1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/module.h>
12 #include <linux/tick.h>
13 #include <linux/random.h>
14 #include <linux/user-return-notifier.h>
15 #include <linux/dmi.h>
16 #include <linux/utsname.h>
17 #include <linux/stackprotector.h>
18 #include <linux/tick.h>
19 #include <linux/cpuidle.h>
20 #include <trace/events/power.h>
21 #include <linux/hw_breakpoint.h>
24 #include <asm/syscalls.h>
26 #include <asm/uaccess.h>
27 #include <asm/mwait.h>
28 #include <asm/fpu/internal.h>
29 #include <asm/debugreg.h>
31 #include <asm/tlbflush.h>
36 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
37 * no more per-task TSS's. The TSS size is kept cacheline-aligned
38 * so they are allowed to end up in the .data..cacheline_aligned
39 * section. Since TSS's are completely CPU-local, we want them
40 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
42 __visible
DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct
, cpu_tss
) = {
44 .sp0
= TOP_OF_INIT_STACK
,
48 .io_bitmap_base
= INVALID_IO_BITMAP_OFFSET
,
53 * Note that the .io_bitmap member must be extra-big. This is because
54 * the CPU will access an additional byte beyond the end of the IO
55 * permission bitmap. The extra byte must be all 1 bits, and must
56 * be within the limit.
58 .io_bitmap
= { [0 ... IO_BITMAP_LONGS
] = ~0 },
61 EXPORT_PER_CPU_SYMBOL(cpu_tss
);
64 static DEFINE_PER_CPU(unsigned char, is_idle
);
65 static ATOMIC_NOTIFIER_HEAD(idle_notifier
);
67 void idle_notifier_register(struct notifier_block
*n
)
69 atomic_notifier_chain_register(&idle_notifier
, n
);
71 EXPORT_SYMBOL_GPL(idle_notifier_register
);
73 void idle_notifier_unregister(struct notifier_block
*n
)
75 atomic_notifier_chain_unregister(&idle_notifier
, n
);
77 EXPORT_SYMBOL_GPL(idle_notifier_unregister
);
81 * this gets called so that we can store lazy state into memory and copy the
82 * current task into the new thread.
84 int arch_dup_task_struct(struct task_struct
*dst
, struct task_struct
*src
)
86 memcpy(dst
, src
, arch_task_struct_size
);
88 dst
->thread
.vm86
= NULL
;
91 return fpu__copy(&dst
->thread
.fpu
, &src
->thread
.fpu
);
95 * Free current thread data structures etc..
97 void exit_thread(void)
99 struct task_struct
*me
= current
;
100 struct thread_struct
*t
= &me
->thread
;
101 unsigned long *bp
= t
->io_bitmap_ptr
;
102 struct fpu
*fpu
= &t
->fpu
;
105 struct tss_struct
*tss
= &per_cpu(cpu_tss
, get_cpu());
107 t
->io_bitmap_ptr
= NULL
;
108 clear_thread_flag(TIF_IO_BITMAP
);
110 * Careful, clear this in the TSS too:
112 memset(tss
->io_bitmap
, 0xff, t
->io_bitmap_max
);
113 t
->io_bitmap_max
= 0;
123 void flush_thread(void)
125 struct task_struct
*tsk
= current
;
127 flush_ptrace_hw_breakpoint(tsk
);
128 memset(tsk
->thread
.tls_array
, 0, sizeof(tsk
->thread
.tls_array
));
130 fpu__clear(&tsk
->thread
.fpu
);
133 static void hard_disable_TSC(void)
135 cr4_set_bits(X86_CR4_TSD
);
138 void disable_TSC(void)
141 if (!test_and_set_thread_flag(TIF_NOTSC
))
143 * Must flip the CPU state synchronously with
144 * TIF_NOTSC in the current running context.
150 static void hard_enable_TSC(void)
152 cr4_clear_bits(X86_CR4_TSD
);
155 static void enable_TSC(void)
158 if (test_and_clear_thread_flag(TIF_NOTSC
))
160 * Must flip the CPU state synchronously with
161 * TIF_NOTSC in the current running context.
167 int get_tsc_mode(unsigned long adr
)
171 if (test_thread_flag(TIF_NOTSC
))
172 val
= PR_TSC_SIGSEGV
;
176 return put_user(val
, (unsigned int __user
*)adr
);
179 int set_tsc_mode(unsigned int val
)
181 if (val
== PR_TSC_SIGSEGV
)
183 else if (val
== PR_TSC_ENABLE
)
191 void __switch_to_xtra(struct task_struct
*prev_p
, struct task_struct
*next_p
,
192 struct tss_struct
*tss
)
194 struct thread_struct
*prev
, *next
;
196 prev
= &prev_p
->thread
;
197 next
= &next_p
->thread
;
199 if (test_tsk_thread_flag(prev_p
, TIF_BLOCKSTEP
) ^
200 test_tsk_thread_flag(next_p
, TIF_BLOCKSTEP
)) {
201 unsigned long debugctl
= get_debugctlmsr();
203 debugctl
&= ~DEBUGCTLMSR_BTF
;
204 if (test_tsk_thread_flag(next_p
, TIF_BLOCKSTEP
))
205 debugctl
|= DEBUGCTLMSR_BTF
;
207 update_debugctlmsr(debugctl
);
210 if (test_tsk_thread_flag(prev_p
, TIF_NOTSC
) ^
211 test_tsk_thread_flag(next_p
, TIF_NOTSC
)) {
212 /* prev and next are different */
213 if (test_tsk_thread_flag(next_p
, TIF_NOTSC
))
219 if (test_tsk_thread_flag(next_p
, TIF_IO_BITMAP
)) {
221 * Copy the relevant range of the IO bitmap.
222 * Normally this is 128 bytes or less:
224 memcpy(tss
->io_bitmap
, next
->io_bitmap_ptr
,
225 max(prev
->io_bitmap_max
, next
->io_bitmap_max
));
226 } else if (test_tsk_thread_flag(prev_p
, TIF_IO_BITMAP
)) {
228 * Clear any possible leftover bits:
230 memset(tss
->io_bitmap
, 0xff, prev
->io_bitmap_max
);
232 propagate_user_return_notify(prev_p
, next_p
);
236 * Idle related variables and functions
238 unsigned long boot_option_idle_override
= IDLE_NO_OVERRIDE
;
239 EXPORT_SYMBOL(boot_option_idle_override
);
241 static void (*x86_idle
)(void);
244 static inline void play_dead(void)
251 void enter_idle(void)
253 this_cpu_write(is_idle
, 1);
254 atomic_notifier_call_chain(&idle_notifier
, IDLE_START
, NULL
);
257 static void __exit_idle(void)
259 if (x86_test_and_clear_bit_percpu(0, is_idle
) == 0)
261 atomic_notifier_call_chain(&idle_notifier
, IDLE_END
, NULL
);
264 /* Called from interrupts to signify idle end */
267 /* idle loop has pid 0 */
274 void arch_cpu_idle_enter(void)
280 void arch_cpu_idle_exit(void)
285 void arch_cpu_idle_dead(void)
291 * Called from the generic idle code.
293 void arch_cpu_idle(void)
299 * We use this if we don't have any better idle routine..
301 void default_idle(void)
303 trace_cpu_idle_rcuidle(1, smp_processor_id());
305 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT
, smp_processor_id());
307 #ifdef CONFIG_APM_MODULE
308 EXPORT_SYMBOL(default_idle
);
312 bool xen_set_default_idle(void)
314 bool ret
= !!x86_idle
;
316 x86_idle
= default_idle
;
321 void stop_this_cpu(void *dummy
)
327 set_cpu_online(smp_processor_id(), false);
328 disable_local_APIC();
329 mcheck_cpu_clear(this_cpu_ptr(&cpu_info
));
335 bool amd_e400_c1e_detected
;
336 EXPORT_SYMBOL(amd_e400_c1e_detected
);
338 static cpumask_var_t amd_e400_c1e_mask
;
340 void amd_e400_remove_cpu(int cpu
)
342 if (amd_e400_c1e_mask
!= NULL
)
343 cpumask_clear_cpu(cpu
, amd_e400_c1e_mask
);
347 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
348 * pending message MSR. If we detect C1E, then we handle it the same
349 * way as C3 power states (local apic timer and TSC stop)
351 static void amd_e400_idle(void)
353 if (!amd_e400_c1e_detected
) {
356 rdmsr(MSR_K8_INT_PENDING_MSG
, lo
, hi
);
358 if (lo
& K8_INTP_C1E_ACTIVE_MASK
) {
359 amd_e400_c1e_detected
= true;
360 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC
))
361 mark_tsc_unstable("TSC halt in AMD C1E");
362 pr_info("System has AMD C1E enabled\n");
366 if (amd_e400_c1e_detected
) {
367 int cpu
= smp_processor_id();
369 if (!cpumask_test_cpu(cpu
, amd_e400_c1e_mask
)) {
370 cpumask_set_cpu(cpu
, amd_e400_c1e_mask
);
371 /* Force broadcast so ACPI can not interfere. */
372 tick_broadcast_force();
373 pr_info("Switch to broadcast mode on CPU%d\n", cpu
);
375 tick_broadcast_enter();
380 * The switch back from broadcast mode needs to be
381 * called with interrupts disabled.
384 tick_broadcast_exit();
391 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
392 * We can't rely on cpuidle installing MWAIT, because it will not load
393 * on systems that support only C1 -- so the boot default must be MWAIT.
395 * Some AMD machines are the opposite, they depend on using HALT.
397 * So for default C1, which is used during boot until cpuidle loads,
398 * use MWAIT-C1 on Intel HW that has it, else use HALT.
400 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86
*c
)
402 if (c
->x86_vendor
!= X86_VENDOR_INTEL
)
405 if (!cpu_has(c
, X86_FEATURE_MWAIT
))
412 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
413 * with interrupts enabled and no flags, which is backwards compatible with the
414 * original MWAIT implementation.
416 static void mwait_idle(void)
418 if (!current_set_polling_and_test()) {
419 trace_cpu_idle_rcuidle(1, smp_processor_id());
420 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR
)) {
421 smp_mb(); /* quirk */
422 clflush((void *)¤t_thread_info()->flags
);
423 smp_mb(); /* quirk */
426 __monitor((void *)¤t_thread_info()->flags
, 0, 0);
431 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT
, smp_processor_id());
435 __current_clr_polling();
438 void select_idle_routine(const struct cpuinfo_x86
*c
)
441 if (boot_option_idle_override
== IDLE_POLL
&& smp_num_siblings
> 1)
442 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
444 if (x86_idle
|| boot_option_idle_override
== IDLE_POLL
)
447 if (cpu_has_bug(c
, X86_BUG_AMD_APIC_C1E
)) {
448 /* E400: APIC timer interrupt does not wake up CPU from C1e */
449 pr_info("using AMD E400 aware idle routine\n");
450 x86_idle
= amd_e400_idle
;
451 } else if (prefer_mwait_c1_over_halt(c
)) {
452 pr_info("using mwait in idle threads\n");
453 x86_idle
= mwait_idle
;
455 x86_idle
= default_idle
;
458 void __init
init_amd_e400_c1e_mask(void)
460 /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
461 if (x86_idle
== amd_e400_idle
)
462 zalloc_cpumask_var(&amd_e400_c1e_mask
, GFP_KERNEL
);
465 static int __init
idle_setup(char *str
)
470 if (!strcmp(str
, "poll")) {
471 pr_info("using polling idle threads\n");
472 boot_option_idle_override
= IDLE_POLL
;
473 cpu_idle_poll_ctrl(true);
474 } else if (!strcmp(str
, "halt")) {
476 * When the boot option of idle=halt is added, halt is
477 * forced to be used for CPU idle. In such case CPU C2/C3
478 * won't be used again.
479 * To continue to load the CPU idle driver, don't touch
480 * the boot_option_idle_override.
482 x86_idle
= default_idle
;
483 boot_option_idle_override
= IDLE_HALT
;
484 } else if (!strcmp(str
, "nomwait")) {
486 * If the boot option of "idle=nomwait" is added,
487 * it means that mwait will be disabled for CPU C2/C3
488 * states. In such case it won't touch the variable
489 * of boot_option_idle_override.
491 boot_option_idle_override
= IDLE_NOMWAIT
;
497 early_param("idle", idle_setup
);
499 unsigned long arch_align_stack(unsigned long sp
)
501 if (!(current
->personality
& ADDR_NO_RANDOMIZE
) && randomize_va_space
)
502 sp
-= get_random_int() % 8192;
506 unsigned long arch_randomize_brk(struct mm_struct
*mm
)
508 unsigned long range_end
= mm
->brk
+ 0x02000000;
509 return randomize_range(mm
->brk
, range_end
, 0) ? : mm
->brk
;
513 * Called from fs/proc with a reference on @p to find the function
514 * which called into schedule(). This needs to be done carefully
515 * because the task might wake up and we might look at a stack
518 unsigned long get_wchan(struct task_struct
*p
)
520 unsigned long start
, bottom
, top
, sp
, fp
, ip
;
523 if (!p
|| p
== current
|| p
->state
== TASK_RUNNING
)
526 start
= (unsigned long)task_stack_page(p
);
531 * Layout of the stack page:
533 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
535 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
537 * ----------- bottom = start + sizeof(thread_info)
541 * The tasks stack pointer points at the location where the
542 * framepointer is stored. The data on the stack is:
543 * ... IP FP ... IP FP
545 * We need to read FP and IP, so we need to adjust the upper
546 * bound by another unsigned long.
548 top
= start
+ THREAD_SIZE
- TOP_OF_KERNEL_STACK_PADDING
;
549 top
-= 2 * sizeof(unsigned long);
550 bottom
= start
+ sizeof(struct thread_info
);
552 sp
= READ_ONCE(p
->thread
.sp
);
553 if (sp
< bottom
|| sp
> top
)
556 fp
= READ_ONCE_NOCHECK(*(unsigned long *)sp
);
558 if (fp
< bottom
|| fp
> top
)
560 ip
= READ_ONCE_NOCHECK(*(unsigned long *)(fp
+ sizeof(unsigned long)));
561 if (!in_sched_functions(ip
))
563 fp
= READ_ONCE_NOCHECK(*(unsigned long *)fp
);
564 } while (count
++ < 16 && p
->state
!= TASK_RUNNING
);