262 if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
2263 return -EINVAL;
2265 if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size))
2266 return -EINVAL;
2268 /* Adjust direct table size from window_size and levels */
2269 entries_shift = (entries_shift + levels - 1) / levels;
2270 level_shift = entries_shift + 3;
2271 level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);
2273 /* Allocate TCE table */
2274 addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
2275 levels, tce_table_size, &offset, &total_allocated);
2277 /* addr==NULL means that the first level allocation failed */
2278 if (!addr)
2279 return -ENOMEM;
2282 * First level was allocated but some lower level failed as
2283 * we did not allocate as much as we wanted,
2284 * release partially allocated table.
2286 if (offset < tce_table_size) {
2287 pnv_pci_ioda2_table_do_free_pages(addr,
2288 1ULL << (level_shift - 3), levels - 1);
2289 return -ENOMEM;
2292 /* Setup linux iommu table */
2293 pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
2294 page_shift);
2295 tbl->it_level_size = 1ULL << (level_shift - 3);
2296 tbl->it_indirect_levels = levels - 1;
2297 tbl->it_allocated_size = total_allocated;
2299 pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
2300 window_size, tce_table_size, bus_offset);
2302 return 0;
2305 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2306 unsigned long size, unsigned level)
2308 const unsigned long addr_ul = (unsigned long) addr &
2309 ~(TCE_PCI_READ | TCE_PCI_WRITE);
2311 if (level) {
2312 long i;
2313 u64 *tmp = (u64 *) addr_ul;
2315 for (i = 0; i < size; ++i) {
2316 unsigned long hpa = be64_to_cpu(tmp[i]);
2318 if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
2319 continue;
2321 pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
2322 level - 1);
2326 free_pages(addr_ul, get_order(size << 3));
2329 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
2331 const unsigned long size = tbl->it_indirect_levels ?
2332 tbl->it_level_size : tbl->it_size;
2334 if (!tbl->it_size)
2335 return;
2337 pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
2338 tbl->it_indirect_levels);
2341 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2342 struct pnv_ioda_pe *pe)
2344 int64_t rc;
2346 /* We shouldn't already have a 32-bit DMA associated */
2347 if (WARN_ON(pe->tce32_seg >= 0))
2348 return;
2350 /* TVE #1 is selected by PCI address bit 59 */
2351 pe->tce_bypass_base = 1ull << 59;
2353 iommu_register_group(&pe->table_group, phb->hose->global_number,
2354 pe->pe_number);
2356 /* The PE will reserve all possible 32-bits space */
2357 pe->tce32_seg = 0;
2358 pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2359 phb->ioda.m32_pci_base);
2361 /* Setup linux iommu table */
2362 pe->table_group.tce32_start = 0;
2363 pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2364 pe->table_group.max_dynamic_windows_supported =
2365 IOMMU_TABLE_GROUP_MAX_TABLES;
2366 pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2367 pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
2368 #ifdef CONFIG_IOMMU_API
2369 pe->table_group.ops = &pnv_pci_ioda2_ops;
2370 #endif
2372 rc = pnv_pci_ioda2_setup_default_config(pe);
2373 if (rc) {
2374 if (pe->tce32_seg >= 0)
2375 pe->tce32_seg = -1;
2376 return;
2379 if (pe->flags & PNV_IODA_PE_DEV)
2380 iommu_add_device(&pe->pdev->dev);
2381 else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2382 pnv_ioda_setup_bus_dma(pe, pe->pbus);
2385 static void pnv_ioda_setup_dma(struct pnv_phb *phb)
2387 struct pci_controller *hose = phb->hose;
2388 unsigned int residual, remaining, segs, tw, base;
2389 struct pnv_ioda_pe *pe;
2391 /* If we have more PE# than segments available, hand out one
2392 * per PE until we run out and let the rest fail. If not,
2393 * then we assign at least one segment per PE, plus more based
2394 * on the amount of devices under that PE
2396 if (phb->ioda.dma_pe_count > phb->ioda.tce32_count)
2397 residual = 0;
2398 else
2399 residual = phb->ioda.tce32_count -
2400 phb->ioda.dma_pe_count;
2402 pr_info("PCI: Domain %04x has %ld available 32-bit DMA segments\n",
2403 hose->global_number, phb->ioda.tce32_count);
2404 pr_info("PCI: %d PE# for a total weight of %d\n",
2405 phb->ioda.dma_pe_count, phb->ioda.dma_weight);
2407 pnv_pci_ioda_setup_opal_tce_kill(phb);
2409 /* Walk our PE list and configure their DMA segments, hand them
2410 * out one base segment plus any residual segments based on
2411 * weight
2413 remaining = phb->ioda.tce32_count;
2414 tw = phb->ioda.dma_weight;
2415 base = 0;
2416 list_for_each_entry(pe, &phb->ioda.pe_dma_list, dma_link) {
2417 if (!pe->dma_weight)
2418 continue;
2419 if (!remaining) {
2420 pe_warn(pe, "No DMA32 resources available\n");
2421 continue;
2423 segs = 1;
2424 if (residual) {
2425 segs += ((pe->dma_weight * residual) + (tw / 2)) / tw;
2426 if (segs > remaining)
2427 segs = remaining;
2431 * For IODA2 compliant PHB3, we needn't care about the weight.
2432 * The all available 32-bits DMA space will be assigned to
2433 * the specific PE.
2435 if (phb->type == PNV_PHB_IODA1) {
2436 pe_info(pe, "DMA weight %d, assigned %d DMA32 segments\n",
2437 pe->dma_weight, segs);
2438 pnv_pci_ioda_setup_dma_pe(phb, pe, base, segs);
2439 } else {
2440 pe_info(pe, "Assign DMA32 space\n");
2441 segs = 0;
2442 pnv_pci_ioda2_setup_dma_pe(phb, pe);
2445 remaining -= segs;
2446 base += segs;
2450 #ifdef CONFIG_PCI_MSI
2451 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2453 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2454 struct irq_chip *chip = irq_data_get_irq_chip(d);
2455 struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2456 ioda.irq_chip);
2457 int64_t rc;
2459 rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
2460 WARN_ON_ONCE(rc);
2462 icp_native_eoi(d);
2466 static void set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2468 struct irq_data *idata;
2469 struct irq_chip *ichip;
2471 if (phb->type != PNV_PHB_IODA2)
2472 return;
2474 if (!phb->ioda.irq_chip_init) {
2476 * First time we setup an MSI IRQ, we need to setup the
2477 * corresponding IRQ chip to route correctly.
2479 idata = irq_get_irq_data(virq);
2480 ichip = irq_data_get_irq_chip(idata);
2481 phb->ioda.irq_chip_init = 1;
2482 phb->ioda.irq_chip = *ichip;
2483 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2485 irq_set_chip(virq, &phb->ioda.irq_chip);
2488 #ifdef CONFIG_CXL_BASE
2490 struct device_node *pnv_pci_get_phb_node(struct pci_dev *dev)
2492 struct pci_controller *hose = pci_bus_to_host(dev->bus);
2494 return of_node_get(hose->dn);
2496 EXPORT_SYMBOL(pnv_pci_get_phb_node);
2498 int pnv_phb_to_cxl_mode(struct pci_dev *dev, uint64_t mode)
2500 struct pci_controller *hose = pci_bus_to_host(dev->bus);
2501 struct pnv_phb *phb = hose->private_data;
2502 struct pnv_ioda_pe *pe;
2503 int rc;
2505 pe = pnv_ioda_get_pe(dev);
2506 if (!pe)
2507 return -ENODEV;
2509 pe_info(pe, "Switching PHB to CXL\n");
2511 rc = opal_pci_set_phb_cxl_mode(phb->opal_id, mode, pe->pe_number);
2512 if (rc)
2513 dev_err(&dev->dev, "opal_pci_set_phb_cxl_mode failed: %i\n", rc);
2515 return rc;
2517 EXPORT_SYMBOL(pnv_phb_to_cxl_mode);
2519 /* Find PHB for cxl dev and allocate MSI hwirqs?
2520 * Returns the absolute hardware IRQ number
2522 int pnv_cxl_alloc_hwirqs(struct pci_dev *dev, int num)
2524 struct pci_controller *hose = pci_bus_to_host(dev->bus);
2525 struct pnv_phb *phb = hose->private_data;
2526 int hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, num);
2528 if (hwirq < 0) {
2529 dev_warn(&dev->dev, "Failed to find a free MSI\n");
2530 return -ENOSPC;
2533 return phb->msi_base + hwirq;
2535 EXPORT_SYMBOL(pnv_cxl_alloc_hwirqs);
2537 void pnv_cxl_release_hwirqs(struct pci_dev *dev, int hwirq, int num)
2539 struct pci_controller *hose = pci_bus_to_host(dev->bus);
2540 struct pnv_phb *phb = hose->private_data;
2542 msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq - phb->msi_base, num);
2544 EXPORT_SYMBOL(pnv_cxl_release_hwirqs);
2546 void pnv_cxl_release_hwirq_ranges(struct cxl_irq_ranges *irqs,
2547 struct pci_dev *dev)
2549 struct pci_controller *hose = pci_bus_to_host(dev->bus);
2550 struct pnv_phb *phb = hose->private_data;
2551 int i, hwirq;
2553 for (i = 1; i < CXL_IRQ_RANGES; i++) {
2554 if (!irqs->range[i])
2555 continue;
2556 pr_devel("cxl release irq range 0x%x: offset: 0x%lx limit: %ld\n",
2557 i, irqs->offset[i],
2558 irqs->range[i]);
2559 hwirq = irqs->offset[i] - phb->msi_base;
2560 msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq,
2561 irqs->range[i]);
2564 EXPORT_SYMBOL(pnv_cxl_release_hwirq_ranges);
2566 int pnv_cxl_alloc_hwirq_ranges(struct cxl_irq_ranges *irqs,
2567 struct pci_dev *dev, int num)
2569 struct pci_controller *hose = pci_bus_to_host(dev->bus);
2570 struct pnv_phb *phb = hose->private_data;
2571 int i, hwirq, try;
2573 memset(irqs, 0, sizeof(struct cxl_irq_ranges));
2575 /* 0 is reserved for the multiplexed PSL DSI interrupt */
2576 for (i = 1; i < CXL_IRQ_RANGES && num; i++) {
2577 try = num;
2578 while (try) {
2579 hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, try);
2580 if (hwirq >= 0)
2581 break;
2582 try /= 2;
2584 if (!try)
2585 goto fail;
2587 irqs->offset[i] = phb->msi_base + hwirq;
2588 irqs->range[i] = try;
2589 pr_devel("cxl alloc irq range 0x%x: offset: 0x%lx limit: %li\n",
2590 i, irqs->offset[i], irqs->range[i]);
2591 num -= try;
2593 if (num)
2594 goto fail;
2596 return 0;
2597 fail:
2598 pnv_cxl_release_hwirq_ranges(irqs, dev);
2599 return -ENOSPC;
2601 EXPORT_SYMBOL(pnv_cxl_alloc_hwirq_ranges);
2603 int pnv_cxl_get_irq_count(struct pci_dev *dev)
2605 struct pci_controller *hose = pci_bus_to_host(dev->bus);
2606 struct pnv_phb *phb = hose->private_data;
2608 return phb->msi_bmp.irq_count;
2610 EXPORT_SYMBOL(pnv_cxl_get_irq_count);
2612 int pnv_cxl_ioda_msi_setup(struct pci_dev *dev, unsigned int hwirq,
2613 unsigned int virq)
2615 struct pci_controller *hose = pci_bus_to_host(dev->bus);
2616 struct pnv_phb *phb = hose->private_data;
2617 unsigned int xive_num = hwirq - phb->msi_base;
2618 struct pnv_ioda_pe *pe;
2619 int rc;
2621 if (!(pe = pnv_ioda_get_pe(dev)))
2622 return -ENODEV;
2624 /* Assign XIVE to PE */
2625 rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2626 if (rc) {
2627 pe_warn(pe, "%s: OPAL error %d setting msi_base 0x%x "
2628 "hwirq 0x%x XIVE 0x%x PE\n",
2629 pci_name(dev), rc, phb->msi_base, hwirq, xive_num);
2630 return -EIO;
2632 set_msi_irq_chip(phb, virq);
2634 return 0;
2636 EXPORT_SYMBOL(pnv_cxl_ioda_msi_setup);
2637 #endif
2639 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2640 unsigned int hwirq, unsigned int virq,
2641 unsigned int is_64, struct msi_msg *msg)
2643 struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2644 unsigned int xive_num = hwirq - phb->msi_base;
2645 __be32 data;
2646 int rc;
2648 /* No PE assigned ? bail out ... no MSI for you ! */
2649 if (pe == NULL)
2650 return -ENXIO;
2652 /* Check if we have an MVE */
2653 if (pe->mve_number < 0)
2654 return -ENXIO;
2656 /* Force 32-bit MSI on some broken devices */
2657 if (dev->no_64bit_msi)
2658 is_64 = 0;
2660 /* Assign XIVE to PE */
2661 rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2662 if (rc) {
2663 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2664 pci_name(dev), rc, xive_num);
2665 return -EIO;
2668 if (is_64) {
2669 __be64 addr64;
2671 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2672 &addr64, &data);
2673 if (rc) {
2674 pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2675 pci_name(dev), rc);
2676 return -EIO;
2678 msg->address_hi = be64_to_cpu(addr64) >> 32;
2679 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2680 } else {
2681 __be32 addr32;
2683 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2684 &addr32, &data);
2685 if (rc) {
2686 pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2687 pci_name(dev), rc);
2688 return -EIO;
2690 msg->address_hi = 0;
2691 msg->address_lo = be32_to_cpu(addr32);
2693 msg->data = be32_to_cpu(data);
2695 set_msi_irq_chip(phb, virq);
2697 pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2698 " address=%x_%08x data=%x PE# %d\n",
2699 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2700 msg->address_hi, msg->address_lo, data, pe->pe_number);
2702 return 0;
2705 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2707 unsigned int count;
2708 const __be32 *prop = of_get_property(phb->hose->dn,
2709 "ibm,opal-msi-ranges", NULL);
2710 if (!prop) {
2711 /* BML Fallback */
2712 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2714 if (!prop)
2715 return;
2717 phb->msi_base = be32_to_cpup(prop);
2718 count = be32_to_cpup(prop + 1);
2719 if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2720 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2721 phb->hose->global_number);
2722 return;
2725 phb->msi_setup = pnv_pci_ioda_msi_setup;
2726 phb->msi32_support = 1;
2727 pr_info(" Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2728 count, phb->msi_base);
2730 #else
2731 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
2732 #endif /* CONFIG_PCI_MSI */
2734 #ifdef CONFIG_PCI_IOV
2735 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2737 struct pci_controller *hose;
2738 struct pnv_phb *phb;
2739 struct resource *res;
2740 int i;
2741 resource_size_t size;
2742 struct pci_dn *pdn;
2743 int mul, total_vfs;
2745 if (!pdev->is_physfn || pdev->is_added)
2746 return;
2748 hose = pci_bus_to_host(pdev->bus);
2749 phb = hose->private_data;
2751 pdn = pci_get_pdn(pdev);
2752 pdn->vfs_expanded = 0;
2754 total_vfs = pci_sriov_get_totalvfs(pdev);
2755 pdn->m64_per_iov = 1;
2756 mul = phb->ioda.total_pe;
2758 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2759 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2760 if (!res->flags || res->parent)
2761 continue;
2762 if (!pnv_pci_is_mem_pref_64(res->flags)) {
2763 dev_warn(&pdev->dev, " non M64 VF BAR%d: %pR\n",
2764 i, res);
2765 continue;
2768 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2770 /* bigger than 64M */
2771 if (size > (1 << 26)) {
2772 dev_info(&pdev->dev, "PowerNV: VF BAR%d: %pR IOV size is bigger than 64M, roundup power2\n",
2773 i, res);
2774 pdn->m64_per_iov = M64_PER_IOV;
2775 mul = roundup_pow_of_two(total_vfs);
2776 break;
2780 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2781 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2782 if (!res->flags || res->parent)
2783 continue;
2784 if (!pnv_pci_is_mem_pref_64(res->flags)) {
2785 dev_warn(&pdev->dev, "Skipping expanding VF BAR%d: %pR\n",
2786 i, res);
2787 continue;
2790 dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2791 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2792 res->end = res->start + size * mul - 1;
2793 dev_dbg(&pdev->dev, " %pR\n", res);
2794 dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
2795 i, res, mul);
2797 pdn->vfs_expanded = mul;
2799 #endif /* CONFIG_PCI_IOV */
2802 * This function is supposed to be called on basis of PE from top
2803 * to bottom style. So the the I/O or MMIO segment assigned to
2804 * parent PE could be overrided by its child PEs if necessary.
2806 static void pnv_ioda_setup_pe_seg(struct pci_controller *hose,
2807 struct pnv_ioda_pe *pe)
2809 struct pnv_phb *phb = hose->private_data;
2810 struct pci_bus_region region;
2811 struct resource *res;
2812 int i, index;
2813 int rc;
2816 * NOTE: We only care PCI bus based PE for now. For PCI
2817 * device based PE, for example SRIOV sensitive VF should
2818 * be figured out later.
2820 BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
2822 pci_bus_for_each_resource(pe->pbus, res, i) {
2823 if (!res || !res->flags ||
2824 res->start > res->end)
2825 continue;
2827 if (res->flags & IORESOURCE_IO) {
2828 region.start = res->start - phb->ioda.io_pci_base;
2829 region.end = res->end - phb->ioda.io_pci_base;
2830 index = region.start / phb->ioda.io_segsize;
2832 while (index < phb->ioda.total_pe &&
2833 region.start <= region.end) {
2834 phb->ioda.io_segmap[index] = pe->pe_number;
2835 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2836 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
2837 if (rc != OPAL_SUCCESS) {
2838 pr_err("%s: OPAL error %d when mapping IO "
2839 "segment #%d to PE#%d\n",
2840 __func__, rc, index, pe->pe_number);
2841 break;
2844 region.start += phb->ioda.io_segsize;
2845 index++;
2847 } else if ((res->flags & IORESOURCE_MEM) &&
2848 !pnv_pci_is_mem_pref_64(res->flags)) {
2849 region.start = res->start -
2850 hose->mem_offset[0] -
2851 phb->ioda.m32_pci_base;
2852 region.end = res->end -
2853 hose->mem_offset[0] -
2854 phb->ioda.m32_pci_base;
2855 index = region.start / phb->ioda.m32_segsize;
2857 while (index < phb->ioda.total_pe &&
2858 region.start <= region.end) {
2859 phb->ioda.m32_segmap[index] = pe->pe_number;
2860 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2861 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
2862 if (rc != OPAL_SUCCESS) {
2863 pr_err("%s: OPAL error %d when mapping M32 "
2864 "segment#%d to PE#%d",
2865 __func__, rc, index, pe->pe_number);
2866 break;
2869 region.start += phb->ioda.m32_segsize;
2870 index++;
2876 static void pnv_pci_ioda_setup_seg(void)
2878 struct pci_controller *tmp, *hose;
2879 struct pnv_phb *phb;
2880 struct pnv_ioda_pe *pe;
2882 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2883 phb = hose->private_data;
2884 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2885 pnv_ioda_setup_pe_seg(hose, pe);
2890 static void pnv_pci_ioda_setup_DMA(void)
2892 struct pci_controller *hose, *tmp;
2893 struct pnv_phb *phb;
2895 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2896 pnv_ioda_setup_dma(hose->private_data);
2898 /* Mark the PHB initialization done */
2899 phb = hose->private_data;
2900 phb->initialized = 1;
2904 static void pnv_pci_ioda_create_dbgfs(void)
2906 #ifdef CONFIG_DEBUG_FS
2907 struct pci_controller *hose, *tmp;
2908 struct pnv_phb *phb;
2909 char name[16];
2911 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2912 phb = hose->private_data;
2914 sprintf(name, "PCI%04x", hose->global_number);
2915 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
2916 if (!phb->dbgfs)
2917 pr_warning("%s: Error on creating debugfs on PHB#%x\n",
2918 __func__, hose->global_number);
2920 #endif /* CONFIG_DEBUG_FS */
2923 static void pnv_pci_ioda_fixup(void)
2925 pnv_pci_ioda_setup_PEs();
2926 pnv_pci_ioda_setup_seg();
2927 pnv_pci_ioda_setup_DMA();
2929 pnv_pci_ioda_create_dbgfs();
2931 #ifdef CONFIG_EEH
2932 eeh_init();
2933 eeh_addr_cache_build();
2934 #endif
2938 * Returns the alignment for I/O or memory windows for P2P
2939 * bridges. That actually depends on how PEs are segmented.
2940 * For now, we return I/O or M32 segment size for PE sensitive
2941 * P2P bridges. Otherwise, the default values (4KiB for I/O,
2942 * 1MiB for memory) will be returned.
2944 * The current PCI bus might be put into one PE, which was
2945 * create against the parent PCI bridge. For that case, we
2946 * needn't enlarge the alignment so that we can save some
2947 * resources.
2949 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
2950 unsigned long type)
2952 struct pci_dev *bridge;
2953 struct pci_controller *hose = pci_bus_to_host(bus);
2954 struct pnv_phb *phb = hose->private_data;
2955 int num_pci_bridges = 0;
2957 bridge = bus->self;
2958 while (bridge) {
2959 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
2960 num_pci_bridges++;
2961 if (num_pci_bridges >= 2)
2962 return 1;
2965 bridge = bridge->bus->self;
2968 /* We fail back to M32 if M64 isn't supported */
2969 if (phb->ioda.m64_segsize &&
2970 pnv_pci_is_mem_pref_64(type))
2971 return phb->ioda.m64_segsize;
2972 if (type & IORESOURCE_MEM)
2973 return phb->ioda.m32_segsize;
2975 return phb->ioda.io_segsize;
2978 #ifdef CONFIG_PCI_IOV
2979 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
2980 int resno)
2982 struct pci_dn *pdn = pci_get_pdn(pdev);
2983 resource_size_t align, iov_align;
2985 iov_align = resource_size(&pdev->resource[resno]);
2986 if (iov_align)
2987 return iov_align;
2989 align = pci_iov_resource_size(pdev, resno);
2990 if (pdn->vfs_expanded)
2991 return pdn->vfs_expanded * align;
2993 return align;
2995 #endif /* CONFIG_PCI_IOV */
2997 /* Prevent enabling devices for which we couldn't properly
2998 * assign a PE
3000 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3002 struct pci_controller *hose = pci_bus_to_host(dev->bus);
3003 struct pnv_phb *phb = hose->private_data;
3004 struct pci_dn *pdn;
3006 /* The function is probably called while the PEs have
3007 * not be created yet. For example, resource reassignment
3008 * during PCI probe period. We just skip the check if
3009 * PEs isn't ready.
3011 if (!phb->initialized)
3012 return true;
3014 pdn = pci_get_pdn(dev);
3015 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3016 return false;
3018 return true;
3021 static u32 pnv_ioda_bdfn_to_pe(struct pnv_phb *phb, struct pci_bus *bus,
3022 u32 devfn)
3024 return phb->ioda.pe_rmap[(bus->number << 8) | devfn];
3027 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3029 struct pnv_phb *phb = hose->private_data;
3031 opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3032 OPAL_ASSERT_RESET);
3035 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3036 .dma_dev_setup = pnv_pci_dma_dev_setup,
3037 #ifdef CONFIG_PCI_MSI
3038 .setup_msi_irqs = pnv_setup_msi_irqs,
3039 .teardown_msi_irqs = pnv_teardown_msi_irqs,
3040 #endif
3041 .enable_device_hook = pnv_pci_enable_device_hook,
3042 .window_alignment = pnv_pci_window_alignment,
3043 .reset_secondary_bus = pnv_pci_reset_secondary_bus,
3044 .dma_set_mask = pnv_pci_ioda_dma_set_mask,
3045 .dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask,
3046 .shutdown = pnv_pci_ioda_shutdown,
3049 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3050 u64 hub_id, int ioda_type)
3052 struct pci_controller *hose;
3053 struct pnv_phb *phb;
3054 unsigned long size, m32map_off, pemap_off, iomap_off = 0;
3055 const __be64 *prop64;
3056 const __be32 *prop32;
3057 int len;
3058 u64 phb_id;
3059 void *aux;
3060 long rc;
3062 pr_info("Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name);
3064 prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3065 if (!prop64) {
3066 pr_err(" Missing \"ibm,opal-phbid\" property !\n");
3067 return;
3069 phb_id = be64_to_cpup(prop64);
3070 pr_debug(" PHB-ID : 0x%016llx\n", phb_id);
3072 phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
3074 /* Allocate PCI controller */
3075 phb->hose = hose = pcibios_alloc_controller(np);
3076 if (!phb->hose) {
3077 pr_err(" Can't allocate PCI controller for %s\n",
3078 np->full_name);
3079 memblock_free(__pa(phb), sizeof(struct pnv_phb));
3080 return;
3083 spin_lock_init(&phb->lock);
3084 prop32 = of_get_property(np, "bus-range", &len);
3085 if (prop32 && len == 8) {
3086 hose->first_busno = be32_to_cpu(prop32[0]);
3087 hose->last_busno = be32_to_cpu(prop32[1]);
3088 } else {
3089 pr_warn(" Broken <bus-range> on %s\n", np->full_name);
3090 hose->first_busno = 0;
3091 hose->last_busno = 0xff;
3093 hose->private_data = phb;
3094 phb->hub_id = hub_id;
3095 phb->opal_id = phb_id;
3096 phb->type = ioda_type;
3097 mutex_init(&phb->ioda.pe_alloc_mutex);
3099 /* Detect specific models for error handling */
3100 if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3101 phb->model = PNV_PHB_MODEL_P7IOC;
3102 else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3103 phb->model = PNV_PHB_MODEL_PHB3;
3104 else
3105 phb->model = PNV_PHB_MODEL_UNKNOWN;
3107 /* Parse 32-bit and IO ranges (if any) */
3108 pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3110 /* Get registers */
3111 phb->regs = of_iomap(np, 0);
3112 if (phb->regs == NULL)
3113 pr_err(" Failed to map registers !\n");
3115 /* Initialize more IODA stuff */
3116 phb->ioda.total_pe = 1;
3117 prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3118 if (prop32)
3119 phb->ioda.total_pe = be32_to_cpup(prop32);
3120 prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3121 if (prop32)
3122 phb->ioda.reserved_pe = be32_to_cpup(prop32);
3124 /* Parse 64-bit MMIO range */
3125 pnv_ioda_parse_m64_window(phb);
3127 phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3128 /* FW Has already off top 64k of M32 space (MSI space) */
3129 phb->ioda.m32_size += 0x10000;
3131 phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe;
3132 phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3133 phb->ioda.io_size = hose->pci_io_size;
3134 phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe;
3135 phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3137 /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3138 size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
3139 m32map_off = size;
3140 size += phb->ioda.total_pe * sizeof(phb->ioda.m32_segmap[0]);
3141 if (phb->type == PNV_PHB_IODA1) {
3142 iomap_off = size;
3143 size += phb->ioda.total_pe * sizeof(phb->ioda.io_segmap[0]);
3145 pemap_off = size;
3146 size += phb->ioda.total_pe * sizeof(struct pnv_ioda_pe);
3147 aux = memblock_virt_alloc(size, 0);
3148 phb->ioda.pe_alloc = aux;
3149 phb->ioda.m32_segmap = aux + m32map_off;
3150 if (phb->type == PNV_PHB_IODA1)
3151 phb->ioda.io_segmap = aux + iomap_off;
3152 phb->ioda.pe_array = aux + pemap_off;
3153 set_bit(phb->ioda.reserved_pe, phb->ioda.pe_alloc);
3155 INIT_LIST_HEAD(&phb->ioda.pe_dma_list);
3156 INIT_LIST_HEAD(&phb->ioda.pe_list);
3157 mutex_init(&phb->ioda.pe_list_mutex);
3159 /* Calculate how many 32-bit TCE segments we have */
3160 phb->ioda.tce32_count = phb->ioda.m32_pci_base >> 28;
3162 #if 0 /* We should really do that ... */
3163 rc = opal_pci_set_phb_mem_window(opal->phb_id,
3164 window_type,
3165 window_num,
3166 starting_real_address,
3167 starting_pci_address,
3168 segment_size);
3169 #endif
3171 pr_info(" %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3172 phb->ioda.total_pe, phb->ioda.reserved_pe,
3173 phb->ioda.m32_size, phb->ioda.m32_segsize);
3174 if (phb->ioda.m64_size)
3175 pr_info(" M64: 0x%lx [segment=0x%lx]\n",
3176 phb->ioda.m64_size, phb->ioda.m64_segsize);
3177 if (phb->ioda.io_size)
3178 pr_info(" IO: 0x%x [segment=0x%x]\n",
3179 phb->ioda.io_size, phb->ioda.io_segsize);
3182 phb->hose->ops = &pnv_pci_ops;
3183 phb->get_pe_state = pnv_ioda_get_pe_state;
3184 phb->freeze_pe = pnv_ioda_freeze_pe;
3185 phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3187 /* Setup RID -> PE mapping function */
3188 phb->bdfn_to_pe = pnv_ioda_bdfn_to_pe;
3190 /* Setup TCEs */
3191 phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3193 /* Setup MSI support */
3194 pnv_pci_init_ioda_msis(phb);
3197 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3198 * to let the PCI core do resource assignment. It's supposed
3199 * that the PCI core will do correct I/O and MMIO alignment
3200 * for the P2P bridge bars so that each PCI bus (excluding
3201 * the child P2P bridges) can form individual PE.
3203 ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3204 hose->controller_ops = pnv_pci_ioda_controller_ops;
3206 #ifdef CONFIG_PCI_IOV
3207 ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3208 ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3209 #endif
3211 pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3213 /* Reset IODA tables to a clean state */
3214 rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3215 if (rc)
3216 pr_warning(" OPAL Error %ld performing IODA table reset !\n", rc);
3218 /* If we're running in kdump kerenl, the previous kerenl never
3219 * shutdown PCI devices correctly. We already got IODA table
3220 * cleaned out. So we have to issue PHB reset to stop all PCI
3221 * transactions from previous kerenl.
3223 if (is_kdump_kernel()) {
3224 pr_info(" Issue PHB reset ...\n");
3225 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3226 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3229 /* Remove M64 resource if we can't configure it successfully */
3230 if (!phb->init_m64 || phb->init_m64(phb))
3231 hose->mem_resources[1].flags = 0;
3234 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3236 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3239 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3241 struct device_node *phbn;
3242 const __be64 *prop64;
3243 u64 hub_id;
3245 pr_info("Probing IODA IO-Hub %s\n", np->full_name);
3247 prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3248 if (!prop64) {
3249 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3250 return;
3252 hub_id = be64_to_cpup(prop64);
3253 pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3255 /* Count child PHBs */
3256 for_each_child_of_node(np, phbn) {
3257 /* Look for IODA1 PHBs */
3258 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3259 pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);