of: MSI: Simplify irqdomain lookup
[linux/fpc-iii.git] / arch / powerpc / platforms / powernv / subcore.c
blob503a73f593599b37e7936e48ff47067577bd40d9
1 /*
2 * Copyright 2013, Michael (Ellerman|Neuling), IBM Corporation.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 */
10 #define pr_fmt(fmt) "powernv: " fmt
12 #include <linux/kernel.h>
13 #include <linux/cpu.h>
14 #include <linux/cpumask.h>
15 #include <linux/device.h>
16 #include <linux/gfp.h>
17 #include <linux/smp.h>
18 #include <linux/stop_machine.h>
20 #include <asm/cputhreads.h>
21 #include <asm/kvm_ppc.h>
22 #include <asm/machdep.h>
23 #include <asm/opal.h>
24 #include <asm/smp.h>
26 #include "subcore.h"
27 #include "powernv.h"
31 * Split/unsplit procedure:
33 * A core can be in one of three states, unsplit, 2-way split, and 4-way split.
35 * The mapping to subcores_per_core is simple:
37 * State | subcores_per_core
38 * ------------|------------------
39 * Unsplit | 1
40 * 2-way split | 2
41 * 4-way split | 4
43 * The core is split along thread boundaries, the mapping between subcores and
44 * threads is as follows:
46 * Unsplit:
47 * ----------------------------
48 * Subcore | 0 |
49 * ----------------------------
50 * Thread | 0 1 2 3 4 5 6 7 |
51 * ----------------------------
53 * 2-way split:
54 * -------------------------------------
55 * Subcore | 0 | 1 |
56 * -------------------------------------
57 * Thread | 0 1 2 3 | 4 5 6 7 |
58 * -------------------------------------
60 * 4-way split:
61 * -----------------------------------------
62 * Subcore | 0 | 1 | 2 | 3 |
63 * -----------------------------------------
64 * Thread | 0 1 | 2 3 | 4 5 | 6 7 |
65 * -----------------------------------------
68 * Transitions
69 * -----------
71 * It is not possible to transition between either of the split states, the
72 * core must first be unsplit. The legal transitions are:
74 * ----------- ---------------
75 * | | <----> | 2-way split |
76 * | | ---------------
77 * | Unsplit |
78 * | | ---------------
79 * | | <----> | 4-way split |
80 * ----------- ---------------
82 * Unsplitting
83 * -----------
85 * Unsplitting is the simpler procedure. It requires thread 0 to request the
86 * unsplit while all other threads NAP.
88 * Thread 0 clears HID0_POWER8_DYNLPARDIS (Dynamic LPAR Disable). This tells
89 * the hardware that if all threads except 0 are napping, the hardware should
90 * unsplit the core.
92 * Non-zero threads are sent to a NAP loop, they don't exit the loop until they
93 * see the core unsplit.
95 * Core 0 spins waiting for the hardware to see all the other threads napping
96 * and perform the unsplit.
98 * Once thread 0 sees the unsplit, it IPIs the secondary threads to wake them
99 * out of NAP. They will then see the core unsplit and exit the NAP loop.
101 * Splitting
102 * ---------
104 * The basic splitting procedure is fairly straight forward. However it is
105 * complicated by the fact that after the split occurs, the newly created
106 * subcores are not in a fully initialised state.
108 * Most notably the subcores do not have the correct value for SDR1, which
109 * means they must not be running in virtual mode when the split occurs. The
110 * subcores have separate timebases SPRs but these are pre-synchronised by
111 * opal.
113 * To begin with secondary threads are sent to an assembly routine. There they
114 * switch to real mode, so they are immune to the uninitialised SDR1 value.
115 * Once in real mode they indicate that they are in real mode, and spin waiting
116 * to see the core split.
118 * Thread 0 waits to see that all secondaries are in real mode, and then begins
119 * the splitting procedure. It firstly sets HID0_POWER8_DYNLPARDIS, which
120 * prevents the hardware from unsplitting. Then it sets the appropriate HID bit
121 * to request the split, and spins waiting to see that the split has happened.
123 * Concurrently the secondaries will notice the split. When they do they set up
124 * their SPRs, notably SDR1, and then they can return to virtual mode and exit
125 * the procedure.
128 /* Initialised at boot by subcore_init() */
129 static int subcores_per_core;
132 * Used to communicate to offline cpus that we want them to pop out of the
133 * offline loop and do a split or unsplit.
135 * 0 - no split happening
136 * 1 - unsplit in progress
137 * 2 - split to 2 in progress
138 * 4 - split to 4 in progress
140 static int new_split_mode;
142 static cpumask_var_t cpu_offline_mask;
144 struct split_state {
145 u8 step;
146 u8 master;
149 static DEFINE_PER_CPU(struct split_state, split_state);
151 static void wait_for_sync_step(int step)
153 int i, cpu = smp_processor_id();
155 for (i = cpu + 1; i < cpu + threads_per_core; i++)
156 while(per_cpu(split_state, i).step < step)
157 barrier();
159 /* Order the wait loop vs any subsequent loads/stores. */
160 mb();
163 static void update_hid_in_slw(u64 hid0)
165 u64 idle_states = pnv_get_supported_cpuidle_states();
167 if (idle_states & OPAL_PM_WINKLE_ENABLED) {
168 /* OPAL call to patch slw with the new HID0 value */
169 u64 cpu_pir = hard_smp_processor_id();
171 opal_slw_set_reg(cpu_pir, SPRN_HID0, hid0);
175 static void unsplit_core(void)
177 u64 hid0, mask;
178 int i, cpu;
180 mask = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
182 cpu = smp_processor_id();
183 if (cpu_thread_in_core(cpu) != 0) {
184 while (mfspr(SPRN_HID0) & mask)
185 power7_nap(0);
187 per_cpu(split_state, cpu).step = SYNC_STEP_UNSPLIT;
188 return;
191 hid0 = mfspr(SPRN_HID0);
192 hid0 &= ~HID0_POWER8_DYNLPARDIS;
193 update_power8_hid0(hid0);
194 update_hid_in_slw(hid0);
196 while (mfspr(SPRN_HID0) & mask)
197 cpu_relax();
199 /* Wake secondaries out of NAP */
200 for (i = cpu + 1; i < cpu + threads_per_core; i++)
201 smp_send_reschedule(i);
203 wait_for_sync_step(SYNC_STEP_UNSPLIT);
206 static void split_core(int new_mode)
208 struct { u64 value; u64 mask; } split_parms[2] = {
209 { HID0_POWER8_1TO2LPAR, HID0_POWER8_2LPARMODE },
210 { HID0_POWER8_1TO4LPAR, HID0_POWER8_4LPARMODE }
212 int i, cpu;
213 u64 hid0;
215 /* Convert new_mode (2 or 4) into an index into our parms array */
216 i = (new_mode >> 1) - 1;
217 BUG_ON(i < 0 || i > 1);
219 cpu = smp_processor_id();
220 if (cpu_thread_in_core(cpu) != 0) {
221 split_core_secondary_loop(&per_cpu(split_state, cpu).step);
222 return;
225 wait_for_sync_step(SYNC_STEP_REAL_MODE);
227 /* Write new mode */
228 hid0 = mfspr(SPRN_HID0);
229 hid0 |= HID0_POWER8_DYNLPARDIS | split_parms[i].value;
230 update_power8_hid0(hid0);
231 update_hid_in_slw(hid0);
233 /* Wait for it to happen */
234 while (!(mfspr(SPRN_HID0) & split_parms[i].mask))
235 cpu_relax();
238 static void cpu_do_split(int new_mode)
241 * At boot subcores_per_core will be 0, so we will always unsplit at
242 * boot. In the usual case where the core is already unsplit it's a
243 * nop, and this just ensures the kernel's notion of the mode is
244 * consistent with the hardware.
246 if (subcores_per_core != 1)
247 unsplit_core();
249 if (new_mode != 1)
250 split_core(new_mode);
252 mb();
253 per_cpu(split_state, smp_processor_id()).step = SYNC_STEP_FINISHED;
256 bool cpu_core_split_required(void)
258 smp_rmb();
260 if (!new_split_mode)
261 return false;
263 cpu_do_split(new_split_mode);
265 return true;
268 void update_subcore_sibling_mask(void)
270 int cpu;
272 * sibling mask for the first cpu. Left shift this by required bits
273 * to get sibling mask for the rest of the cpus.
275 int sibling_mask_first_cpu = (1 << threads_per_subcore) - 1;
277 for_each_possible_cpu(cpu) {
278 int tid = cpu_thread_in_core(cpu);
279 int offset = (tid / threads_per_subcore) * threads_per_subcore;
280 int mask = sibling_mask_first_cpu << offset;
282 paca[cpu].subcore_sibling_mask = mask;
287 static int cpu_update_split_mode(void *data)
289 int cpu, new_mode = *(int *)data;
291 if (this_cpu_ptr(&split_state)->master) {
292 new_split_mode = new_mode;
293 smp_wmb();
295 cpumask_andnot(cpu_offline_mask, cpu_present_mask,
296 cpu_online_mask);
298 /* This should work even though the cpu is offline */
299 for_each_cpu(cpu, cpu_offline_mask)
300 smp_send_reschedule(cpu);
303 cpu_do_split(new_mode);
305 if (this_cpu_ptr(&split_state)->master) {
306 /* Wait for all cpus to finish before we touch subcores_per_core */
307 for_each_present_cpu(cpu) {
308 if (cpu >= setup_max_cpus)
309 break;
311 while(per_cpu(split_state, cpu).step < SYNC_STEP_FINISHED)
312 barrier();
315 new_split_mode = 0;
317 /* Make the new mode public */
318 subcores_per_core = new_mode;
319 threads_per_subcore = threads_per_core / subcores_per_core;
320 update_subcore_sibling_mask();
322 /* Make sure the new mode is written before we exit */
323 mb();
326 return 0;
329 static int set_subcores_per_core(int new_mode)
331 struct split_state *state;
332 int cpu;
334 if (kvm_hv_mode_active()) {
335 pr_err("Unable to change split core mode while KVM active.\n");
336 return -EBUSY;
340 * We are only called at boot, or from the sysfs write. If that ever
341 * changes we'll need a lock here.
343 BUG_ON(new_mode < 1 || new_mode > 4 || new_mode == 3);
345 for_each_present_cpu(cpu) {
346 state = &per_cpu(split_state, cpu);
347 state->step = SYNC_STEP_INITIAL;
348 state->master = 0;
351 get_online_cpus();
353 /* This cpu will update the globals before exiting stop machine */
354 this_cpu_ptr(&split_state)->master = 1;
356 /* Ensure state is consistent before we call the other cpus */
357 mb();
359 stop_machine(cpu_update_split_mode, &new_mode, cpu_online_mask);
361 put_online_cpus();
363 return 0;
366 static ssize_t __used store_subcores_per_core(struct device *dev,
367 struct device_attribute *attr, const char *buf,
368 size_t count)
370 unsigned long val;
371 int rc;
373 /* We are serialised by the attribute lock */
375 rc = sscanf(buf, "%lx", &val);
376 if (rc != 1)
377 return -EINVAL;
379 switch (val) {
380 case 1:
381 case 2:
382 case 4:
383 if (subcores_per_core == val)
384 /* Nothing to do */
385 goto out;
386 break;
387 default:
388 return -EINVAL;
391 rc = set_subcores_per_core(val);
392 if (rc)
393 return rc;
395 out:
396 return count;
399 static ssize_t show_subcores_per_core(struct device *dev,
400 struct device_attribute *attr, char *buf)
402 return sprintf(buf, "%x\n", subcores_per_core);
405 static DEVICE_ATTR(subcores_per_core, 0644,
406 show_subcores_per_core, store_subcores_per_core);
408 static int subcore_init(void)
410 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
411 return 0;
414 * We need all threads in a core to be present to split/unsplit so
415 * continue only if max_cpus are aligned to threads_per_core.
417 if (setup_max_cpus % threads_per_core)
418 return 0;
420 BUG_ON(!alloc_cpumask_var(&cpu_offline_mask, GFP_KERNEL));
422 set_subcores_per_core(1);
424 return device_create_file(cpu_subsys.dev_root,
425 &dev_attr_subcores_per_core);
427 machine_device_initcall(powernv, subcore_init);