1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/init.h>
6 #include <linux/module.h>
7 #include <linux/timer.h>
8 #include <linux/acpi_pmtmr.h>
9 #include <linux/cpufreq.h>
10 #include <linux/delay.h>
11 #include <linux/clocksource.h>
12 #include <linux/percpu.h>
13 #include <linux/timex.h>
14 #include <linux/static_key.h>
17 #include <asm/timer.h>
18 #include <asm/vgtod.h>
20 #include <asm/delay.h>
21 #include <asm/hypervisor.h>
23 #include <asm/x86_init.h>
24 #include <asm/geode.h>
26 unsigned int __read_mostly cpu_khz
; /* TSC clocks / usec, not used here */
27 EXPORT_SYMBOL(cpu_khz
);
29 unsigned int __read_mostly tsc_khz
;
30 EXPORT_SYMBOL(tsc_khz
);
33 * TSC can be unstable due to cpufreq or due to unsynced TSCs
35 static int __read_mostly tsc_unstable
;
37 /* native_sched_clock() is called before tsc_init(), so
38 we must start with the TSC soft disabled to prevent
39 erroneous rdtsc usage on !cpu_has_tsc processors */
40 static int __read_mostly tsc_disabled
= -1;
42 static DEFINE_STATIC_KEY_FALSE(__use_tsc
);
44 int tsc_clocksource_reliable
;
47 * Use a ring-buffer like data structure, where a writer advances the head by
48 * writing a new data entry and a reader advances the tail when it observes a
51 * Writers are made to wait on readers until there's space to write a new
54 * This means that we can always use an {offset, mul} pair to compute a ns
55 * value that is 'roughly' in the right direction, even if we're writing a new
56 * {offset, mul} pair during the clock read.
58 * The down-side is that we can no longer guarantee strict monotonicity anymore
59 * (assuming the TSC was that to begin with), because while we compute the
60 * intersection point of the two clock slopes and make sure the time is
61 * continuous at the point of switching; we can no longer guarantee a reader is
62 * strictly before or after the switch point.
64 * It does mean a reader no longer needs to disable IRQs in order to avoid
65 * CPU-Freq updates messing with his times, and similarly an NMI reader will
66 * no longer run the risk of hitting half-written state.
70 struct cyc2ns_data data
[2]; /* 0 + 2*24 = 48 */
71 struct cyc2ns_data
*head
; /* 48 + 8 = 56 */
72 struct cyc2ns_data
*tail
; /* 56 + 8 = 64 */
73 }; /* exactly fits one cacheline */
75 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns
, cyc2ns
);
77 struct cyc2ns_data
*cyc2ns_read_begin(void)
79 struct cyc2ns_data
*head
;
83 head
= this_cpu_read(cyc2ns
.head
);
85 * Ensure we observe the entry when we observe the pointer to it.
86 * matches the wmb from cyc2ns_write_end().
88 smp_read_barrier_depends();
95 void cyc2ns_read_end(struct cyc2ns_data
*head
)
99 * If we're the outer most nested read; update the tail pointer
100 * when we're done. This notifies possible pending writers
101 * that we've observed the head pointer and that the other
104 if (!--head
->__count
) {
106 * x86-TSO does not reorder writes with older reads;
107 * therefore once this write becomes visible to another
108 * cpu, we must be finished reading the cyc2ns_data.
110 * matches with cyc2ns_write_begin().
112 this_cpu_write(cyc2ns
.tail
, head
);
118 * Begin writing a new @data entry for @cpu.
120 * Assumes some sort of write side lock; currently 'provided' by the assumption
121 * that cpufreq will call its notifiers sequentially.
123 static struct cyc2ns_data
*cyc2ns_write_begin(int cpu
)
125 struct cyc2ns
*c2n
= &per_cpu(cyc2ns
, cpu
);
126 struct cyc2ns_data
*data
= c2n
->data
;
128 if (data
== c2n
->head
)
131 /* XXX send an IPI to @cpu in order to guarantee a read? */
134 * When we observe the tail write from cyc2ns_read_end(),
135 * the cpu must be done with that entry and its safe
136 * to start writing to it.
138 while (c2n
->tail
== data
)
144 static void cyc2ns_write_end(int cpu
, struct cyc2ns_data
*data
)
146 struct cyc2ns
*c2n
= &per_cpu(cyc2ns
, cpu
);
149 * Ensure the @data writes are visible before we publish the
150 * entry. Matches the data-depencency in cyc2ns_read_begin().
154 ACCESS_ONCE(c2n
->head
) = data
;
158 * Accelerators for sched_clock()
159 * convert from cycles(64bits) => nanoseconds (64bits)
161 * ns = cycles / (freq / ns_per_sec)
162 * ns = cycles * (ns_per_sec / freq)
163 * ns = cycles * (10^9 / (cpu_khz * 10^3))
164 * ns = cycles * (10^6 / cpu_khz)
166 * Then we use scaling math (suggested by george@mvista.com) to get:
167 * ns = cycles * (10^6 * SC / cpu_khz) / SC
168 * ns = cycles * cyc2ns_scale / SC
170 * And since SC is a constant power of two, we can convert the div
171 * into a shift. The larger SC is, the more accurate the conversion, but
172 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
173 * (64-bit result) can be used.
175 * We can use khz divisor instead of mhz to keep a better precision.
176 * (mathieu.desnoyers@polymtl.ca)
178 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
181 static void cyc2ns_data_init(struct cyc2ns_data
*data
)
183 data
->cyc2ns_mul
= 0;
184 data
->cyc2ns_shift
= 0;
185 data
->cyc2ns_offset
= 0;
189 static void cyc2ns_init(int cpu
)
191 struct cyc2ns
*c2n
= &per_cpu(cyc2ns
, cpu
);
193 cyc2ns_data_init(&c2n
->data
[0]);
194 cyc2ns_data_init(&c2n
->data
[1]);
196 c2n
->head
= c2n
->data
;
197 c2n
->tail
= c2n
->data
;
200 static inline unsigned long long cycles_2_ns(unsigned long long cyc
)
202 struct cyc2ns_data
*data
, *tail
;
203 unsigned long long ns
;
206 * See cyc2ns_read_*() for details; replicated in order to avoid
207 * an extra few instructions that came with the abstraction.
208 * Notable, it allows us to only do the __count and tail update
209 * dance when its actually needed.
212 preempt_disable_notrace();
213 data
= this_cpu_read(cyc2ns
.head
);
214 tail
= this_cpu_read(cyc2ns
.tail
);
216 if (likely(data
== tail
)) {
217 ns
= data
->cyc2ns_offset
;
218 ns
+= mul_u64_u32_shr(cyc
, data
->cyc2ns_mul
, data
->cyc2ns_shift
);
224 ns
= data
->cyc2ns_offset
;
225 ns
+= mul_u64_u32_shr(cyc
, data
->cyc2ns_mul
, data
->cyc2ns_shift
);
229 if (!--data
->__count
)
230 this_cpu_write(cyc2ns
.tail
, data
);
232 preempt_enable_notrace();
237 static void set_cyc2ns_scale(unsigned long cpu_khz
, int cpu
)
239 unsigned long long tsc_now
, ns_now
;
240 struct cyc2ns_data
*data
;
243 local_irq_save(flags
);
244 sched_clock_idle_sleep_event();
249 data
= cyc2ns_write_begin(cpu
);
252 ns_now
= cycles_2_ns(tsc_now
);
255 * Compute a new multiplier as per the above comment and ensure our
256 * time function is continuous; see the comment near struct
259 clocks_calc_mult_shift(&data
->cyc2ns_mul
, &data
->cyc2ns_shift
, cpu_khz
,
263 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
264 * not expected to be greater than 31 due to the original published
265 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
266 * value) - refer perf_event_mmap_page documentation in perf_event.h.
268 if (data
->cyc2ns_shift
== 32) {
269 data
->cyc2ns_shift
= 31;
270 data
->cyc2ns_mul
>>= 1;
273 data
->cyc2ns_offset
= ns_now
-
274 mul_u64_u32_shr(tsc_now
, data
->cyc2ns_mul
, data
->cyc2ns_shift
);
276 cyc2ns_write_end(cpu
, data
);
279 sched_clock_idle_wakeup_event(0);
280 local_irq_restore(flags
);
283 * Scheduler clock - returns current time in nanosec units.
285 u64
native_sched_clock(void)
287 if (static_branch_likely(&__use_tsc
)) {
288 u64 tsc_now
= rdtsc();
290 /* return the value in ns */
291 return cycles_2_ns(tsc_now
);
295 * Fall back to jiffies if there's no TSC available:
296 * ( But note that we still use it if the TSC is marked
297 * unstable. We do this because unlike Time Of Day,
298 * the scheduler clock tolerates small errors and it's
299 * very important for it to be as fast as the platform
303 /* No locking but a rare wrong value is not a big deal: */
304 return (jiffies_64
- INITIAL_JIFFIES
) * (1000000000 / HZ
);
308 * Generate a sched_clock if you already have a TSC value.
310 u64
native_sched_clock_from_tsc(u64 tsc
)
312 return cycles_2_ns(tsc
);
315 /* We need to define a real function for sched_clock, to override the
316 weak default version */
317 #ifdef CONFIG_PARAVIRT
318 unsigned long long sched_clock(void)
320 return paravirt_sched_clock();
324 sched_clock(void) __attribute__((alias("native_sched_clock")));
327 int check_tsc_unstable(void)
331 EXPORT_SYMBOL_GPL(check_tsc_unstable
);
333 int check_tsc_disabled(void)
337 EXPORT_SYMBOL_GPL(check_tsc_disabled
);
339 #ifdef CONFIG_X86_TSC
340 int __init
notsc_setup(char *str
)
342 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
348 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
351 int __init
notsc_setup(char *str
)
353 setup_clear_cpu_cap(X86_FEATURE_TSC
);
358 __setup("notsc", notsc_setup
);
360 static int no_sched_irq_time
;
362 static int __init
tsc_setup(char *str
)
364 if (!strcmp(str
, "reliable"))
365 tsc_clocksource_reliable
= 1;
366 if (!strncmp(str
, "noirqtime", 9))
367 no_sched_irq_time
= 1;
371 __setup("tsc=", tsc_setup
);
373 #define MAX_RETRIES 5
374 #define SMI_TRESHOLD 50000
377 * Read TSC and the reference counters. Take care of SMI disturbance
379 static u64
tsc_read_refs(u64
*p
, int hpet
)
384 for (i
= 0; i
< MAX_RETRIES
; i
++) {
387 *p
= hpet_readl(HPET_COUNTER
) & 0xFFFFFFFF;
389 *p
= acpi_pm_read_early();
391 if ((t2
- t1
) < SMI_TRESHOLD
)
398 * Calculate the TSC frequency from HPET reference
400 static unsigned long calc_hpet_ref(u64 deltatsc
, u64 hpet1
, u64 hpet2
)
405 hpet2
+= 0x100000000ULL
;
407 tmp
= ((u64
)hpet2
* hpet_readl(HPET_PERIOD
));
408 do_div(tmp
, 1000000);
409 do_div(deltatsc
, tmp
);
411 return (unsigned long) deltatsc
;
415 * Calculate the TSC frequency from PMTimer reference
417 static unsigned long calc_pmtimer_ref(u64 deltatsc
, u64 pm1
, u64 pm2
)
425 pm2
+= (u64
)ACPI_PM_OVRRUN
;
427 tmp
= pm2
* 1000000000LL;
428 do_div(tmp
, PMTMR_TICKS_PER_SEC
);
429 do_div(deltatsc
, tmp
);
431 return (unsigned long) deltatsc
;
435 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
436 #define CAL_PIT_LOOPS 1000
439 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
440 #define CAL2_PIT_LOOPS 5000
444 * Try to calibrate the TSC against the Programmable
445 * Interrupt Timer and return the frequency of the TSC
448 * Return ULONG_MAX on failure to calibrate.
450 static unsigned long pit_calibrate_tsc(u32 latch
, unsigned long ms
, int loopmin
)
452 u64 tsc
, t1
, t2
, delta
;
453 unsigned long tscmin
, tscmax
;
456 /* Set the Gate high, disable speaker */
457 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
460 * Setup CTC channel 2* for mode 0, (interrupt on terminal
461 * count mode), binary count. Set the latch register to 50ms
462 * (LSB then MSB) to begin countdown.
465 outb(latch
& 0xff, 0x42);
466 outb(latch
>> 8, 0x42);
468 tsc
= t1
= t2
= get_cycles();
473 while ((inb(0x61) & 0x20) == 0) {
477 if ((unsigned long) delta
< tscmin
)
478 tscmin
= (unsigned int) delta
;
479 if ((unsigned long) delta
> tscmax
)
480 tscmax
= (unsigned int) delta
;
487 * If we were not able to read the PIT more than loopmin
488 * times, then we have been hit by a massive SMI
490 * If the maximum is 10 times larger than the minimum,
491 * then we got hit by an SMI as well.
493 if (pitcnt
< loopmin
|| tscmax
> 10 * tscmin
)
496 /* Calculate the PIT value */
503 * This reads the current MSB of the PIT counter, and
504 * checks if we are running on sufficiently fast and
505 * non-virtualized hardware.
507 * Our expectations are:
509 * - the PIT is running at roughly 1.19MHz
511 * - each IO is going to take about 1us on real hardware,
512 * but we allow it to be much faster (by a factor of 10) or
513 * _slightly_ slower (ie we allow up to a 2us read+counter
514 * update - anything else implies a unacceptably slow CPU
515 * or PIT for the fast calibration to work.
517 * - with 256 PIT ticks to read the value, we have 214us to
518 * see the same MSB (and overhead like doing a single TSC
519 * read per MSB value etc).
521 * - We're doing 2 reads per loop (LSB, MSB), and we expect
522 * them each to take about a microsecond on real hardware.
523 * So we expect a count value of around 100. But we'll be
524 * generous, and accept anything over 50.
526 * - if the PIT is stuck, and we see *many* more reads, we
527 * return early (and the next caller of pit_expect_msb()
528 * then consider it a failure when they don't see the
529 * next expected value).
531 * These expectations mean that we know that we have seen the
532 * transition from one expected value to another with a fairly
533 * high accuracy, and we didn't miss any events. We can thus
534 * use the TSC value at the transitions to calculate a pretty
535 * good value for the TSC frequencty.
537 static inline int pit_verify_msb(unsigned char val
)
541 return inb(0x42) == val
;
544 static inline int pit_expect_msb(unsigned char val
, u64
*tscp
, unsigned long *deltap
)
547 u64 tsc
= 0, prev_tsc
= 0;
549 for (count
= 0; count
< 50000; count
++) {
550 if (!pit_verify_msb(val
))
555 *deltap
= get_cycles() - prev_tsc
;
559 * We require _some_ success, but the quality control
560 * will be based on the error terms on the TSC values.
566 * How many MSB values do we want to see? We aim for
567 * a maximum error rate of 500ppm (in practice the
568 * real error is much smaller), but refuse to spend
569 * more than 50ms on it.
571 #define MAX_QUICK_PIT_MS 50
572 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
574 static unsigned long quick_pit_calibrate(void)
578 unsigned long d1
, d2
;
580 /* Set the Gate high, disable speaker */
581 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
584 * Counter 2, mode 0 (one-shot), binary count
586 * NOTE! Mode 2 decrements by two (and then the
587 * output is flipped each time, giving the same
588 * final output frequency as a decrement-by-one),
589 * so mode 0 is much better when looking at the
594 /* Start at 0xffff */
599 * The PIT starts counting at the next edge, so we
600 * need to delay for a microsecond. The easiest way
601 * to do that is to just read back the 16-bit counter
606 if (pit_expect_msb(0xff, &tsc
, &d1
)) {
607 for (i
= 1; i
<= MAX_QUICK_PIT_ITERATIONS
; i
++) {
608 if (!pit_expect_msb(0xff-i
, &delta
, &d2
))
614 * Extrapolate the error and fail fast if the error will
615 * never be below 500 ppm.
618 d1
+ d2
>= (delta
* MAX_QUICK_PIT_ITERATIONS
) >> 11)
622 * Iterate until the error is less than 500 ppm
624 if (d1
+d2
>= delta
>> 11)
628 * Check the PIT one more time to verify that
629 * all TSC reads were stable wrt the PIT.
631 * This also guarantees serialization of the
632 * last cycle read ('d2') in pit_expect_msb.
634 if (!pit_verify_msb(0xfe - i
))
639 pr_info("Fast TSC calibration failed\n");
644 * Ok, if we get here, then we've seen the
645 * MSB of the PIT decrement 'i' times, and the
646 * error has shrunk to less than 500 ppm.
648 * As a result, we can depend on there not being
649 * any odd delays anywhere, and the TSC reads are
650 * reliable (within the error).
652 * kHz = ticks / time-in-seconds / 1000;
653 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
654 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
656 delta
*= PIT_TICK_RATE
;
657 do_div(delta
, i
*256*1000);
658 pr_info("Fast TSC calibration using PIT\n");
663 * native_calibrate_tsc - calibrate the tsc on boot
665 unsigned long native_calibrate_tsc(void)
667 u64 tsc1
, tsc2
, delta
, ref1
, ref2
;
668 unsigned long tsc_pit_min
= ULONG_MAX
, tsc_ref_min
= ULONG_MAX
;
669 unsigned long flags
, latch
, ms
, fast_calibrate
;
670 int hpet
= is_hpet_enabled(), i
, loopmin
;
672 /* Calibrate TSC using MSR for Intel Atom SoCs */
673 local_irq_save(flags
);
674 fast_calibrate
= try_msr_calibrate_tsc();
675 local_irq_restore(flags
);
677 return fast_calibrate
;
679 local_irq_save(flags
);
680 fast_calibrate
= quick_pit_calibrate();
681 local_irq_restore(flags
);
683 return fast_calibrate
;
686 * Run 5 calibration loops to get the lowest frequency value
687 * (the best estimate). We use two different calibration modes
690 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
691 * load a timeout of 50ms. We read the time right after we
692 * started the timer and wait until the PIT count down reaches
693 * zero. In each wait loop iteration we read the TSC and check
694 * the delta to the previous read. We keep track of the min
695 * and max values of that delta. The delta is mostly defined
696 * by the IO time of the PIT access, so we can detect when a
697 * SMI/SMM disturbance happened between the two reads. If the
698 * maximum time is significantly larger than the minimum time,
699 * then we discard the result and have another try.
701 * 2) Reference counter. If available we use the HPET or the
702 * PMTIMER as a reference to check the sanity of that value.
703 * We use separate TSC readouts and check inside of the
704 * reference read for a SMI/SMM disturbance. We dicard
705 * disturbed values here as well. We do that around the PIT
706 * calibration delay loop as we have to wait for a certain
707 * amount of time anyway.
710 /* Preset PIT loop values */
713 loopmin
= CAL_PIT_LOOPS
;
715 for (i
= 0; i
< 3; i
++) {
716 unsigned long tsc_pit_khz
;
719 * Read the start value and the reference count of
720 * hpet/pmtimer when available. Then do the PIT
721 * calibration, which will take at least 50ms, and
722 * read the end value.
724 local_irq_save(flags
);
725 tsc1
= tsc_read_refs(&ref1
, hpet
);
726 tsc_pit_khz
= pit_calibrate_tsc(latch
, ms
, loopmin
);
727 tsc2
= tsc_read_refs(&ref2
, hpet
);
728 local_irq_restore(flags
);
730 /* Pick the lowest PIT TSC calibration so far */
731 tsc_pit_min
= min(tsc_pit_min
, tsc_pit_khz
);
733 /* hpet or pmtimer available ? */
737 /* Check, whether the sampling was disturbed by an SMI */
738 if (tsc1
== ULLONG_MAX
|| tsc2
== ULLONG_MAX
)
741 tsc2
= (tsc2
- tsc1
) * 1000000LL;
743 tsc2
= calc_hpet_ref(tsc2
, ref1
, ref2
);
745 tsc2
= calc_pmtimer_ref(tsc2
, ref1
, ref2
);
747 tsc_ref_min
= min(tsc_ref_min
, (unsigned long) tsc2
);
749 /* Check the reference deviation */
750 delta
= ((u64
) tsc_pit_min
) * 100;
751 do_div(delta
, tsc_ref_min
);
754 * If both calibration results are inside a 10% window
755 * then we can be sure, that the calibration
756 * succeeded. We break out of the loop right away. We
757 * use the reference value, as it is more precise.
759 if (delta
>= 90 && delta
<= 110) {
760 pr_info("PIT calibration matches %s. %d loops\n",
761 hpet
? "HPET" : "PMTIMER", i
+ 1);
766 * Check whether PIT failed more than once. This
767 * happens in virtualized environments. We need to
768 * give the virtual PC a slightly longer timeframe for
769 * the HPET/PMTIMER to make the result precise.
771 if (i
== 1 && tsc_pit_min
== ULONG_MAX
) {
774 loopmin
= CAL2_PIT_LOOPS
;
779 * Now check the results.
781 if (tsc_pit_min
== ULONG_MAX
) {
782 /* PIT gave no useful value */
783 pr_warn("Unable to calibrate against PIT\n");
785 /* We don't have an alternative source, disable TSC */
786 if (!hpet
&& !ref1
&& !ref2
) {
787 pr_notice("No reference (HPET/PMTIMER) available\n");
791 /* The alternative source failed as well, disable TSC */
792 if (tsc_ref_min
== ULONG_MAX
) {
793 pr_warn("HPET/PMTIMER calibration failed\n");
797 /* Use the alternative source */
798 pr_info("using %s reference calibration\n",
799 hpet
? "HPET" : "PMTIMER");
804 /* We don't have an alternative source, use the PIT calibration value */
805 if (!hpet
&& !ref1
&& !ref2
) {
806 pr_info("Using PIT calibration value\n");
810 /* The alternative source failed, use the PIT calibration value */
811 if (tsc_ref_min
== ULONG_MAX
) {
812 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
817 * The calibration values differ too much. In doubt, we use
818 * the PIT value as we know that there are PMTIMERs around
819 * running at double speed. At least we let the user know:
821 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
822 hpet
? "HPET" : "PMTIMER", tsc_pit_min
, tsc_ref_min
);
823 pr_info("Using PIT calibration value\n");
827 int recalibrate_cpu_khz(void)
830 unsigned long cpu_khz_old
= cpu_khz
;
833 tsc_khz
= x86_platform
.calibrate_tsc();
835 cpu_data(0).loops_per_jiffy
=
836 cpufreq_scale(cpu_data(0).loops_per_jiffy
,
837 cpu_khz_old
, cpu_khz
);
846 EXPORT_SYMBOL(recalibrate_cpu_khz
);
849 static unsigned long long cyc2ns_suspend
;
851 void tsc_save_sched_clock_state(void)
853 if (!sched_clock_stable())
856 cyc2ns_suspend
= sched_clock();
860 * Even on processors with invariant TSC, TSC gets reset in some the
861 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
862 * arbitrary value (still sync'd across cpu's) during resume from such sleep
863 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
864 * that sched_clock() continues from the point where it was left off during
867 void tsc_restore_sched_clock_state(void)
869 unsigned long long offset
;
873 if (!sched_clock_stable())
876 local_irq_save(flags
);
879 * We're comming out of suspend, there's no concurrency yet; don't
880 * bother being nice about the RCU stuff, just write to both
884 this_cpu_write(cyc2ns
.data
[0].cyc2ns_offset
, 0);
885 this_cpu_write(cyc2ns
.data
[1].cyc2ns_offset
, 0);
887 offset
= cyc2ns_suspend
- sched_clock();
889 for_each_possible_cpu(cpu
) {
890 per_cpu(cyc2ns
.data
[0].cyc2ns_offset
, cpu
) = offset
;
891 per_cpu(cyc2ns
.data
[1].cyc2ns_offset
, cpu
) = offset
;
894 local_irq_restore(flags
);
897 #ifdef CONFIG_CPU_FREQ
899 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
902 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
903 * not that important because current Opteron setups do not support
904 * scaling on SMP anyroads.
906 * Should fix up last_tsc too. Currently gettimeofday in the
907 * first tick after the change will be slightly wrong.
910 static unsigned int ref_freq
;
911 static unsigned long loops_per_jiffy_ref
;
912 static unsigned long tsc_khz_ref
;
914 static int time_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
917 struct cpufreq_freqs
*freq
= data
;
920 if (cpu_has(&cpu_data(freq
->cpu
), X86_FEATURE_CONSTANT_TSC
))
923 lpj
= &boot_cpu_data
.loops_per_jiffy
;
925 if (!(freq
->flags
& CPUFREQ_CONST_LOOPS
))
926 lpj
= &cpu_data(freq
->cpu
).loops_per_jiffy
;
930 ref_freq
= freq
->old
;
931 loops_per_jiffy_ref
= *lpj
;
932 tsc_khz_ref
= tsc_khz
;
934 if ((val
== CPUFREQ_PRECHANGE
&& freq
->old
< freq
->new) ||
935 (val
== CPUFREQ_POSTCHANGE
&& freq
->old
> freq
->new)) {
936 *lpj
= cpufreq_scale(loops_per_jiffy_ref
, ref_freq
, freq
->new);
938 tsc_khz
= cpufreq_scale(tsc_khz_ref
, ref_freq
, freq
->new);
939 if (!(freq
->flags
& CPUFREQ_CONST_LOOPS
))
940 mark_tsc_unstable("cpufreq changes");
942 set_cyc2ns_scale(tsc_khz
, freq
->cpu
);
948 static struct notifier_block time_cpufreq_notifier_block
= {
949 .notifier_call
= time_cpufreq_notifier
952 static int __init
cpufreq_tsc(void)
956 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
958 cpufreq_register_notifier(&time_cpufreq_notifier_block
,
959 CPUFREQ_TRANSITION_NOTIFIER
);
963 core_initcall(cpufreq_tsc
);
965 #endif /* CONFIG_CPU_FREQ */
967 /* clocksource code */
969 static struct clocksource clocksource_tsc
;
972 * We used to compare the TSC to the cycle_last value in the clocksource
973 * structure to avoid a nasty time-warp. This can be observed in a
974 * very small window right after one CPU updated cycle_last under
975 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
976 * is smaller than the cycle_last reference value due to a TSC which
977 * is slighty behind. This delta is nowhere else observable, but in
978 * that case it results in a forward time jump in the range of hours
979 * due to the unsigned delta calculation of the time keeping core
980 * code, which is necessary to support wrapping clocksources like pm
983 * This sanity check is now done in the core timekeeping code.
984 * checking the result of read_tsc() - cycle_last for being negative.
985 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
987 static cycle_t
read_tsc(struct clocksource
*cs
)
989 return (cycle_t
)rdtsc_ordered();
993 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
995 static struct clocksource clocksource_tsc
= {
999 .mask
= CLOCKSOURCE_MASK(64),
1000 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
|
1001 CLOCK_SOURCE_MUST_VERIFY
,
1002 .archdata
= { .vclock_mode
= VCLOCK_TSC
},
1005 void mark_tsc_unstable(char *reason
)
1007 if (!tsc_unstable
) {
1009 clear_sched_clock_stable();
1010 disable_sched_clock_irqtime();
1011 pr_info("Marking TSC unstable due to %s\n", reason
);
1012 /* Change only the rating, when not registered */
1013 if (clocksource_tsc
.mult
)
1014 clocksource_mark_unstable(&clocksource_tsc
);
1016 clocksource_tsc
.flags
|= CLOCK_SOURCE_UNSTABLE
;
1017 clocksource_tsc
.rating
= 0;
1022 EXPORT_SYMBOL_GPL(mark_tsc_unstable
);
1024 static void __init
check_system_tsc_reliable(void)
1026 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1027 if (is_geode_lx()) {
1028 /* RTSC counts during suspend */
1029 #define RTSC_SUSP 0x100
1030 unsigned long res_low
, res_high
;
1032 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0
, &res_low
, &res_high
);
1033 /* Geode_LX - the OLPC CPU has a very reliable TSC */
1034 if (res_low
& RTSC_SUSP
)
1035 tsc_clocksource_reliable
= 1;
1038 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE
))
1039 tsc_clocksource_reliable
= 1;
1043 * Make an educated guess if the TSC is trustworthy and synchronized
1046 int unsynchronized_tsc(void)
1048 if (!cpu_has_tsc
|| tsc_unstable
)
1052 if (apic_is_clustered_box())
1056 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
1059 if (tsc_clocksource_reliable
)
1062 * Intel systems are normally all synchronized.
1063 * Exceptions must mark TSC as unstable:
1065 if (boot_cpu_data
.x86_vendor
!= X86_VENDOR_INTEL
) {
1066 /* assume multi socket systems are not synchronized: */
1067 if (num_possible_cpus() > 1)
1075 static void tsc_refine_calibration_work(struct work_struct
*work
);
1076 static DECLARE_DELAYED_WORK(tsc_irqwork
, tsc_refine_calibration_work
);
1078 * tsc_refine_calibration_work - Further refine tsc freq calibration
1081 * This functions uses delayed work over a period of a
1082 * second to further refine the TSC freq value. Since this is
1083 * timer based, instead of loop based, we don't block the boot
1084 * process while this longer calibration is done.
1086 * If there are any calibration anomalies (too many SMIs, etc),
1087 * or the refined calibration is off by 1% of the fast early
1088 * calibration, we throw out the new calibration and use the
1089 * early calibration.
1091 static void tsc_refine_calibration_work(struct work_struct
*work
)
1093 static u64 tsc_start
= -1, ref_start
;
1095 u64 tsc_stop
, ref_stop
, delta
;
1098 /* Don't bother refining TSC on unstable systems */
1099 if (check_tsc_unstable())
1103 * Since the work is started early in boot, we may be
1104 * delayed the first time we expire. So set the workqueue
1105 * again once we know timers are working.
1107 if (tsc_start
== -1) {
1109 * Only set hpet once, to avoid mixing hardware
1110 * if the hpet becomes enabled later.
1112 hpet
= is_hpet_enabled();
1113 schedule_delayed_work(&tsc_irqwork
, HZ
);
1114 tsc_start
= tsc_read_refs(&ref_start
, hpet
);
1118 tsc_stop
= tsc_read_refs(&ref_stop
, hpet
);
1120 /* hpet or pmtimer available ? */
1121 if (ref_start
== ref_stop
)
1124 /* Check, whether the sampling was disturbed by an SMI */
1125 if (tsc_start
== ULLONG_MAX
|| tsc_stop
== ULLONG_MAX
)
1128 delta
= tsc_stop
- tsc_start
;
1131 freq
= calc_hpet_ref(delta
, ref_start
, ref_stop
);
1133 freq
= calc_pmtimer_ref(delta
, ref_start
, ref_stop
);
1135 /* Make sure we're within 1% */
1136 if (abs(tsc_khz
- freq
) > tsc_khz
/100)
1140 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1141 (unsigned long)tsc_khz
/ 1000,
1142 (unsigned long)tsc_khz
% 1000);
1145 clocksource_register_khz(&clocksource_tsc
, tsc_khz
);
1149 static int __init
init_tsc_clocksource(void)
1151 if (!cpu_has_tsc
|| tsc_disabled
> 0 || !tsc_khz
)
1154 if (tsc_clocksource_reliable
)
1155 clocksource_tsc
.flags
&= ~CLOCK_SOURCE_MUST_VERIFY
;
1156 /* lower the rating if we already know its unstable: */
1157 if (check_tsc_unstable()) {
1158 clocksource_tsc
.rating
= 0;
1159 clocksource_tsc
.flags
&= ~CLOCK_SOURCE_IS_CONTINUOUS
;
1162 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3
))
1163 clocksource_tsc
.flags
|= CLOCK_SOURCE_SUSPEND_NONSTOP
;
1166 * Trust the results of the earlier calibration on systems
1167 * exporting a reliable TSC.
1169 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE
)) {
1170 clocksource_register_khz(&clocksource_tsc
, tsc_khz
);
1174 schedule_delayed_work(&tsc_irqwork
, 0);
1178 * We use device_initcall here, to ensure we run after the hpet
1179 * is fully initialized, which may occur at fs_initcall time.
1181 device_initcall(init_tsc_clocksource
);
1183 void __init
tsc_init(void)
1189 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER
);
1193 tsc_khz
= x86_platform
.calibrate_tsc();
1197 mark_tsc_unstable("could not calculate TSC khz");
1198 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER
);
1202 pr_info("Detected %lu.%03lu MHz processor\n",
1203 (unsigned long)cpu_khz
/ 1000,
1204 (unsigned long)cpu_khz
% 1000);
1207 * Secondary CPUs do not run through tsc_init(), so set up
1208 * all the scale factors for all CPUs, assuming the same
1209 * speed as the bootup CPU. (cpufreq notifiers will fix this
1210 * up if their speed diverges)
1212 for_each_possible_cpu(cpu
) {
1214 set_cyc2ns_scale(cpu_khz
, cpu
);
1217 if (tsc_disabled
> 0)
1220 /* now allow native_sched_clock() to use rdtsc */
1223 static_branch_enable(&__use_tsc
);
1225 if (!no_sched_irq_time
)
1226 enable_sched_clock_irqtime();
1228 lpj
= ((u64
)tsc_khz
* 1000);
1234 if (unsynchronized_tsc())
1235 mark_tsc_unstable("TSCs unsynchronized");
1237 check_system_tsc_reliable();
1242 * If we have a constant TSC and are using the TSC for the delay loop,
1243 * we can skip clock calibration if another cpu in the same socket has already
1244 * been calibrated. This assumes that CONSTANT_TSC applies to all
1245 * cpus in the socket - this should be a safe assumption.
1247 unsigned long calibrate_delay_is_known(void)
1249 int i
, cpu
= smp_processor_id();
1251 if (!tsc_disabled
&& !cpu_has(&cpu_data(cpu
), X86_FEATURE_CONSTANT_TSC
))
1254 for_each_online_cpu(i
)
1255 if (cpu_data(i
).phys_proc_id
== cpu_data(cpu
).phys_proc_id
)
1256 return cpu_data(i
).loops_per_jiffy
;