of: MSI: Simplify irqdomain lookup
[linux/fpc-iii.git] / arch / x86 / kernel / process.c
blob9f7c21c22477e59462d72e930d79a4c2a238a051
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/module.h>
11 #include <linux/pm.h>
12 #include <linux/tick.h>
13 #include <linux/random.h>
14 #include <linux/user-return-notifier.h>
15 #include <linux/dmi.h>
16 #include <linux/utsname.h>
17 #include <linux/stackprotector.h>
18 #include <linux/tick.h>
19 #include <linux/cpuidle.h>
20 #include <trace/events/power.h>
21 #include <linux/hw_breakpoint.h>
22 #include <asm/cpu.h>
23 #include <asm/apic.h>
24 #include <asm/syscalls.h>
25 #include <asm/idle.h>
26 #include <asm/uaccess.h>
27 #include <asm/mwait.h>
28 #include <asm/fpu/internal.h>
29 #include <asm/debugreg.h>
30 #include <asm/nmi.h>
31 #include <asm/tlbflush.h>
32 #include <asm/mce.h>
33 #include <asm/vm86.h>
36 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
37 * no more per-task TSS's. The TSS size is kept cacheline-aligned
38 * so they are allowed to end up in the .data..cacheline_aligned
39 * section. Since TSS's are completely CPU-local, we want them
40 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
42 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
43 .x86_tss = {
44 .sp0 = TOP_OF_INIT_STACK,
45 #ifdef CONFIG_X86_32
46 .ss0 = __KERNEL_DS,
47 .ss1 = __KERNEL_CS,
48 .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
49 #endif
51 #ifdef CONFIG_X86_32
53 * Note that the .io_bitmap member must be extra-big. This is because
54 * the CPU will access an additional byte beyond the end of the IO
55 * permission bitmap. The extra byte must be all 1 bits, and must
56 * be within the limit.
58 .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 },
59 #endif
61 EXPORT_PER_CPU_SYMBOL(cpu_tss);
63 #ifdef CONFIG_X86_64
64 static DEFINE_PER_CPU(unsigned char, is_idle);
65 static ATOMIC_NOTIFIER_HEAD(idle_notifier);
67 void idle_notifier_register(struct notifier_block *n)
69 atomic_notifier_chain_register(&idle_notifier, n);
71 EXPORT_SYMBOL_GPL(idle_notifier_register);
73 void idle_notifier_unregister(struct notifier_block *n)
75 atomic_notifier_chain_unregister(&idle_notifier, n);
77 EXPORT_SYMBOL_GPL(idle_notifier_unregister);
78 #endif
81 * this gets called so that we can store lazy state into memory and copy the
82 * current task into the new thread.
84 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
86 memcpy(dst, src, arch_task_struct_size);
87 #ifdef CONFIG_VM86
88 dst->thread.vm86 = NULL;
89 #endif
91 return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
95 * Free current thread data structures etc..
97 void exit_thread(void)
99 struct task_struct *me = current;
100 struct thread_struct *t = &me->thread;
101 unsigned long *bp = t->io_bitmap_ptr;
102 struct fpu *fpu = &t->fpu;
104 if (bp) {
105 struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
107 t->io_bitmap_ptr = NULL;
108 clear_thread_flag(TIF_IO_BITMAP);
110 * Careful, clear this in the TSS too:
112 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
113 t->io_bitmap_max = 0;
114 put_cpu();
115 kfree(bp);
118 free_vm86(t);
120 fpu__drop(fpu);
123 void flush_thread(void)
125 struct task_struct *tsk = current;
127 flush_ptrace_hw_breakpoint(tsk);
128 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
130 fpu__clear(&tsk->thread.fpu);
133 static void hard_disable_TSC(void)
135 cr4_set_bits(X86_CR4_TSD);
138 void disable_TSC(void)
140 preempt_disable();
141 if (!test_and_set_thread_flag(TIF_NOTSC))
143 * Must flip the CPU state synchronously with
144 * TIF_NOTSC in the current running context.
146 hard_disable_TSC();
147 preempt_enable();
150 static void hard_enable_TSC(void)
152 cr4_clear_bits(X86_CR4_TSD);
155 static void enable_TSC(void)
157 preempt_disable();
158 if (test_and_clear_thread_flag(TIF_NOTSC))
160 * Must flip the CPU state synchronously with
161 * TIF_NOTSC in the current running context.
163 hard_enable_TSC();
164 preempt_enable();
167 int get_tsc_mode(unsigned long adr)
169 unsigned int val;
171 if (test_thread_flag(TIF_NOTSC))
172 val = PR_TSC_SIGSEGV;
173 else
174 val = PR_TSC_ENABLE;
176 return put_user(val, (unsigned int __user *)adr);
179 int set_tsc_mode(unsigned int val)
181 if (val == PR_TSC_SIGSEGV)
182 disable_TSC();
183 else if (val == PR_TSC_ENABLE)
184 enable_TSC();
185 else
186 return -EINVAL;
188 return 0;
191 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
192 struct tss_struct *tss)
194 struct thread_struct *prev, *next;
196 prev = &prev_p->thread;
197 next = &next_p->thread;
199 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
200 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
201 unsigned long debugctl = get_debugctlmsr();
203 debugctl &= ~DEBUGCTLMSR_BTF;
204 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
205 debugctl |= DEBUGCTLMSR_BTF;
207 update_debugctlmsr(debugctl);
210 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
211 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
212 /* prev and next are different */
213 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
214 hard_disable_TSC();
215 else
216 hard_enable_TSC();
219 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
221 * Copy the relevant range of the IO bitmap.
222 * Normally this is 128 bytes or less:
224 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
225 max(prev->io_bitmap_max, next->io_bitmap_max));
226 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
228 * Clear any possible leftover bits:
230 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
232 propagate_user_return_notify(prev_p, next_p);
236 * Idle related variables and functions
238 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
239 EXPORT_SYMBOL(boot_option_idle_override);
241 static void (*x86_idle)(void);
243 #ifndef CONFIG_SMP
244 static inline void play_dead(void)
246 BUG();
248 #endif
250 #ifdef CONFIG_X86_64
251 void enter_idle(void)
253 this_cpu_write(is_idle, 1);
254 atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
257 static void __exit_idle(void)
259 if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
260 return;
261 atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
264 /* Called from interrupts to signify idle end */
265 void exit_idle(void)
267 /* idle loop has pid 0 */
268 if (current->pid)
269 return;
270 __exit_idle();
272 #endif
274 void arch_cpu_idle_enter(void)
276 local_touch_nmi();
277 enter_idle();
280 void arch_cpu_idle_exit(void)
282 __exit_idle();
285 void arch_cpu_idle_dead(void)
287 play_dead();
291 * Called from the generic idle code.
293 void arch_cpu_idle(void)
295 x86_idle();
299 * We use this if we don't have any better idle routine..
301 void default_idle(void)
303 trace_cpu_idle_rcuidle(1, smp_processor_id());
304 safe_halt();
305 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
307 #ifdef CONFIG_APM_MODULE
308 EXPORT_SYMBOL(default_idle);
309 #endif
311 #ifdef CONFIG_XEN
312 bool xen_set_default_idle(void)
314 bool ret = !!x86_idle;
316 x86_idle = default_idle;
318 return ret;
320 #endif
321 void stop_this_cpu(void *dummy)
323 local_irq_disable();
325 * Remove this CPU:
327 set_cpu_online(smp_processor_id(), false);
328 disable_local_APIC();
329 mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
331 for (;;)
332 halt();
335 bool amd_e400_c1e_detected;
336 EXPORT_SYMBOL(amd_e400_c1e_detected);
338 static cpumask_var_t amd_e400_c1e_mask;
340 void amd_e400_remove_cpu(int cpu)
342 if (amd_e400_c1e_mask != NULL)
343 cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
347 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
348 * pending message MSR. If we detect C1E, then we handle it the same
349 * way as C3 power states (local apic timer and TSC stop)
351 static void amd_e400_idle(void)
353 if (!amd_e400_c1e_detected) {
354 u32 lo, hi;
356 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
358 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
359 amd_e400_c1e_detected = true;
360 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
361 mark_tsc_unstable("TSC halt in AMD C1E");
362 pr_info("System has AMD C1E enabled\n");
366 if (amd_e400_c1e_detected) {
367 int cpu = smp_processor_id();
369 if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
370 cpumask_set_cpu(cpu, amd_e400_c1e_mask);
371 /* Force broadcast so ACPI can not interfere. */
372 tick_broadcast_force();
373 pr_info("Switch to broadcast mode on CPU%d\n", cpu);
375 tick_broadcast_enter();
377 default_idle();
380 * The switch back from broadcast mode needs to be
381 * called with interrupts disabled.
383 local_irq_disable();
384 tick_broadcast_exit();
385 local_irq_enable();
386 } else
387 default_idle();
391 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
392 * We can't rely on cpuidle installing MWAIT, because it will not load
393 * on systems that support only C1 -- so the boot default must be MWAIT.
395 * Some AMD machines are the opposite, they depend on using HALT.
397 * So for default C1, which is used during boot until cpuidle loads,
398 * use MWAIT-C1 on Intel HW that has it, else use HALT.
400 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
402 if (c->x86_vendor != X86_VENDOR_INTEL)
403 return 0;
405 if (!cpu_has(c, X86_FEATURE_MWAIT))
406 return 0;
408 return 1;
412 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
413 * with interrupts enabled and no flags, which is backwards compatible with the
414 * original MWAIT implementation.
416 static void mwait_idle(void)
418 if (!current_set_polling_and_test()) {
419 trace_cpu_idle_rcuidle(1, smp_processor_id());
420 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
421 smp_mb(); /* quirk */
422 clflush((void *)&current_thread_info()->flags);
423 smp_mb(); /* quirk */
426 __monitor((void *)&current_thread_info()->flags, 0, 0);
427 if (!need_resched())
428 __sti_mwait(0, 0);
429 else
430 local_irq_enable();
431 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
432 } else {
433 local_irq_enable();
435 __current_clr_polling();
438 void select_idle_routine(const struct cpuinfo_x86 *c)
440 #ifdef CONFIG_SMP
441 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
442 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
443 #endif
444 if (x86_idle || boot_option_idle_override == IDLE_POLL)
445 return;
447 if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
448 /* E400: APIC timer interrupt does not wake up CPU from C1e */
449 pr_info("using AMD E400 aware idle routine\n");
450 x86_idle = amd_e400_idle;
451 } else if (prefer_mwait_c1_over_halt(c)) {
452 pr_info("using mwait in idle threads\n");
453 x86_idle = mwait_idle;
454 } else
455 x86_idle = default_idle;
458 void __init init_amd_e400_c1e_mask(void)
460 /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
461 if (x86_idle == amd_e400_idle)
462 zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
465 static int __init idle_setup(char *str)
467 if (!str)
468 return -EINVAL;
470 if (!strcmp(str, "poll")) {
471 pr_info("using polling idle threads\n");
472 boot_option_idle_override = IDLE_POLL;
473 cpu_idle_poll_ctrl(true);
474 } else if (!strcmp(str, "halt")) {
476 * When the boot option of idle=halt is added, halt is
477 * forced to be used for CPU idle. In such case CPU C2/C3
478 * won't be used again.
479 * To continue to load the CPU idle driver, don't touch
480 * the boot_option_idle_override.
482 x86_idle = default_idle;
483 boot_option_idle_override = IDLE_HALT;
484 } else if (!strcmp(str, "nomwait")) {
486 * If the boot option of "idle=nomwait" is added,
487 * it means that mwait will be disabled for CPU C2/C3
488 * states. In such case it won't touch the variable
489 * of boot_option_idle_override.
491 boot_option_idle_override = IDLE_NOMWAIT;
492 } else
493 return -1;
495 return 0;
497 early_param("idle", idle_setup);
499 unsigned long arch_align_stack(unsigned long sp)
501 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
502 sp -= get_random_int() % 8192;
503 return sp & ~0xf;
506 unsigned long arch_randomize_brk(struct mm_struct *mm)
508 unsigned long range_end = mm->brk + 0x02000000;
509 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
513 * Called from fs/proc with a reference on @p to find the function
514 * which called into schedule(). This needs to be done carefully
515 * because the task might wake up and we might look at a stack
516 * changing under us.
518 unsigned long get_wchan(struct task_struct *p)
520 unsigned long start, bottom, top, sp, fp, ip;
521 int count = 0;
523 if (!p || p == current || p->state == TASK_RUNNING)
524 return 0;
526 start = (unsigned long)task_stack_page(p);
527 if (!start)
528 return 0;
531 * Layout of the stack page:
533 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
534 * PADDING
535 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
536 * stack
537 * ----------- bottom = start + sizeof(thread_info)
538 * thread_info
539 * ----------- start
541 * The tasks stack pointer points at the location where the
542 * framepointer is stored. The data on the stack is:
543 * ... IP FP ... IP FP
545 * We need to read FP and IP, so we need to adjust the upper
546 * bound by another unsigned long.
548 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
549 top -= 2 * sizeof(unsigned long);
550 bottom = start + sizeof(struct thread_info);
552 sp = READ_ONCE(p->thread.sp);
553 if (sp < bottom || sp > top)
554 return 0;
556 fp = READ_ONCE_NOCHECK(*(unsigned long *)sp);
557 do {
558 if (fp < bottom || fp > top)
559 return 0;
560 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
561 if (!in_sched_functions(ip))
562 return ip;
563 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
564 } while (count++ < 16 && p->state != TASK_RUNNING);
565 return 0;