2 * 8253/8254 interval timer emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2006 Intel Corporation
6 * Copyright (c) 2007 Keir Fraser, XenSource Inc
7 * Copyright (c) 2008 Intel Corporation
8 * Copyright 2009 Red Hat, Inc. and/or its affiliates.
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
29 * Sheng Yang <sheng.yang@intel.com>
30 * Based on QEMU and Xen.
33 #define pr_fmt(fmt) "pit: " fmt
35 #include <linux/kvm_host.h>
36 #include <linux/slab.h>
44 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
46 #define mod_64(x, y) ((x) % (y))
49 #define RW_STATE_LSB 1
50 #define RW_STATE_MSB 2
51 #define RW_STATE_WORD0 3
52 #define RW_STATE_WORD1 4
54 /* Compute with 96 bit intermediate result: (a*b)/c */
55 static u64
muldiv64(u64 a
, u32 b
, u32 c
)
66 rl
= (u64
)u
.l
.low
* (u64
)b
;
67 rh
= (u64
)u
.l
.high
* (u64
)b
;
69 res
.l
.high
= div64_u64(rh
, c
);
70 res
.l
.low
= div64_u64(((mod_64(rh
, c
) << 32) + (rl
& 0xffffffff)), c
);
74 static void pit_set_gate(struct kvm
*kvm
, int channel
, u32 val
)
76 struct kvm_kpit_channel_state
*c
=
77 &kvm
->arch
.vpit
->pit_state
.channels
[channel
];
79 WARN_ON(!mutex_is_locked(&kvm
->arch
.vpit
->pit_state
.lock
));
85 /* XXX: just disable/enable counting */
91 /* Restart counting on rising edge. */
93 c
->count_load_time
= ktime_get();
100 static int pit_get_gate(struct kvm
*kvm
, int channel
)
102 WARN_ON(!mutex_is_locked(&kvm
->arch
.vpit
->pit_state
.lock
));
104 return kvm
->arch
.vpit
->pit_state
.channels
[channel
].gate
;
107 static s64
__kpit_elapsed(struct kvm
*kvm
)
111 struct kvm_kpit_state
*ps
= &kvm
->arch
.vpit
->pit_state
;
117 * The Counter does not stop when it reaches zero. In
118 * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
119 * the highest count, either FFFF hex for binary counting
120 * or 9999 for BCD counting, and continues counting.
121 * Modes 2 and 3 are periodic; the Counter reloads
122 * itself with the initial count and continues counting
125 remaining
= hrtimer_get_remaining(&ps
->timer
);
126 elapsed
= ps
->period
- ktime_to_ns(remaining
);
131 static s64
kpit_elapsed(struct kvm
*kvm
, struct kvm_kpit_channel_state
*c
,
135 return __kpit_elapsed(kvm
);
137 return ktime_to_ns(ktime_sub(ktime_get(), c
->count_load_time
));
140 static int pit_get_count(struct kvm
*kvm
, int channel
)
142 struct kvm_kpit_channel_state
*c
=
143 &kvm
->arch
.vpit
->pit_state
.channels
[channel
];
147 WARN_ON(!mutex_is_locked(&kvm
->arch
.vpit
->pit_state
.lock
));
149 t
= kpit_elapsed(kvm
, c
, channel
);
150 d
= muldiv64(t
, KVM_PIT_FREQ
, NSEC_PER_SEC
);
157 counter
= (c
->count
- d
) & 0xffff;
160 /* XXX: may be incorrect for odd counts */
161 counter
= c
->count
- (mod_64((2 * d
), c
->count
));
164 counter
= c
->count
- mod_64(d
, c
->count
);
170 static int pit_get_out(struct kvm
*kvm
, int channel
)
172 struct kvm_kpit_channel_state
*c
=
173 &kvm
->arch
.vpit
->pit_state
.channels
[channel
];
177 WARN_ON(!mutex_is_locked(&kvm
->arch
.vpit
->pit_state
.lock
));
179 t
= kpit_elapsed(kvm
, c
, channel
);
180 d
= muldiv64(t
, KVM_PIT_FREQ
, NSEC_PER_SEC
);
185 out
= (d
>= c
->count
);
188 out
= (d
< c
->count
);
191 out
= ((mod_64(d
, c
->count
) == 0) && (d
!= 0));
194 out
= (mod_64(d
, c
->count
) < ((c
->count
+ 1) >> 1));
198 out
= (d
== c
->count
);
205 static void pit_latch_count(struct kvm
*kvm
, int channel
)
207 struct kvm_kpit_channel_state
*c
=
208 &kvm
->arch
.vpit
->pit_state
.channels
[channel
];
210 WARN_ON(!mutex_is_locked(&kvm
->arch
.vpit
->pit_state
.lock
));
212 if (!c
->count_latched
) {
213 c
->latched_count
= pit_get_count(kvm
, channel
);
214 c
->count_latched
= c
->rw_mode
;
218 static void pit_latch_status(struct kvm
*kvm
, int channel
)
220 struct kvm_kpit_channel_state
*c
=
221 &kvm
->arch
.vpit
->pit_state
.channels
[channel
];
223 WARN_ON(!mutex_is_locked(&kvm
->arch
.vpit
->pit_state
.lock
));
225 if (!c
->status_latched
) {
226 /* TODO: Return NULL COUNT (bit 6). */
227 c
->status
= ((pit_get_out(kvm
, channel
) << 7) |
231 c
->status_latched
= 1;
235 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier
*kian
)
237 struct kvm_kpit_state
*ps
= container_of(kian
, struct kvm_kpit_state
,
241 spin_lock(&ps
->inject_lock
);
242 value
= atomic_dec_return(&ps
->pending
);
244 /* spurious acks can be generated if, for example, the
245 * PIC is being reset. Handle it gracefully here
247 atomic_inc(&ps
->pending
);
249 /* in this case, we had multiple outstanding pit interrupts
250 * that we needed to inject. Reinject
252 queue_kthread_work(&ps
->pit
->worker
, &ps
->pit
->expired
);
254 spin_unlock(&ps
->inject_lock
);
257 void __kvm_migrate_pit_timer(struct kvm_vcpu
*vcpu
)
259 struct kvm_pit
*pit
= vcpu
->kvm
->arch
.vpit
;
260 struct hrtimer
*timer
;
262 if (!kvm_vcpu_is_bsp(vcpu
) || !pit
)
265 timer
= &pit
->pit_state
.timer
;
266 mutex_lock(&pit
->pit_state
.lock
);
267 if (hrtimer_cancel(timer
))
268 hrtimer_start_expires(timer
, HRTIMER_MODE_ABS
);
269 mutex_unlock(&pit
->pit_state
.lock
);
272 static void destroy_pit_timer(struct kvm_pit
*pit
)
274 hrtimer_cancel(&pit
->pit_state
.timer
);
275 flush_kthread_work(&pit
->expired
);
278 static void pit_do_work(struct kthread_work
*work
)
280 struct kvm_pit
*pit
= container_of(work
, struct kvm_pit
, expired
);
281 struct kvm
*kvm
= pit
->kvm
;
282 struct kvm_vcpu
*vcpu
;
284 struct kvm_kpit_state
*ps
= &pit
->pit_state
;
287 /* Try to inject pending interrupts when
288 * last one has been acked.
290 spin_lock(&ps
->inject_lock
);
295 spin_unlock(&ps
->inject_lock
);
297 kvm_set_irq(kvm
, kvm
->arch
.vpit
->irq_source_id
, 0, 1, false);
298 kvm_set_irq(kvm
, kvm
->arch
.vpit
->irq_source_id
, 0, 0, false);
301 * Provides NMI watchdog support via Virtual Wire mode.
302 * The route is: PIT -> PIC -> LVT0 in NMI mode.
304 * Note: Our Virtual Wire implementation is simplified, only
305 * propagating PIT interrupts to all VCPUs when they have set
306 * LVT0 to NMI delivery. Other PIC interrupts are just sent to
307 * VCPU0, and only if its LVT0 is in EXTINT mode.
309 if (atomic_read(&kvm
->arch
.vapics_in_nmi_mode
) > 0)
310 kvm_for_each_vcpu(i
, vcpu
, kvm
)
311 kvm_apic_nmi_wd_deliver(vcpu
);
315 static enum hrtimer_restart
pit_timer_fn(struct hrtimer
*data
)
317 struct kvm_kpit_state
*ps
= container_of(data
, struct kvm_kpit_state
, timer
);
318 struct kvm_pit
*pt
= ps
->kvm
->arch
.vpit
;
320 if (ps
->reinject
|| !atomic_read(&ps
->pending
)) {
321 atomic_inc(&ps
->pending
);
322 queue_kthread_work(&pt
->worker
, &pt
->expired
);
325 if (ps
->is_periodic
) {
326 hrtimer_add_expires_ns(&ps
->timer
, ps
->period
);
327 return HRTIMER_RESTART
;
329 return HRTIMER_NORESTART
;
332 static void create_pit_timer(struct kvm
*kvm
, u32 val
, int is_period
)
334 struct kvm_kpit_state
*ps
= &kvm
->arch
.vpit
->pit_state
;
337 if (!ioapic_in_kernel(kvm
) ||
338 ps
->flags
& KVM_PIT_FLAGS_HPET_LEGACY
)
341 interval
= muldiv64(val
, NSEC_PER_SEC
, KVM_PIT_FREQ
);
343 pr_debug("create pit timer, interval is %llu nsec\n", interval
);
345 /* TODO The new value only affected after the retriggered */
346 hrtimer_cancel(&ps
->timer
);
347 flush_kthread_work(&ps
->pit
->expired
);
348 ps
->period
= interval
;
349 ps
->is_periodic
= is_period
;
351 ps
->timer
.function
= pit_timer_fn
;
352 ps
->kvm
= ps
->pit
->kvm
;
354 atomic_set(&ps
->pending
, 0);
358 * Do not allow the guest to program periodic timers with small
359 * interval, since the hrtimers are not throttled by the host
362 if (ps
->is_periodic
) {
363 s64 min_period
= min_timer_period_us
* 1000LL;
365 if (ps
->period
< min_period
) {
367 "kvm: requested %lld ns "
368 "i8254 timer period limited to %lld ns\n",
369 ps
->period
, min_period
);
370 ps
->period
= min_period
;
374 hrtimer_start(&ps
->timer
, ktime_add_ns(ktime_get(), interval
),
378 static void pit_load_count(struct kvm
*kvm
, int channel
, u32 val
)
380 struct kvm_kpit_state
*ps
= &kvm
->arch
.vpit
->pit_state
;
382 WARN_ON(!mutex_is_locked(&ps
->lock
));
384 pr_debug("load_count val is %d, channel is %d\n", val
, channel
);
387 * The largest possible initial count is 0; this is equivalent
388 * to 216 for binary counting and 104 for BCD counting.
393 ps
->channels
[channel
].count
= val
;
396 ps
->channels
[channel
].count_load_time
= ktime_get();
400 /* Two types of timer
401 * mode 1 is one shot, mode 2 is period, otherwise del timer */
402 switch (ps
->channels
[0].mode
) {
405 /* FIXME: enhance mode 4 precision */
407 create_pit_timer(kvm
, val
, 0);
411 create_pit_timer(kvm
, val
, 1);
414 destroy_pit_timer(kvm
->arch
.vpit
);
418 void kvm_pit_load_count(struct kvm
*kvm
, int channel
, u32 val
, int hpet_legacy_start
)
421 if (hpet_legacy_start
) {
422 /* save existing mode for later reenablement */
423 WARN_ON(channel
!= 0);
424 saved_mode
= kvm
->arch
.vpit
->pit_state
.channels
[0].mode
;
425 kvm
->arch
.vpit
->pit_state
.channels
[0].mode
= 0xff; /* disable timer */
426 pit_load_count(kvm
, channel
, val
);
427 kvm
->arch
.vpit
->pit_state
.channels
[0].mode
= saved_mode
;
429 pit_load_count(kvm
, channel
, val
);
433 static inline struct kvm_pit
*dev_to_pit(struct kvm_io_device
*dev
)
435 return container_of(dev
, struct kvm_pit
, dev
);
438 static inline struct kvm_pit
*speaker_to_pit(struct kvm_io_device
*dev
)
440 return container_of(dev
, struct kvm_pit
, speaker_dev
);
443 static inline int pit_in_range(gpa_t addr
)
445 return ((addr
>= KVM_PIT_BASE_ADDRESS
) &&
446 (addr
< KVM_PIT_BASE_ADDRESS
+ KVM_PIT_MEM_LENGTH
));
449 static int pit_ioport_write(struct kvm_vcpu
*vcpu
,
450 struct kvm_io_device
*this,
451 gpa_t addr
, int len
, const void *data
)
453 struct kvm_pit
*pit
= dev_to_pit(this);
454 struct kvm_kpit_state
*pit_state
= &pit
->pit_state
;
455 struct kvm
*kvm
= pit
->kvm
;
457 struct kvm_kpit_channel_state
*s
;
458 u32 val
= *(u32
*) data
;
459 if (!pit_in_range(addr
))
463 addr
&= KVM_PIT_CHANNEL_MASK
;
465 mutex_lock(&pit_state
->lock
);
468 pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
469 (unsigned int)addr
, len
, val
);
474 /* Read-Back Command. */
475 for (channel
= 0; channel
< 3; channel
++) {
476 s
= &pit_state
->channels
[channel
];
477 if (val
& (2 << channel
)) {
479 pit_latch_count(kvm
, channel
);
481 pit_latch_status(kvm
, channel
);
485 /* Select Counter <channel>. */
486 s
= &pit_state
->channels
[channel
];
487 access
= (val
>> 4) & KVM_PIT_CHANNEL_MASK
;
489 pit_latch_count(kvm
, channel
);
492 s
->read_state
= access
;
493 s
->write_state
= access
;
494 s
->mode
= (val
>> 1) & 7;
502 s
= &pit_state
->channels
[addr
];
503 switch (s
->write_state
) {
506 pit_load_count(kvm
, addr
, val
);
509 pit_load_count(kvm
, addr
, val
<< 8);
512 s
->write_latch
= val
;
513 s
->write_state
= RW_STATE_WORD1
;
516 pit_load_count(kvm
, addr
, s
->write_latch
| (val
<< 8));
517 s
->write_state
= RW_STATE_WORD0
;
522 mutex_unlock(&pit_state
->lock
);
526 static int pit_ioport_read(struct kvm_vcpu
*vcpu
,
527 struct kvm_io_device
*this,
528 gpa_t addr
, int len
, void *data
)
530 struct kvm_pit
*pit
= dev_to_pit(this);
531 struct kvm_kpit_state
*pit_state
= &pit
->pit_state
;
532 struct kvm
*kvm
= pit
->kvm
;
534 struct kvm_kpit_channel_state
*s
;
535 if (!pit_in_range(addr
))
538 addr
&= KVM_PIT_CHANNEL_MASK
;
542 s
= &pit_state
->channels
[addr
];
544 mutex_lock(&pit_state
->lock
);
546 if (s
->status_latched
) {
547 s
->status_latched
= 0;
549 } else if (s
->count_latched
) {
550 switch (s
->count_latched
) {
553 ret
= s
->latched_count
& 0xff;
554 s
->count_latched
= 0;
557 ret
= s
->latched_count
>> 8;
558 s
->count_latched
= 0;
561 ret
= s
->latched_count
& 0xff;
562 s
->count_latched
= RW_STATE_MSB
;
566 switch (s
->read_state
) {
569 count
= pit_get_count(kvm
, addr
);
573 count
= pit_get_count(kvm
, addr
);
574 ret
= (count
>> 8) & 0xff;
577 count
= pit_get_count(kvm
, addr
);
579 s
->read_state
= RW_STATE_WORD1
;
582 count
= pit_get_count(kvm
, addr
);
583 ret
= (count
>> 8) & 0xff;
584 s
->read_state
= RW_STATE_WORD0
;
589 if (len
> sizeof(ret
))
591 memcpy(data
, (char *)&ret
, len
);
593 mutex_unlock(&pit_state
->lock
);
597 static int speaker_ioport_write(struct kvm_vcpu
*vcpu
,
598 struct kvm_io_device
*this,
599 gpa_t addr
, int len
, const void *data
)
601 struct kvm_pit
*pit
= speaker_to_pit(this);
602 struct kvm_kpit_state
*pit_state
= &pit
->pit_state
;
603 struct kvm
*kvm
= pit
->kvm
;
604 u32 val
= *(u32
*) data
;
605 if (addr
!= KVM_SPEAKER_BASE_ADDRESS
)
608 mutex_lock(&pit_state
->lock
);
609 pit_state
->speaker_data_on
= (val
>> 1) & 1;
610 pit_set_gate(kvm
, 2, val
& 1);
611 mutex_unlock(&pit_state
->lock
);
615 static int speaker_ioport_read(struct kvm_vcpu
*vcpu
,
616 struct kvm_io_device
*this,
617 gpa_t addr
, int len
, void *data
)
619 struct kvm_pit
*pit
= speaker_to_pit(this);
620 struct kvm_kpit_state
*pit_state
= &pit
->pit_state
;
621 struct kvm
*kvm
= pit
->kvm
;
622 unsigned int refresh_clock
;
624 if (addr
!= KVM_SPEAKER_BASE_ADDRESS
)
627 /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
628 refresh_clock
= ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
630 mutex_lock(&pit_state
->lock
);
631 ret
= ((pit_state
->speaker_data_on
<< 1) | pit_get_gate(kvm
, 2) |
632 (pit_get_out(kvm
, 2) << 5) | (refresh_clock
<< 4));
633 if (len
> sizeof(ret
))
635 memcpy(data
, (char *)&ret
, len
);
636 mutex_unlock(&pit_state
->lock
);
640 void kvm_pit_reset(struct kvm_pit
*pit
)
643 struct kvm_kpit_channel_state
*c
;
645 mutex_lock(&pit
->pit_state
.lock
);
646 pit
->pit_state
.flags
= 0;
647 for (i
= 0; i
< 3; i
++) {
648 c
= &pit
->pit_state
.channels
[i
];
651 pit_load_count(pit
->kvm
, i
, 0);
653 mutex_unlock(&pit
->pit_state
.lock
);
655 atomic_set(&pit
->pit_state
.pending
, 0);
656 pit
->pit_state
.irq_ack
= 1;
659 static void pit_mask_notifer(struct kvm_irq_mask_notifier
*kimn
, bool mask
)
661 struct kvm_pit
*pit
= container_of(kimn
, struct kvm_pit
, mask_notifier
);
664 atomic_set(&pit
->pit_state
.pending
, 0);
665 pit
->pit_state
.irq_ack
= 1;
669 static const struct kvm_io_device_ops pit_dev_ops
= {
670 .read
= pit_ioport_read
,
671 .write
= pit_ioport_write
,
674 static const struct kvm_io_device_ops speaker_dev_ops
= {
675 .read
= speaker_ioport_read
,
676 .write
= speaker_ioport_write
,
679 /* Caller must hold slots_lock */
680 struct kvm_pit
*kvm_create_pit(struct kvm
*kvm
, u32 flags
)
683 struct kvm_kpit_state
*pit_state
;
688 pit
= kzalloc(sizeof(struct kvm_pit
), GFP_KERNEL
);
692 pit
->irq_source_id
= kvm_request_irq_source_id(kvm
);
693 if (pit
->irq_source_id
< 0) {
698 mutex_init(&pit
->pit_state
.lock
);
699 mutex_lock(&pit
->pit_state
.lock
);
700 spin_lock_init(&pit
->pit_state
.inject_lock
);
702 pid
= get_pid(task_tgid(current
));
703 pid_nr
= pid_vnr(pid
);
706 init_kthread_worker(&pit
->worker
);
707 pit
->worker_task
= kthread_run(kthread_worker_fn
, &pit
->worker
,
708 "kvm-pit/%d", pid_nr
);
709 if (IS_ERR(pit
->worker_task
)) {
710 mutex_unlock(&pit
->pit_state
.lock
);
711 kvm_free_irq_source_id(kvm
, pit
->irq_source_id
);
715 init_kthread_work(&pit
->expired
, pit_do_work
);
717 kvm
->arch
.vpit
= pit
;
720 pit_state
= &pit
->pit_state
;
721 pit_state
->pit
= pit
;
722 hrtimer_init(&pit_state
->timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
723 pit_state
->irq_ack_notifier
.gsi
= 0;
724 pit_state
->irq_ack_notifier
.irq_acked
= kvm_pit_ack_irq
;
725 kvm_register_irq_ack_notifier(kvm
, &pit_state
->irq_ack_notifier
);
726 pit_state
->reinject
= true;
727 mutex_unlock(&pit
->pit_state
.lock
);
731 pit
->mask_notifier
.func
= pit_mask_notifer
;
732 kvm_register_irq_mask_notifier(kvm
, 0, &pit
->mask_notifier
);
734 kvm_iodevice_init(&pit
->dev
, &pit_dev_ops
);
735 ret
= kvm_io_bus_register_dev(kvm
, KVM_PIO_BUS
, KVM_PIT_BASE_ADDRESS
,
736 KVM_PIT_MEM_LENGTH
, &pit
->dev
);
740 if (flags
& KVM_PIT_SPEAKER_DUMMY
) {
741 kvm_iodevice_init(&pit
->speaker_dev
, &speaker_dev_ops
);
742 ret
= kvm_io_bus_register_dev(kvm
, KVM_PIO_BUS
,
743 KVM_SPEAKER_BASE_ADDRESS
, 4,
746 goto fail_unregister
;
752 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
, &pit
->dev
);
755 kvm_unregister_irq_mask_notifier(kvm
, 0, &pit
->mask_notifier
);
756 kvm_unregister_irq_ack_notifier(kvm
, &pit_state
->irq_ack_notifier
);
757 kvm_free_irq_source_id(kvm
, pit
->irq_source_id
);
758 kthread_stop(pit
->worker_task
);
763 void kvm_free_pit(struct kvm
*kvm
)
765 struct hrtimer
*timer
;
767 if (kvm
->arch
.vpit
) {
768 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
, &kvm
->arch
.vpit
->dev
);
769 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
,
770 &kvm
->arch
.vpit
->speaker_dev
);
771 kvm_unregister_irq_mask_notifier(kvm
, 0,
772 &kvm
->arch
.vpit
->mask_notifier
);
773 kvm_unregister_irq_ack_notifier(kvm
,
774 &kvm
->arch
.vpit
->pit_state
.irq_ack_notifier
);
775 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
776 timer
= &kvm
->arch
.vpit
->pit_state
.timer
;
777 hrtimer_cancel(timer
);
778 flush_kthread_work(&kvm
->arch
.vpit
->expired
);
779 kthread_stop(kvm
->arch
.vpit
->worker_task
);
780 kvm_free_irq_source_id(kvm
, kvm
->arch
.vpit
->irq_source_id
);
781 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
782 kfree(kvm
->arch
.vpit
);