1 #ifndef _ASM_X86_MMU_CONTEXT_H
2 #define _ASM_X86_MMU_CONTEXT_H
5 #include <linux/atomic.h>
6 #include <linux/mm_types.h>
8 #include <trace/events/tlb.h>
10 #include <asm/pgalloc.h>
11 #include <asm/tlbflush.h>
12 #include <asm/paravirt.h>
14 #ifndef CONFIG_PARAVIRT
15 static inline void paravirt_activate_mm(struct mm_struct
*prev
,
16 struct mm_struct
*next
)
19 #endif /* !CONFIG_PARAVIRT */
21 #ifdef CONFIG_PERF_EVENTS
22 extern struct static_key rdpmc_always_available
;
24 static inline void load_mm_cr4(struct mm_struct
*mm
)
26 if (static_key_false(&rdpmc_always_available
) ||
27 atomic_read(&mm
->context
.perf_rdpmc_allowed
))
28 cr4_set_bits(X86_CR4_PCE
);
30 cr4_clear_bits(X86_CR4_PCE
);
33 static inline void load_mm_cr4(struct mm_struct
*mm
) {}
36 #ifdef CONFIG_MODIFY_LDT_SYSCALL
38 * ldt_structs can be allocated, used, and freed, but they are never
39 * modified while live.
43 * Xen requires page-aligned LDTs with special permissions. This is
44 * needed to prevent us from installing evil descriptors such as
45 * call gates. On native, we could merge the ldt_struct and LDT
46 * allocations, but it's not worth trying to optimize.
48 struct desc_struct
*entries
;
53 * Used for LDT copy/destruction.
55 int init_new_context(struct task_struct
*tsk
, struct mm_struct
*mm
);
56 void destroy_context(struct mm_struct
*mm
);
57 #else /* CONFIG_MODIFY_LDT_SYSCALL */
58 static inline int init_new_context(struct task_struct
*tsk
,
63 static inline void destroy_context(struct mm_struct
*mm
) {}
66 static inline void load_mm_ldt(struct mm_struct
*mm
)
68 #ifdef CONFIG_MODIFY_LDT_SYSCALL
69 struct ldt_struct
*ldt
;
71 /* lockless_dereference synchronizes with smp_store_release */
72 ldt
= lockless_dereference(mm
->context
.ldt
);
75 * Any change to mm->context.ldt is followed by an IPI to all
76 * CPUs with the mm active. The LDT will not be freed until
77 * after the IPI is handled by all such CPUs. This means that,
78 * if the ldt_struct changes before we return, the values we see
79 * will be safe, and the new values will be loaded before we run
82 * NB: don't try to convert this to use RCU without extreme care.
83 * We would still need IRQs off, because we don't want to change
84 * the local LDT after an IPI loaded a newer value than the one
89 set_ldt(ldt
->entries
, ldt
->size
);
96 DEBUG_LOCKS_WARN_ON(preemptible());
99 static inline void enter_lazy_tlb(struct mm_struct
*mm
, struct task_struct
*tsk
)
102 if (this_cpu_read(cpu_tlbstate
.state
) == TLBSTATE_OK
)
103 this_cpu_write(cpu_tlbstate
.state
, TLBSTATE_LAZY
);
107 static inline void switch_mm(struct mm_struct
*prev
, struct mm_struct
*next
,
108 struct task_struct
*tsk
)
110 unsigned cpu
= smp_processor_id();
112 if (likely(prev
!= next
)) {
114 this_cpu_write(cpu_tlbstate
.state
, TLBSTATE_OK
);
115 this_cpu_write(cpu_tlbstate
.active_mm
, next
);
117 cpumask_set_cpu(cpu
, mm_cpumask(next
));
119 /* Re-load page tables */
121 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH
, TLB_FLUSH_ALL
);
123 /* Stop flush ipis for the previous mm */
124 cpumask_clear_cpu(cpu
, mm_cpumask(prev
));
126 /* Load per-mm CR4 state */
129 #ifdef CONFIG_MODIFY_LDT_SYSCALL
131 * Load the LDT, if the LDT is different.
133 * It's possible that prev->context.ldt doesn't match
134 * the LDT register. This can happen if leave_mm(prev)
135 * was called and then modify_ldt changed
136 * prev->context.ldt but suppressed an IPI to this CPU.
137 * In this case, prev->context.ldt != NULL, because we
138 * never set context.ldt to NULL while the mm still
139 * exists. That means that next->context.ldt !=
140 * prev->context.ldt, because mms never share an LDT.
142 if (unlikely(prev
->context
.ldt
!= next
->context
.ldt
))
148 this_cpu_write(cpu_tlbstate
.state
, TLBSTATE_OK
);
149 BUG_ON(this_cpu_read(cpu_tlbstate
.active_mm
) != next
);
151 if (!cpumask_test_cpu(cpu
, mm_cpumask(next
))) {
153 * On established mms, the mm_cpumask is only changed
154 * from irq context, from ptep_clear_flush() while in
155 * lazy tlb mode, and here. Irqs are blocked during
156 * schedule, protecting us from simultaneous changes.
158 cpumask_set_cpu(cpu
, mm_cpumask(next
));
160 * We were in lazy tlb mode and leave_mm disabled
161 * tlb flush IPI delivery. We must reload CR3
162 * to make sure to use no freed page tables.
165 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH
, TLB_FLUSH_ALL
);
173 #define activate_mm(prev, next) \
175 paravirt_activate_mm((prev), (next)); \
176 switch_mm((prev), (next), NULL); \
180 #define deactivate_mm(tsk, mm) \
185 #define deactivate_mm(tsk, mm) \
188 loadsegment(fs, 0); \
192 static inline void arch_dup_mmap(struct mm_struct
*oldmm
,
193 struct mm_struct
*mm
)
195 paravirt_arch_dup_mmap(oldmm
, mm
);
198 static inline void arch_exit_mmap(struct mm_struct
*mm
)
200 paravirt_arch_exit_mmap(mm
);
204 static inline bool is_64bit_mm(struct mm_struct
*mm
)
206 return !config_enabled(CONFIG_IA32_EMULATION
) ||
207 !(mm
->context
.ia32_compat
== TIF_IA32
);
210 static inline bool is_64bit_mm(struct mm_struct
*mm
)
216 static inline void arch_bprm_mm_init(struct mm_struct
*mm
,
217 struct vm_area_struct
*vma
)
222 static inline void arch_unmap(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
223 unsigned long start
, unsigned long end
)
226 * mpx_notify_unmap() goes and reads a rarely-hot
227 * cacheline in the mm_struct. That can be expensive
228 * enough to be seen in profiles.
230 * The mpx_notify_unmap() call and its contents have been
231 * observed to affect munmap() performance on hardware
232 * where MPX is not present.
234 * The unlikely() optimizes for the fast case: no MPX
235 * in the CPU, or no MPX use in the process. Even if
236 * we get this wrong (in the unlikely event that MPX
237 * is widely enabled on some system) the overhead of
238 * MPX itself (reading bounds tables) is expected to
239 * overwhelm the overhead of getting this unlikely()
240 * consistently wrong.
242 if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX
)))
243 mpx_notify_unmap(mm
, vma
, start
, end
);
246 #endif /* _ASM_X86_MMU_CONTEXT_H */