1 #include <linux/moduleloader.h>
2 #include <linux/workqueue.h>
3 #include <linux/netdevice.h>
4 #include <linux/filter.h>
5 #include <linux/cache.h>
6 #include <linux/if_vlan.h>
8 #include <asm/cacheflush.h>
9 #include <asm/ptrace.h>
13 int bpf_jit_enable __read_mostly
;
15 static inline bool is_simm13(unsigned int value
)
17 return value
+ 0x1000 < 0x2000;
20 static void bpf_flush_icache(void *start_
, void *end_
)
23 /* Cheetah's I-cache is fully coherent. */
24 if (tlb_type
== spitfire
) {
25 unsigned long start
= (unsigned long) start_
;
26 unsigned long end
= (unsigned long) end_
;
29 end
= (end
+ 7UL) & ~7UL;
38 #define SEEN_DATAREF 1 /* might call external helpers */
39 #define SEEN_XREG 2 /* ebx is used */
40 #define SEEN_MEM 4 /* use mem[] for temporary storage */
42 #define S13(X) ((X) & 0x1fff)
43 #define IMMED 0x00002000
44 #define RD(X) ((X) << 25)
45 #define RS1(X) ((X) << 14)
47 #define OP(X) ((X) << 30)
48 #define OP2(X) ((X) << 22)
49 #define OP3(X) ((X) << 19)
50 #define COND(X) ((X) << 25)
52 #define F2(X, Y) (OP(X) | OP2(Y))
53 #define F3(X, Y) (OP(X) | OP3(Y))
55 #define CONDN COND(0x0)
56 #define CONDE COND(0x1)
57 #define CONDLE COND(0x2)
58 #define CONDL COND(0x3)
59 #define CONDLEU COND(0x4)
60 #define CONDCS COND(0x5)
61 #define CONDNEG COND(0x6)
62 #define CONDVC COND(0x7)
63 #define CONDA COND(0x8)
64 #define CONDNE COND(0x9)
65 #define CONDG COND(0xa)
66 #define CONDGE COND(0xb)
67 #define CONDGU COND(0xc)
68 #define CONDCC COND(0xd)
69 #define CONDPOS COND(0xe)
70 #define CONDVS COND(0xf)
72 #define CONDGEU CONDCC
75 #define WDISP22(X) (((X) >> 2) & 0x3fffff)
77 #define BA (F2(0, 2) | CONDA)
78 #define BGU (F2(0, 2) | CONDGU)
79 #define BLEU (F2(0, 2) | CONDLEU)
80 #define BGEU (F2(0, 2) | CONDGEU)
81 #define BLU (F2(0, 2) | CONDLU)
82 #define BE (F2(0, 2) | CONDE)
83 #define BNE (F2(0, 2) | CONDNE)
86 #define BE_PTR (F2(0, 1) | CONDE | (2 << 20))
91 #define SETHI(K, REG) \
92 (F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
93 #define OR_LO(K, REG) \
94 (F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
96 #define ADD F3(2, 0x00)
97 #define AND F3(2, 0x01)
98 #define ANDCC F3(2, 0x11)
99 #define OR F3(2, 0x02)
100 #define XOR F3(2, 0x03)
101 #define SUB F3(2, 0x04)
102 #define SUBCC F3(2, 0x14)
103 #define MUL F3(2, 0x0a) /* umul */
104 #define DIV F3(2, 0x0e) /* udiv */
105 #define SLL F3(2, 0x25)
106 #define SRL F3(2, 0x26)
107 #define JMPL F3(2, 0x38)
109 #define BR F2(0, 0x01)
110 #define RD_Y F3(2, 0x28)
111 #define WR_Y F3(2, 0x30)
113 #define LD32 F3(3, 0x00)
114 #define LD8 F3(3, 0x01)
115 #define LD16 F3(3, 0x02)
116 #define LD64 F3(3, 0x0b)
117 #define ST32 F3(3, 0x04)
119 #ifdef CONFIG_SPARC64
121 #define BASE_STACKFRAME 176
124 #define BASE_STACKFRAME 96
127 #define LD32I (LD32 | IMMED)
128 #define LD8I (LD8 | IMMED)
129 #define LD16I (LD16 | IMMED)
130 #define LD64I (LD64 | IMMED)
131 #define LDPTRI (LDPTR | IMMED)
132 #define ST32I (ST32 | IMMED)
136 *prog++ = SETHI(0, G0); \
140 do { /* sub %g0, r_A, r_A */ \
141 *prog++ = SUB | RS1(G0) | RS2(r_A) | RD(r_A); \
144 #define emit_reg_move(FROM, TO) \
145 do { /* or %g0, FROM, TO */ \
146 *prog++ = OR | RS1(G0) | RS2(FROM) | RD(TO); \
149 #define emit_clear(REG) \
150 do { /* or %g0, %g0, REG */ \
151 *prog++ = OR | RS1(G0) | RS2(G0) | RD(REG); \
154 #define emit_set_const(K, REG) \
155 do { /* sethi %hi(K), REG */ \
156 *prog++ = SETHI(K, REG); \
157 /* or REG, %lo(K), REG */ \
158 *prog++ = OR_LO(K, REG); \
165 #define emit_alu_X(OPCODE) \
168 *prog++ = OPCODE | RS1(r_A) | RS2(r_X) | RD(r_A); \
177 * sethi %hi(K), r_TMP
178 * or r_TMP, %lo(K), r_TMP
181 * depending upon whether K fits in a signed 13-bit
182 * immediate instruction field. Emit nothing if K
185 #define emit_alu_K(OPCODE, K) \
187 if (K || OPCODE == AND || OPCODE == MUL) { \
188 unsigned int _insn = OPCODE; \
189 _insn |= RS1(r_A) | RD(r_A); \
190 if (is_simm13(K)) { \
191 *prog++ = _insn | IMMED | S13(K); \
193 emit_set_const(K, r_TMP); \
194 *prog++ = _insn | RS2(r_TMP); \
199 #define emit_loadimm(K, DEST) \
201 if (is_simm13(K)) { \
202 /* or %g0, K, DEST */ \
203 *prog++ = OR | IMMED | RS1(G0) | S13(K) | RD(DEST); \
205 emit_set_const(K, DEST); \
209 #define emit_loadptr(BASE, STRUCT, FIELD, DEST) \
210 do { unsigned int _off = offsetof(STRUCT, FIELD); \
211 BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(void *)); \
212 *prog++ = LDPTRI | RS1(BASE) | S13(_off) | RD(DEST); \
215 #define emit_load32(BASE, STRUCT, FIELD, DEST) \
216 do { unsigned int _off = offsetof(STRUCT, FIELD); \
217 BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u32)); \
218 *prog++ = LD32I | RS1(BASE) | S13(_off) | RD(DEST); \
221 #define emit_load16(BASE, STRUCT, FIELD, DEST) \
222 do { unsigned int _off = offsetof(STRUCT, FIELD); \
223 BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u16)); \
224 *prog++ = LD16I | RS1(BASE) | S13(_off) | RD(DEST); \
227 #define __emit_load8(BASE, STRUCT, FIELD, DEST) \
228 do { unsigned int _off = offsetof(STRUCT, FIELD); \
229 *prog++ = LD8I | RS1(BASE) | S13(_off) | RD(DEST); \
232 #define emit_load8(BASE, STRUCT, FIELD, DEST) \
233 do { BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u8)); \
234 __emit_load8(BASE, STRUCT, FIELD, DEST); \
237 #ifdef CONFIG_SPARC64
238 #define BIAS (STACK_BIAS - 4)
243 #define emit_ldmem(OFF, DEST) \
244 do { *prog++ = LD32I | RS1(SP) | S13(BIAS - (OFF)) | RD(DEST); \
247 #define emit_stmem(OFF, SRC) \
248 do { *prog++ = ST32I | RS1(SP) | S13(BIAS - (OFF)) | RD(SRC); \
252 #ifdef CONFIG_SPARC64
253 #define emit_load_cpu(REG) \
254 emit_load16(G6, struct thread_info, cpu, REG)
256 #define emit_load_cpu(REG) \
257 emit_load32(G6, struct thread_info, cpu, REG)
260 #define emit_load_cpu(REG) emit_clear(REG)
263 #define emit_skb_loadptr(FIELD, DEST) \
264 emit_loadptr(r_SKB, struct sk_buff, FIELD, DEST)
265 #define emit_skb_load32(FIELD, DEST) \
266 emit_load32(r_SKB, struct sk_buff, FIELD, DEST)
267 #define emit_skb_load16(FIELD, DEST) \
268 emit_load16(r_SKB, struct sk_buff, FIELD, DEST)
269 #define __emit_skb_load8(FIELD, DEST) \
270 __emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
271 #define emit_skb_load8(FIELD, DEST) \
272 emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
274 #define emit_jmpl(BASE, IMM_OFF, LREG) \
275 *prog++ = (JMPL | IMMED | RS1(BASE) | S13(IMM_OFF) | RD(LREG))
277 #define emit_call(FUNC) \
278 do { void *_here = image + addrs[i] - 8; \
279 unsigned int _off = (void *)(FUNC) - _here; \
280 *prog++ = CALL | (((_off) >> 2) & 0x3fffffff); \
284 #define emit_branch(BR_OPC, DEST) \
285 do { unsigned int _here = addrs[i] - 8; \
286 *prog++ = BR_OPC | WDISP22((DEST) - _here); \
289 #define emit_branch_off(BR_OPC, OFF) \
290 do { *prog++ = BR_OPC | WDISP22(OFF); \
293 #define emit_jump(DEST) emit_branch(BA, DEST)
295 #define emit_read_y(REG) *prog++ = RD_Y | RD(REG)
296 #define emit_write_y(REG) *prog++ = WR_Y | IMMED | RS1(REG) | S13(0)
298 #define emit_cmp(R1, R2) \
299 *prog++ = (SUBCC | RS1(R1) | RS2(R2) | RD(G0))
301 #define emit_cmpi(R1, IMM) \
302 *prog++ = (SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
304 #define emit_btst(R1, R2) \
305 *prog++ = (ANDCC | RS1(R1) | RS2(R2) | RD(G0))
307 #define emit_btsti(R1, IMM) \
308 *prog++ = (ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
310 #define emit_sub(R1, R2, R3) \
311 *prog++ = (SUB | RS1(R1) | RS2(R2) | RD(R3))
313 #define emit_subi(R1, IMM, R3) \
314 *prog++ = (SUB | IMMED | RS1(R1) | S13(IMM) | RD(R3))
316 #define emit_add(R1, R2, R3) \
317 *prog++ = (ADD | RS1(R1) | RS2(R2) | RD(R3))
319 #define emit_addi(R1, IMM, R3) \
320 *prog++ = (ADD | IMMED | RS1(R1) | S13(IMM) | RD(R3))
322 #define emit_and(R1, R2, R3) \
323 *prog++ = (AND | RS1(R1) | RS2(R2) | RD(R3))
325 #define emit_andi(R1, IMM, R3) \
326 *prog++ = (AND | IMMED | RS1(R1) | S13(IMM) | RD(R3))
328 #define emit_alloc_stack(SZ) \
329 *prog++ = (SUB | IMMED | RS1(SP) | S13(SZ) | RD(SP))
331 #define emit_release_stack(SZ) \
332 *prog++ = (ADD | IMMED | RS1(SP) | S13(SZ) | RD(SP))
334 /* A note about branch offset calculations. The addrs[] array,
335 * indexed by BPF instruction, records the address after all the
336 * sparc instructions emitted for that BPF instruction.
338 * The most common case is to emit a branch at the end of such
339 * a code sequence. So this would be two instructions, the
340 * branch and it's delay slot.
342 * Therefore by default the branch emitters calculate the branch
345 * destination - (addrs[i] - 8)
347 * This "addrs[i] - 8" is the address of the branch itself or
348 * what "." would be in assembler notation. The "8" part is
349 * how we take into consideration the branch and it's delay
350 * slot mentioned above.
352 * Sometimes we need to emit a branch earlier in the code
353 * sequence. And in these situations we adjust "destination"
354 * to accomodate this difference. For example, if we needed
355 * to emit a branch (and it's delay slot) right before the
356 * final instruction emitted for a BPF opcode, we'd use
357 * "destination + 4" instead of just plain "destination" above.
359 * This is why you see all of these funny emit_branch() and
360 * emit_jump() calls with adjusted offsets.
363 void bpf_jit_compile(struct bpf_prog
*fp
)
365 unsigned int cleanup_addr
, proglen
, oldproglen
= 0;
366 u32 temp
[8], *prog
, *func
, seen
= 0, pass
;
367 const struct sock_filter
*filter
= fp
->insns
;
368 int i
, flen
= fp
->len
, pc_ret0
= -1;
375 addrs
= kmalloc(flen
* sizeof(*addrs
), GFP_KERNEL
);
379 /* Before first pass, make a rough estimation of addrs[]
380 * each bpf instruction is translated to less than 64 bytes
382 for (proglen
= 0, i
= 0; i
< flen
; i
++) {
386 cleanup_addr
= proglen
; /* epilogue address */
388 for (pass
= 0; pass
< 10; pass
++) {
389 u8 seen_or_pass0
= (pass
== 0) ? (SEEN_XREG
| SEEN_DATAREF
| SEEN_MEM
) : seen
;
391 /* no prologue/epilogue for trivial filters (RET something) */
397 if (seen_or_pass0
& SEEN_MEM
) {
398 unsigned int sz
= BASE_STACKFRAME
;
399 sz
+= BPF_MEMWORDS
* sizeof(u32
);
400 emit_alloc_stack(sz
);
403 /* Make sure we dont leek kernel memory. */
404 if (seen_or_pass0
& SEEN_XREG
)
407 /* If this filter needs to access skb data,
408 * load %o4 and %o5 with:
409 * %o4 = skb->len - skb->data_len
411 * And also back up %o7 into r_saved_O7 so we can
412 * invoke the stubs using 'call'.
414 if (seen_or_pass0
& SEEN_DATAREF
) {
415 emit_load32(r_SKB
, struct sk_buff
, len
, r_HEADLEN
);
416 emit_load32(r_SKB
, struct sk_buff
, data_len
, r_TMP
);
417 emit_sub(r_HEADLEN
, r_TMP
, r_HEADLEN
);
418 emit_loadptr(r_SKB
, struct sk_buff
, data
, r_SKB_DATA
);
421 emit_reg_move(O7
, r_saved_O7
);
423 /* Make sure we dont leak kernel information to the user. */
424 if (bpf_needs_clear_a(&filter
[0]))
425 emit_clear(r_A
); /* A = 0 */
427 for (i
= 0; i
< flen
; i
++) {
428 unsigned int K
= filter
[i
].k
;
429 unsigned int t_offset
;
430 unsigned int f_offset
;
432 u16 code
= bpf_anc_helper(&filter
[i
]);
436 case BPF_ALU
| BPF_ADD
| BPF_X
: /* A += X; */
439 case BPF_ALU
| BPF_ADD
| BPF_K
: /* A += K; */
442 case BPF_ALU
| BPF_SUB
| BPF_X
: /* A -= X; */
445 case BPF_ALU
| BPF_SUB
| BPF_K
: /* A -= K */
448 case BPF_ALU
| BPF_AND
| BPF_X
: /* A &= X */
451 case BPF_ALU
| BPF_AND
| BPF_K
: /* A &= K */
454 case BPF_ALU
| BPF_OR
| BPF_X
: /* A |= X */
457 case BPF_ALU
| BPF_OR
| BPF_K
: /* A |= K */
460 case BPF_ANC
| SKF_AD_ALU_XOR_X
: /* A ^= X; */
461 case BPF_ALU
| BPF_XOR
| BPF_X
:
464 case BPF_ALU
| BPF_XOR
| BPF_K
: /* A ^= K */
467 case BPF_ALU
| BPF_LSH
| BPF_X
: /* A <<= X */
470 case BPF_ALU
| BPF_LSH
| BPF_K
: /* A <<= K */
473 case BPF_ALU
| BPF_RSH
| BPF_X
: /* A >>= X */
476 case BPF_ALU
| BPF_RSH
| BPF_K
: /* A >>= K */
479 case BPF_ALU
| BPF_MUL
| BPF_X
: /* A *= X; */
482 case BPF_ALU
| BPF_MUL
| BPF_K
: /* A *= K */
485 case BPF_ALU
| BPF_DIV
| BPF_K
: /* A /= K with K != 0*/
489 #ifdef CONFIG_SPARC32
490 /* The Sparc v8 architecture requires
491 * three instructions between a %y
492 * register write and the first use.
500 case BPF_ALU
| BPF_DIV
| BPF_X
: /* A /= X; */
503 t_offset
= addrs
[pc_ret0
- 1];
504 #ifdef CONFIG_SPARC32
505 emit_branch(BE
, t_offset
+ 20);
507 emit_branch(BE
, t_offset
+ 8);
509 emit_nop(); /* delay slot */
511 emit_branch_off(BNE
, 16);
513 #ifdef CONFIG_SPARC32
514 emit_jump(cleanup_addr
+ 20);
516 emit_jump(cleanup_addr
+ 8);
521 #ifdef CONFIG_SPARC32
522 /* The Sparc v8 architecture requires
523 * three instructions between a %y
524 * register write and the first use.
532 case BPF_ALU
| BPF_NEG
:
535 case BPF_RET
| BPF_K
:
541 emit_loadimm(K
, r_A
);
544 case BPF_RET
| BPF_A
:
547 emit_jump(cleanup_addr
);
551 if (seen_or_pass0
& SEEN_MEM
) {
552 unsigned int sz
= BASE_STACKFRAME
;
553 sz
+= BPF_MEMWORDS
* sizeof(u32
);
554 emit_release_stack(sz
);
557 /* jmpl %r_saved_O7 + 8, %g0 */
558 emit_jmpl(r_saved_O7
, 8, G0
);
559 emit_reg_move(r_A
, O0
); /* delay slot */
561 case BPF_MISC
| BPF_TAX
:
563 emit_reg_move(r_A
, r_X
);
565 case BPF_MISC
| BPF_TXA
:
567 emit_reg_move(r_X
, r_A
);
569 case BPF_ANC
| SKF_AD_CPU
:
572 case BPF_ANC
| SKF_AD_PROTOCOL
:
573 emit_skb_load16(protocol
, r_A
);
575 case BPF_ANC
| SKF_AD_PKTTYPE
:
576 __emit_skb_load8(__pkt_type_offset
, r_A
);
577 emit_andi(r_A
, PKT_TYPE_MAX
, r_A
);
580 case BPF_ANC
| SKF_AD_IFINDEX
:
581 emit_skb_loadptr(dev
, r_A
);
583 emit_branch(BE_PTR
, cleanup_addr
+ 4);
585 emit_load32(r_A
, struct net_device
, ifindex
, r_A
);
587 case BPF_ANC
| SKF_AD_MARK
:
588 emit_skb_load32(mark
, r_A
);
590 case BPF_ANC
| SKF_AD_QUEUE
:
591 emit_skb_load16(queue_mapping
, r_A
);
593 case BPF_ANC
| SKF_AD_HATYPE
:
594 emit_skb_loadptr(dev
, r_A
);
596 emit_branch(BE_PTR
, cleanup_addr
+ 4);
598 emit_load16(r_A
, struct net_device
, type
, r_A
);
600 case BPF_ANC
| SKF_AD_RXHASH
:
601 emit_skb_load32(hash
, r_A
);
603 case BPF_ANC
| SKF_AD_VLAN_TAG
:
604 case BPF_ANC
| SKF_AD_VLAN_TAG_PRESENT
:
605 emit_skb_load16(vlan_tci
, r_A
);
606 if (code
!= (BPF_ANC
| SKF_AD_VLAN_TAG
)) {
608 emit_andi(r_A
, 1, r_A
);
610 emit_loadimm(~VLAN_TAG_PRESENT
, r_TMP
);
611 emit_and(r_A
, r_TMP
, r_A
);
614 case BPF_LD
| BPF_W
| BPF_LEN
:
615 emit_skb_load32(len
, r_A
);
617 case BPF_LDX
| BPF_W
| BPF_LEN
:
618 emit_skb_load32(len
, r_X
);
620 case BPF_LD
| BPF_IMM
:
621 emit_loadimm(K
, r_A
);
623 case BPF_LDX
| BPF_IMM
:
624 emit_loadimm(K
, r_X
);
626 case BPF_LD
| BPF_MEM
:
628 emit_ldmem(K
* 4, r_A
);
630 case BPF_LDX
| BPF_MEM
:
631 seen
|= SEEN_MEM
| SEEN_XREG
;
632 emit_ldmem(K
* 4, r_X
);
636 emit_stmem(K
* 4, r_A
);
639 seen
|= SEEN_MEM
| SEEN_XREG
;
640 emit_stmem(K
* 4, r_X
);
643 #define CHOOSE_LOAD_FUNC(K, func) \
644 ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
646 case BPF_LD
| BPF_W
| BPF_ABS
:
647 func
= CHOOSE_LOAD_FUNC(K
, bpf_jit_load_word
);
648 common_load
: seen
|= SEEN_DATAREF
;
649 emit_loadimm(K
, r_OFF
);
652 case BPF_LD
| BPF_H
| BPF_ABS
:
653 func
= CHOOSE_LOAD_FUNC(K
, bpf_jit_load_half
);
655 case BPF_LD
| BPF_B
| BPF_ABS
:
656 func
= CHOOSE_LOAD_FUNC(K
, bpf_jit_load_byte
);
658 case BPF_LDX
| BPF_B
| BPF_MSH
:
659 func
= CHOOSE_LOAD_FUNC(K
, bpf_jit_load_byte_msh
);
661 case BPF_LD
| BPF_W
| BPF_IND
:
662 func
= bpf_jit_load_word
;
663 common_load_ind
: seen
|= SEEN_DATAREF
| SEEN_XREG
;
666 emit_addi(r_X
, K
, r_OFF
);
668 emit_loadimm(K
, r_TMP
);
669 emit_add(r_X
, r_TMP
, r_OFF
);
672 emit_reg_move(r_X
, r_OFF
);
676 case BPF_LD
| BPF_H
| BPF_IND
:
677 func
= bpf_jit_load_half
;
678 goto common_load_ind
;
679 case BPF_LD
| BPF_B
| BPF_IND
:
680 func
= bpf_jit_load_byte
;
681 goto common_load_ind
;
682 case BPF_JMP
| BPF_JA
:
683 emit_jump(addrs
[i
+ K
]);
687 #define COND_SEL(CODE, TOP, FOP) \
693 COND_SEL(BPF_JMP
| BPF_JGT
| BPF_K
, BGU
, BLEU
);
694 COND_SEL(BPF_JMP
| BPF_JGE
| BPF_K
, BGEU
, BLU
);
695 COND_SEL(BPF_JMP
| BPF_JEQ
| BPF_K
, BE
, BNE
);
696 COND_SEL(BPF_JMP
| BPF_JSET
| BPF_K
, BNE
, BE
);
697 COND_SEL(BPF_JMP
| BPF_JGT
| BPF_X
, BGU
, BLEU
);
698 COND_SEL(BPF_JMP
| BPF_JGE
| BPF_X
, BGEU
, BLU
);
699 COND_SEL(BPF_JMP
| BPF_JEQ
| BPF_X
, BE
, BNE
);
700 COND_SEL(BPF_JMP
| BPF_JSET
| BPF_X
, BNE
, BE
);
702 cond_branch
: f_offset
= addrs
[i
+ filter
[i
].jf
];
703 t_offset
= addrs
[i
+ filter
[i
].jt
];
705 /* same targets, can avoid doing the test :) */
706 if (filter
[i
].jt
== filter
[i
].jf
) {
713 case BPF_JMP
| BPF_JGT
| BPF_X
:
714 case BPF_JMP
| BPF_JGE
| BPF_X
:
715 case BPF_JMP
| BPF_JEQ
| BPF_X
:
719 case BPF_JMP
| BPF_JSET
| BPF_X
:
723 case BPF_JMP
| BPF_JEQ
| BPF_K
:
724 case BPF_JMP
| BPF_JGT
| BPF_K
:
725 case BPF_JMP
| BPF_JGE
| BPF_K
:
729 emit_loadimm(K
, r_TMP
);
730 emit_cmp(r_A
, r_TMP
);
733 case BPF_JMP
| BPF_JSET
| BPF_K
:
737 emit_loadimm(K
, r_TMP
);
738 emit_btst(r_A
, r_TMP
);
742 if (filter
[i
].jt
!= 0) {
745 emit_branch(t_op
, t_offset
);
746 emit_nop(); /* delay slot */
753 emit_branch(f_op
, f_offset
);
754 emit_nop(); /* delay slot */
758 /* hmm, too complex filter, give up with jit compiler */
761 ilen
= (void *) prog
- (void *) temp
;
763 if (unlikely(proglen
+ ilen
> oldproglen
)) {
764 pr_err("bpb_jit_compile fatal error\n");
766 module_memfree(image
);
769 memcpy(image
+ proglen
, temp
, ilen
);
775 /* last bpf instruction is always a RET :
776 * use it to give the cleanup instruction(s) addr
778 cleanup_addr
= proglen
- 8; /* jmpl; mov r_A,%o0; */
779 if (seen_or_pass0
& SEEN_MEM
)
780 cleanup_addr
-= 4; /* add %sp, X, %sp; */
783 if (proglen
!= oldproglen
)
784 pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n",
785 proglen
, oldproglen
);
788 if (proglen
== oldproglen
) {
789 image
= module_alloc(proglen
);
793 oldproglen
= proglen
;
796 if (bpf_jit_enable
> 1)
797 bpf_jit_dump(flen
, proglen
, pass
+ 1, image
);
800 bpf_flush_icache(image
, image
+ proglen
);
801 fp
->bpf_func
= (void *)image
;
809 void bpf_jit_free(struct bpf_prog
*fp
)
812 module_memfree(fp
->bpf_func
);
814 bpf_prog_unlock_free(fp
);