4 * Copyright (C) 1991, 1992, 1993 Linus Torvalds
8 * head.S contains the 32-bit startup code.
10 * NOTE!!! Startup happens at absolute address 0x00001000, which is also where
11 * the page directory will exist. The startup code will be overwritten by
12 * the page directory. [According to comments etc elsewhere on a compressed
13 * kernel it will end up at 0x1000 + 1Mb I hope so as I assume this. - AC]
15 * Page 0 is deliberately kept safe, since System Management Mode code in
16 * laptops may need to access the BIOS data stored there. This is also
17 * useful for future device drivers that either access the BIOS via VM86
22 * High loaded stuff by Hans Lermen & Werner Almesberger, Feb. 1996
27 #include <linux/init.h>
28 #include <linux/linkage.h>
29 #include <asm/segment.h>
32 #include <asm/processor-flags.h>
33 #include <asm/asm-offsets.h>
34 #include <asm/bootparam.h>
40 * 32bit entry is 0 and it is ABI so immutable!
41 * If we come here directly from a bootloader,
42 * kernel(text+data+bss+brk) ramdisk, zero_page, command line
43 * all need to be under the 4G limit.
47 * Test KEEP_SEGMENTS flag to see if the bootloader is asking
48 * us to not reload segments
50 testb $KEEP_SEGMENTS, BP_loadflags(%esi)
54 movl $(__BOOT_DS), %eax
61 * Calculate the delta between where we were compiled to run
62 * at and where we were actually loaded at. This can only be done
63 * with a short local call on x86. Nothing else will tell us what
64 * address we are running at. The reserved chunk of the real-mode
65 * data at 0x1e4 (defined as a scratch field) are used as the stack
66 * for this calculation. Only 4 bytes are needed.
68 leal (BP_scratch+4)(%esi), %esp
73 /* setup a stack and make sure cpu supports long mode. */
74 movl $boot_stack_end, %eax
83 * Compute the delta between where we were compiled to run at
84 * and where the code will actually run at.
86 * %ebp contains the address we are loaded at by the boot loader and %ebx
87 * contains the address where we should move the kernel image temporarily
88 * for safe in-place decompression.
91 #ifdef CONFIG_RELOCATABLE
93 movl BP_kernel_alignment(%esi), %eax
98 cmpl $LOAD_PHYSICAL_ADDR, %ebx
101 movl $LOAD_PHYSICAL_ADDR, %ebx
104 /* Target address to relocate to for decompression */
105 addl $z_extract_offset, %ebx
108 * Prepare for entering 64 bit mode
111 /* Load new GDT with the 64bit segments using 32bit descriptor */
113 movl %eax, gdt+2(%ebp)
116 /* Enable PAE mode */
118 orl $X86_CR4_PAE, %eax
122 * Build early 4G boot pagetable
124 /* Initialize Page tables to 0 */
125 leal pgtable(%ebx), %edi
127 movl $((4096*6)/4), %ecx
131 leal pgtable + 0(%ebx), %edi
132 leal 0x1007 (%edi), %eax
136 leal pgtable + 0x1000(%ebx), %edi
137 leal 0x1007(%edi), %eax
139 1: movl %eax, 0x00(%edi)
140 addl $0x00001000, %eax
146 leal pgtable + 0x2000(%ebx), %edi
147 movl $0x00000183, %eax
149 1: movl %eax, 0(%edi)
150 addl $0x00200000, %eax
155 /* Enable the boot page tables */
156 leal pgtable(%ebx), %eax
159 /* Enable Long mode in EFER (Extended Feature Enable Register) */
162 btsl $_EFER_LME, %eax
165 /* After gdt is loaded */
168 movl $__BOOT_TSS, %eax
172 * Setup for the jump to 64bit mode
174 * When the jump is performend we will be in long mode but
175 * in 32bit compatibility mode with EFER.LME = 1, CS.L = 0, CS.D = 1
176 * (and in turn EFER.LMA = 1). To jump into 64bit mode we use
177 * the new gdt/idt that has __KERNEL_CS with CS.L = 1.
178 * We place all of the values on our mini stack so lret can
179 * used to perform that far jump.
182 leal startup_64(%ebp), %eax
183 #ifdef CONFIG_EFI_MIXED
184 movl efi32_config(%ebp), %ebx
187 leal handover_entry(%ebp), %eax
192 /* Enter paged protected Mode, activating Long Mode */
193 movl $(X86_CR0_PG | X86_CR0_PE), %eax /* Enable Paging and Protected mode */
196 /* Jump from 32bit compatibility mode into 64bit mode. */
200 #ifdef CONFIG_EFI_MIXED
202 ENTRY(efi32_stub_entry)
203 add $0x4, %esp /* Discard return address */
208 leal (BP_scratch+4)(%esi), %esp
213 movl %ecx, efi32_config(%ebp)
214 movl %edx, efi32_config+8(%ebp)
215 sgdtl efi32_boot_gdt(%ebp)
217 leal efi32_config(%ebp), %eax
218 movl %eax, efi_config(%ebp)
221 ENDPROC(efi32_stub_entry)
228 * 64bit entry is 0x200 and it is ABI so immutable!
229 * We come here either from startup_32 or directly from a
231 * If we come here from a bootloader, kernel(text+data+bss+brk),
232 * ramdisk, zero_page, command line could be above 4G.
233 * We depend on an identity mapped page table being provided
234 * that maps our entire kernel(text+data+bss+brk), zero page
237 #ifdef CONFIG_EFI_STUB
239 * The entry point for the PE/COFF executable is efi_pe_entry, so
240 * only legacy boot loaders will execute this jmp.
245 movq %rcx, efi64_config(%rip) /* Handle */
246 movq %rdx, efi64_config+8(%rip) /* EFI System table pointer */
248 leaq efi64_config(%rip), %rax
249 movq %rax, efi_config(%rip)
256 * Relocate efi_config->call().
258 addq %rbp, efi64_config+88(%rip)
261 call make_boot_params
265 leaq startup_32(%rip), %rax
266 movl %eax, BP_code32_start(%rsi)
267 jmp 2f /* Skip the relocation */
275 * Relocate efi_config->call().
277 movq efi_config(%rip), %rax
280 movq efi_config(%rip), %rdi
286 /* EFI init failed, so hang. */
290 movl BP_code32_start(%esi), %eax
291 leaq preferred_addr(%rax), %rax
297 /* Setup data segments. */
306 * Compute the decompressed kernel start address. It is where
307 * we were loaded at aligned to a 2M boundary. %rbp contains the
308 * decompressed kernel start address.
310 * If it is a relocatable kernel then decompress and run the kernel
311 * from load address aligned to 2MB addr, otherwise decompress and
312 * run the kernel from LOAD_PHYSICAL_ADDR
314 * We cannot rely on the calculation done in 32-bit mode, since we
315 * may have been invoked via the 64-bit entry point.
318 /* Start with the delta to where the kernel will run at. */
319 #ifdef CONFIG_RELOCATABLE
320 leaq startup_32(%rip) /* - $startup_32 */, %rbp
321 movl BP_kernel_alignment(%rsi), %eax
326 cmpq $LOAD_PHYSICAL_ADDR, %rbp
329 movq $LOAD_PHYSICAL_ADDR, %rbp
332 /* Target address to relocate to for decompression */
333 leaq z_extract_offset(%rbp), %rbx
335 /* Set up the stack */
336 leaq boot_stack_end(%rbx), %rsp
343 * Copy the compressed kernel to the end of our buffer
344 * where decompression in place becomes safe.
347 leaq (_bss-8)(%rip), %rsi
348 leaq (_bss-8)(%rbx), %rdi
349 movq $_bss /* - $startup_32 */, %rcx
357 * Jump to the relocated address.
359 leaq relocated(%rbx), %rax
362 #ifdef CONFIG_EFI_STUB
364 ENTRY(efi64_stub_entry)
365 movq %rdi, efi64_config(%rip) /* Handle */
366 movq %rsi, efi64_config+8(%rip) /* EFI System table pointer */
368 leaq efi64_config(%rip), %rax
369 movq %rax, efi_config(%rip)
373 ENDPROC(efi64_stub_entry)
380 * Clear BSS (stack is currently empty)
383 leaq _bss(%rip), %rdi
384 leaq _ebss(%rip), %rcx
392 leaq _got(%rip), %rdx
393 leaq _egot(%rip), %rcx
403 * Do the decompression, and jump to the new kernel..
405 pushq %rsi /* Save the real mode argument */
406 movq $z_run_size, %r9 /* size of kernel with .bss and .brk */
408 movq %rsi, %rdi /* real mode address */
409 leaq boot_heap(%rip), %rsi /* malloc area for uncompression */
410 leaq input_data(%rip), %rdx /* input_data */
411 movl $z_input_len, %ecx /* input_len */
412 movq %rbp, %r8 /* output target address */
413 movq $z_output_len, %r9 /* decompressed length, end of relocs */
414 call decompress_kernel /* returns kernel location in %rax */
419 * Jump to the decompressed kernel.
425 /* This isn't an x86-64 CPU so hang */
430 #include "../../kernel/verify_cpu.S"
437 .quad 0x0000000000000000 /* NULL descriptor */
438 .quad 0x00af9a000000ffff /* __KERNEL_CS */
439 .quad 0x00cf92000000ffff /* __KERNEL_DS */
440 .quad 0x0080890000000000 /* TS descriptor */
441 .quad 0x0000000000000000 /* TS continued */
444 #ifdef CONFIG_EFI_STUB
448 #ifdef CONFIG_EFI_MIXED
461 #endif /* CONFIG_EFI_STUB */
464 * Stack and heap for uncompression
469 .fill BOOT_HEAP_SIZE, 1, 0
471 .fill BOOT_STACK_SIZE, 1, 0
475 * Space for page tables (not in .bss so not zeroed)
477 .section ".pgtable","a",@nobits