of: MSI: Simplify irqdomain lookup
[linux/fpc-iii.git] / arch / x86 / kernel / cpu / intel.c
blob565648bc1a0aef6c3cf60da92ec9fb60a2408c90
1 #include <linux/kernel.h>
3 #include <linux/string.h>
4 #include <linux/bitops.h>
5 #include <linux/smp.h>
6 #include <linux/sched.h>
7 #include <linux/thread_info.h>
8 #include <linux/module.h>
9 #include <linux/uaccess.h>
11 #include <asm/processor.h>
12 #include <asm/pgtable.h>
13 #include <asm/msr.h>
14 #include <asm/bugs.h>
15 #include <asm/cpu.h>
17 #ifdef CONFIG_X86_64
18 #include <linux/topology.h>
19 #endif
21 #include "cpu.h"
23 #ifdef CONFIG_X86_LOCAL_APIC
24 #include <asm/mpspec.h>
25 #include <asm/apic.h>
26 #endif
28 static void early_init_intel(struct cpuinfo_x86 *c)
30 u64 misc_enable;
32 /* Unmask CPUID levels if masked: */
33 if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
34 if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
35 MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
36 c->cpuid_level = cpuid_eax(0);
37 get_cpu_cap(c);
41 if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
42 (c->x86 == 0x6 && c->x86_model >= 0x0e))
43 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
45 if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64)) {
46 unsigned lower_word;
48 wrmsr(MSR_IA32_UCODE_REV, 0, 0);
49 /* Required by the SDM */
50 sync_core();
51 rdmsr(MSR_IA32_UCODE_REV, lower_word, c->microcode);
55 * Atom erratum AAE44/AAF40/AAG38/AAH41:
57 * A race condition between speculative fetches and invalidating
58 * a large page. This is worked around in microcode, but we
59 * need the microcode to have already been loaded... so if it is
60 * not, recommend a BIOS update and disable large pages.
62 if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_mask <= 2 &&
63 c->microcode < 0x20e) {
64 printk(KERN_WARNING "Atom PSE erratum detected, BIOS microcode update recommended\n");
65 clear_cpu_cap(c, X86_FEATURE_PSE);
68 #ifdef CONFIG_X86_64
69 set_cpu_cap(c, X86_FEATURE_SYSENTER32);
70 #else
71 /* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
72 if (c->x86 == 15 && c->x86_cache_alignment == 64)
73 c->x86_cache_alignment = 128;
74 #endif
76 /* CPUID workaround for 0F33/0F34 CPU */
77 if (c->x86 == 0xF && c->x86_model == 0x3
78 && (c->x86_mask == 0x3 || c->x86_mask == 0x4))
79 c->x86_phys_bits = 36;
82 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
83 * with P/T states and does not stop in deep C-states.
85 * It is also reliable across cores and sockets. (but not across
86 * cabinets - we turn it off in that case explicitly.)
88 if (c->x86_power & (1 << 8)) {
89 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
90 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
91 if (!check_tsc_unstable())
92 set_sched_clock_stable();
95 /* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
96 if (c->x86 == 6) {
97 switch (c->x86_model) {
98 case 0x27: /* Penwell */
99 case 0x35: /* Cloverview */
100 case 0x4a: /* Merrifield */
101 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
102 break;
103 default:
104 break;
109 * There is a known erratum on Pentium III and Core Solo
110 * and Core Duo CPUs.
111 * " Page with PAT set to WC while associated MTRR is UC
112 * may consolidate to UC "
113 * Because of this erratum, it is better to stick with
114 * setting WC in MTRR rather than using PAT on these CPUs.
116 * Enable PAT WC only on P4, Core 2 or later CPUs.
118 if (c->x86 == 6 && c->x86_model < 15)
119 clear_cpu_cap(c, X86_FEATURE_PAT);
121 #ifdef CONFIG_KMEMCHECK
123 * P4s have a "fast strings" feature which causes single-
124 * stepping REP instructions to only generate a #DB on
125 * cache-line boundaries.
127 * Ingo Molnar reported a Pentium D (model 6) and a Xeon
128 * (model 2) with the same problem.
130 if (c->x86 == 15)
131 if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
132 MSR_IA32_MISC_ENABLE_FAST_STRING_BIT) > 0)
133 pr_info("kmemcheck: Disabling fast string operations\n");
134 #endif
137 * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
138 * clear the fast string and enhanced fast string CPU capabilities.
140 if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
141 rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
142 if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
143 printk(KERN_INFO "Disabled fast string operations\n");
144 setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
145 setup_clear_cpu_cap(X86_FEATURE_ERMS);
150 * Intel Quark Core DevMan_001.pdf section 6.4.11
151 * "The operating system also is required to invalidate (i.e., flush)
152 * the TLB when any changes are made to any of the page table entries.
153 * The operating system must reload CR3 to cause the TLB to be flushed"
155 * As a result cpu_has_pge() in arch/x86/include/asm/tlbflush.h should
156 * be false so that __flush_tlb_all() causes CR3 insted of CR4.PGE
157 * to be modified
159 if (c->x86 == 5 && c->x86_model == 9) {
160 pr_info("Disabling PGE capability bit\n");
161 setup_clear_cpu_cap(X86_FEATURE_PGE);
165 #ifdef CONFIG_X86_32
167 * Early probe support logic for ppro memory erratum #50
169 * This is called before we do cpu ident work
172 int ppro_with_ram_bug(void)
174 /* Uses data from early_cpu_detect now */
175 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
176 boot_cpu_data.x86 == 6 &&
177 boot_cpu_data.x86_model == 1 &&
178 boot_cpu_data.x86_mask < 8) {
179 printk(KERN_INFO "Pentium Pro with Errata#50 detected. Taking evasive action.\n");
180 return 1;
182 return 0;
185 static void intel_smp_check(struct cpuinfo_x86 *c)
187 /* calling is from identify_secondary_cpu() ? */
188 if (!c->cpu_index)
189 return;
192 * Mask B, Pentium, but not Pentium MMX
194 if (c->x86 == 5 &&
195 c->x86_mask >= 1 && c->x86_mask <= 4 &&
196 c->x86_model <= 3) {
198 * Remember we have B step Pentia with bugs
200 WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
201 "with B stepping processors.\n");
205 static int forcepae;
206 static int __init forcepae_setup(char *__unused)
208 forcepae = 1;
209 return 1;
211 __setup("forcepae", forcepae_setup);
213 static void intel_workarounds(struct cpuinfo_x86 *c)
215 #ifdef CONFIG_X86_F00F_BUG
217 * All models of Pentium and Pentium with MMX technology CPUs
218 * have the F0 0F bug, which lets nonprivileged users lock up the
219 * system. Announce that the fault handler will be checking for it.
220 * The Quark is also family 5, but does not have the same bug.
222 clear_cpu_bug(c, X86_BUG_F00F);
223 if (!paravirt_enabled() && c->x86 == 5 && c->x86_model < 9) {
224 static int f00f_workaround_enabled;
226 set_cpu_bug(c, X86_BUG_F00F);
227 if (!f00f_workaround_enabled) {
228 printk(KERN_NOTICE "Intel Pentium with F0 0F bug - workaround enabled.\n");
229 f00f_workaround_enabled = 1;
232 #endif
235 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
236 * model 3 mask 3
238 if ((c->x86<<8 | c->x86_model<<4 | c->x86_mask) < 0x633)
239 clear_cpu_cap(c, X86_FEATURE_SEP);
242 * PAE CPUID issue: many Pentium M report no PAE but may have a
243 * functionally usable PAE implementation.
244 * Forcefully enable PAE if kernel parameter "forcepae" is present.
246 if (forcepae) {
247 printk(KERN_WARNING "PAE forced!\n");
248 set_cpu_cap(c, X86_FEATURE_PAE);
249 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
253 * P4 Xeon errata 037 workaround.
254 * Hardware prefetcher may cause stale data to be loaded into the cache.
256 if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_mask == 1)) {
257 if (msr_set_bit(MSR_IA32_MISC_ENABLE,
258 MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT)
259 > 0) {
260 pr_info("CPU: C0 stepping P4 Xeon detected.\n");
261 pr_info("CPU: Disabling hardware prefetching (Errata 037)\n");
266 * See if we have a good local APIC by checking for buggy Pentia,
267 * i.e. all B steppings and the C2 stepping of P54C when using their
268 * integrated APIC (see 11AP erratum in "Pentium Processor
269 * Specification Update").
271 if (cpu_has_apic && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
272 (c->x86_mask < 0x6 || c->x86_mask == 0xb))
273 set_cpu_bug(c, X86_BUG_11AP);
276 #ifdef CONFIG_X86_INTEL_USERCOPY
278 * Set up the preferred alignment for movsl bulk memory moves
280 switch (c->x86) {
281 case 4: /* 486: untested */
282 break;
283 case 5: /* Old Pentia: untested */
284 break;
285 case 6: /* PII/PIII only like movsl with 8-byte alignment */
286 movsl_mask.mask = 7;
287 break;
288 case 15: /* P4 is OK down to 8-byte alignment */
289 movsl_mask.mask = 7;
290 break;
292 #endif
294 intel_smp_check(c);
296 #else
297 static void intel_workarounds(struct cpuinfo_x86 *c)
300 #endif
302 static void srat_detect_node(struct cpuinfo_x86 *c)
304 #ifdef CONFIG_NUMA
305 unsigned node;
306 int cpu = smp_processor_id();
308 /* Don't do the funky fallback heuristics the AMD version employs
309 for now. */
310 node = numa_cpu_node(cpu);
311 if (node == NUMA_NO_NODE || !node_online(node)) {
312 /* reuse the value from init_cpu_to_node() */
313 node = cpu_to_node(cpu);
315 numa_set_node(cpu, node);
316 #endif
320 * find out the number of processor cores on the die
322 static int intel_num_cpu_cores(struct cpuinfo_x86 *c)
324 unsigned int eax, ebx, ecx, edx;
326 if (c->cpuid_level < 4)
327 return 1;
329 /* Intel has a non-standard dependency on %ecx for this CPUID level. */
330 cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
331 if (eax & 0x1f)
332 return (eax >> 26) + 1;
333 else
334 return 1;
337 static void detect_vmx_virtcap(struct cpuinfo_x86 *c)
339 /* Intel VMX MSR indicated features */
340 #define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW 0x00200000
341 #define X86_VMX_FEATURE_PROC_CTLS_VNMI 0x00400000
342 #define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS 0x80000000
343 #define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC 0x00000001
344 #define X86_VMX_FEATURE_PROC_CTLS2_EPT 0x00000002
345 #define X86_VMX_FEATURE_PROC_CTLS2_VPID 0x00000020
347 u32 vmx_msr_low, vmx_msr_high, msr_ctl, msr_ctl2;
349 clear_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
350 clear_cpu_cap(c, X86_FEATURE_VNMI);
351 clear_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
352 clear_cpu_cap(c, X86_FEATURE_EPT);
353 clear_cpu_cap(c, X86_FEATURE_VPID);
355 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx_msr_low, vmx_msr_high);
356 msr_ctl = vmx_msr_high | vmx_msr_low;
357 if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW)
358 set_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
359 if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_VNMI)
360 set_cpu_cap(c, X86_FEATURE_VNMI);
361 if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS) {
362 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
363 vmx_msr_low, vmx_msr_high);
364 msr_ctl2 = vmx_msr_high | vmx_msr_low;
365 if ((msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC) &&
366 (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW))
367 set_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
368 if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_EPT)
369 set_cpu_cap(c, X86_FEATURE_EPT);
370 if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VPID)
371 set_cpu_cap(c, X86_FEATURE_VPID);
375 static void init_intel_energy_perf(struct cpuinfo_x86 *c)
377 u64 epb;
380 * Initialize MSR_IA32_ENERGY_PERF_BIAS if not already initialized.
381 * (x86_energy_perf_policy(8) is available to change it at run-time.)
383 if (!cpu_has(c, X86_FEATURE_EPB))
384 return;
386 rdmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
387 if ((epb & 0xF) != ENERGY_PERF_BIAS_PERFORMANCE)
388 return;
390 pr_warn_once("ENERGY_PERF_BIAS: Set to 'normal', was 'performance'\n");
391 pr_warn_once("ENERGY_PERF_BIAS: View and update with x86_energy_perf_policy(8)\n");
392 epb = (epb & ~0xF) | ENERGY_PERF_BIAS_NORMAL;
393 wrmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
396 static void intel_bsp_resume(struct cpuinfo_x86 *c)
399 * MSR_IA32_ENERGY_PERF_BIAS is lost across suspend/resume,
400 * so reinitialize it properly like during bootup:
402 init_intel_energy_perf(c);
405 static void init_intel(struct cpuinfo_x86 *c)
407 unsigned int l2 = 0;
409 early_init_intel(c);
411 intel_workarounds(c);
414 * Detect the extended topology information if available. This
415 * will reinitialise the initial_apicid which will be used
416 * in init_intel_cacheinfo()
418 detect_extended_topology(c);
420 if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
422 * let's use the legacy cpuid vector 0x1 and 0x4 for topology
423 * detection.
425 c->x86_max_cores = intel_num_cpu_cores(c);
426 #ifdef CONFIG_X86_32
427 detect_ht(c);
428 #endif
431 l2 = init_intel_cacheinfo(c);
433 /* Detect legacy cache sizes if init_intel_cacheinfo did not */
434 if (l2 == 0) {
435 cpu_detect_cache_sizes(c);
436 l2 = c->x86_cache_size;
439 if (c->cpuid_level > 9) {
440 unsigned eax = cpuid_eax(10);
441 /* Check for version and the number of counters */
442 if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
443 set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
446 if (cpu_has_xmm2)
447 set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
449 if (boot_cpu_has(X86_FEATURE_DS)) {
450 unsigned int l1;
451 rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
452 if (!(l1 & (1<<11)))
453 set_cpu_cap(c, X86_FEATURE_BTS);
454 if (!(l1 & (1<<12)))
455 set_cpu_cap(c, X86_FEATURE_PEBS);
458 if (c->x86 == 6 && cpu_has_clflush &&
459 (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
460 set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
462 #ifdef CONFIG_X86_64
463 if (c->x86 == 15)
464 c->x86_cache_alignment = c->x86_clflush_size * 2;
465 if (c->x86 == 6)
466 set_cpu_cap(c, X86_FEATURE_REP_GOOD);
467 #else
469 * Names for the Pentium II/Celeron processors
470 * detectable only by also checking the cache size.
471 * Dixon is NOT a Celeron.
473 if (c->x86 == 6) {
474 char *p = NULL;
476 switch (c->x86_model) {
477 case 5:
478 if (l2 == 0)
479 p = "Celeron (Covington)";
480 else if (l2 == 256)
481 p = "Mobile Pentium II (Dixon)";
482 break;
484 case 6:
485 if (l2 == 128)
486 p = "Celeron (Mendocino)";
487 else if (c->x86_mask == 0 || c->x86_mask == 5)
488 p = "Celeron-A";
489 break;
491 case 8:
492 if (l2 == 128)
493 p = "Celeron (Coppermine)";
494 break;
497 if (p)
498 strcpy(c->x86_model_id, p);
501 if (c->x86 == 15)
502 set_cpu_cap(c, X86_FEATURE_P4);
503 if (c->x86 == 6)
504 set_cpu_cap(c, X86_FEATURE_P3);
505 #endif
507 /* Work around errata */
508 srat_detect_node(c);
510 if (cpu_has(c, X86_FEATURE_VMX))
511 detect_vmx_virtcap(c);
513 init_intel_energy_perf(c);
516 #ifdef CONFIG_X86_32
517 static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
520 * Intel PIII Tualatin. This comes in two flavours.
521 * One has 256kb of cache, the other 512. We have no way
522 * to determine which, so we use a boottime override
523 * for the 512kb model, and assume 256 otherwise.
525 if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
526 size = 256;
529 * Intel Quark SoC X1000 contains a 4-way set associative
530 * 16K cache with a 16 byte cache line and 256 lines per tag
532 if ((c->x86 == 5) && (c->x86_model == 9))
533 size = 16;
534 return size;
536 #endif
538 #define TLB_INST_4K 0x01
539 #define TLB_INST_4M 0x02
540 #define TLB_INST_2M_4M 0x03
542 #define TLB_INST_ALL 0x05
543 #define TLB_INST_1G 0x06
545 #define TLB_DATA_4K 0x11
546 #define TLB_DATA_4M 0x12
547 #define TLB_DATA_2M_4M 0x13
548 #define TLB_DATA_4K_4M 0x14
550 #define TLB_DATA_1G 0x16
552 #define TLB_DATA0_4K 0x21
553 #define TLB_DATA0_4M 0x22
554 #define TLB_DATA0_2M_4M 0x23
556 #define STLB_4K 0x41
557 #define STLB_4K_2M 0x42
559 static const struct _tlb_table intel_tlb_table[] = {
560 { 0x01, TLB_INST_4K, 32, " TLB_INST 4 KByte pages, 4-way set associative" },
561 { 0x02, TLB_INST_4M, 2, " TLB_INST 4 MByte pages, full associative" },
562 { 0x03, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way set associative" },
563 { 0x04, TLB_DATA_4M, 8, " TLB_DATA 4 MByte pages, 4-way set associative" },
564 { 0x05, TLB_DATA_4M, 32, " TLB_DATA 4 MByte pages, 4-way set associative" },
565 { 0x0b, TLB_INST_4M, 4, " TLB_INST 4 MByte pages, 4-way set associative" },
566 { 0x4f, TLB_INST_4K, 32, " TLB_INST 4 KByte pages */" },
567 { 0x50, TLB_INST_ALL, 64, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
568 { 0x51, TLB_INST_ALL, 128, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
569 { 0x52, TLB_INST_ALL, 256, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
570 { 0x55, TLB_INST_2M_4M, 7, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
571 { 0x56, TLB_DATA0_4M, 16, " TLB_DATA0 4 MByte pages, 4-way set associative" },
572 { 0x57, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, 4-way associative" },
573 { 0x59, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, fully associative" },
574 { 0x5a, TLB_DATA0_2M_4M, 32, " TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
575 { 0x5b, TLB_DATA_4K_4M, 64, " TLB_DATA 4 KByte and 4 MByte pages" },
576 { 0x5c, TLB_DATA_4K_4M, 128, " TLB_DATA 4 KByte and 4 MByte pages" },
577 { 0x5d, TLB_DATA_4K_4M, 256, " TLB_DATA 4 KByte and 4 MByte pages" },
578 { 0x61, TLB_INST_4K, 48, " TLB_INST 4 KByte pages, full associative" },
579 { 0x63, TLB_DATA_1G, 4, " TLB_DATA 1 GByte pages, 4-way set associative" },
580 { 0x76, TLB_INST_2M_4M, 8, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
581 { 0xb0, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 4-way set associative" },
582 { 0xb1, TLB_INST_2M_4M, 4, " TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
583 { 0xb2, TLB_INST_4K, 64, " TLB_INST 4KByte pages, 4-way set associative" },
584 { 0xb3, TLB_DATA_4K, 128, " TLB_DATA 4 KByte pages, 4-way set associative" },
585 { 0xb4, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 4-way associative" },
586 { 0xb5, TLB_INST_4K, 64, " TLB_INST 4 KByte pages, 8-way set associative" },
587 { 0xb6, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 8-way set associative" },
588 { 0xba, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way associative" },
589 { 0xc0, TLB_DATA_4K_4M, 8, " TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
590 { 0xc1, STLB_4K_2M, 1024, " STLB 4 KByte and 2 MByte pages, 8-way associative" },
591 { 0xc2, TLB_DATA_2M_4M, 16, " DTLB 2 MByte/4MByte pages, 4-way associative" },
592 { 0xca, STLB_4K, 512, " STLB 4 KByte pages, 4-way associative" },
593 { 0x00, 0, 0 }
596 static void intel_tlb_lookup(const unsigned char desc)
598 unsigned char k;
599 if (desc == 0)
600 return;
602 /* look up this descriptor in the table */
603 for (k = 0; intel_tlb_table[k].descriptor != desc && \
604 intel_tlb_table[k].descriptor != 0; k++)
607 if (intel_tlb_table[k].tlb_type == 0)
608 return;
610 switch (intel_tlb_table[k].tlb_type) {
611 case STLB_4K:
612 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
613 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
614 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
615 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
616 break;
617 case STLB_4K_2M:
618 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
619 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
620 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
621 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
622 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
623 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
624 if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
625 tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
626 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
627 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
628 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
629 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
630 break;
631 case TLB_INST_ALL:
632 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
633 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
634 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
635 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
636 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
637 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
638 break;
639 case TLB_INST_4K:
640 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
641 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
642 break;
643 case TLB_INST_4M:
644 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
645 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
646 break;
647 case TLB_INST_2M_4M:
648 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
649 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
650 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
651 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
652 break;
653 case TLB_DATA_4K:
654 case TLB_DATA0_4K:
655 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
656 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
657 break;
658 case TLB_DATA_4M:
659 case TLB_DATA0_4M:
660 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
661 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
662 break;
663 case TLB_DATA_2M_4M:
664 case TLB_DATA0_2M_4M:
665 if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
666 tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
667 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
668 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
669 break;
670 case TLB_DATA_4K_4M:
671 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
672 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
673 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
674 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
675 break;
676 case TLB_DATA_1G:
677 if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
678 tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
679 break;
683 static void intel_detect_tlb(struct cpuinfo_x86 *c)
685 int i, j, n;
686 unsigned int regs[4];
687 unsigned char *desc = (unsigned char *)regs;
689 if (c->cpuid_level < 2)
690 return;
692 /* Number of times to iterate */
693 n = cpuid_eax(2) & 0xFF;
695 for (i = 0 ; i < n ; i++) {
696 cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
698 /* If bit 31 is set, this is an unknown format */
699 for (j = 0 ; j < 3 ; j++)
700 if (regs[j] & (1 << 31))
701 regs[j] = 0;
703 /* Byte 0 is level count, not a descriptor */
704 for (j = 1 ; j < 16 ; j++)
705 intel_tlb_lookup(desc[j]);
709 static const struct cpu_dev intel_cpu_dev = {
710 .c_vendor = "Intel",
711 .c_ident = { "GenuineIntel" },
712 #ifdef CONFIG_X86_32
713 .legacy_models = {
714 { .family = 4, .model_names =
716 [0] = "486 DX-25/33",
717 [1] = "486 DX-50",
718 [2] = "486 SX",
719 [3] = "486 DX/2",
720 [4] = "486 SL",
721 [5] = "486 SX/2",
722 [7] = "486 DX/2-WB",
723 [8] = "486 DX/4",
724 [9] = "486 DX/4-WB"
727 { .family = 5, .model_names =
729 [0] = "Pentium 60/66 A-step",
730 [1] = "Pentium 60/66",
731 [2] = "Pentium 75 - 200",
732 [3] = "OverDrive PODP5V83",
733 [4] = "Pentium MMX",
734 [7] = "Mobile Pentium 75 - 200",
735 [8] = "Mobile Pentium MMX",
736 [9] = "Quark SoC X1000",
739 { .family = 6, .model_names =
741 [0] = "Pentium Pro A-step",
742 [1] = "Pentium Pro",
743 [3] = "Pentium II (Klamath)",
744 [4] = "Pentium II (Deschutes)",
745 [5] = "Pentium II (Deschutes)",
746 [6] = "Mobile Pentium II",
747 [7] = "Pentium III (Katmai)",
748 [8] = "Pentium III (Coppermine)",
749 [10] = "Pentium III (Cascades)",
750 [11] = "Pentium III (Tualatin)",
753 { .family = 15, .model_names =
755 [0] = "Pentium 4 (Unknown)",
756 [1] = "Pentium 4 (Willamette)",
757 [2] = "Pentium 4 (Northwood)",
758 [4] = "Pentium 4 (Foster)",
759 [5] = "Pentium 4 (Foster)",
763 .legacy_cache_size = intel_size_cache,
764 #endif
765 .c_detect_tlb = intel_detect_tlb,
766 .c_early_init = early_init_intel,
767 .c_init = init_intel,
768 .c_bsp_resume = intel_bsp_resume,
769 .c_x86_vendor = X86_VENDOR_INTEL,
772 cpu_dev_register(intel_cpu_dev);