of: MSI: Simplify irqdomain lookup
[linux/fpc-iii.git] / arch / x86 / kernel / fpu / core.c
blobd25097c3fc1d1af8af35c156f05121f9f4d46a94
1 /*
2 * Copyright (C) 1994 Linus Torvalds
4 * Pentium III FXSR, SSE support
5 * General FPU state handling cleanups
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
8 #include <asm/fpu/internal.h>
9 #include <asm/fpu/regset.h>
10 #include <asm/fpu/signal.h>
11 #include <asm/traps.h>
13 #include <linux/hardirq.h>
16 * Represents the initial FPU state. It's mostly (but not completely) zeroes,
17 * depending on the FPU hardware format:
19 union fpregs_state init_fpstate __read_mostly;
22 * Track whether the kernel is using the FPU state
23 * currently.
25 * This flag is used:
27 * - by IRQ context code to potentially use the FPU
28 * if it's unused.
30 * - to debug kernel_fpu_begin()/end() correctness
32 static DEFINE_PER_CPU(bool, in_kernel_fpu);
35 * Track which context is using the FPU on the CPU:
37 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
39 static void kernel_fpu_disable(void)
41 WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
42 this_cpu_write(in_kernel_fpu, true);
45 static void kernel_fpu_enable(void)
47 WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
48 this_cpu_write(in_kernel_fpu, false);
51 static bool kernel_fpu_disabled(void)
53 return this_cpu_read(in_kernel_fpu);
57 * Were we in an interrupt that interrupted kernel mode?
59 * On others, we can do a kernel_fpu_begin/end() pair *ONLY* if that
60 * pair does nothing at all: the thread must not have fpu (so
61 * that we don't try to save the FPU state), and TS must
62 * be set (so that the clts/stts pair does nothing that is
63 * visible in the interrupted kernel thread).
65 * Except for the eagerfpu case when we return true; in the likely case
66 * the thread has FPU but we are not going to set/clear TS.
68 static bool interrupted_kernel_fpu_idle(void)
70 if (kernel_fpu_disabled())
71 return false;
73 if (use_eager_fpu())
74 return true;
76 return !current->thread.fpu.fpregs_active && (read_cr0() & X86_CR0_TS);
80 * Were we in user mode (or vm86 mode) when we were
81 * interrupted?
83 * Doing kernel_fpu_begin/end() is ok if we are running
84 * in an interrupt context from user mode - we'll just
85 * save the FPU state as required.
87 static bool interrupted_user_mode(void)
89 struct pt_regs *regs = get_irq_regs();
90 return regs && user_mode(regs);
94 * Can we use the FPU in kernel mode with the
95 * whole "kernel_fpu_begin/end()" sequence?
97 * It's always ok in process context (ie "not interrupt")
98 * but it is sometimes ok even from an irq.
100 bool irq_fpu_usable(void)
102 return !in_interrupt() ||
103 interrupted_user_mode() ||
104 interrupted_kernel_fpu_idle();
106 EXPORT_SYMBOL(irq_fpu_usable);
108 void __kernel_fpu_begin(void)
110 struct fpu *fpu = &current->thread.fpu;
112 WARN_ON_FPU(!irq_fpu_usable());
114 kernel_fpu_disable();
116 if (fpu->fpregs_active) {
117 copy_fpregs_to_fpstate(fpu);
118 } else {
119 this_cpu_write(fpu_fpregs_owner_ctx, NULL);
120 __fpregs_activate_hw();
123 EXPORT_SYMBOL(__kernel_fpu_begin);
125 void __kernel_fpu_end(void)
127 struct fpu *fpu = &current->thread.fpu;
129 if (fpu->fpregs_active)
130 copy_kernel_to_fpregs(&fpu->state);
131 else
132 __fpregs_deactivate_hw();
134 kernel_fpu_enable();
136 EXPORT_SYMBOL(__kernel_fpu_end);
138 void kernel_fpu_begin(void)
140 preempt_disable();
141 __kernel_fpu_begin();
143 EXPORT_SYMBOL_GPL(kernel_fpu_begin);
145 void kernel_fpu_end(void)
147 __kernel_fpu_end();
148 preempt_enable();
150 EXPORT_SYMBOL_GPL(kernel_fpu_end);
153 * CR0::TS save/restore functions:
155 int irq_ts_save(void)
158 * If in process context and not atomic, we can take a spurious DNA fault.
159 * Otherwise, doing clts() in process context requires disabling preemption
160 * or some heavy lifting like kernel_fpu_begin()
162 if (!in_atomic())
163 return 0;
165 if (read_cr0() & X86_CR0_TS) {
166 clts();
167 return 1;
170 return 0;
172 EXPORT_SYMBOL_GPL(irq_ts_save);
174 void irq_ts_restore(int TS_state)
176 if (TS_state)
177 stts();
179 EXPORT_SYMBOL_GPL(irq_ts_restore);
182 * Save the FPU state (mark it for reload if necessary):
184 * This only ever gets called for the current task.
186 void fpu__save(struct fpu *fpu)
188 WARN_ON_FPU(fpu != &current->thread.fpu);
190 preempt_disable();
191 if (fpu->fpregs_active) {
192 if (!copy_fpregs_to_fpstate(fpu))
193 fpregs_deactivate(fpu);
195 preempt_enable();
197 EXPORT_SYMBOL_GPL(fpu__save);
200 * Legacy x87 fpstate state init:
202 static inline void fpstate_init_fstate(struct fregs_state *fp)
204 fp->cwd = 0xffff037fu;
205 fp->swd = 0xffff0000u;
206 fp->twd = 0xffffffffu;
207 fp->fos = 0xffff0000u;
210 void fpstate_init(union fpregs_state *state)
212 if (!cpu_has_fpu) {
213 fpstate_init_soft(&state->soft);
214 return;
217 memset(state, 0, xstate_size);
219 if (cpu_has_fxsr)
220 fpstate_init_fxstate(&state->fxsave);
221 else
222 fpstate_init_fstate(&state->fsave);
224 EXPORT_SYMBOL_GPL(fpstate_init);
227 * Copy the current task's FPU state to a new task's FPU context.
229 * In both the 'eager' and the 'lazy' case we save hardware registers
230 * directly to the destination buffer.
232 static void fpu_copy(struct fpu *dst_fpu, struct fpu *src_fpu)
234 WARN_ON_FPU(src_fpu != &current->thread.fpu);
237 * Don't let 'init optimized' areas of the XSAVE area
238 * leak into the child task:
240 if (use_eager_fpu())
241 memset(&dst_fpu->state.xsave, 0, xstate_size);
244 * Save current FPU registers directly into the child
245 * FPU context, without any memory-to-memory copying.
247 * If the FPU context got destroyed in the process (FNSAVE
248 * done on old CPUs) then copy it back into the source
249 * context and mark the current task for lazy restore.
251 * We have to do all this with preemption disabled,
252 * mostly because of the FNSAVE case, because in that
253 * case we must not allow preemption in the window
254 * between the FNSAVE and us marking the context lazy.
256 * It shouldn't be an issue as even FNSAVE is plenty
257 * fast in terms of critical section length.
259 preempt_disable();
260 if (!copy_fpregs_to_fpstate(dst_fpu)) {
261 memcpy(&src_fpu->state, &dst_fpu->state, xstate_size);
262 fpregs_deactivate(src_fpu);
264 preempt_enable();
267 int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu)
269 dst_fpu->counter = 0;
270 dst_fpu->fpregs_active = 0;
271 dst_fpu->last_cpu = -1;
273 if (src_fpu->fpstate_active && cpu_has_fpu)
274 fpu_copy(dst_fpu, src_fpu);
276 return 0;
280 * Activate the current task's in-memory FPU context,
281 * if it has not been used before:
283 void fpu__activate_curr(struct fpu *fpu)
285 WARN_ON_FPU(fpu != &current->thread.fpu);
287 if (!fpu->fpstate_active) {
288 fpstate_init(&fpu->state);
290 /* Safe to do for the current task: */
291 fpu->fpstate_active = 1;
294 EXPORT_SYMBOL_GPL(fpu__activate_curr);
297 * This function must be called before we read a task's fpstate.
299 * If the task has not used the FPU before then initialize its
300 * fpstate.
302 * If the task has used the FPU before then save it.
304 void fpu__activate_fpstate_read(struct fpu *fpu)
307 * If fpregs are active (in the current CPU), then
308 * copy them to the fpstate:
310 if (fpu->fpregs_active) {
311 fpu__save(fpu);
312 } else {
313 if (!fpu->fpstate_active) {
314 fpstate_init(&fpu->state);
316 /* Safe to do for current and for stopped child tasks: */
317 fpu->fpstate_active = 1;
323 * This function must be called before we write a task's fpstate.
325 * If the task has used the FPU before then unlazy it.
326 * If the task has not used the FPU before then initialize its fpstate.
328 * After this function call, after registers in the fpstate are
329 * modified and the child task has woken up, the child task will
330 * restore the modified FPU state from the modified context. If we
331 * didn't clear its lazy status here then the lazy in-registers
332 * state pending on its former CPU could be restored, corrupting
333 * the modifications.
335 void fpu__activate_fpstate_write(struct fpu *fpu)
338 * Only stopped child tasks can be used to modify the FPU
339 * state in the fpstate buffer:
341 WARN_ON_FPU(fpu == &current->thread.fpu);
343 if (fpu->fpstate_active) {
344 /* Invalidate any lazy state: */
345 fpu->last_cpu = -1;
346 } else {
347 fpstate_init(&fpu->state);
349 /* Safe to do for stopped child tasks: */
350 fpu->fpstate_active = 1;
355 * 'fpu__restore()' is called to copy FPU registers from
356 * the FPU fpstate to the live hw registers and to activate
357 * access to the hardware registers, so that FPU instructions
358 * can be used afterwards.
360 * Must be called with kernel preemption disabled (for example
361 * with local interrupts disabled, as it is in the case of
362 * do_device_not_available()).
364 void fpu__restore(struct fpu *fpu)
366 fpu__activate_curr(fpu);
368 /* Avoid __kernel_fpu_begin() right after fpregs_activate() */
369 kernel_fpu_disable();
370 fpregs_activate(fpu);
371 copy_kernel_to_fpregs(&fpu->state);
372 fpu->counter++;
373 kernel_fpu_enable();
375 EXPORT_SYMBOL_GPL(fpu__restore);
378 * Drops current FPU state: deactivates the fpregs and
379 * the fpstate. NOTE: it still leaves previous contents
380 * in the fpregs in the eager-FPU case.
382 * This function can be used in cases where we know that
383 * a state-restore is coming: either an explicit one,
384 * or a reschedule.
386 void fpu__drop(struct fpu *fpu)
388 preempt_disable();
389 fpu->counter = 0;
391 if (fpu->fpregs_active) {
392 /* Ignore delayed exceptions from user space */
393 asm volatile("1: fwait\n"
394 "2:\n"
395 _ASM_EXTABLE(1b, 2b));
396 fpregs_deactivate(fpu);
399 fpu->fpstate_active = 0;
401 preempt_enable();
405 * Clear FPU registers by setting them up from
406 * the init fpstate:
408 static inline void copy_init_fpstate_to_fpregs(void)
410 if (use_xsave())
411 copy_kernel_to_xregs(&init_fpstate.xsave, -1);
412 else
413 copy_kernel_to_fxregs(&init_fpstate.fxsave);
417 * Clear the FPU state back to init state.
419 * Called by sys_execve(), by the signal handler code and by various
420 * error paths.
422 void fpu__clear(struct fpu *fpu)
424 WARN_ON_FPU(fpu != &current->thread.fpu); /* Almost certainly an anomaly */
426 if (!use_eager_fpu()) {
427 /* FPU state will be reallocated lazily at the first use. */
428 fpu__drop(fpu);
429 } else {
430 if (!fpu->fpstate_active) {
431 fpu__activate_curr(fpu);
432 user_fpu_begin();
434 copy_init_fpstate_to_fpregs();
439 * x87 math exception handling:
442 static inline unsigned short get_fpu_cwd(struct fpu *fpu)
444 if (cpu_has_fxsr) {
445 return fpu->state.fxsave.cwd;
446 } else {
447 return (unsigned short)fpu->state.fsave.cwd;
451 static inline unsigned short get_fpu_swd(struct fpu *fpu)
453 if (cpu_has_fxsr) {
454 return fpu->state.fxsave.swd;
455 } else {
456 return (unsigned short)fpu->state.fsave.swd;
460 static inline unsigned short get_fpu_mxcsr(struct fpu *fpu)
462 if (cpu_has_xmm) {
463 return fpu->state.fxsave.mxcsr;
464 } else {
465 return MXCSR_DEFAULT;
469 int fpu__exception_code(struct fpu *fpu, int trap_nr)
471 int err;
473 if (trap_nr == X86_TRAP_MF) {
474 unsigned short cwd, swd;
476 * (~cwd & swd) will mask out exceptions that are not set to unmasked
477 * status. 0x3f is the exception bits in these regs, 0x200 is the
478 * C1 reg you need in case of a stack fault, 0x040 is the stack
479 * fault bit. We should only be taking one exception at a time,
480 * so if this combination doesn't produce any single exception,
481 * then we have a bad program that isn't synchronizing its FPU usage
482 * and it will suffer the consequences since we won't be able to
483 * fully reproduce the context of the exception
485 cwd = get_fpu_cwd(fpu);
486 swd = get_fpu_swd(fpu);
488 err = swd & ~cwd;
489 } else {
491 * The SIMD FPU exceptions are handled a little differently, as there
492 * is only a single status/control register. Thus, to determine which
493 * unmasked exception was caught we must mask the exception mask bits
494 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
496 unsigned short mxcsr = get_fpu_mxcsr(fpu);
497 err = ~(mxcsr >> 7) & mxcsr;
500 if (err & 0x001) { /* Invalid op */
502 * swd & 0x240 == 0x040: Stack Underflow
503 * swd & 0x240 == 0x240: Stack Overflow
504 * User must clear the SF bit (0x40) if set
506 return FPE_FLTINV;
507 } else if (err & 0x004) { /* Divide by Zero */
508 return FPE_FLTDIV;
509 } else if (err & 0x008) { /* Overflow */
510 return FPE_FLTOVF;
511 } else if (err & 0x012) { /* Denormal, Underflow */
512 return FPE_FLTUND;
513 } else if (err & 0x020) { /* Precision */
514 return FPE_FLTRES;
518 * If we're using IRQ 13, or supposedly even some trap
519 * X86_TRAP_MF implementations, it's possible
520 * we get a spurious trap, which is not an error.
522 return 0;