2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
27 #include "kvm_cache_regs.h"
30 #include "assigned-dev.h"
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
38 #include <linux/vmalloc.h>
39 #include <linux/module.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <trace/events/kvm.h>
58 #define CREATE_TRACE_POINTS
61 #include <asm/debugreg.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
71 #define MAX_IO_MSRS 256
72 #define KVM_MAX_MCE_BANKS 32
73 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
75 #define emul_to_vcpu(ctxt) \
76 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
79 * - enable syscall per default because its emulated by KVM
80 * - enable LME and LMA per default on 64 bit KVM
84 u64 __read_mostly efer_reserved_bits
= ~((u64
)(EFER_SCE
| EFER_LME
| EFER_LMA
));
86 static u64 __read_mostly efer_reserved_bits
= ~((u64
)EFER_SCE
);
89 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
90 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
92 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
);
93 static void process_nmi(struct kvm_vcpu
*vcpu
);
94 static void __kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
);
96 struct kvm_x86_ops
*kvm_x86_ops __read_mostly
;
97 EXPORT_SYMBOL_GPL(kvm_x86_ops
);
99 static bool __read_mostly ignore_msrs
= 0;
100 module_param(ignore_msrs
, bool, S_IRUGO
| S_IWUSR
);
102 unsigned int min_timer_period_us
= 500;
103 module_param(min_timer_period_us
, uint
, S_IRUGO
| S_IWUSR
);
105 static bool __read_mostly kvmclock_periodic_sync
= true;
106 module_param(kvmclock_periodic_sync
, bool, S_IRUGO
);
108 bool __read_mostly kvm_has_tsc_control
;
109 EXPORT_SYMBOL_GPL(kvm_has_tsc_control
);
110 u32 __read_mostly kvm_max_guest_tsc_khz
;
111 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz
);
112 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits
;
113 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits
);
114 u64 __read_mostly kvm_max_tsc_scaling_ratio
;
115 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio
);
116 static u64 __read_mostly kvm_default_tsc_scaling_ratio
;
118 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
119 static u32 __read_mostly tsc_tolerance_ppm
= 250;
120 module_param(tsc_tolerance_ppm
, uint
, S_IRUGO
| S_IWUSR
);
122 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
123 unsigned int __read_mostly lapic_timer_advance_ns
= 0;
124 module_param(lapic_timer_advance_ns
, uint
, S_IRUGO
| S_IWUSR
);
126 static bool __read_mostly backwards_tsc_observed
= false;
128 #define KVM_NR_SHARED_MSRS 16
130 struct kvm_shared_msrs_global
{
132 u32 msrs
[KVM_NR_SHARED_MSRS
];
135 struct kvm_shared_msrs
{
136 struct user_return_notifier urn
;
138 struct kvm_shared_msr_values
{
141 } values
[KVM_NR_SHARED_MSRS
];
144 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global
;
145 static struct kvm_shared_msrs __percpu
*shared_msrs
;
147 struct kvm_stats_debugfs_item debugfs_entries
[] = {
148 { "pf_fixed", VCPU_STAT(pf_fixed
) },
149 { "pf_guest", VCPU_STAT(pf_guest
) },
150 { "tlb_flush", VCPU_STAT(tlb_flush
) },
151 { "invlpg", VCPU_STAT(invlpg
) },
152 { "exits", VCPU_STAT(exits
) },
153 { "io_exits", VCPU_STAT(io_exits
) },
154 { "mmio_exits", VCPU_STAT(mmio_exits
) },
155 { "signal_exits", VCPU_STAT(signal_exits
) },
156 { "irq_window", VCPU_STAT(irq_window_exits
) },
157 { "nmi_window", VCPU_STAT(nmi_window_exits
) },
158 { "halt_exits", VCPU_STAT(halt_exits
) },
159 { "halt_successful_poll", VCPU_STAT(halt_successful_poll
) },
160 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll
) },
161 { "halt_wakeup", VCPU_STAT(halt_wakeup
) },
162 { "hypercalls", VCPU_STAT(hypercalls
) },
163 { "request_irq", VCPU_STAT(request_irq_exits
) },
164 { "irq_exits", VCPU_STAT(irq_exits
) },
165 { "host_state_reload", VCPU_STAT(host_state_reload
) },
166 { "efer_reload", VCPU_STAT(efer_reload
) },
167 { "fpu_reload", VCPU_STAT(fpu_reload
) },
168 { "insn_emulation", VCPU_STAT(insn_emulation
) },
169 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail
) },
170 { "irq_injections", VCPU_STAT(irq_injections
) },
171 { "nmi_injections", VCPU_STAT(nmi_injections
) },
172 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped
) },
173 { "mmu_pte_write", VM_STAT(mmu_pte_write
) },
174 { "mmu_pte_updated", VM_STAT(mmu_pte_updated
) },
175 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped
) },
176 { "mmu_flooded", VM_STAT(mmu_flooded
) },
177 { "mmu_recycled", VM_STAT(mmu_recycled
) },
178 { "mmu_cache_miss", VM_STAT(mmu_cache_miss
) },
179 { "mmu_unsync", VM_STAT(mmu_unsync
) },
180 { "remote_tlb_flush", VM_STAT(remote_tlb_flush
) },
181 { "largepages", VM_STAT(lpages
) },
185 u64 __read_mostly host_xcr0
;
187 static int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
);
189 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu
*vcpu
)
192 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
); i
++)
193 vcpu
->arch
.apf
.gfns
[i
] = ~0;
196 static void kvm_on_user_return(struct user_return_notifier
*urn
)
199 struct kvm_shared_msrs
*locals
200 = container_of(urn
, struct kvm_shared_msrs
, urn
);
201 struct kvm_shared_msr_values
*values
;
203 for (slot
= 0; slot
< shared_msrs_global
.nr
; ++slot
) {
204 values
= &locals
->values
[slot
];
205 if (values
->host
!= values
->curr
) {
206 wrmsrl(shared_msrs_global
.msrs
[slot
], values
->host
);
207 values
->curr
= values
->host
;
210 locals
->registered
= false;
211 user_return_notifier_unregister(urn
);
214 static void shared_msr_update(unsigned slot
, u32 msr
)
217 unsigned int cpu
= smp_processor_id();
218 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
220 /* only read, and nobody should modify it at this time,
221 * so don't need lock */
222 if (slot
>= shared_msrs_global
.nr
) {
223 printk(KERN_ERR
"kvm: invalid MSR slot!");
226 rdmsrl_safe(msr
, &value
);
227 smsr
->values
[slot
].host
= value
;
228 smsr
->values
[slot
].curr
= value
;
231 void kvm_define_shared_msr(unsigned slot
, u32 msr
)
233 BUG_ON(slot
>= KVM_NR_SHARED_MSRS
);
234 shared_msrs_global
.msrs
[slot
] = msr
;
235 if (slot
>= shared_msrs_global
.nr
)
236 shared_msrs_global
.nr
= slot
+ 1;
238 EXPORT_SYMBOL_GPL(kvm_define_shared_msr
);
240 static void kvm_shared_msr_cpu_online(void)
244 for (i
= 0; i
< shared_msrs_global
.nr
; ++i
)
245 shared_msr_update(i
, shared_msrs_global
.msrs
[i
]);
248 int kvm_set_shared_msr(unsigned slot
, u64 value
, u64 mask
)
250 unsigned int cpu
= smp_processor_id();
251 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
254 if (((value
^ smsr
->values
[slot
].curr
) & mask
) == 0)
256 smsr
->values
[slot
].curr
= value
;
257 err
= wrmsrl_safe(shared_msrs_global
.msrs
[slot
], value
);
261 if (!smsr
->registered
) {
262 smsr
->urn
.on_user_return
= kvm_on_user_return
;
263 user_return_notifier_register(&smsr
->urn
);
264 smsr
->registered
= true;
268 EXPORT_SYMBOL_GPL(kvm_set_shared_msr
);
270 static void drop_user_return_notifiers(void)
272 unsigned int cpu
= smp_processor_id();
273 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
275 if (smsr
->registered
)
276 kvm_on_user_return(&smsr
->urn
);
279 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
281 return vcpu
->arch
.apic_base
;
283 EXPORT_SYMBOL_GPL(kvm_get_apic_base
);
285 int kvm_set_apic_base(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
287 u64 old_state
= vcpu
->arch
.apic_base
&
288 (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
);
289 u64 new_state
= msr_info
->data
&
290 (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
);
291 u64 reserved_bits
= ((~0ULL) << cpuid_maxphyaddr(vcpu
)) |
292 0x2ff | (guest_cpuid_has_x2apic(vcpu
) ? 0 : X2APIC_ENABLE
);
294 if (!msr_info
->host_initiated
&&
295 ((msr_info
->data
& reserved_bits
) != 0 ||
296 new_state
== X2APIC_ENABLE
||
297 (new_state
== MSR_IA32_APICBASE_ENABLE
&&
298 old_state
== (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
)) ||
299 (new_state
== (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
) &&
303 kvm_lapic_set_base(vcpu
, msr_info
->data
);
306 EXPORT_SYMBOL_GPL(kvm_set_apic_base
);
308 asmlinkage __visible
void kvm_spurious_fault(void)
310 /* Fault while not rebooting. We want the trace. */
313 EXPORT_SYMBOL_GPL(kvm_spurious_fault
);
315 #define EXCPT_BENIGN 0
316 #define EXCPT_CONTRIBUTORY 1
319 static int exception_class(int vector
)
329 return EXCPT_CONTRIBUTORY
;
336 #define EXCPT_FAULT 0
338 #define EXCPT_ABORT 2
339 #define EXCPT_INTERRUPT 3
341 static int exception_type(int vector
)
345 if (WARN_ON(vector
> 31 || vector
== NMI_VECTOR
))
346 return EXCPT_INTERRUPT
;
350 /* #DB is trap, as instruction watchpoints are handled elsewhere */
351 if (mask
& ((1 << DB_VECTOR
) | (1 << BP_VECTOR
) | (1 << OF_VECTOR
)))
354 if (mask
& ((1 << DF_VECTOR
) | (1 << MC_VECTOR
)))
357 /* Reserved exceptions will result in fault */
361 static void kvm_multiple_exception(struct kvm_vcpu
*vcpu
,
362 unsigned nr
, bool has_error
, u32 error_code
,
368 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
370 if (!vcpu
->arch
.exception
.pending
) {
372 if (has_error
&& !is_protmode(vcpu
))
374 vcpu
->arch
.exception
.pending
= true;
375 vcpu
->arch
.exception
.has_error_code
= has_error
;
376 vcpu
->arch
.exception
.nr
= nr
;
377 vcpu
->arch
.exception
.error_code
= error_code
;
378 vcpu
->arch
.exception
.reinject
= reinject
;
382 /* to check exception */
383 prev_nr
= vcpu
->arch
.exception
.nr
;
384 if (prev_nr
== DF_VECTOR
) {
385 /* triple fault -> shutdown */
386 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
389 class1
= exception_class(prev_nr
);
390 class2
= exception_class(nr
);
391 if ((class1
== EXCPT_CONTRIBUTORY
&& class2
== EXCPT_CONTRIBUTORY
)
392 || (class1
== EXCPT_PF
&& class2
!= EXCPT_BENIGN
)) {
393 /* generate double fault per SDM Table 5-5 */
394 vcpu
->arch
.exception
.pending
= true;
395 vcpu
->arch
.exception
.has_error_code
= true;
396 vcpu
->arch
.exception
.nr
= DF_VECTOR
;
397 vcpu
->arch
.exception
.error_code
= 0;
399 /* replace previous exception with a new one in a hope
400 that instruction re-execution will regenerate lost
405 void kvm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
407 kvm_multiple_exception(vcpu
, nr
, false, 0, false);
409 EXPORT_SYMBOL_GPL(kvm_queue_exception
);
411 void kvm_requeue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
413 kvm_multiple_exception(vcpu
, nr
, false, 0, true);
415 EXPORT_SYMBOL_GPL(kvm_requeue_exception
);
417 void kvm_complete_insn_gp(struct kvm_vcpu
*vcpu
, int err
)
420 kvm_inject_gp(vcpu
, 0);
422 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
424 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp
);
426 void kvm_inject_page_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
428 ++vcpu
->stat
.pf_guest
;
429 vcpu
->arch
.cr2
= fault
->address
;
430 kvm_queue_exception_e(vcpu
, PF_VECTOR
, fault
->error_code
);
432 EXPORT_SYMBOL_GPL(kvm_inject_page_fault
);
434 static bool kvm_propagate_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
436 if (mmu_is_nested(vcpu
) && !fault
->nested_page_fault
)
437 vcpu
->arch
.nested_mmu
.inject_page_fault(vcpu
, fault
);
439 vcpu
->arch
.mmu
.inject_page_fault(vcpu
, fault
);
441 return fault
->nested_page_fault
;
444 void kvm_inject_nmi(struct kvm_vcpu
*vcpu
)
446 atomic_inc(&vcpu
->arch
.nmi_queued
);
447 kvm_make_request(KVM_REQ_NMI
, vcpu
);
449 EXPORT_SYMBOL_GPL(kvm_inject_nmi
);
451 void kvm_queue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
453 kvm_multiple_exception(vcpu
, nr
, true, error_code
, false);
455 EXPORT_SYMBOL_GPL(kvm_queue_exception_e
);
457 void kvm_requeue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
459 kvm_multiple_exception(vcpu
, nr
, true, error_code
, true);
461 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e
);
464 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
465 * a #GP and return false.
467 bool kvm_require_cpl(struct kvm_vcpu
*vcpu
, int required_cpl
)
469 if (kvm_x86_ops
->get_cpl(vcpu
) <= required_cpl
)
471 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
474 EXPORT_SYMBOL_GPL(kvm_require_cpl
);
476 bool kvm_require_dr(struct kvm_vcpu
*vcpu
, int dr
)
478 if ((dr
!= 4 && dr
!= 5) || !kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
481 kvm_queue_exception(vcpu
, UD_VECTOR
);
484 EXPORT_SYMBOL_GPL(kvm_require_dr
);
487 * This function will be used to read from the physical memory of the currently
488 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
489 * can read from guest physical or from the guest's guest physical memory.
491 int kvm_read_guest_page_mmu(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
,
492 gfn_t ngfn
, void *data
, int offset
, int len
,
495 struct x86_exception exception
;
499 ngpa
= gfn_to_gpa(ngfn
);
500 real_gfn
= mmu
->translate_gpa(vcpu
, ngpa
, access
, &exception
);
501 if (real_gfn
== UNMAPPED_GVA
)
504 real_gfn
= gpa_to_gfn(real_gfn
);
506 return kvm_vcpu_read_guest_page(vcpu
, real_gfn
, data
, offset
, len
);
508 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu
);
510 static int kvm_read_nested_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
511 void *data
, int offset
, int len
, u32 access
)
513 return kvm_read_guest_page_mmu(vcpu
, vcpu
->arch
.walk_mmu
, gfn
,
514 data
, offset
, len
, access
);
518 * Load the pae pdptrs. Return true is they are all valid.
520 int load_pdptrs(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
, unsigned long cr3
)
522 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
523 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
526 u64 pdpte
[ARRAY_SIZE(mmu
->pdptrs
)];
528 ret
= kvm_read_guest_page_mmu(vcpu
, mmu
, pdpt_gfn
, pdpte
,
529 offset
* sizeof(u64
), sizeof(pdpte
),
530 PFERR_USER_MASK
|PFERR_WRITE_MASK
);
535 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
536 if (is_present_gpte(pdpte
[i
]) &&
538 vcpu
->arch
.mmu
.guest_rsvd_check
.rsvd_bits_mask
[0][2])) {
545 memcpy(mmu
->pdptrs
, pdpte
, sizeof(mmu
->pdptrs
));
546 __set_bit(VCPU_EXREG_PDPTR
,
547 (unsigned long *)&vcpu
->arch
.regs_avail
);
548 __set_bit(VCPU_EXREG_PDPTR
,
549 (unsigned long *)&vcpu
->arch
.regs_dirty
);
554 EXPORT_SYMBOL_GPL(load_pdptrs
);
556 static bool pdptrs_changed(struct kvm_vcpu
*vcpu
)
558 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.walk_mmu
->pdptrs
)];
564 if (is_long_mode(vcpu
) || !is_pae(vcpu
))
567 if (!test_bit(VCPU_EXREG_PDPTR
,
568 (unsigned long *)&vcpu
->arch
.regs_avail
))
571 gfn
= (kvm_read_cr3(vcpu
) & ~31u) >> PAGE_SHIFT
;
572 offset
= (kvm_read_cr3(vcpu
) & ~31u) & (PAGE_SIZE
- 1);
573 r
= kvm_read_nested_guest_page(vcpu
, gfn
, pdpte
, offset
, sizeof(pdpte
),
574 PFERR_USER_MASK
| PFERR_WRITE_MASK
);
577 changed
= memcmp(pdpte
, vcpu
->arch
.walk_mmu
->pdptrs
, sizeof(pdpte
)) != 0;
583 int kvm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
585 unsigned long old_cr0
= kvm_read_cr0(vcpu
);
586 unsigned long update_bits
= X86_CR0_PG
| X86_CR0_WP
;
591 if (cr0
& 0xffffffff00000000UL
)
595 cr0
&= ~CR0_RESERVED_BITS
;
597 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
))
600 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
))
603 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
605 if ((vcpu
->arch
.efer
& EFER_LME
)) {
610 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
615 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
620 if (!(cr0
& X86_CR0_PG
) && kvm_read_cr4_bits(vcpu
, X86_CR4_PCIDE
))
623 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
625 if ((cr0
^ old_cr0
) & X86_CR0_PG
) {
626 kvm_clear_async_pf_completion_queue(vcpu
);
627 kvm_async_pf_hash_reset(vcpu
);
630 if ((cr0
^ old_cr0
) & update_bits
)
631 kvm_mmu_reset_context(vcpu
);
633 if (((cr0
^ old_cr0
) & X86_CR0_CD
) &&
634 kvm_arch_has_noncoherent_dma(vcpu
->kvm
) &&
635 !kvm_check_has_quirk(vcpu
->kvm
, KVM_X86_QUIRK_CD_NW_CLEARED
))
636 kvm_zap_gfn_range(vcpu
->kvm
, 0, ~0ULL);
640 EXPORT_SYMBOL_GPL(kvm_set_cr0
);
642 void kvm_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
644 (void)kvm_set_cr0(vcpu
, kvm_read_cr0_bits(vcpu
, ~0x0eul
) | (msw
& 0x0f));
646 EXPORT_SYMBOL_GPL(kvm_lmsw
);
648 static void kvm_load_guest_xcr0(struct kvm_vcpu
*vcpu
)
650 if (kvm_read_cr4_bits(vcpu
, X86_CR4_OSXSAVE
) &&
651 !vcpu
->guest_xcr0_loaded
) {
652 /* kvm_set_xcr() also depends on this */
653 xsetbv(XCR_XFEATURE_ENABLED_MASK
, vcpu
->arch
.xcr0
);
654 vcpu
->guest_xcr0_loaded
= 1;
658 static void kvm_put_guest_xcr0(struct kvm_vcpu
*vcpu
)
660 if (vcpu
->guest_xcr0_loaded
) {
661 if (vcpu
->arch
.xcr0
!= host_xcr0
)
662 xsetbv(XCR_XFEATURE_ENABLED_MASK
, host_xcr0
);
663 vcpu
->guest_xcr0_loaded
= 0;
667 static int __kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
670 u64 old_xcr0
= vcpu
->arch
.xcr0
;
673 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
674 if (index
!= XCR_XFEATURE_ENABLED_MASK
)
676 if (!(xcr0
& XFEATURE_MASK_FP
))
678 if ((xcr0
& XFEATURE_MASK_YMM
) && !(xcr0
& XFEATURE_MASK_SSE
))
682 * Do not allow the guest to set bits that we do not support
683 * saving. However, xcr0 bit 0 is always set, even if the
684 * emulated CPU does not support XSAVE (see fx_init).
686 valid_bits
= vcpu
->arch
.guest_supported_xcr0
| XFEATURE_MASK_FP
;
687 if (xcr0
& ~valid_bits
)
690 if ((!(xcr0
& XFEATURE_MASK_BNDREGS
)) !=
691 (!(xcr0
& XFEATURE_MASK_BNDCSR
)))
694 if (xcr0
& XFEATURE_MASK_AVX512
) {
695 if (!(xcr0
& XFEATURE_MASK_YMM
))
697 if ((xcr0
& XFEATURE_MASK_AVX512
) != XFEATURE_MASK_AVX512
)
700 kvm_put_guest_xcr0(vcpu
);
701 vcpu
->arch
.xcr0
= xcr0
;
703 if ((xcr0
^ old_xcr0
) & XFEATURE_MASK_EXTEND
)
704 kvm_update_cpuid(vcpu
);
708 int kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
710 if (kvm_x86_ops
->get_cpl(vcpu
) != 0 ||
711 __kvm_set_xcr(vcpu
, index
, xcr
)) {
712 kvm_inject_gp(vcpu
, 0);
717 EXPORT_SYMBOL_GPL(kvm_set_xcr
);
719 int kvm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
721 unsigned long old_cr4
= kvm_read_cr4(vcpu
);
722 unsigned long pdptr_bits
= X86_CR4_PGE
| X86_CR4_PSE
| X86_CR4_PAE
|
723 X86_CR4_SMEP
| X86_CR4_SMAP
;
725 if (cr4
& CR4_RESERVED_BITS
)
728 if (!guest_cpuid_has_xsave(vcpu
) && (cr4
& X86_CR4_OSXSAVE
))
731 if (!guest_cpuid_has_smep(vcpu
) && (cr4
& X86_CR4_SMEP
))
734 if (!guest_cpuid_has_smap(vcpu
) && (cr4
& X86_CR4_SMAP
))
737 if (!guest_cpuid_has_fsgsbase(vcpu
) && (cr4
& X86_CR4_FSGSBASE
))
740 if (is_long_mode(vcpu
)) {
741 if (!(cr4
& X86_CR4_PAE
))
743 } else if (is_paging(vcpu
) && (cr4
& X86_CR4_PAE
)
744 && ((cr4
^ old_cr4
) & pdptr_bits
)
745 && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
749 if ((cr4
& X86_CR4_PCIDE
) && !(old_cr4
& X86_CR4_PCIDE
)) {
750 if (!guest_cpuid_has_pcid(vcpu
))
753 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
754 if ((kvm_read_cr3(vcpu
) & X86_CR3_PCID_MASK
) || !is_long_mode(vcpu
))
758 if (kvm_x86_ops
->set_cr4(vcpu
, cr4
))
761 if (((cr4
^ old_cr4
) & pdptr_bits
) ||
762 (!(cr4
& X86_CR4_PCIDE
) && (old_cr4
& X86_CR4_PCIDE
)))
763 kvm_mmu_reset_context(vcpu
);
765 if ((cr4
^ old_cr4
) & X86_CR4_OSXSAVE
)
766 kvm_update_cpuid(vcpu
);
770 EXPORT_SYMBOL_GPL(kvm_set_cr4
);
772 int kvm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
775 cr3
&= ~CR3_PCID_INVD
;
778 if (cr3
== kvm_read_cr3(vcpu
) && !pdptrs_changed(vcpu
)) {
779 kvm_mmu_sync_roots(vcpu
);
780 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
784 if (is_long_mode(vcpu
)) {
785 if (cr3
& CR3_L_MODE_RESERVED_BITS
)
787 } else if (is_pae(vcpu
) && is_paging(vcpu
) &&
788 !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, cr3
))
791 vcpu
->arch
.cr3
= cr3
;
792 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
793 kvm_mmu_new_cr3(vcpu
);
796 EXPORT_SYMBOL_GPL(kvm_set_cr3
);
798 int kvm_set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
800 if (cr8
& CR8_RESERVED_BITS
)
802 if (lapic_in_kernel(vcpu
))
803 kvm_lapic_set_tpr(vcpu
, cr8
);
805 vcpu
->arch
.cr8
= cr8
;
808 EXPORT_SYMBOL_GPL(kvm_set_cr8
);
810 unsigned long kvm_get_cr8(struct kvm_vcpu
*vcpu
)
812 if (lapic_in_kernel(vcpu
))
813 return kvm_lapic_get_cr8(vcpu
);
815 return vcpu
->arch
.cr8
;
817 EXPORT_SYMBOL_GPL(kvm_get_cr8
);
819 static void kvm_update_dr0123(struct kvm_vcpu
*vcpu
)
823 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)) {
824 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
825 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
826 vcpu
->arch
.switch_db_regs
|= KVM_DEBUGREG_RELOAD
;
830 static void kvm_update_dr6(struct kvm_vcpu
*vcpu
)
832 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
833 kvm_x86_ops
->set_dr6(vcpu
, vcpu
->arch
.dr6
);
836 static void kvm_update_dr7(struct kvm_vcpu
*vcpu
)
840 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
841 dr7
= vcpu
->arch
.guest_debug_dr7
;
843 dr7
= vcpu
->arch
.dr7
;
844 kvm_x86_ops
->set_dr7(vcpu
, dr7
);
845 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_BP_ENABLED
;
846 if (dr7
& DR7_BP_EN_MASK
)
847 vcpu
->arch
.switch_db_regs
|= KVM_DEBUGREG_BP_ENABLED
;
850 static u64
kvm_dr6_fixed(struct kvm_vcpu
*vcpu
)
852 u64 fixed
= DR6_FIXED_1
;
854 if (!guest_cpuid_has_rtm(vcpu
))
859 static int __kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
863 vcpu
->arch
.db
[dr
] = val
;
864 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
865 vcpu
->arch
.eff_db
[dr
] = val
;
870 if (val
& 0xffffffff00000000ULL
)
872 vcpu
->arch
.dr6
= (val
& DR6_VOLATILE
) | kvm_dr6_fixed(vcpu
);
873 kvm_update_dr6(vcpu
);
878 if (val
& 0xffffffff00000000ULL
)
880 vcpu
->arch
.dr7
= (val
& DR7_VOLATILE
) | DR7_FIXED_1
;
881 kvm_update_dr7(vcpu
);
888 int kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
890 if (__kvm_set_dr(vcpu
, dr
, val
)) {
891 kvm_inject_gp(vcpu
, 0);
896 EXPORT_SYMBOL_GPL(kvm_set_dr
);
898 int kvm_get_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long *val
)
902 *val
= vcpu
->arch
.db
[dr
];
907 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
908 *val
= vcpu
->arch
.dr6
;
910 *val
= kvm_x86_ops
->get_dr6(vcpu
);
915 *val
= vcpu
->arch
.dr7
;
920 EXPORT_SYMBOL_GPL(kvm_get_dr
);
922 bool kvm_rdpmc(struct kvm_vcpu
*vcpu
)
924 u32 ecx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
928 err
= kvm_pmu_rdpmc(vcpu
, ecx
, &data
);
931 kvm_register_write(vcpu
, VCPU_REGS_RAX
, (u32
)data
);
932 kvm_register_write(vcpu
, VCPU_REGS_RDX
, data
>> 32);
935 EXPORT_SYMBOL_GPL(kvm_rdpmc
);
938 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
939 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
941 * This list is modified at module load time to reflect the
942 * capabilities of the host cpu. This capabilities test skips MSRs that are
943 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
944 * may depend on host virtualization features rather than host cpu features.
947 static u32 msrs_to_save
[] = {
948 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
951 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
953 MSR_IA32_TSC
, MSR_IA32_CR_PAT
, MSR_VM_HSAVE_PA
,
954 MSR_IA32_FEATURE_CONTROL
, MSR_IA32_BNDCFGS
957 static unsigned num_msrs_to_save
;
959 static u32 emulated_msrs
[] = {
960 MSR_KVM_SYSTEM_TIME
, MSR_KVM_WALL_CLOCK
,
961 MSR_KVM_SYSTEM_TIME_NEW
, MSR_KVM_WALL_CLOCK_NEW
,
962 HV_X64_MSR_GUEST_OS_ID
, HV_X64_MSR_HYPERCALL
,
963 HV_X64_MSR_TIME_REF_COUNT
, HV_X64_MSR_REFERENCE_TSC
,
964 HV_X64_MSR_CRASH_P0
, HV_X64_MSR_CRASH_P1
, HV_X64_MSR_CRASH_P2
,
965 HV_X64_MSR_CRASH_P3
, HV_X64_MSR_CRASH_P4
, HV_X64_MSR_CRASH_CTL
,
968 HV_X64_MSR_VP_RUNTIME
,
969 HV_X64_MSR_APIC_ASSIST_PAGE
, MSR_KVM_ASYNC_PF_EN
, MSR_KVM_STEAL_TIME
,
973 MSR_IA32_TSCDEADLINE
,
974 MSR_IA32_MISC_ENABLE
,
980 static unsigned num_emulated_msrs
;
982 bool kvm_valid_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
984 if (efer
& efer_reserved_bits
)
987 if (efer
& EFER_FFXSR
) {
988 struct kvm_cpuid_entry2
*feat
;
990 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
991 if (!feat
|| !(feat
->edx
& bit(X86_FEATURE_FXSR_OPT
)))
995 if (efer
& EFER_SVME
) {
996 struct kvm_cpuid_entry2
*feat
;
998 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
999 if (!feat
|| !(feat
->ecx
& bit(X86_FEATURE_SVM
)))
1005 EXPORT_SYMBOL_GPL(kvm_valid_efer
);
1007 static int set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
1009 u64 old_efer
= vcpu
->arch
.efer
;
1011 if (!kvm_valid_efer(vcpu
, efer
))
1015 && (vcpu
->arch
.efer
& EFER_LME
) != (efer
& EFER_LME
))
1019 efer
|= vcpu
->arch
.efer
& EFER_LMA
;
1021 kvm_x86_ops
->set_efer(vcpu
, efer
);
1023 /* Update reserved bits */
1024 if ((efer
^ old_efer
) & EFER_NX
)
1025 kvm_mmu_reset_context(vcpu
);
1030 void kvm_enable_efer_bits(u64 mask
)
1032 efer_reserved_bits
&= ~mask
;
1034 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits
);
1037 * Writes msr value into into the appropriate "register".
1038 * Returns 0 on success, non-0 otherwise.
1039 * Assumes vcpu_load() was already called.
1041 int kvm_set_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
1043 switch (msr
->index
) {
1046 case MSR_KERNEL_GS_BASE
:
1049 if (is_noncanonical_address(msr
->data
))
1052 case MSR_IA32_SYSENTER_EIP
:
1053 case MSR_IA32_SYSENTER_ESP
:
1055 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1056 * non-canonical address is written on Intel but not on
1057 * AMD (which ignores the top 32-bits, because it does
1058 * not implement 64-bit SYSENTER).
1060 * 64-bit code should hence be able to write a non-canonical
1061 * value on AMD. Making the address canonical ensures that
1062 * vmentry does not fail on Intel after writing a non-canonical
1063 * value, and that something deterministic happens if the guest
1064 * invokes 64-bit SYSENTER.
1066 msr
->data
= get_canonical(msr
->data
);
1068 return kvm_x86_ops
->set_msr(vcpu
, msr
);
1070 EXPORT_SYMBOL_GPL(kvm_set_msr
);
1073 * Adapt set_msr() to msr_io()'s calling convention
1075 static int do_get_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
1077 struct msr_data msr
;
1081 msr
.host_initiated
= true;
1082 r
= kvm_get_msr(vcpu
, &msr
);
1090 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
1092 struct msr_data msr
;
1096 msr
.host_initiated
= true;
1097 return kvm_set_msr(vcpu
, &msr
);
1100 #ifdef CONFIG_X86_64
1101 struct pvclock_gtod_data
{
1104 struct { /* extract of a clocksource struct */
1116 static struct pvclock_gtod_data pvclock_gtod_data
;
1118 static void update_pvclock_gtod(struct timekeeper
*tk
)
1120 struct pvclock_gtod_data
*vdata
= &pvclock_gtod_data
;
1123 boot_ns
= ktime_to_ns(ktime_add(tk
->tkr_mono
.base
, tk
->offs_boot
));
1125 write_seqcount_begin(&vdata
->seq
);
1127 /* copy pvclock gtod data */
1128 vdata
->clock
.vclock_mode
= tk
->tkr_mono
.clock
->archdata
.vclock_mode
;
1129 vdata
->clock
.cycle_last
= tk
->tkr_mono
.cycle_last
;
1130 vdata
->clock
.mask
= tk
->tkr_mono
.mask
;
1131 vdata
->clock
.mult
= tk
->tkr_mono
.mult
;
1132 vdata
->clock
.shift
= tk
->tkr_mono
.shift
;
1134 vdata
->boot_ns
= boot_ns
;
1135 vdata
->nsec_base
= tk
->tkr_mono
.xtime_nsec
;
1137 write_seqcount_end(&vdata
->seq
);
1141 void kvm_set_pending_timer(struct kvm_vcpu
*vcpu
)
1144 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1145 * vcpu_enter_guest. This function is only called from
1146 * the physical CPU that is running vcpu.
1148 kvm_make_request(KVM_REQ_PENDING_TIMER
, vcpu
);
1151 static void kvm_write_wall_clock(struct kvm
*kvm
, gpa_t wall_clock
)
1155 struct pvclock_wall_clock wc
;
1156 struct timespec boot
;
1161 r
= kvm_read_guest(kvm
, wall_clock
, &version
, sizeof(version
));
1166 ++version
; /* first time write, random junk */
1170 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
1173 * The guest calculates current wall clock time by adding
1174 * system time (updated by kvm_guest_time_update below) to the
1175 * wall clock specified here. guest system time equals host
1176 * system time for us, thus we must fill in host boot time here.
1180 if (kvm
->arch
.kvmclock_offset
) {
1181 struct timespec ts
= ns_to_timespec(kvm
->arch
.kvmclock_offset
);
1182 boot
= timespec_sub(boot
, ts
);
1184 wc
.sec
= boot
.tv_sec
;
1185 wc
.nsec
= boot
.tv_nsec
;
1186 wc
.version
= version
;
1188 kvm_write_guest(kvm
, wall_clock
, &wc
, sizeof(wc
));
1191 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
1194 static uint32_t div_frac(uint32_t dividend
, uint32_t divisor
)
1196 uint32_t quotient
, remainder
;
1198 /* Don't try to replace with do_div(), this one calculates
1199 * "(dividend << 32) / divisor" */
1201 : "=a" (quotient
), "=d" (remainder
)
1202 : "0" (0), "1" (dividend
), "r" (divisor
) );
1206 static void kvm_get_time_scale(uint32_t scaled_khz
, uint32_t base_khz
,
1207 s8
*pshift
, u32
*pmultiplier
)
1214 tps64
= base_khz
* 1000LL;
1215 scaled64
= scaled_khz
* 1000LL;
1216 while (tps64
> scaled64
*2 || tps64
& 0xffffffff00000000ULL
) {
1221 tps32
= (uint32_t)tps64
;
1222 while (tps32
<= scaled64
|| scaled64
& 0xffffffff00000000ULL
) {
1223 if (scaled64
& 0xffffffff00000000ULL
|| tps32
& 0x80000000)
1231 *pmultiplier
= div_frac(scaled64
, tps32
);
1233 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1234 __func__
, base_khz
, scaled_khz
, shift
, *pmultiplier
);
1237 #ifdef CONFIG_X86_64
1238 static atomic_t kvm_guest_has_master_clock
= ATOMIC_INIT(0);
1241 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz
);
1242 static unsigned long max_tsc_khz
;
1244 static inline u64
nsec_to_cycles(struct kvm_vcpu
*vcpu
, u64 nsec
)
1246 return pvclock_scale_delta(nsec
, vcpu
->arch
.virtual_tsc_mult
,
1247 vcpu
->arch
.virtual_tsc_shift
);
1250 static u32
adjust_tsc_khz(u32 khz
, s32 ppm
)
1252 u64 v
= (u64
)khz
* (1000000 + ppm
);
1257 static int set_tsc_khz(struct kvm_vcpu
*vcpu
, u32 user_tsc_khz
, bool scale
)
1261 /* Guest TSC same frequency as host TSC? */
1263 vcpu
->arch
.tsc_scaling_ratio
= kvm_default_tsc_scaling_ratio
;
1267 /* TSC scaling supported? */
1268 if (!kvm_has_tsc_control
) {
1269 if (user_tsc_khz
> tsc_khz
) {
1270 vcpu
->arch
.tsc_catchup
= 1;
1271 vcpu
->arch
.tsc_always_catchup
= 1;
1274 WARN(1, "user requested TSC rate below hardware speed\n");
1279 /* TSC scaling required - calculate ratio */
1280 ratio
= mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits
,
1281 user_tsc_khz
, tsc_khz
);
1283 if (ratio
== 0 || ratio
>= kvm_max_tsc_scaling_ratio
) {
1284 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1289 vcpu
->arch
.tsc_scaling_ratio
= ratio
;
1293 static int kvm_set_tsc_khz(struct kvm_vcpu
*vcpu
, u32 this_tsc_khz
)
1295 u32 thresh_lo
, thresh_hi
;
1296 int use_scaling
= 0;
1298 /* tsc_khz can be zero if TSC calibration fails */
1299 if (this_tsc_khz
== 0) {
1300 /* set tsc_scaling_ratio to a safe value */
1301 vcpu
->arch
.tsc_scaling_ratio
= kvm_default_tsc_scaling_ratio
;
1305 /* Compute a scale to convert nanoseconds in TSC cycles */
1306 kvm_get_time_scale(this_tsc_khz
, NSEC_PER_SEC
/ 1000,
1307 &vcpu
->arch
.virtual_tsc_shift
,
1308 &vcpu
->arch
.virtual_tsc_mult
);
1309 vcpu
->arch
.virtual_tsc_khz
= this_tsc_khz
;
1312 * Compute the variation in TSC rate which is acceptable
1313 * within the range of tolerance and decide if the
1314 * rate being applied is within that bounds of the hardware
1315 * rate. If so, no scaling or compensation need be done.
1317 thresh_lo
= adjust_tsc_khz(tsc_khz
, -tsc_tolerance_ppm
);
1318 thresh_hi
= adjust_tsc_khz(tsc_khz
, tsc_tolerance_ppm
);
1319 if (this_tsc_khz
< thresh_lo
|| this_tsc_khz
> thresh_hi
) {
1320 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz
, thresh_lo
, thresh_hi
);
1323 return set_tsc_khz(vcpu
, this_tsc_khz
, use_scaling
);
1326 static u64
compute_guest_tsc(struct kvm_vcpu
*vcpu
, s64 kernel_ns
)
1328 u64 tsc
= pvclock_scale_delta(kernel_ns
-vcpu
->arch
.this_tsc_nsec
,
1329 vcpu
->arch
.virtual_tsc_mult
,
1330 vcpu
->arch
.virtual_tsc_shift
);
1331 tsc
+= vcpu
->arch
.this_tsc_write
;
1335 static void kvm_track_tsc_matching(struct kvm_vcpu
*vcpu
)
1337 #ifdef CONFIG_X86_64
1339 struct kvm_arch
*ka
= &vcpu
->kvm
->arch
;
1340 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1342 vcpus_matched
= (ka
->nr_vcpus_matched_tsc
+ 1 ==
1343 atomic_read(&vcpu
->kvm
->online_vcpus
));
1346 * Once the masterclock is enabled, always perform request in
1347 * order to update it.
1349 * In order to enable masterclock, the host clocksource must be TSC
1350 * and the vcpus need to have matched TSCs. When that happens,
1351 * perform request to enable masterclock.
1353 if (ka
->use_master_clock
||
1354 (gtod
->clock
.vclock_mode
== VCLOCK_TSC
&& vcpus_matched
))
1355 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
1357 trace_kvm_track_tsc(vcpu
->vcpu_id
, ka
->nr_vcpus_matched_tsc
,
1358 atomic_read(&vcpu
->kvm
->online_vcpus
),
1359 ka
->use_master_clock
, gtod
->clock
.vclock_mode
);
1363 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu
*vcpu
, s64 offset
)
1365 u64 curr_offset
= kvm_x86_ops
->read_tsc_offset(vcpu
);
1366 vcpu
->arch
.ia32_tsc_adjust_msr
+= offset
- curr_offset
;
1370 * Multiply tsc by a fixed point number represented by ratio.
1372 * The most significant 64-N bits (mult) of ratio represent the
1373 * integral part of the fixed point number; the remaining N bits
1374 * (frac) represent the fractional part, ie. ratio represents a fixed
1375 * point number (mult + frac * 2^(-N)).
1377 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1379 static inline u64
__scale_tsc(u64 ratio
, u64 tsc
)
1381 return mul_u64_u64_shr(tsc
, ratio
, kvm_tsc_scaling_ratio_frac_bits
);
1384 u64
kvm_scale_tsc(struct kvm_vcpu
*vcpu
, u64 tsc
)
1387 u64 ratio
= vcpu
->arch
.tsc_scaling_ratio
;
1389 if (ratio
!= kvm_default_tsc_scaling_ratio
)
1390 _tsc
= __scale_tsc(ratio
, tsc
);
1394 EXPORT_SYMBOL_GPL(kvm_scale_tsc
);
1396 static u64
kvm_compute_tsc_offset(struct kvm_vcpu
*vcpu
, u64 target_tsc
)
1400 tsc
= kvm_scale_tsc(vcpu
, rdtsc());
1402 return target_tsc
- tsc
;
1405 u64
kvm_read_l1_tsc(struct kvm_vcpu
*vcpu
, u64 host_tsc
)
1407 return kvm_x86_ops
->read_l1_tsc(vcpu
, kvm_scale_tsc(vcpu
, host_tsc
));
1409 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc
);
1411 void kvm_write_tsc(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
1413 struct kvm
*kvm
= vcpu
->kvm
;
1414 u64 offset
, ns
, elapsed
;
1415 unsigned long flags
;
1418 bool already_matched
;
1419 u64 data
= msr
->data
;
1421 raw_spin_lock_irqsave(&kvm
->arch
.tsc_write_lock
, flags
);
1422 offset
= kvm_compute_tsc_offset(vcpu
, data
);
1423 ns
= get_kernel_ns();
1424 elapsed
= ns
- kvm
->arch
.last_tsc_nsec
;
1426 if (vcpu
->arch
.virtual_tsc_khz
) {
1429 /* n.b - signed multiplication and division required */
1430 usdiff
= data
- kvm
->arch
.last_tsc_write
;
1431 #ifdef CONFIG_X86_64
1432 usdiff
= (usdiff
* 1000) / vcpu
->arch
.virtual_tsc_khz
;
1434 /* do_div() only does unsigned */
1435 asm("1: idivl %[divisor]\n"
1436 "2: xor %%edx, %%edx\n"
1437 " movl $0, %[faulted]\n"
1439 ".section .fixup,\"ax\"\n"
1440 "4: movl $1, %[faulted]\n"
1444 _ASM_EXTABLE(1b
, 4b
)
1446 : "=A"(usdiff
), [faulted
] "=r" (faulted
)
1447 : "A"(usdiff
* 1000), [divisor
] "rm"(vcpu
->arch
.virtual_tsc_khz
));
1450 do_div(elapsed
, 1000);
1455 /* idivl overflow => difference is larger than USEC_PER_SEC */
1457 usdiff
= USEC_PER_SEC
;
1459 usdiff
= USEC_PER_SEC
; /* disable TSC match window below */
1462 * Special case: TSC write with a small delta (1 second) of virtual
1463 * cycle time against real time is interpreted as an attempt to
1464 * synchronize the CPU.
1466 * For a reliable TSC, we can match TSC offsets, and for an unstable
1467 * TSC, we add elapsed time in this computation. We could let the
1468 * compensation code attempt to catch up if we fall behind, but
1469 * it's better to try to match offsets from the beginning.
1471 if (usdiff
< USEC_PER_SEC
&&
1472 vcpu
->arch
.virtual_tsc_khz
== kvm
->arch
.last_tsc_khz
) {
1473 if (!check_tsc_unstable()) {
1474 offset
= kvm
->arch
.cur_tsc_offset
;
1475 pr_debug("kvm: matched tsc offset for %llu\n", data
);
1477 u64 delta
= nsec_to_cycles(vcpu
, elapsed
);
1479 offset
= kvm_compute_tsc_offset(vcpu
, data
);
1480 pr_debug("kvm: adjusted tsc offset by %llu\n", delta
);
1483 already_matched
= (vcpu
->arch
.this_tsc_generation
== kvm
->arch
.cur_tsc_generation
);
1486 * We split periods of matched TSC writes into generations.
1487 * For each generation, we track the original measured
1488 * nanosecond time, offset, and write, so if TSCs are in
1489 * sync, we can match exact offset, and if not, we can match
1490 * exact software computation in compute_guest_tsc()
1492 * These values are tracked in kvm->arch.cur_xxx variables.
1494 kvm
->arch
.cur_tsc_generation
++;
1495 kvm
->arch
.cur_tsc_nsec
= ns
;
1496 kvm
->arch
.cur_tsc_write
= data
;
1497 kvm
->arch
.cur_tsc_offset
= offset
;
1499 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1500 kvm
->arch
.cur_tsc_generation
, data
);
1504 * We also track th most recent recorded KHZ, write and time to
1505 * allow the matching interval to be extended at each write.
1507 kvm
->arch
.last_tsc_nsec
= ns
;
1508 kvm
->arch
.last_tsc_write
= data
;
1509 kvm
->arch
.last_tsc_khz
= vcpu
->arch
.virtual_tsc_khz
;
1511 vcpu
->arch
.last_guest_tsc
= data
;
1513 /* Keep track of which generation this VCPU has synchronized to */
1514 vcpu
->arch
.this_tsc_generation
= kvm
->arch
.cur_tsc_generation
;
1515 vcpu
->arch
.this_tsc_nsec
= kvm
->arch
.cur_tsc_nsec
;
1516 vcpu
->arch
.this_tsc_write
= kvm
->arch
.cur_tsc_write
;
1518 if (guest_cpuid_has_tsc_adjust(vcpu
) && !msr
->host_initiated
)
1519 update_ia32_tsc_adjust_msr(vcpu
, offset
);
1520 kvm_x86_ops
->write_tsc_offset(vcpu
, offset
);
1521 raw_spin_unlock_irqrestore(&kvm
->arch
.tsc_write_lock
, flags
);
1523 spin_lock(&kvm
->arch
.pvclock_gtod_sync_lock
);
1525 kvm
->arch
.nr_vcpus_matched_tsc
= 0;
1526 } else if (!already_matched
) {
1527 kvm
->arch
.nr_vcpus_matched_tsc
++;
1530 kvm_track_tsc_matching(vcpu
);
1531 spin_unlock(&kvm
->arch
.pvclock_gtod_sync_lock
);
1534 EXPORT_SYMBOL_GPL(kvm_write_tsc
);
1536 static inline void adjust_tsc_offset_guest(struct kvm_vcpu
*vcpu
,
1539 kvm_x86_ops
->adjust_tsc_offset_guest(vcpu
, adjustment
);
1542 static inline void adjust_tsc_offset_host(struct kvm_vcpu
*vcpu
, s64 adjustment
)
1544 if (vcpu
->arch
.tsc_scaling_ratio
!= kvm_default_tsc_scaling_ratio
)
1545 WARN_ON(adjustment
< 0);
1546 adjustment
= kvm_scale_tsc(vcpu
, (u64
) adjustment
);
1547 kvm_x86_ops
->adjust_tsc_offset_guest(vcpu
, adjustment
);
1550 #ifdef CONFIG_X86_64
1552 static cycle_t
read_tsc(void)
1554 cycle_t ret
= (cycle_t
)rdtsc_ordered();
1555 u64 last
= pvclock_gtod_data
.clock
.cycle_last
;
1557 if (likely(ret
>= last
))
1561 * GCC likes to generate cmov here, but this branch is extremely
1562 * predictable (it's just a funciton of time and the likely is
1563 * very likely) and there's a data dependence, so force GCC
1564 * to generate a branch instead. I don't barrier() because
1565 * we don't actually need a barrier, and if this function
1566 * ever gets inlined it will generate worse code.
1572 static inline u64
vgettsc(cycle_t
*cycle_now
)
1575 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1577 *cycle_now
= read_tsc();
1579 v
= (*cycle_now
- gtod
->clock
.cycle_last
) & gtod
->clock
.mask
;
1580 return v
* gtod
->clock
.mult
;
1583 static int do_monotonic_boot(s64
*t
, cycle_t
*cycle_now
)
1585 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1591 seq
= read_seqcount_begin(>od
->seq
);
1592 mode
= gtod
->clock
.vclock_mode
;
1593 ns
= gtod
->nsec_base
;
1594 ns
+= vgettsc(cycle_now
);
1595 ns
>>= gtod
->clock
.shift
;
1596 ns
+= gtod
->boot_ns
;
1597 } while (unlikely(read_seqcount_retry(>od
->seq
, seq
)));
1603 /* returns true if host is using tsc clocksource */
1604 static bool kvm_get_time_and_clockread(s64
*kernel_ns
, cycle_t
*cycle_now
)
1606 /* checked again under seqlock below */
1607 if (pvclock_gtod_data
.clock
.vclock_mode
!= VCLOCK_TSC
)
1610 return do_monotonic_boot(kernel_ns
, cycle_now
) == VCLOCK_TSC
;
1616 * Assuming a stable TSC across physical CPUS, and a stable TSC
1617 * across virtual CPUs, the following condition is possible.
1618 * Each numbered line represents an event visible to both
1619 * CPUs at the next numbered event.
1621 * "timespecX" represents host monotonic time. "tscX" represents
1624 * VCPU0 on CPU0 | VCPU1 on CPU1
1626 * 1. read timespec0,tsc0
1627 * 2. | timespec1 = timespec0 + N
1629 * 3. transition to guest | transition to guest
1630 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1631 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1632 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1634 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1637 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1639 * - 0 < N - M => M < N
1641 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1642 * always the case (the difference between two distinct xtime instances
1643 * might be smaller then the difference between corresponding TSC reads,
1644 * when updating guest vcpus pvclock areas).
1646 * To avoid that problem, do not allow visibility of distinct
1647 * system_timestamp/tsc_timestamp values simultaneously: use a master
1648 * copy of host monotonic time values. Update that master copy
1651 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1655 static void pvclock_update_vm_gtod_copy(struct kvm
*kvm
)
1657 #ifdef CONFIG_X86_64
1658 struct kvm_arch
*ka
= &kvm
->arch
;
1660 bool host_tsc_clocksource
, vcpus_matched
;
1662 vcpus_matched
= (ka
->nr_vcpus_matched_tsc
+ 1 ==
1663 atomic_read(&kvm
->online_vcpus
));
1666 * If the host uses TSC clock, then passthrough TSC as stable
1669 host_tsc_clocksource
= kvm_get_time_and_clockread(
1670 &ka
->master_kernel_ns
,
1671 &ka
->master_cycle_now
);
1673 ka
->use_master_clock
= host_tsc_clocksource
&& vcpus_matched
1674 && !backwards_tsc_observed
1675 && !ka
->boot_vcpu_runs_old_kvmclock
;
1677 if (ka
->use_master_clock
)
1678 atomic_set(&kvm_guest_has_master_clock
, 1);
1680 vclock_mode
= pvclock_gtod_data
.clock
.vclock_mode
;
1681 trace_kvm_update_master_clock(ka
->use_master_clock
, vclock_mode
,
1686 static void kvm_gen_update_masterclock(struct kvm
*kvm
)
1688 #ifdef CONFIG_X86_64
1690 struct kvm_vcpu
*vcpu
;
1691 struct kvm_arch
*ka
= &kvm
->arch
;
1693 spin_lock(&ka
->pvclock_gtod_sync_lock
);
1694 kvm_make_mclock_inprogress_request(kvm
);
1695 /* no guest entries from this point */
1696 pvclock_update_vm_gtod_copy(kvm
);
1698 kvm_for_each_vcpu(i
, vcpu
, kvm
)
1699 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
1701 /* guest entries allowed */
1702 kvm_for_each_vcpu(i
, vcpu
, kvm
)
1703 clear_bit(KVM_REQ_MCLOCK_INPROGRESS
, &vcpu
->requests
);
1705 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
1709 static int kvm_guest_time_update(struct kvm_vcpu
*v
)
1711 unsigned long flags
, this_tsc_khz
, tgt_tsc_khz
;
1712 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
1713 struct kvm_arch
*ka
= &v
->kvm
->arch
;
1715 u64 tsc_timestamp
, host_tsc
;
1716 struct pvclock_vcpu_time_info guest_hv_clock
;
1718 bool use_master_clock
;
1724 * If the host uses TSC clock, then passthrough TSC as stable
1727 spin_lock(&ka
->pvclock_gtod_sync_lock
);
1728 use_master_clock
= ka
->use_master_clock
;
1729 if (use_master_clock
) {
1730 host_tsc
= ka
->master_cycle_now
;
1731 kernel_ns
= ka
->master_kernel_ns
;
1733 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
1735 /* Keep irq disabled to prevent changes to the clock */
1736 local_irq_save(flags
);
1737 this_tsc_khz
= __this_cpu_read(cpu_tsc_khz
);
1738 if (unlikely(this_tsc_khz
== 0)) {
1739 local_irq_restore(flags
);
1740 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, v
);
1743 if (!use_master_clock
) {
1745 kernel_ns
= get_kernel_ns();
1748 tsc_timestamp
= kvm_read_l1_tsc(v
, host_tsc
);
1751 * We may have to catch up the TSC to match elapsed wall clock
1752 * time for two reasons, even if kvmclock is used.
1753 * 1) CPU could have been running below the maximum TSC rate
1754 * 2) Broken TSC compensation resets the base at each VCPU
1755 * entry to avoid unknown leaps of TSC even when running
1756 * again on the same CPU. This may cause apparent elapsed
1757 * time to disappear, and the guest to stand still or run
1760 if (vcpu
->tsc_catchup
) {
1761 u64 tsc
= compute_guest_tsc(v
, kernel_ns
);
1762 if (tsc
> tsc_timestamp
) {
1763 adjust_tsc_offset_guest(v
, tsc
- tsc_timestamp
);
1764 tsc_timestamp
= tsc
;
1768 local_irq_restore(flags
);
1770 if (!vcpu
->pv_time_enabled
)
1773 if (unlikely(vcpu
->hw_tsc_khz
!= this_tsc_khz
)) {
1774 tgt_tsc_khz
= kvm_has_tsc_control
?
1775 vcpu
->virtual_tsc_khz
: this_tsc_khz
;
1776 kvm_get_time_scale(NSEC_PER_SEC
/ 1000, tgt_tsc_khz
,
1777 &vcpu
->hv_clock
.tsc_shift
,
1778 &vcpu
->hv_clock
.tsc_to_system_mul
);
1779 vcpu
->hw_tsc_khz
= this_tsc_khz
;
1782 /* With all the info we got, fill in the values */
1783 vcpu
->hv_clock
.tsc_timestamp
= tsc_timestamp
;
1784 vcpu
->hv_clock
.system_time
= kernel_ns
+ v
->kvm
->arch
.kvmclock_offset
;
1785 vcpu
->last_guest_tsc
= tsc_timestamp
;
1787 if (unlikely(kvm_read_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1788 &guest_hv_clock
, sizeof(guest_hv_clock
))))
1791 /* This VCPU is paused, but it's legal for a guest to read another
1792 * VCPU's kvmclock, so we really have to follow the specification where
1793 * it says that version is odd if data is being modified, and even after
1796 * Version field updates must be kept separate. This is because
1797 * kvm_write_guest_cached might use a "rep movs" instruction, and
1798 * writes within a string instruction are weakly ordered. So there
1799 * are three writes overall.
1801 * As a small optimization, only write the version field in the first
1802 * and third write. The vcpu->pv_time cache is still valid, because the
1803 * version field is the first in the struct.
1805 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info
, version
) != 0);
1807 vcpu
->hv_clock
.version
= guest_hv_clock
.version
+ 1;
1808 kvm_write_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1810 sizeof(vcpu
->hv_clock
.version
));
1814 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1815 pvclock_flags
= (guest_hv_clock
.flags
& PVCLOCK_GUEST_STOPPED
);
1817 if (vcpu
->pvclock_set_guest_stopped_request
) {
1818 pvclock_flags
|= PVCLOCK_GUEST_STOPPED
;
1819 vcpu
->pvclock_set_guest_stopped_request
= false;
1822 /* If the host uses TSC clocksource, then it is stable */
1823 if (use_master_clock
)
1824 pvclock_flags
|= PVCLOCK_TSC_STABLE_BIT
;
1826 vcpu
->hv_clock
.flags
= pvclock_flags
;
1828 trace_kvm_pvclock_update(v
->vcpu_id
, &vcpu
->hv_clock
);
1830 kvm_write_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1832 sizeof(vcpu
->hv_clock
));
1836 vcpu
->hv_clock
.version
++;
1837 kvm_write_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1839 sizeof(vcpu
->hv_clock
.version
));
1844 * kvmclock updates which are isolated to a given vcpu, such as
1845 * vcpu->cpu migration, should not allow system_timestamp from
1846 * the rest of the vcpus to remain static. Otherwise ntp frequency
1847 * correction applies to one vcpu's system_timestamp but not
1850 * So in those cases, request a kvmclock update for all vcpus.
1851 * We need to rate-limit these requests though, as they can
1852 * considerably slow guests that have a large number of vcpus.
1853 * The time for a remote vcpu to update its kvmclock is bound
1854 * by the delay we use to rate-limit the updates.
1857 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1859 static void kvmclock_update_fn(struct work_struct
*work
)
1862 struct delayed_work
*dwork
= to_delayed_work(work
);
1863 struct kvm_arch
*ka
= container_of(dwork
, struct kvm_arch
,
1864 kvmclock_update_work
);
1865 struct kvm
*kvm
= container_of(ka
, struct kvm
, arch
);
1866 struct kvm_vcpu
*vcpu
;
1868 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
1869 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
1870 kvm_vcpu_kick(vcpu
);
1874 static void kvm_gen_kvmclock_update(struct kvm_vcpu
*v
)
1876 struct kvm
*kvm
= v
->kvm
;
1878 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, v
);
1879 schedule_delayed_work(&kvm
->arch
.kvmclock_update_work
,
1880 KVMCLOCK_UPDATE_DELAY
);
1883 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1885 static void kvmclock_sync_fn(struct work_struct
*work
)
1887 struct delayed_work
*dwork
= to_delayed_work(work
);
1888 struct kvm_arch
*ka
= container_of(dwork
, struct kvm_arch
,
1889 kvmclock_sync_work
);
1890 struct kvm
*kvm
= container_of(ka
, struct kvm
, arch
);
1892 if (!kvmclock_periodic_sync
)
1895 schedule_delayed_work(&kvm
->arch
.kvmclock_update_work
, 0);
1896 schedule_delayed_work(&kvm
->arch
.kvmclock_sync_work
,
1897 KVMCLOCK_SYNC_PERIOD
);
1900 static int set_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1902 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
1903 unsigned bank_num
= mcg_cap
& 0xff;
1906 case MSR_IA32_MCG_STATUS
:
1907 vcpu
->arch
.mcg_status
= data
;
1909 case MSR_IA32_MCG_CTL
:
1910 if (!(mcg_cap
& MCG_CTL_P
))
1912 if (data
!= 0 && data
!= ~(u64
)0)
1914 vcpu
->arch
.mcg_ctl
= data
;
1917 if (msr
>= MSR_IA32_MC0_CTL
&&
1918 msr
< MSR_IA32_MCx_CTL(bank_num
)) {
1919 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
1920 /* only 0 or all 1s can be written to IA32_MCi_CTL
1921 * some Linux kernels though clear bit 10 in bank 4 to
1922 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1923 * this to avoid an uncatched #GP in the guest
1925 if ((offset
& 0x3) == 0 &&
1926 data
!= 0 && (data
| (1 << 10)) != ~(u64
)0)
1928 vcpu
->arch
.mce_banks
[offset
] = data
;
1936 static int xen_hvm_config(struct kvm_vcpu
*vcpu
, u64 data
)
1938 struct kvm
*kvm
= vcpu
->kvm
;
1939 int lm
= is_long_mode(vcpu
);
1940 u8
*blob_addr
= lm
? (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_64
1941 : (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_32
;
1942 u8 blob_size
= lm
? kvm
->arch
.xen_hvm_config
.blob_size_64
1943 : kvm
->arch
.xen_hvm_config
.blob_size_32
;
1944 u32 page_num
= data
& ~PAGE_MASK
;
1945 u64 page_addr
= data
& PAGE_MASK
;
1950 if (page_num
>= blob_size
)
1953 page
= memdup_user(blob_addr
+ (page_num
* PAGE_SIZE
), PAGE_SIZE
);
1958 if (kvm_vcpu_write_guest(vcpu
, page_addr
, page
, PAGE_SIZE
))
1967 static int kvm_pv_enable_async_pf(struct kvm_vcpu
*vcpu
, u64 data
)
1969 gpa_t gpa
= data
& ~0x3f;
1971 /* Bits 2:5 are reserved, Should be zero */
1975 vcpu
->arch
.apf
.msr_val
= data
;
1977 if (!(data
& KVM_ASYNC_PF_ENABLED
)) {
1978 kvm_clear_async_pf_completion_queue(vcpu
);
1979 kvm_async_pf_hash_reset(vcpu
);
1983 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, gpa
,
1987 vcpu
->arch
.apf
.send_user_only
= !(data
& KVM_ASYNC_PF_SEND_ALWAYS
);
1988 kvm_async_pf_wakeup_all(vcpu
);
1992 static void kvmclock_reset(struct kvm_vcpu
*vcpu
)
1994 vcpu
->arch
.pv_time_enabled
= false;
1997 static void accumulate_steal_time(struct kvm_vcpu
*vcpu
)
2001 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
2004 delta
= current
->sched_info
.run_delay
- vcpu
->arch
.st
.last_steal
;
2005 vcpu
->arch
.st
.last_steal
= current
->sched_info
.run_delay
;
2006 vcpu
->arch
.st
.accum_steal
= delta
;
2009 static void record_steal_time(struct kvm_vcpu
*vcpu
)
2011 accumulate_steal_time(vcpu
);
2013 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
2016 if (unlikely(kvm_read_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2017 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
))))
2020 vcpu
->arch
.st
.steal
.steal
+= vcpu
->arch
.st
.accum_steal
;
2021 vcpu
->arch
.st
.steal
.version
+= 2;
2022 vcpu
->arch
.st
.accum_steal
= 0;
2024 kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2025 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
));
2028 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2031 u32 msr
= msr_info
->index
;
2032 u64 data
= msr_info
->data
;
2035 case MSR_AMD64_NB_CFG
:
2036 case MSR_IA32_UCODE_REV
:
2037 case MSR_IA32_UCODE_WRITE
:
2038 case MSR_VM_HSAVE_PA
:
2039 case MSR_AMD64_PATCH_LOADER
:
2040 case MSR_AMD64_BU_CFG2
:
2044 return set_efer(vcpu
, data
);
2046 data
&= ~(u64
)0x40; /* ignore flush filter disable */
2047 data
&= ~(u64
)0x100; /* ignore ignne emulation enable */
2048 data
&= ~(u64
)0x8; /* ignore TLB cache disable */
2049 data
&= ~(u64
)0x40000; /* ignore Mc status write enable */
2051 vcpu_unimpl(vcpu
, "unimplemented HWCR wrmsr: 0x%llx\n",
2056 case MSR_FAM10H_MMIO_CONF_BASE
:
2058 vcpu_unimpl(vcpu
, "unimplemented MMIO_CONF_BASE wrmsr: "
2063 case MSR_IA32_DEBUGCTLMSR
:
2065 /* We support the non-activated case already */
2067 } else if (data
& ~(DEBUGCTLMSR_LBR
| DEBUGCTLMSR_BTF
)) {
2068 /* Values other than LBR and BTF are vendor-specific,
2069 thus reserved and should throw a #GP */
2072 vcpu_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2075 case 0x200 ... 0x2ff:
2076 return kvm_mtrr_set_msr(vcpu
, msr
, data
);
2077 case MSR_IA32_APICBASE
:
2078 return kvm_set_apic_base(vcpu
, msr_info
);
2079 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
2080 return kvm_x2apic_msr_write(vcpu
, msr
, data
);
2081 case MSR_IA32_TSCDEADLINE
:
2082 kvm_set_lapic_tscdeadline_msr(vcpu
, data
);
2084 case MSR_IA32_TSC_ADJUST
:
2085 if (guest_cpuid_has_tsc_adjust(vcpu
)) {
2086 if (!msr_info
->host_initiated
) {
2087 s64 adj
= data
- vcpu
->arch
.ia32_tsc_adjust_msr
;
2088 adjust_tsc_offset_guest(vcpu
, adj
);
2090 vcpu
->arch
.ia32_tsc_adjust_msr
= data
;
2093 case MSR_IA32_MISC_ENABLE
:
2094 vcpu
->arch
.ia32_misc_enable_msr
= data
;
2096 case MSR_IA32_SMBASE
:
2097 if (!msr_info
->host_initiated
)
2099 vcpu
->arch
.smbase
= data
;
2101 case MSR_KVM_WALL_CLOCK_NEW
:
2102 case MSR_KVM_WALL_CLOCK
:
2103 vcpu
->kvm
->arch
.wall_clock
= data
;
2104 kvm_write_wall_clock(vcpu
->kvm
, data
);
2106 case MSR_KVM_SYSTEM_TIME_NEW
:
2107 case MSR_KVM_SYSTEM_TIME
: {
2109 struct kvm_arch
*ka
= &vcpu
->kvm
->arch
;
2111 kvmclock_reset(vcpu
);
2113 if (vcpu
->vcpu_id
== 0 && !msr_info
->host_initiated
) {
2114 bool tmp
= (msr
== MSR_KVM_SYSTEM_TIME
);
2116 if (ka
->boot_vcpu_runs_old_kvmclock
!= tmp
)
2117 set_bit(KVM_REQ_MASTERCLOCK_UPDATE
,
2120 ka
->boot_vcpu_runs_old_kvmclock
= tmp
;
2123 vcpu
->arch
.time
= data
;
2124 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
);
2126 /* we verify if the enable bit is set... */
2130 gpa_offset
= data
& ~(PAGE_MASK
| 1);
2132 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
,
2133 &vcpu
->arch
.pv_time
, data
& ~1ULL,
2134 sizeof(struct pvclock_vcpu_time_info
)))
2135 vcpu
->arch
.pv_time_enabled
= false;
2137 vcpu
->arch
.pv_time_enabled
= true;
2141 case MSR_KVM_ASYNC_PF_EN
:
2142 if (kvm_pv_enable_async_pf(vcpu
, data
))
2145 case MSR_KVM_STEAL_TIME
:
2147 if (unlikely(!sched_info_on()))
2150 if (data
& KVM_STEAL_RESERVED_MASK
)
2153 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2154 data
& KVM_STEAL_VALID_BITS
,
2155 sizeof(struct kvm_steal_time
)))
2158 vcpu
->arch
.st
.msr_val
= data
;
2160 if (!(data
& KVM_MSR_ENABLED
))
2163 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
2166 case MSR_KVM_PV_EOI_EN
:
2167 if (kvm_lapic_enable_pv_eoi(vcpu
, data
))
2171 case MSR_IA32_MCG_CTL
:
2172 case MSR_IA32_MCG_STATUS
:
2173 case MSR_IA32_MC0_CTL
... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS
) - 1:
2174 return set_msr_mce(vcpu
, msr
, data
);
2176 case MSR_K7_PERFCTR0
... MSR_K7_PERFCTR3
:
2177 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR1
:
2178 pr
= true; /* fall through */
2179 case MSR_K7_EVNTSEL0
... MSR_K7_EVNTSEL3
:
2180 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL1
:
2181 if (kvm_pmu_is_valid_msr(vcpu
, msr
))
2182 return kvm_pmu_set_msr(vcpu
, msr_info
);
2184 if (pr
|| data
!= 0)
2185 vcpu_unimpl(vcpu
, "disabled perfctr wrmsr: "
2186 "0x%x data 0x%llx\n", msr
, data
);
2188 case MSR_K7_CLK_CTL
:
2190 * Ignore all writes to this no longer documented MSR.
2191 * Writes are only relevant for old K7 processors,
2192 * all pre-dating SVM, but a recommended workaround from
2193 * AMD for these chips. It is possible to specify the
2194 * affected processor models on the command line, hence
2195 * the need to ignore the workaround.
2198 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
2199 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
2200 case HV_X64_MSR_CRASH_CTL
:
2201 return kvm_hv_set_msr_common(vcpu
, msr
, data
,
2202 msr_info
->host_initiated
);
2203 case MSR_IA32_BBL_CR_CTL3
:
2204 /* Drop writes to this legacy MSR -- see rdmsr
2205 * counterpart for further detail.
2207 vcpu_unimpl(vcpu
, "ignored wrmsr: 0x%x data %llx\n", msr
, data
);
2209 case MSR_AMD64_OSVW_ID_LENGTH
:
2210 if (!guest_cpuid_has_osvw(vcpu
))
2212 vcpu
->arch
.osvw
.length
= data
;
2214 case MSR_AMD64_OSVW_STATUS
:
2215 if (!guest_cpuid_has_osvw(vcpu
))
2217 vcpu
->arch
.osvw
.status
= data
;
2220 if (msr
&& (msr
== vcpu
->kvm
->arch
.xen_hvm_config
.msr
))
2221 return xen_hvm_config(vcpu
, data
);
2222 if (kvm_pmu_is_valid_msr(vcpu
, msr
))
2223 return kvm_pmu_set_msr(vcpu
, msr_info
);
2225 vcpu_unimpl(vcpu
, "unhandled wrmsr: 0x%x data %llx\n",
2229 vcpu_unimpl(vcpu
, "ignored wrmsr: 0x%x data %llx\n",
2236 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
2240 * Reads an msr value (of 'msr_index') into 'pdata'.
2241 * Returns 0 on success, non-0 otherwise.
2242 * Assumes vcpu_load() was already called.
2244 int kvm_get_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
2246 return kvm_x86_ops
->get_msr(vcpu
, msr
);
2248 EXPORT_SYMBOL_GPL(kvm_get_msr
);
2250 static int get_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
2253 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
2254 unsigned bank_num
= mcg_cap
& 0xff;
2257 case MSR_IA32_P5_MC_ADDR
:
2258 case MSR_IA32_P5_MC_TYPE
:
2261 case MSR_IA32_MCG_CAP
:
2262 data
= vcpu
->arch
.mcg_cap
;
2264 case MSR_IA32_MCG_CTL
:
2265 if (!(mcg_cap
& MCG_CTL_P
))
2267 data
= vcpu
->arch
.mcg_ctl
;
2269 case MSR_IA32_MCG_STATUS
:
2270 data
= vcpu
->arch
.mcg_status
;
2273 if (msr
>= MSR_IA32_MC0_CTL
&&
2274 msr
< MSR_IA32_MCx_CTL(bank_num
)) {
2275 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
2276 data
= vcpu
->arch
.mce_banks
[offset
];
2285 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2287 switch (msr_info
->index
) {
2288 case MSR_IA32_PLATFORM_ID
:
2289 case MSR_IA32_EBL_CR_POWERON
:
2290 case MSR_IA32_DEBUGCTLMSR
:
2291 case MSR_IA32_LASTBRANCHFROMIP
:
2292 case MSR_IA32_LASTBRANCHTOIP
:
2293 case MSR_IA32_LASTINTFROMIP
:
2294 case MSR_IA32_LASTINTTOIP
:
2296 case MSR_K8_TSEG_ADDR
:
2297 case MSR_K8_TSEG_MASK
:
2299 case MSR_VM_HSAVE_PA
:
2300 case MSR_K8_INT_PENDING_MSG
:
2301 case MSR_AMD64_NB_CFG
:
2302 case MSR_FAM10H_MMIO_CONF_BASE
:
2303 case MSR_AMD64_BU_CFG2
:
2306 case MSR_K7_EVNTSEL0
... MSR_K7_EVNTSEL3
:
2307 case MSR_K7_PERFCTR0
... MSR_K7_PERFCTR3
:
2308 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR1
:
2309 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL1
:
2310 if (kvm_pmu_is_valid_msr(vcpu
, msr_info
->index
))
2311 return kvm_pmu_get_msr(vcpu
, msr_info
->index
, &msr_info
->data
);
2314 case MSR_IA32_UCODE_REV
:
2315 msr_info
->data
= 0x100000000ULL
;
2318 case 0x200 ... 0x2ff:
2319 return kvm_mtrr_get_msr(vcpu
, msr_info
->index
, &msr_info
->data
);
2320 case 0xcd: /* fsb frequency */
2324 * MSR_EBC_FREQUENCY_ID
2325 * Conservative value valid for even the basic CPU models.
2326 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2327 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2328 * and 266MHz for model 3, or 4. Set Core Clock
2329 * Frequency to System Bus Frequency Ratio to 1 (bits
2330 * 31:24) even though these are only valid for CPU
2331 * models > 2, however guests may end up dividing or
2332 * multiplying by zero otherwise.
2334 case MSR_EBC_FREQUENCY_ID
:
2335 msr_info
->data
= 1 << 24;
2337 case MSR_IA32_APICBASE
:
2338 msr_info
->data
= kvm_get_apic_base(vcpu
);
2340 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
2341 return kvm_x2apic_msr_read(vcpu
, msr_info
->index
, &msr_info
->data
);
2343 case MSR_IA32_TSCDEADLINE
:
2344 msr_info
->data
= kvm_get_lapic_tscdeadline_msr(vcpu
);
2346 case MSR_IA32_TSC_ADJUST
:
2347 msr_info
->data
= (u64
)vcpu
->arch
.ia32_tsc_adjust_msr
;
2349 case MSR_IA32_MISC_ENABLE
:
2350 msr_info
->data
= vcpu
->arch
.ia32_misc_enable_msr
;
2352 case MSR_IA32_SMBASE
:
2353 if (!msr_info
->host_initiated
)
2355 msr_info
->data
= vcpu
->arch
.smbase
;
2357 case MSR_IA32_PERF_STATUS
:
2358 /* TSC increment by tick */
2359 msr_info
->data
= 1000ULL;
2360 /* CPU multiplier */
2361 msr_info
->data
|= (((uint64_t)4ULL) << 40);
2364 msr_info
->data
= vcpu
->arch
.efer
;
2366 case MSR_KVM_WALL_CLOCK
:
2367 case MSR_KVM_WALL_CLOCK_NEW
:
2368 msr_info
->data
= vcpu
->kvm
->arch
.wall_clock
;
2370 case MSR_KVM_SYSTEM_TIME
:
2371 case MSR_KVM_SYSTEM_TIME_NEW
:
2372 msr_info
->data
= vcpu
->arch
.time
;
2374 case MSR_KVM_ASYNC_PF_EN
:
2375 msr_info
->data
= vcpu
->arch
.apf
.msr_val
;
2377 case MSR_KVM_STEAL_TIME
:
2378 msr_info
->data
= vcpu
->arch
.st
.msr_val
;
2380 case MSR_KVM_PV_EOI_EN
:
2381 msr_info
->data
= vcpu
->arch
.pv_eoi
.msr_val
;
2383 case MSR_IA32_P5_MC_ADDR
:
2384 case MSR_IA32_P5_MC_TYPE
:
2385 case MSR_IA32_MCG_CAP
:
2386 case MSR_IA32_MCG_CTL
:
2387 case MSR_IA32_MCG_STATUS
:
2388 case MSR_IA32_MC0_CTL
... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS
) - 1:
2389 return get_msr_mce(vcpu
, msr_info
->index
, &msr_info
->data
);
2390 case MSR_K7_CLK_CTL
:
2392 * Provide expected ramp-up count for K7. All other
2393 * are set to zero, indicating minimum divisors for
2396 * This prevents guest kernels on AMD host with CPU
2397 * type 6, model 8 and higher from exploding due to
2398 * the rdmsr failing.
2400 msr_info
->data
= 0x20000000;
2402 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
2403 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
2404 case HV_X64_MSR_CRASH_CTL
:
2405 return kvm_hv_get_msr_common(vcpu
,
2406 msr_info
->index
, &msr_info
->data
);
2408 case MSR_IA32_BBL_CR_CTL3
:
2409 /* This legacy MSR exists but isn't fully documented in current
2410 * silicon. It is however accessed by winxp in very narrow
2411 * scenarios where it sets bit #19, itself documented as
2412 * a "reserved" bit. Best effort attempt to source coherent
2413 * read data here should the balance of the register be
2414 * interpreted by the guest:
2416 * L2 cache control register 3: 64GB range, 256KB size,
2417 * enabled, latency 0x1, configured
2419 msr_info
->data
= 0xbe702111;
2421 case MSR_AMD64_OSVW_ID_LENGTH
:
2422 if (!guest_cpuid_has_osvw(vcpu
))
2424 msr_info
->data
= vcpu
->arch
.osvw
.length
;
2426 case MSR_AMD64_OSVW_STATUS
:
2427 if (!guest_cpuid_has_osvw(vcpu
))
2429 msr_info
->data
= vcpu
->arch
.osvw
.status
;
2432 if (kvm_pmu_is_valid_msr(vcpu
, msr_info
->index
))
2433 return kvm_pmu_get_msr(vcpu
, msr_info
->index
, &msr_info
->data
);
2435 vcpu_unimpl(vcpu
, "unhandled rdmsr: 0x%x\n", msr_info
->index
);
2438 vcpu_unimpl(vcpu
, "ignored rdmsr: 0x%x\n", msr_info
->index
);
2445 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
2448 * Read or write a bunch of msrs. All parameters are kernel addresses.
2450 * @return number of msrs set successfully.
2452 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
2453 struct kvm_msr_entry
*entries
,
2454 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2455 unsigned index
, u64
*data
))
2459 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
2460 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
2461 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
2463 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
2469 * Read or write a bunch of msrs. Parameters are user addresses.
2471 * @return number of msrs set successfully.
2473 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
2474 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2475 unsigned index
, u64
*data
),
2478 struct kvm_msrs msrs
;
2479 struct kvm_msr_entry
*entries
;
2484 if (copy_from_user(&msrs
, user_msrs
, sizeof msrs
))
2488 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
2491 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
2492 entries
= memdup_user(user_msrs
->entries
, size
);
2493 if (IS_ERR(entries
)) {
2494 r
= PTR_ERR(entries
);
2498 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
2503 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
2514 int kvm_vm_ioctl_check_extension(struct kvm
*kvm
, long ext
)
2519 case KVM_CAP_IRQCHIP
:
2521 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL
:
2522 case KVM_CAP_SET_TSS_ADDR
:
2523 case KVM_CAP_EXT_CPUID
:
2524 case KVM_CAP_EXT_EMUL_CPUID
:
2525 case KVM_CAP_CLOCKSOURCE
:
2527 case KVM_CAP_NOP_IO_DELAY
:
2528 case KVM_CAP_MP_STATE
:
2529 case KVM_CAP_SYNC_MMU
:
2530 case KVM_CAP_USER_NMI
:
2531 case KVM_CAP_REINJECT_CONTROL
:
2532 case KVM_CAP_IRQ_INJECT_STATUS
:
2533 case KVM_CAP_IOEVENTFD
:
2534 case KVM_CAP_IOEVENTFD_NO_LENGTH
:
2536 case KVM_CAP_PIT_STATE2
:
2537 case KVM_CAP_SET_IDENTITY_MAP_ADDR
:
2538 case KVM_CAP_XEN_HVM
:
2539 case KVM_CAP_ADJUST_CLOCK
:
2540 case KVM_CAP_VCPU_EVENTS
:
2541 case KVM_CAP_HYPERV
:
2542 case KVM_CAP_HYPERV_VAPIC
:
2543 case KVM_CAP_HYPERV_SPIN
:
2544 case KVM_CAP_PCI_SEGMENT
:
2545 case KVM_CAP_DEBUGREGS
:
2546 case KVM_CAP_X86_ROBUST_SINGLESTEP
:
2548 case KVM_CAP_ASYNC_PF
:
2549 case KVM_CAP_GET_TSC_KHZ
:
2550 case KVM_CAP_KVMCLOCK_CTRL
:
2551 case KVM_CAP_READONLY_MEM
:
2552 case KVM_CAP_HYPERV_TIME
:
2553 case KVM_CAP_IOAPIC_POLARITY_IGNORED
:
2554 case KVM_CAP_TSC_DEADLINE_TIMER
:
2555 case KVM_CAP_ENABLE_CAP_VM
:
2556 case KVM_CAP_DISABLE_QUIRKS
:
2557 case KVM_CAP_SET_BOOT_CPU_ID
:
2558 case KVM_CAP_SPLIT_IRQCHIP
:
2559 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2560 case KVM_CAP_ASSIGN_DEV_IRQ
:
2561 case KVM_CAP_PCI_2_3
:
2565 case KVM_CAP_X86_SMM
:
2566 /* SMBASE is usually relocated above 1M on modern chipsets,
2567 * and SMM handlers might indeed rely on 4G segment limits,
2568 * so do not report SMM to be available if real mode is
2569 * emulated via vm86 mode. Still, do not go to great lengths
2570 * to avoid userspace's usage of the feature, because it is a
2571 * fringe case that is not enabled except via specific settings
2572 * of the module parameters.
2574 r
= kvm_x86_ops
->cpu_has_high_real_mode_segbase();
2576 case KVM_CAP_COALESCED_MMIO
:
2577 r
= KVM_COALESCED_MMIO_PAGE_OFFSET
;
2580 r
= !kvm_x86_ops
->cpu_has_accelerated_tpr();
2582 case KVM_CAP_NR_VCPUS
:
2583 r
= KVM_SOFT_MAX_VCPUS
;
2585 case KVM_CAP_MAX_VCPUS
:
2588 case KVM_CAP_NR_MEMSLOTS
:
2589 r
= KVM_USER_MEM_SLOTS
;
2591 case KVM_CAP_PV_MMU
: /* obsolete */
2594 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2596 r
= iommu_present(&pci_bus_type
);
2600 r
= KVM_MAX_MCE_BANKS
;
2605 case KVM_CAP_TSC_CONTROL
:
2606 r
= kvm_has_tsc_control
;
2616 long kvm_arch_dev_ioctl(struct file
*filp
,
2617 unsigned int ioctl
, unsigned long arg
)
2619 void __user
*argp
= (void __user
*)arg
;
2623 case KVM_GET_MSR_INDEX_LIST
: {
2624 struct kvm_msr_list __user
*user_msr_list
= argp
;
2625 struct kvm_msr_list msr_list
;
2629 if (copy_from_user(&msr_list
, user_msr_list
, sizeof msr_list
))
2632 msr_list
.nmsrs
= num_msrs_to_save
+ num_emulated_msrs
;
2633 if (copy_to_user(user_msr_list
, &msr_list
, sizeof msr_list
))
2636 if (n
< msr_list
.nmsrs
)
2639 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
2640 num_msrs_to_save
* sizeof(u32
)))
2642 if (copy_to_user(user_msr_list
->indices
+ num_msrs_to_save
,
2644 num_emulated_msrs
* sizeof(u32
)))
2649 case KVM_GET_SUPPORTED_CPUID
:
2650 case KVM_GET_EMULATED_CPUID
: {
2651 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
2652 struct kvm_cpuid2 cpuid
;
2655 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2658 r
= kvm_dev_ioctl_get_cpuid(&cpuid
, cpuid_arg
->entries
,
2664 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
2669 case KVM_X86_GET_MCE_CAP_SUPPORTED
: {
2672 mce_cap
= KVM_MCE_CAP_SUPPORTED
;
2674 if (copy_to_user(argp
, &mce_cap
, sizeof mce_cap
))
2686 static void wbinvd_ipi(void *garbage
)
2691 static bool need_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
2693 return kvm_arch_has_noncoherent_dma(vcpu
->kvm
);
2696 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
2698 /* Address WBINVD may be executed by guest */
2699 if (need_emulate_wbinvd(vcpu
)) {
2700 if (kvm_x86_ops
->has_wbinvd_exit())
2701 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
2702 else if (vcpu
->cpu
!= -1 && vcpu
->cpu
!= cpu
)
2703 smp_call_function_single(vcpu
->cpu
,
2704 wbinvd_ipi
, NULL
, 1);
2707 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
2709 /* Apply any externally detected TSC adjustments (due to suspend) */
2710 if (unlikely(vcpu
->arch
.tsc_offset_adjustment
)) {
2711 adjust_tsc_offset_host(vcpu
, vcpu
->arch
.tsc_offset_adjustment
);
2712 vcpu
->arch
.tsc_offset_adjustment
= 0;
2713 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
2716 if (unlikely(vcpu
->cpu
!= cpu
) || check_tsc_unstable()) {
2717 s64 tsc_delta
= !vcpu
->arch
.last_host_tsc
? 0 :
2718 rdtsc() - vcpu
->arch
.last_host_tsc
;
2720 mark_tsc_unstable("KVM discovered backwards TSC");
2721 if (check_tsc_unstable()) {
2722 u64 offset
= kvm_compute_tsc_offset(vcpu
,
2723 vcpu
->arch
.last_guest_tsc
);
2724 kvm_x86_ops
->write_tsc_offset(vcpu
, offset
);
2725 vcpu
->arch
.tsc_catchup
= 1;
2728 * On a host with synchronized TSC, there is no need to update
2729 * kvmclock on vcpu->cpu migration
2731 if (!vcpu
->kvm
->arch
.use_master_clock
|| vcpu
->cpu
== -1)
2732 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
);
2733 if (vcpu
->cpu
!= cpu
)
2734 kvm_migrate_timers(vcpu
);
2738 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
2741 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
2743 kvm_x86_ops
->vcpu_put(vcpu
);
2744 kvm_put_guest_fpu(vcpu
);
2745 vcpu
->arch
.last_host_tsc
= rdtsc();
2748 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
2749 struct kvm_lapic_state
*s
)
2751 kvm_x86_ops
->sync_pir_to_irr(vcpu
);
2752 memcpy(s
->regs
, vcpu
->arch
.apic
->regs
, sizeof *s
);
2757 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
2758 struct kvm_lapic_state
*s
)
2760 kvm_apic_post_state_restore(vcpu
, s
);
2761 update_cr8_intercept(vcpu
);
2766 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu
*vcpu
)
2768 return (!lapic_in_kernel(vcpu
) ||
2769 kvm_apic_accept_pic_intr(vcpu
));
2773 * if userspace requested an interrupt window, check that the
2774 * interrupt window is open.
2776 * No need to exit to userspace if we already have an interrupt queued.
2778 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu
*vcpu
)
2780 return kvm_arch_interrupt_allowed(vcpu
) &&
2781 !kvm_cpu_has_interrupt(vcpu
) &&
2782 !kvm_event_needs_reinjection(vcpu
) &&
2783 kvm_cpu_accept_dm_intr(vcpu
);
2786 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
2787 struct kvm_interrupt
*irq
)
2789 if (irq
->irq
>= KVM_NR_INTERRUPTS
)
2792 if (!irqchip_in_kernel(vcpu
->kvm
)) {
2793 kvm_queue_interrupt(vcpu
, irq
->irq
, false);
2794 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
2799 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2800 * fail for in-kernel 8259.
2802 if (pic_in_kernel(vcpu
->kvm
))
2805 if (vcpu
->arch
.pending_external_vector
!= -1)
2808 vcpu
->arch
.pending_external_vector
= irq
->irq
;
2809 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
2813 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu
*vcpu
)
2815 kvm_inject_nmi(vcpu
);
2820 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu
*vcpu
)
2822 kvm_make_request(KVM_REQ_SMI
, vcpu
);
2827 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu
*vcpu
,
2828 struct kvm_tpr_access_ctl
*tac
)
2832 vcpu
->arch
.tpr_access_reporting
= !!tac
->enabled
;
2836 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu
*vcpu
,
2840 unsigned bank_num
= mcg_cap
& 0xff, bank
;
2843 if (!bank_num
|| bank_num
>= KVM_MAX_MCE_BANKS
)
2845 if (mcg_cap
& ~(KVM_MCE_CAP_SUPPORTED
| 0xff | 0xff0000))
2848 vcpu
->arch
.mcg_cap
= mcg_cap
;
2849 /* Init IA32_MCG_CTL to all 1s */
2850 if (mcg_cap
& MCG_CTL_P
)
2851 vcpu
->arch
.mcg_ctl
= ~(u64
)0;
2852 /* Init IA32_MCi_CTL to all 1s */
2853 for (bank
= 0; bank
< bank_num
; bank
++)
2854 vcpu
->arch
.mce_banks
[bank
*4] = ~(u64
)0;
2859 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu
*vcpu
,
2860 struct kvm_x86_mce
*mce
)
2862 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
2863 unsigned bank_num
= mcg_cap
& 0xff;
2864 u64
*banks
= vcpu
->arch
.mce_banks
;
2866 if (mce
->bank
>= bank_num
|| !(mce
->status
& MCI_STATUS_VAL
))
2869 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2870 * reporting is disabled
2872 if ((mce
->status
& MCI_STATUS_UC
) && (mcg_cap
& MCG_CTL_P
) &&
2873 vcpu
->arch
.mcg_ctl
!= ~(u64
)0)
2875 banks
+= 4 * mce
->bank
;
2877 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2878 * reporting is disabled for the bank
2880 if ((mce
->status
& MCI_STATUS_UC
) && banks
[0] != ~(u64
)0)
2882 if (mce
->status
& MCI_STATUS_UC
) {
2883 if ((vcpu
->arch
.mcg_status
& MCG_STATUS_MCIP
) ||
2884 !kvm_read_cr4_bits(vcpu
, X86_CR4_MCE
)) {
2885 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
2888 if (banks
[1] & MCI_STATUS_VAL
)
2889 mce
->status
|= MCI_STATUS_OVER
;
2890 banks
[2] = mce
->addr
;
2891 banks
[3] = mce
->misc
;
2892 vcpu
->arch
.mcg_status
= mce
->mcg_status
;
2893 banks
[1] = mce
->status
;
2894 kvm_queue_exception(vcpu
, MC_VECTOR
);
2895 } else if (!(banks
[1] & MCI_STATUS_VAL
)
2896 || !(banks
[1] & MCI_STATUS_UC
)) {
2897 if (banks
[1] & MCI_STATUS_VAL
)
2898 mce
->status
|= MCI_STATUS_OVER
;
2899 banks
[2] = mce
->addr
;
2900 banks
[3] = mce
->misc
;
2901 banks
[1] = mce
->status
;
2903 banks
[1] |= MCI_STATUS_OVER
;
2907 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu
*vcpu
,
2908 struct kvm_vcpu_events
*events
)
2911 events
->exception
.injected
=
2912 vcpu
->arch
.exception
.pending
&&
2913 !kvm_exception_is_soft(vcpu
->arch
.exception
.nr
);
2914 events
->exception
.nr
= vcpu
->arch
.exception
.nr
;
2915 events
->exception
.has_error_code
= vcpu
->arch
.exception
.has_error_code
;
2916 events
->exception
.pad
= 0;
2917 events
->exception
.error_code
= vcpu
->arch
.exception
.error_code
;
2919 events
->interrupt
.injected
=
2920 vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
;
2921 events
->interrupt
.nr
= vcpu
->arch
.interrupt
.nr
;
2922 events
->interrupt
.soft
= 0;
2923 events
->interrupt
.shadow
= kvm_x86_ops
->get_interrupt_shadow(vcpu
);
2925 events
->nmi
.injected
= vcpu
->arch
.nmi_injected
;
2926 events
->nmi
.pending
= vcpu
->arch
.nmi_pending
!= 0;
2927 events
->nmi
.masked
= kvm_x86_ops
->get_nmi_mask(vcpu
);
2928 events
->nmi
.pad
= 0;
2930 events
->sipi_vector
= 0; /* never valid when reporting to user space */
2932 events
->smi
.smm
= is_smm(vcpu
);
2933 events
->smi
.pending
= vcpu
->arch
.smi_pending
;
2934 events
->smi
.smm_inside_nmi
=
2935 !!(vcpu
->arch
.hflags
& HF_SMM_INSIDE_NMI_MASK
);
2936 events
->smi
.latched_init
= kvm_lapic_latched_init(vcpu
);
2938 events
->flags
= (KVM_VCPUEVENT_VALID_NMI_PENDING
2939 | KVM_VCPUEVENT_VALID_SHADOW
2940 | KVM_VCPUEVENT_VALID_SMM
);
2941 memset(&events
->reserved
, 0, sizeof(events
->reserved
));
2944 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu
*vcpu
,
2945 struct kvm_vcpu_events
*events
)
2947 if (events
->flags
& ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2948 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2949 | KVM_VCPUEVENT_VALID_SHADOW
2950 | KVM_VCPUEVENT_VALID_SMM
))
2954 vcpu
->arch
.exception
.pending
= events
->exception
.injected
;
2955 vcpu
->arch
.exception
.nr
= events
->exception
.nr
;
2956 vcpu
->arch
.exception
.has_error_code
= events
->exception
.has_error_code
;
2957 vcpu
->arch
.exception
.error_code
= events
->exception
.error_code
;
2959 vcpu
->arch
.interrupt
.pending
= events
->interrupt
.injected
;
2960 vcpu
->arch
.interrupt
.nr
= events
->interrupt
.nr
;
2961 vcpu
->arch
.interrupt
.soft
= events
->interrupt
.soft
;
2962 if (events
->flags
& KVM_VCPUEVENT_VALID_SHADOW
)
2963 kvm_x86_ops
->set_interrupt_shadow(vcpu
,
2964 events
->interrupt
.shadow
);
2966 vcpu
->arch
.nmi_injected
= events
->nmi
.injected
;
2967 if (events
->flags
& KVM_VCPUEVENT_VALID_NMI_PENDING
)
2968 vcpu
->arch
.nmi_pending
= events
->nmi
.pending
;
2969 kvm_x86_ops
->set_nmi_mask(vcpu
, events
->nmi
.masked
);
2971 if (events
->flags
& KVM_VCPUEVENT_VALID_SIPI_VECTOR
&&
2972 kvm_vcpu_has_lapic(vcpu
))
2973 vcpu
->arch
.apic
->sipi_vector
= events
->sipi_vector
;
2975 if (events
->flags
& KVM_VCPUEVENT_VALID_SMM
) {
2976 if (events
->smi
.smm
)
2977 vcpu
->arch
.hflags
|= HF_SMM_MASK
;
2979 vcpu
->arch
.hflags
&= ~HF_SMM_MASK
;
2980 vcpu
->arch
.smi_pending
= events
->smi
.pending
;
2981 if (events
->smi
.smm_inside_nmi
)
2982 vcpu
->arch
.hflags
|= HF_SMM_INSIDE_NMI_MASK
;
2984 vcpu
->arch
.hflags
&= ~HF_SMM_INSIDE_NMI_MASK
;
2985 if (kvm_vcpu_has_lapic(vcpu
)) {
2986 if (events
->smi
.latched_init
)
2987 set_bit(KVM_APIC_INIT
, &vcpu
->arch
.apic
->pending_events
);
2989 clear_bit(KVM_APIC_INIT
, &vcpu
->arch
.apic
->pending_events
);
2993 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
2998 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu
*vcpu
,
2999 struct kvm_debugregs
*dbgregs
)
3003 memcpy(dbgregs
->db
, vcpu
->arch
.db
, sizeof(vcpu
->arch
.db
));
3004 kvm_get_dr(vcpu
, 6, &val
);
3006 dbgregs
->dr7
= vcpu
->arch
.dr7
;
3008 memset(&dbgregs
->reserved
, 0, sizeof(dbgregs
->reserved
));
3011 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu
*vcpu
,
3012 struct kvm_debugregs
*dbgregs
)
3017 memcpy(vcpu
->arch
.db
, dbgregs
->db
, sizeof(vcpu
->arch
.db
));
3018 kvm_update_dr0123(vcpu
);
3019 vcpu
->arch
.dr6
= dbgregs
->dr6
;
3020 kvm_update_dr6(vcpu
);
3021 vcpu
->arch
.dr7
= dbgregs
->dr7
;
3022 kvm_update_dr7(vcpu
);
3027 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3029 static void fill_xsave(u8
*dest
, struct kvm_vcpu
*vcpu
)
3031 struct xregs_state
*xsave
= &vcpu
->arch
.guest_fpu
.state
.xsave
;
3032 u64 xstate_bv
= xsave
->header
.xfeatures
;
3036 * Copy legacy XSAVE area, to avoid complications with CPUID
3037 * leaves 0 and 1 in the loop below.
3039 memcpy(dest
, xsave
, XSAVE_HDR_OFFSET
);
3042 *(u64
*)(dest
+ XSAVE_HDR_OFFSET
) = xstate_bv
;
3045 * Copy each region from the possibly compacted offset to the
3046 * non-compacted offset.
3048 valid
= xstate_bv
& ~XFEATURE_MASK_FPSSE
;
3050 u64 feature
= valid
& -valid
;
3051 int index
= fls64(feature
) - 1;
3052 void *src
= get_xsave_addr(xsave
, feature
);
3055 u32 size
, offset
, ecx
, edx
;
3056 cpuid_count(XSTATE_CPUID
, index
,
3057 &size
, &offset
, &ecx
, &edx
);
3058 memcpy(dest
+ offset
, src
, size
);
3065 static void load_xsave(struct kvm_vcpu
*vcpu
, u8
*src
)
3067 struct xregs_state
*xsave
= &vcpu
->arch
.guest_fpu
.state
.xsave
;
3068 u64 xstate_bv
= *(u64
*)(src
+ XSAVE_HDR_OFFSET
);
3072 * Copy legacy XSAVE area, to avoid complications with CPUID
3073 * leaves 0 and 1 in the loop below.
3075 memcpy(xsave
, src
, XSAVE_HDR_OFFSET
);
3077 /* Set XSTATE_BV and possibly XCOMP_BV. */
3078 xsave
->header
.xfeatures
= xstate_bv
;
3080 xsave
->header
.xcomp_bv
= host_xcr0
| XSTATE_COMPACTION_ENABLED
;
3083 * Copy each region from the non-compacted offset to the
3084 * possibly compacted offset.
3086 valid
= xstate_bv
& ~XFEATURE_MASK_FPSSE
;
3088 u64 feature
= valid
& -valid
;
3089 int index
= fls64(feature
) - 1;
3090 void *dest
= get_xsave_addr(xsave
, feature
);
3093 u32 size
, offset
, ecx
, edx
;
3094 cpuid_count(XSTATE_CPUID
, index
,
3095 &size
, &offset
, &ecx
, &edx
);
3096 memcpy(dest
, src
+ offset
, size
);
3103 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu
*vcpu
,
3104 struct kvm_xsave
*guest_xsave
)
3106 if (cpu_has_xsave
) {
3107 memset(guest_xsave
, 0, sizeof(struct kvm_xsave
));
3108 fill_xsave((u8
*) guest_xsave
->region
, vcpu
);
3110 memcpy(guest_xsave
->region
,
3111 &vcpu
->arch
.guest_fpu
.state
.fxsave
,
3112 sizeof(struct fxregs_state
));
3113 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)] =
3114 XFEATURE_MASK_FPSSE
;
3118 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu
*vcpu
,
3119 struct kvm_xsave
*guest_xsave
)
3122 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)];
3124 if (cpu_has_xsave
) {
3126 * Here we allow setting states that are not present in
3127 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3128 * with old userspace.
3130 if (xstate_bv
& ~kvm_supported_xcr0())
3132 load_xsave(vcpu
, (u8
*)guest_xsave
->region
);
3134 if (xstate_bv
& ~XFEATURE_MASK_FPSSE
)
3136 memcpy(&vcpu
->arch
.guest_fpu
.state
.fxsave
,
3137 guest_xsave
->region
, sizeof(struct fxregs_state
));
3142 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu
*vcpu
,
3143 struct kvm_xcrs
*guest_xcrs
)
3145 if (!cpu_has_xsave
) {
3146 guest_xcrs
->nr_xcrs
= 0;
3150 guest_xcrs
->nr_xcrs
= 1;
3151 guest_xcrs
->flags
= 0;
3152 guest_xcrs
->xcrs
[0].xcr
= XCR_XFEATURE_ENABLED_MASK
;
3153 guest_xcrs
->xcrs
[0].value
= vcpu
->arch
.xcr0
;
3156 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu
*vcpu
,
3157 struct kvm_xcrs
*guest_xcrs
)
3164 if (guest_xcrs
->nr_xcrs
> KVM_MAX_XCRS
|| guest_xcrs
->flags
)
3167 for (i
= 0; i
< guest_xcrs
->nr_xcrs
; i
++)
3168 /* Only support XCR0 currently */
3169 if (guest_xcrs
->xcrs
[i
].xcr
== XCR_XFEATURE_ENABLED_MASK
) {
3170 r
= __kvm_set_xcr(vcpu
, XCR_XFEATURE_ENABLED_MASK
,
3171 guest_xcrs
->xcrs
[i
].value
);
3180 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3181 * stopped by the hypervisor. This function will be called from the host only.
3182 * EINVAL is returned when the host attempts to set the flag for a guest that
3183 * does not support pv clocks.
3185 static int kvm_set_guest_paused(struct kvm_vcpu
*vcpu
)
3187 if (!vcpu
->arch
.pv_time_enabled
)
3189 vcpu
->arch
.pvclock_set_guest_stopped_request
= true;
3190 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
3194 long kvm_arch_vcpu_ioctl(struct file
*filp
,
3195 unsigned int ioctl
, unsigned long arg
)
3197 struct kvm_vcpu
*vcpu
= filp
->private_data
;
3198 void __user
*argp
= (void __user
*)arg
;
3201 struct kvm_lapic_state
*lapic
;
3202 struct kvm_xsave
*xsave
;
3203 struct kvm_xcrs
*xcrs
;
3209 case KVM_GET_LAPIC
: {
3211 if (!vcpu
->arch
.apic
)
3213 u
.lapic
= kzalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
3218 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, u
.lapic
);
3222 if (copy_to_user(argp
, u
.lapic
, sizeof(struct kvm_lapic_state
)))
3227 case KVM_SET_LAPIC
: {
3229 if (!vcpu
->arch
.apic
)
3231 u
.lapic
= memdup_user(argp
, sizeof(*u
.lapic
));
3232 if (IS_ERR(u
.lapic
))
3233 return PTR_ERR(u
.lapic
);
3235 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, u
.lapic
);
3238 case KVM_INTERRUPT
: {
3239 struct kvm_interrupt irq
;
3242 if (copy_from_user(&irq
, argp
, sizeof irq
))
3244 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
3248 r
= kvm_vcpu_ioctl_nmi(vcpu
);
3252 r
= kvm_vcpu_ioctl_smi(vcpu
);
3255 case KVM_SET_CPUID
: {
3256 struct kvm_cpuid __user
*cpuid_arg
= argp
;
3257 struct kvm_cpuid cpuid
;
3260 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3262 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
3265 case KVM_SET_CPUID2
: {
3266 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
3267 struct kvm_cpuid2 cpuid
;
3270 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3272 r
= kvm_vcpu_ioctl_set_cpuid2(vcpu
, &cpuid
,
3273 cpuid_arg
->entries
);
3276 case KVM_GET_CPUID2
: {
3277 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
3278 struct kvm_cpuid2 cpuid
;
3281 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3283 r
= kvm_vcpu_ioctl_get_cpuid2(vcpu
, &cpuid
,
3284 cpuid_arg
->entries
);
3288 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
3294 r
= msr_io(vcpu
, argp
, do_get_msr
, 1);
3297 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
3299 case KVM_TPR_ACCESS_REPORTING
: {
3300 struct kvm_tpr_access_ctl tac
;
3303 if (copy_from_user(&tac
, argp
, sizeof tac
))
3305 r
= vcpu_ioctl_tpr_access_reporting(vcpu
, &tac
);
3309 if (copy_to_user(argp
, &tac
, sizeof tac
))
3314 case KVM_SET_VAPIC_ADDR
: {
3315 struct kvm_vapic_addr va
;
3318 if (!lapic_in_kernel(vcpu
))
3321 if (copy_from_user(&va
, argp
, sizeof va
))
3323 r
= kvm_lapic_set_vapic_addr(vcpu
, va
.vapic_addr
);
3326 case KVM_X86_SETUP_MCE
: {
3330 if (copy_from_user(&mcg_cap
, argp
, sizeof mcg_cap
))
3332 r
= kvm_vcpu_ioctl_x86_setup_mce(vcpu
, mcg_cap
);
3335 case KVM_X86_SET_MCE
: {
3336 struct kvm_x86_mce mce
;
3339 if (copy_from_user(&mce
, argp
, sizeof mce
))
3341 r
= kvm_vcpu_ioctl_x86_set_mce(vcpu
, &mce
);
3344 case KVM_GET_VCPU_EVENTS
: {
3345 struct kvm_vcpu_events events
;
3347 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu
, &events
);
3350 if (copy_to_user(argp
, &events
, sizeof(struct kvm_vcpu_events
)))
3355 case KVM_SET_VCPU_EVENTS
: {
3356 struct kvm_vcpu_events events
;
3359 if (copy_from_user(&events
, argp
, sizeof(struct kvm_vcpu_events
)))
3362 r
= kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu
, &events
);
3365 case KVM_GET_DEBUGREGS
: {
3366 struct kvm_debugregs dbgregs
;
3368 kvm_vcpu_ioctl_x86_get_debugregs(vcpu
, &dbgregs
);
3371 if (copy_to_user(argp
, &dbgregs
,
3372 sizeof(struct kvm_debugregs
)))
3377 case KVM_SET_DEBUGREGS
: {
3378 struct kvm_debugregs dbgregs
;
3381 if (copy_from_user(&dbgregs
, argp
,
3382 sizeof(struct kvm_debugregs
)))
3385 r
= kvm_vcpu_ioctl_x86_set_debugregs(vcpu
, &dbgregs
);
3388 case KVM_GET_XSAVE
: {
3389 u
.xsave
= kzalloc(sizeof(struct kvm_xsave
), GFP_KERNEL
);
3394 kvm_vcpu_ioctl_x86_get_xsave(vcpu
, u
.xsave
);
3397 if (copy_to_user(argp
, u
.xsave
, sizeof(struct kvm_xsave
)))
3402 case KVM_SET_XSAVE
: {
3403 u
.xsave
= memdup_user(argp
, sizeof(*u
.xsave
));
3404 if (IS_ERR(u
.xsave
))
3405 return PTR_ERR(u
.xsave
);
3407 r
= kvm_vcpu_ioctl_x86_set_xsave(vcpu
, u
.xsave
);
3410 case KVM_GET_XCRS
: {
3411 u
.xcrs
= kzalloc(sizeof(struct kvm_xcrs
), GFP_KERNEL
);
3416 kvm_vcpu_ioctl_x86_get_xcrs(vcpu
, u
.xcrs
);
3419 if (copy_to_user(argp
, u
.xcrs
,
3420 sizeof(struct kvm_xcrs
)))
3425 case KVM_SET_XCRS
: {
3426 u
.xcrs
= memdup_user(argp
, sizeof(*u
.xcrs
));
3428 return PTR_ERR(u
.xcrs
);
3430 r
= kvm_vcpu_ioctl_x86_set_xcrs(vcpu
, u
.xcrs
);
3433 case KVM_SET_TSC_KHZ
: {
3437 user_tsc_khz
= (u32
)arg
;
3439 if (user_tsc_khz
>= kvm_max_guest_tsc_khz
)
3442 if (user_tsc_khz
== 0)
3443 user_tsc_khz
= tsc_khz
;
3445 if (!kvm_set_tsc_khz(vcpu
, user_tsc_khz
))
3450 case KVM_GET_TSC_KHZ
: {
3451 r
= vcpu
->arch
.virtual_tsc_khz
;
3454 case KVM_KVMCLOCK_CTRL
: {
3455 r
= kvm_set_guest_paused(vcpu
);
3466 int kvm_arch_vcpu_fault(struct kvm_vcpu
*vcpu
, struct vm_fault
*vmf
)
3468 return VM_FAULT_SIGBUS
;
3471 static int kvm_vm_ioctl_set_tss_addr(struct kvm
*kvm
, unsigned long addr
)
3475 if (addr
> (unsigned int)(-3 * PAGE_SIZE
))
3477 ret
= kvm_x86_ops
->set_tss_addr(kvm
, addr
);
3481 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm
*kvm
,
3484 kvm
->arch
.ept_identity_map_addr
= ident_addr
;
3488 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm
*kvm
,
3489 u32 kvm_nr_mmu_pages
)
3491 if (kvm_nr_mmu_pages
< KVM_MIN_ALLOC_MMU_PAGES
)
3494 mutex_lock(&kvm
->slots_lock
);
3496 kvm_mmu_change_mmu_pages(kvm
, kvm_nr_mmu_pages
);
3497 kvm
->arch
.n_requested_mmu_pages
= kvm_nr_mmu_pages
;
3499 mutex_unlock(&kvm
->slots_lock
);
3503 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm
*kvm
)
3505 return kvm
->arch
.n_max_mmu_pages
;
3508 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
3513 switch (chip
->chip_id
) {
3514 case KVM_IRQCHIP_PIC_MASTER
:
3515 memcpy(&chip
->chip
.pic
,
3516 &pic_irqchip(kvm
)->pics
[0],
3517 sizeof(struct kvm_pic_state
));
3519 case KVM_IRQCHIP_PIC_SLAVE
:
3520 memcpy(&chip
->chip
.pic
,
3521 &pic_irqchip(kvm
)->pics
[1],
3522 sizeof(struct kvm_pic_state
));
3524 case KVM_IRQCHIP_IOAPIC
:
3525 r
= kvm_get_ioapic(kvm
, &chip
->chip
.ioapic
);
3534 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
3539 switch (chip
->chip_id
) {
3540 case KVM_IRQCHIP_PIC_MASTER
:
3541 spin_lock(&pic_irqchip(kvm
)->lock
);
3542 memcpy(&pic_irqchip(kvm
)->pics
[0],
3544 sizeof(struct kvm_pic_state
));
3545 spin_unlock(&pic_irqchip(kvm
)->lock
);
3547 case KVM_IRQCHIP_PIC_SLAVE
:
3548 spin_lock(&pic_irqchip(kvm
)->lock
);
3549 memcpy(&pic_irqchip(kvm
)->pics
[1],
3551 sizeof(struct kvm_pic_state
));
3552 spin_unlock(&pic_irqchip(kvm
)->lock
);
3554 case KVM_IRQCHIP_IOAPIC
:
3555 r
= kvm_set_ioapic(kvm
, &chip
->chip
.ioapic
);
3561 kvm_pic_update_irq(pic_irqchip(kvm
));
3565 static int kvm_vm_ioctl_get_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
3567 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3568 memcpy(ps
, &kvm
->arch
.vpit
->pit_state
, sizeof(struct kvm_pit_state
));
3569 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3573 static int kvm_vm_ioctl_set_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
3576 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3577 memcpy(&kvm
->arch
.vpit
->pit_state
, ps
, sizeof(struct kvm_pit_state
));
3578 for (i
= 0; i
< 3; i
++)
3579 kvm_pit_load_count(kvm
, i
, ps
->channels
[i
].count
, 0);
3580 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3584 static int kvm_vm_ioctl_get_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
3586 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3587 memcpy(ps
->channels
, &kvm
->arch
.vpit
->pit_state
.channels
,
3588 sizeof(ps
->channels
));
3589 ps
->flags
= kvm
->arch
.vpit
->pit_state
.flags
;
3590 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3591 memset(&ps
->reserved
, 0, sizeof(ps
->reserved
));
3595 static int kvm_vm_ioctl_set_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
3599 u32 prev_legacy
, cur_legacy
;
3600 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3601 prev_legacy
= kvm
->arch
.vpit
->pit_state
.flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
3602 cur_legacy
= ps
->flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
3603 if (!prev_legacy
&& cur_legacy
)
3605 memcpy(&kvm
->arch
.vpit
->pit_state
.channels
, &ps
->channels
,
3606 sizeof(kvm
->arch
.vpit
->pit_state
.channels
));
3607 kvm
->arch
.vpit
->pit_state
.flags
= ps
->flags
;
3608 for (i
= 0; i
< 3; i
++)
3609 kvm_pit_load_count(kvm
, i
, kvm
->arch
.vpit
->pit_state
.channels
[i
].count
,
3611 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3615 static int kvm_vm_ioctl_reinject(struct kvm
*kvm
,
3616 struct kvm_reinject_control
*control
)
3618 if (!kvm
->arch
.vpit
)
3620 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3621 kvm
->arch
.vpit
->pit_state
.reinject
= control
->pit_reinject
;
3622 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3627 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3628 * @kvm: kvm instance
3629 * @log: slot id and address to which we copy the log
3631 * Steps 1-4 below provide general overview of dirty page logging. See
3632 * kvm_get_dirty_log_protect() function description for additional details.
3634 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3635 * always flush the TLB (step 4) even if previous step failed and the dirty
3636 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3637 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3638 * writes will be marked dirty for next log read.
3640 * 1. Take a snapshot of the bit and clear it if needed.
3641 * 2. Write protect the corresponding page.
3642 * 3. Copy the snapshot to the userspace.
3643 * 4. Flush TLB's if needed.
3645 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
, struct kvm_dirty_log
*log
)
3647 bool is_dirty
= false;
3650 mutex_lock(&kvm
->slots_lock
);
3653 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3655 if (kvm_x86_ops
->flush_log_dirty
)
3656 kvm_x86_ops
->flush_log_dirty(kvm
);
3658 r
= kvm_get_dirty_log_protect(kvm
, log
, &is_dirty
);
3661 * All the TLBs can be flushed out of mmu lock, see the comments in
3662 * kvm_mmu_slot_remove_write_access().
3664 lockdep_assert_held(&kvm
->slots_lock
);
3666 kvm_flush_remote_tlbs(kvm
);
3668 mutex_unlock(&kvm
->slots_lock
);
3672 int kvm_vm_ioctl_irq_line(struct kvm
*kvm
, struct kvm_irq_level
*irq_event
,
3675 if (!irqchip_in_kernel(kvm
))
3678 irq_event
->status
= kvm_set_irq(kvm
, KVM_USERSPACE_IRQ_SOURCE_ID
,
3679 irq_event
->irq
, irq_event
->level
,
3684 static int kvm_vm_ioctl_enable_cap(struct kvm
*kvm
,
3685 struct kvm_enable_cap
*cap
)
3693 case KVM_CAP_DISABLE_QUIRKS
:
3694 kvm
->arch
.disabled_quirks
= cap
->args
[0];
3697 case KVM_CAP_SPLIT_IRQCHIP
: {
3698 mutex_lock(&kvm
->lock
);
3700 if (cap
->args
[0] > MAX_NR_RESERVED_IOAPIC_PINS
)
3701 goto split_irqchip_unlock
;
3703 if (irqchip_in_kernel(kvm
))
3704 goto split_irqchip_unlock
;
3705 if (atomic_read(&kvm
->online_vcpus
))
3706 goto split_irqchip_unlock
;
3707 r
= kvm_setup_empty_irq_routing(kvm
);
3709 goto split_irqchip_unlock
;
3710 /* Pairs with irqchip_in_kernel. */
3712 kvm
->arch
.irqchip_split
= true;
3713 kvm
->arch
.nr_reserved_ioapic_pins
= cap
->args
[0];
3715 split_irqchip_unlock
:
3716 mutex_unlock(&kvm
->lock
);
3726 long kvm_arch_vm_ioctl(struct file
*filp
,
3727 unsigned int ioctl
, unsigned long arg
)
3729 struct kvm
*kvm
= filp
->private_data
;
3730 void __user
*argp
= (void __user
*)arg
;
3733 * This union makes it completely explicit to gcc-3.x
3734 * that these two variables' stack usage should be
3735 * combined, not added together.
3738 struct kvm_pit_state ps
;
3739 struct kvm_pit_state2 ps2
;
3740 struct kvm_pit_config pit_config
;
3744 case KVM_SET_TSS_ADDR
:
3745 r
= kvm_vm_ioctl_set_tss_addr(kvm
, arg
);
3747 case KVM_SET_IDENTITY_MAP_ADDR
: {
3751 if (copy_from_user(&ident_addr
, argp
, sizeof ident_addr
))
3753 r
= kvm_vm_ioctl_set_identity_map_addr(kvm
, ident_addr
);
3756 case KVM_SET_NR_MMU_PAGES
:
3757 r
= kvm_vm_ioctl_set_nr_mmu_pages(kvm
, arg
);
3759 case KVM_GET_NR_MMU_PAGES
:
3760 r
= kvm_vm_ioctl_get_nr_mmu_pages(kvm
);
3762 case KVM_CREATE_IRQCHIP
: {
3763 struct kvm_pic
*vpic
;
3765 mutex_lock(&kvm
->lock
);
3768 goto create_irqchip_unlock
;
3770 if (atomic_read(&kvm
->online_vcpus
))
3771 goto create_irqchip_unlock
;
3773 vpic
= kvm_create_pic(kvm
);
3775 r
= kvm_ioapic_init(kvm
);
3777 mutex_lock(&kvm
->slots_lock
);
3778 kvm_destroy_pic(vpic
);
3779 mutex_unlock(&kvm
->slots_lock
);
3780 goto create_irqchip_unlock
;
3783 goto create_irqchip_unlock
;
3784 r
= kvm_setup_default_irq_routing(kvm
);
3786 mutex_lock(&kvm
->slots_lock
);
3787 mutex_lock(&kvm
->irq_lock
);
3788 kvm_ioapic_destroy(kvm
);
3789 kvm_destroy_pic(vpic
);
3790 mutex_unlock(&kvm
->irq_lock
);
3791 mutex_unlock(&kvm
->slots_lock
);
3792 goto create_irqchip_unlock
;
3794 /* Write kvm->irq_routing before kvm->arch.vpic. */
3796 kvm
->arch
.vpic
= vpic
;
3797 create_irqchip_unlock
:
3798 mutex_unlock(&kvm
->lock
);
3801 case KVM_CREATE_PIT
:
3802 u
.pit_config
.flags
= KVM_PIT_SPEAKER_DUMMY
;
3804 case KVM_CREATE_PIT2
:
3806 if (copy_from_user(&u
.pit_config
, argp
,
3807 sizeof(struct kvm_pit_config
)))
3810 mutex_lock(&kvm
->slots_lock
);
3813 goto create_pit_unlock
;
3815 kvm
->arch
.vpit
= kvm_create_pit(kvm
, u
.pit_config
.flags
);
3819 mutex_unlock(&kvm
->slots_lock
);
3821 case KVM_GET_IRQCHIP
: {
3822 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3823 struct kvm_irqchip
*chip
;
3825 chip
= memdup_user(argp
, sizeof(*chip
));
3832 if (!irqchip_in_kernel(kvm
) || irqchip_split(kvm
))
3833 goto get_irqchip_out
;
3834 r
= kvm_vm_ioctl_get_irqchip(kvm
, chip
);
3836 goto get_irqchip_out
;
3838 if (copy_to_user(argp
, chip
, sizeof *chip
))
3839 goto get_irqchip_out
;
3845 case KVM_SET_IRQCHIP
: {
3846 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3847 struct kvm_irqchip
*chip
;
3849 chip
= memdup_user(argp
, sizeof(*chip
));
3856 if (!irqchip_in_kernel(kvm
) || irqchip_split(kvm
))
3857 goto set_irqchip_out
;
3858 r
= kvm_vm_ioctl_set_irqchip(kvm
, chip
);
3860 goto set_irqchip_out
;
3868 if (copy_from_user(&u
.ps
, argp
, sizeof(struct kvm_pit_state
)))
3871 if (!kvm
->arch
.vpit
)
3873 r
= kvm_vm_ioctl_get_pit(kvm
, &u
.ps
);
3877 if (copy_to_user(argp
, &u
.ps
, sizeof(struct kvm_pit_state
)))
3884 if (copy_from_user(&u
.ps
, argp
, sizeof u
.ps
))
3887 if (!kvm
->arch
.vpit
)
3889 r
= kvm_vm_ioctl_set_pit(kvm
, &u
.ps
);
3892 case KVM_GET_PIT2
: {
3894 if (!kvm
->arch
.vpit
)
3896 r
= kvm_vm_ioctl_get_pit2(kvm
, &u
.ps2
);
3900 if (copy_to_user(argp
, &u
.ps2
, sizeof(u
.ps2
)))
3905 case KVM_SET_PIT2
: {
3907 if (copy_from_user(&u
.ps2
, argp
, sizeof(u
.ps2
)))
3910 if (!kvm
->arch
.vpit
)
3912 r
= kvm_vm_ioctl_set_pit2(kvm
, &u
.ps2
);
3915 case KVM_REINJECT_CONTROL
: {
3916 struct kvm_reinject_control control
;
3918 if (copy_from_user(&control
, argp
, sizeof(control
)))
3920 r
= kvm_vm_ioctl_reinject(kvm
, &control
);
3923 case KVM_SET_BOOT_CPU_ID
:
3925 mutex_lock(&kvm
->lock
);
3926 if (atomic_read(&kvm
->online_vcpus
) != 0)
3929 kvm
->arch
.bsp_vcpu_id
= arg
;
3930 mutex_unlock(&kvm
->lock
);
3932 case KVM_XEN_HVM_CONFIG
: {
3934 if (copy_from_user(&kvm
->arch
.xen_hvm_config
, argp
,
3935 sizeof(struct kvm_xen_hvm_config
)))
3938 if (kvm
->arch
.xen_hvm_config
.flags
)
3943 case KVM_SET_CLOCK
: {
3944 struct kvm_clock_data user_ns
;
3949 if (copy_from_user(&user_ns
, argp
, sizeof(user_ns
)))
3957 local_irq_disable();
3958 now_ns
= get_kernel_ns();
3959 delta
= user_ns
.clock
- now_ns
;
3961 kvm
->arch
.kvmclock_offset
= delta
;
3962 kvm_gen_update_masterclock(kvm
);
3965 case KVM_GET_CLOCK
: {
3966 struct kvm_clock_data user_ns
;
3969 local_irq_disable();
3970 now_ns
= get_kernel_ns();
3971 user_ns
.clock
= kvm
->arch
.kvmclock_offset
+ now_ns
;
3974 memset(&user_ns
.pad
, 0, sizeof(user_ns
.pad
));
3977 if (copy_to_user(argp
, &user_ns
, sizeof(user_ns
)))
3982 case KVM_ENABLE_CAP
: {
3983 struct kvm_enable_cap cap
;
3986 if (copy_from_user(&cap
, argp
, sizeof(cap
)))
3988 r
= kvm_vm_ioctl_enable_cap(kvm
, &cap
);
3992 r
= kvm_vm_ioctl_assigned_device(kvm
, ioctl
, arg
);
3998 static void kvm_init_msr_list(void)
4003 for (i
= j
= 0; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
4004 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
4008 * Even MSRs that are valid in the host may not be exposed
4009 * to the guests in some cases. We could work around this
4010 * in VMX with the generic MSR save/load machinery, but it
4011 * is not really worthwhile since it will really only
4012 * happen with nested virtualization.
4014 switch (msrs_to_save
[i
]) {
4015 case MSR_IA32_BNDCFGS
:
4016 if (!kvm_x86_ops
->mpx_supported())
4024 msrs_to_save
[j
] = msrs_to_save
[i
];
4027 num_msrs_to_save
= j
;
4029 for (i
= j
= 0; i
< ARRAY_SIZE(emulated_msrs
); i
++) {
4030 switch (emulated_msrs
[i
]) {
4031 case MSR_IA32_SMBASE
:
4032 if (!kvm_x86_ops
->cpu_has_high_real_mode_segbase())
4040 emulated_msrs
[j
] = emulated_msrs
[i
];
4043 num_emulated_msrs
= j
;
4046 static int vcpu_mmio_write(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
,
4054 if (!(vcpu
->arch
.apic
&&
4055 !kvm_iodevice_write(vcpu
, &vcpu
->arch
.apic
->dev
, addr
, n
, v
))
4056 && kvm_io_bus_write(vcpu
, KVM_MMIO_BUS
, addr
, n
, v
))
4067 static int vcpu_mmio_read(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
, void *v
)
4074 if (!(vcpu
->arch
.apic
&&
4075 !kvm_iodevice_read(vcpu
, &vcpu
->arch
.apic
->dev
,
4077 && kvm_io_bus_read(vcpu
, KVM_MMIO_BUS
, addr
, n
, v
))
4079 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, n
, addr
, *(u64
*)v
);
4089 static void kvm_set_segment(struct kvm_vcpu
*vcpu
,
4090 struct kvm_segment
*var
, int seg
)
4092 kvm_x86_ops
->set_segment(vcpu
, var
, seg
);
4095 void kvm_get_segment(struct kvm_vcpu
*vcpu
,
4096 struct kvm_segment
*var
, int seg
)
4098 kvm_x86_ops
->get_segment(vcpu
, var
, seg
);
4101 gpa_t
translate_nested_gpa(struct kvm_vcpu
*vcpu
, gpa_t gpa
, u32 access
,
4102 struct x86_exception
*exception
)
4106 BUG_ON(!mmu_is_nested(vcpu
));
4108 /* NPT walks are always user-walks */
4109 access
|= PFERR_USER_MASK
;
4110 t_gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, gpa
, access
, exception
);
4115 gpa_t
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu
*vcpu
, gva_t gva
,
4116 struct x86_exception
*exception
)
4118 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4119 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4122 gpa_t
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu
*vcpu
, gva_t gva
,
4123 struct x86_exception
*exception
)
4125 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4126 access
|= PFERR_FETCH_MASK
;
4127 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4130 gpa_t
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu
*vcpu
, gva_t gva
,
4131 struct x86_exception
*exception
)
4133 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4134 access
|= PFERR_WRITE_MASK
;
4135 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4138 /* uses this to access any guest's mapped memory without checking CPL */
4139 gpa_t
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu
*vcpu
, gva_t gva
,
4140 struct x86_exception
*exception
)
4142 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, 0, exception
);
4145 static int kvm_read_guest_virt_helper(gva_t addr
, void *val
, unsigned int bytes
,
4146 struct kvm_vcpu
*vcpu
, u32 access
,
4147 struct x86_exception
*exception
)
4150 int r
= X86EMUL_CONTINUE
;
4153 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
, access
,
4155 unsigned offset
= addr
& (PAGE_SIZE
-1);
4156 unsigned toread
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
4159 if (gpa
== UNMAPPED_GVA
)
4160 return X86EMUL_PROPAGATE_FAULT
;
4161 ret
= kvm_vcpu_read_guest_page(vcpu
, gpa
>> PAGE_SHIFT
, data
,
4164 r
= X86EMUL_IO_NEEDED
;
4176 /* used for instruction fetching */
4177 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt
*ctxt
,
4178 gva_t addr
, void *val
, unsigned int bytes
,
4179 struct x86_exception
*exception
)
4181 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4182 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4186 /* Inline kvm_read_guest_virt_helper for speed. */
4187 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
, access
|PFERR_FETCH_MASK
,
4189 if (unlikely(gpa
== UNMAPPED_GVA
))
4190 return X86EMUL_PROPAGATE_FAULT
;
4192 offset
= addr
& (PAGE_SIZE
-1);
4193 if (WARN_ON(offset
+ bytes
> PAGE_SIZE
))
4194 bytes
= (unsigned)PAGE_SIZE
- offset
;
4195 ret
= kvm_vcpu_read_guest_page(vcpu
, gpa
>> PAGE_SHIFT
, val
,
4197 if (unlikely(ret
< 0))
4198 return X86EMUL_IO_NEEDED
;
4200 return X86EMUL_CONTINUE
;
4203 int kvm_read_guest_virt(struct x86_emulate_ctxt
*ctxt
,
4204 gva_t addr
, void *val
, unsigned int bytes
,
4205 struct x86_exception
*exception
)
4207 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4208 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4210 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, access
,
4213 EXPORT_SYMBOL_GPL(kvm_read_guest_virt
);
4215 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt
*ctxt
,
4216 gva_t addr
, void *val
, unsigned int bytes
,
4217 struct x86_exception
*exception
)
4219 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4220 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, 0, exception
);
4223 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt
*ctxt
,
4224 unsigned long addr
, void *val
, unsigned int bytes
)
4226 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4227 int r
= kvm_vcpu_read_guest(vcpu
, addr
, val
, bytes
);
4229 return r
< 0 ? X86EMUL_IO_NEEDED
: X86EMUL_CONTINUE
;
4232 int kvm_write_guest_virt_system(struct x86_emulate_ctxt
*ctxt
,
4233 gva_t addr
, void *val
,
4235 struct x86_exception
*exception
)
4237 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4239 int r
= X86EMUL_CONTINUE
;
4242 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
,
4245 unsigned offset
= addr
& (PAGE_SIZE
-1);
4246 unsigned towrite
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
4249 if (gpa
== UNMAPPED_GVA
)
4250 return X86EMUL_PROPAGATE_FAULT
;
4251 ret
= kvm_vcpu_write_guest(vcpu
, gpa
, data
, towrite
);
4253 r
= X86EMUL_IO_NEEDED
;
4264 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system
);
4266 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu
*vcpu
, unsigned long gva
,
4267 gpa_t
*gpa
, struct x86_exception
*exception
,
4270 u32 access
= ((kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0)
4271 | (write
? PFERR_WRITE_MASK
: 0);
4273 if (vcpu_match_mmio_gva(vcpu
, gva
)
4274 && !permission_fault(vcpu
, vcpu
->arch
.walk_mmu
,
4275 vcpu
->arch
.access
, access
)) {
4276 *gpa
= vcpu
->arch
.mmio_gfn
<< PAGE_SHIFT
|
4277 (gva
& (PAGE_SIZE
- 1));
4278 trace_vcpu_match_mmio(gva
, *gpa
, write
, false);
4282 *gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4284 if (*gpa
== UNMAPPED_GVA
)
4287 /* For APIC access vmexit */
4288 if ((*gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
4291 if (vcpu_match_mmio_gpa(vcpu
, *gpa
)) {
4292 trace_vcpu_match_mmio(gva
, *gpa
, write
, true);
4299 int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4300 const void *val
, int bytes
)
4304 ret
= kvm_vcpu_write_guest(vcpu
, gpa
, val
, bytes
);
4307 kvm_mmu_pte_write(vcpu
, gpa
, val
, bytes
);
4311 struct read_write_emulator_ops
{
4312 int (*read_write_prepare
)(struct kvm_vcpu
*vcpu
, void *val
,
4314 int (*read_write_emulate
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4315 void *val
, int bytes
);
4316 int (*read_write_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4317 int bytes
, void *val
);
4318 int (*read_write_exit_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4319 void *val
, int bytes
);
4323 static int read_prepare(struct kvm_vcpu
*vcpu
, void *val
, int bytes
)
4325 if (vcpu
->mmio_read_completed
) {
4326 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, bytes
,
4327 vcpu
->mmio_fragments
[0].gpa
, *(u64
*)val
);
4328 vcpu
->mmio_read_completed
= 0;
4335 static int read_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4336 void *val
, int bytes
)
4338 return !kvm_vcpu_read_guest(vcpu
, gpa
, val
, bytes
);
4341 static int write_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4342 void *val
, int bytes
)
4344 return emulator_write_phys(vcpu
, gpa
, val
, bytes
);
4347 static int write_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
, int bytes
, void *val
)
4349 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE
, bytes
, gpa
, *(u64
*)val
);
4350 return vcpu_mmio_write(vcpu
, gpa
, bytes
, val
);
4353 static int read_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4354 void *val
, int bytes
)
4356 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED
, bytes
, gpa
, 0);
4357 return X86EMUL_IO_NEEDED
;
4360 static int write_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4361 void *val
, int bytes
)
4363 struct kvm_mmio_fragment
*frag
= &vcpu
->mmio_fragments
[0];
4365 memcpy(vcpu
->run
->mmio
.data
, frag
->data
, min(8u, frag
->len
));
4366 return X86EMUL_CONTINUE
;
4369 static const struct read_write_emulator_ops read_emultor
= {
4370 .read_write_prepare
= read_prepare
,
4371 .read_write_emulate
= read_emulate
,
4372 .read_write_mmio
= vcpu_mmio_read
,
4373 .read_write_exit_mmio
= read_exit_mmio
,
4376 static const struct read_write_emulator_ops write_emultor
= {
4377 .read_write_emulate
= write_emulate
,
4378 .read_write_mmio
= write_mmio
,
4379 .read_write_exit_mmio
= write_exit_mmio
,
4383 static int emulator_read_write_onepage(unsigned long addr
, void *val
,
4385 struct x86_exception
*exception
,
4386 struct kvm_vcpu
*vcpu
,
4387 const struct read_write_emulator_ops
*ops
)
4391 bool write
= ops
->write
;
4392 struct kvm_mmio_fragment
*frag
;
4394 ret
= vcpu_mmio_gva_to_gpa(vcpu
, addr
, &gpa
, exception
, write
);
4397 return X86EMUL_PROPAGATE_FAULT
;
4399 /* For APIC access vmexit */
4403 if (ops
->read_write_emulate(vcpu
, gpa
, val
, bytes
))
4404 return X86EMUL_CONTINUE
;
4408 * Is this MMIO handled locally?
4410 handled
= ops
->read_write_mmio(vcpu
, gpa
, bytes
, val
);
4411 if (handled
== bytes
)
4412 return X86EMUL_CONTINUE
;
4418 WARN_ON(vcpu
->mmio_nr_fragments
>= KVM_MAX_MMIO_FRAGMENTS
);
4419 frag
= &vcpu
->mmio_fragments
[vcpu
->mmio_nr_fragments
++];
4423 return X86EMUL_CONTINUE
;
4426 static int emulator_read_write(struct x86_emulate_ctxt
*ctxt
,
4428 void *val
, unsigned int bytes
,
4429 struct x86_exception
*exception
,
4430 const struct read_write_emulator_ops
*ops
)
4432 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4436 if (ops
->read_write_prepare
&&
4437 ops
->read_write_prepare(vcpu
, val
, bytes
))
4438 return X86EMUL_CONTINUE
;
4440 vcpu
->mmio_nr_fragments
= 0;
4442 /* Crossing a page boundary? */
4443 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
4446 now
= -addr
& ~PAGE_MASK
;
4447 rc
= emulator_read_write_onepage(addr
, val
, now
, exception
,
4450 if (rc
!= X86EMUL_CONTINUE
)
4453 if (ctxt
->mode
!= X86EMUL_MODE_PROT64
)
4459 rc
= emulator_read_write_onepage(addr
, val
, bytes
, exception
,
4461 if (rc
!= X86EMUL_CONTINUE
)
4464 if (!vcpu
->mmio_nr_fragments
)
4467 gpa
= vcpu
->mmio_fragments
[0].gpa
;
4469 vcpu
->mmio_needed
= 1;
4470 vcpu
->mmio_cur_fragment
= 0;
4472 vcpu
->run
->mmio
.len
= min(8u, vcpu
->mmio_fragments
[0].len
);
4473 vcpu
->run
->mmio
.is_write
= vcpu
->mmio_is_write
= ops
->write
;
4474 vcpu
->run
->exit_reason
= KVM_EXIT_MMIO
;
4475 vcpu
->run
->mmio
.phys_addr
= gpa
;
4477 return ops
->read_write_exit_mmio(vcpu
, gpa
, val
, bytes
);
4480 static int emulator_read_emulated(struct x86_emulate_ctxt
*ctxt
,
4484 struct x86_exception
*exception
)
4486 return emulator_read_write(ctxt
, addr
, val
, bytes
,
4487 exception
, &read_emultor
);
4490 static int emulator_write_emulated(struct x86_emulate_ctxt
*ctxt
,
4494 struct x86_exception
*exception
)
4496 return emulator_read_write(ctxt
, addr
, (void *)val
, bytes
,
4497 exception
, &write_emultor
);
4500 #define CMPXCHG_TYPE(t, ptr, old, new) \
4501 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4503 #ifdef CONFIG_X86_64
4504 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4506 # define CMPXCHG64(ptr, old, new) \
4507 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4510 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt
*ctxt
,
4515 struct x86_exception
*exception
)
4517 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4523 /* guests cmpxchg8b have to be emulated atomically */
4524 if (bytes
> 8 || (bytes
& (bytes
- 1)))
4527 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, addr
, NULL
);
4529 if (gpa
== UNMAPPED_GVA
||
4530 (gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
4533 if (((gpa
+ bytes
- 1) & PAGE_MASK
) != (gpa
& PAGE_MASK
))
4536 page
= kvm_vcpu_gfn_to_page(vcpu
, gpa
>> PAGE_SHIFT
);
4537 if (is_error_page(page
))
4540 kaddr
= kmap_atomic(page
);
4541 kaddr
+= offset_in_page(gpa
);
4544 exchanged
= CMPXCHG_TYPE(u8
, kaddr
, old
, new);
4547 exchanged
= CMPXCHG_TYPE(u16
, kaddr
, old
, new);
4550 exchanged
= CMPXCHG_TYPE(u32
, kaddr
, old
, new);
4553 exchanged
= CMPXCHG64(kaddr
, old
, new);
4558 kunmap_atomic(kaddr
);
4559 kvm_release_page_dirty(page
);
4562 return X86EMUL_CMPXCHG_FAILED
;
4564 kvm_vcpu_mark_page_dirty(vcpu
, gpa
>> PAGE_SHIFT
);
4565 kvm_mmu_pte_write(vcpu
, gpa
, new, bytes
);
4567 return X86EMUL_CONTINUE
;
4570 printk_once(KERN_WARNING
"kvm: emulating exchange as write\n");
4572 return emulator_write_emulated(ctxt
, addr
, new, bytes
, exception
);
4575 static int kernel_pio(struct kvm_vcpu
*vcpu
, void *pd
)
4577 /* TODO: String I/O for in kernel device */
4580 if (vcpu
->arch
.pio
.in
)
4581 r
= kvm_io_bus_read(vcpu
, KVM_PIO_BUS
, vcpu
->arch
.pio
.port
,
4582 vcpu
->arch
.pio
.size
, pd
);
4584 r
= kvm_io_bus_write(vcpu
, KVM_PIO_BUS
,
4585 vcpu
->arch
.pio
.port
, vcpu
->arch
.pio
.size
,
4590 static int emulator_pio_in_out(struct kvm_vcpu
*vcpu
, int size
,
4591 unsigned short port
, void *val
,
4592 unsigned int count
, bool in
)
4594 vcpu
->arch
.pio
.port
= port
;
4595 vcpu
->arch
.pio
.in
= in
;
4596 vcpu
->arch
.pio
.count
= count
;
4597 vcpu
->arch
.pio
.size
= size
;
4599 if (!kernel_pio(vcpu
, vcpu
->arch
.pio_data
)) {
4600 vcpu
->arch
.pio
.count
= 0;
4604 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
4605 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
4606 vcpu
->run
->io
.size
= size
;
4607 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
4608 vcpu
->run
->io
.count
= count
;
4609 vcpu
->run
->io
.port
= port
;
4614 static int emulator_pio_in_emulated(struct x86_emulate_ctxt
*ctxt
,
4615 int size
, unsigned short port
, void *val
,
4618 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4621 if (vcpu
->arch
.pio
.count
)
4624 ret
= emulator_pio_in_out(vcpu
, size
, port
, val
, count
, true);
4627 memcpy(val
, vcpu
->arch
.pio_data
, size
* count
);
4628 trace_kvm_pio(KVM_PIO_IN
, port
, size
, count
, vcpu
->arch
.pio_data
);
4629 vcpu
->arch
.pio
.count
= 0;
4636 static int emulator_pio_out_emulated(struct x86_emulate_ctxt
*ctxt
,
4637 int size
, unsigned short port
,
4638 const void *val
, unsigned int count
)
4640 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4642 memcpy(vcpu
->arch
.pio_data
, val
, size
* count
);
4643 trace_kvm_pio(KVM_PIO_OUT
, port
, size
, count
, vcpu
->arch
.pio_data
);
4644 return emulator_pio_in_out(vcpu
, size
, port
, (void *)val
, count
, false);
4647 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
4649 return kvm_x86_ops
->get_segment_base(vcpu
, seg
);
4652 static void emulator_invlpg(struct x86_emulate_ctxt
*ctxt
, ulong address
)
4654 kvm_mmu_invlpg(emul_to_vcpu(ctxt
), address
);
4657 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu
*vcpu
)
4659 if (!need_emulate_wbinvd(vcpu
))
4660 return X86EMUL_CONTINUE
;
4662 if (kvm_x86_ops
->has_wbinvd_exit()) {
4663 int cpu
= get_cpu();
4665 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
4666 smp_call_function_many(vcpu
->arch
.wbinvd_dirty_mask
,
4667 wbinvd_ipi
, NULL
, 1);
4669 cpumask_clear(vcpu
->arch
.wbinvd_dirty_mask
);
4672 return X86EMUL_CONTINUE
;
4675 int kvm_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
4677 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
4678 return kvm_emulate_wbinvd_noskip(vcpu
);
4680 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd
);
4684 static void emulator_wbinvd(struct x86_emulate_ctxt
*ctxt
)
4686 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt
));
4689 static int emulator_get_dr(struct x86_emulate_ctxt
*ctxt
, int dr
,
4690 unsigned long *dest
)
4692 return kvm_get_dr(emul_to_vcpu(ctxt
), dr
, dest
);
4695 static int emulator_set_dr(struct x86_emulate_ctxt
*ctxt
, int dr
,
4696 unsigned long value
)
4699 return __kvm_set_dr(emul_to_vcpu(ctxt
), dr
, value
);
4702 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
4704 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
4707 static unsigned long emulator_get_cr(struct x86_emulate_ctxt
*ctxt
, int cr
)
4709 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4710 unsigned long value
;
4714 value
= kvm_read_cr0(vcpu
);
4717 value
= vcpu
->arch
.cr2
;
4720 value
= kvm_read_cr3(vcpu
);
4723 value
= kvm_read_cr4(vcpu
);
4726 value
= kvm_get_cr8(vcpu
);
4729 kvm_err("%s: unexpected cr %u\n", __func__
, cr
);
4736 static int emulator_set_cr(struct x86_emulate_ctxt
*ctxt
, int cr
, ulong val
)
4738 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4743 res
= kvm_set_cr0(vcpu
, mk_cr_64(kvm_read_cr0(vcpu
), val
));
4746 vcpu
->arch
.cr2
= val
;
4749 res
= kvm_set_cr3(vcpu
, val
);
4752 res
= kvm_set_cr4(vcpu
, mk_cr_64(kvm_read_cr4(vcpu
), val
));
4755 res
= kvm_set_cr8(vcpu
, val
);
4758 kvm_err("%s: unexpected cr %u\n", __func__
, cr
);
4765 static int emulator_get_cpl(struct x86_emulate_ctxt
*ctxt
)
4767 return kvm_x86_ops
->get_cpl(emul_to_vcpu(ctxt
));
4770 static void emulator_get_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4772 kvm_x86_ops
->get_gdt(emul_to_vcpu(ctxt
), dt
);
4775 static void emulator_get_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4777 kvm_x86_ops
->get_idt(emul_to_vcpu(ctxt
), dt
);
4780 static void emulator_set_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4782 kvm_x86_ops
->set_gdt(emul_to_vcpu(ctxt
), dt
);
4785 static void emulator_set_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4787 kvm_x86_ops
->set_idt(emul_to_vcpu(ctxt
), dt
);
4790 static unsigned long emulator_get_cached_segment_base(
4791 struct x86_emulate_ctxt
*ctxt
, int seg
)
4793 return get_segment_base(emul_to_vcpu(ctxt
), seg
);
4796 static bool emulator_get_segment(struct x86_emulate_ctxt
*ctxt
, u16
*selector
,
4797 struct desc_struct
*desc
, u32
*base3
,
4800 struct kvm_segment var
;
4802 kvm_get_segment(emul_to_vcpu(ctxt
), &var
, seg
);
4803 *selector
= var
.selector
;
4806 memset(desc
, 0, sizeof(*desc
));
4812 set_desc_limit(desc
, var
.limit
);
4813 set_desc_base(desc
, (unsigned long)var
.base
);
4814 #ifdef CONFIG_X86_64
4816 *base3
= var
.base
>> 32;
4818 desc
->type
= var
.type
;
4820 desc
->dpl
= var
.dpl
;
4821 desc
->p
= var
.present
;
4822 desc
->avl
= var
.avl
;
4830 static void emulator_set_segment(struct x86_emulate_ctxt
*ctxt
, u16 selector
,
4831 struct desc_struct
*desc
, u32 base3
,
4834 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4835 struct kvm_segment var
;
4837 var
.selector
= selector
;
4838 var
.base
= get_desc_base(desc
);
4839 #ifdef CONFIG_X86_64
4840 var
.base
|= ((u64
)base3
) << 32;
4842 var
.limit
= get_desc_limit(desc
);
4844 var
.limit
= (var
.limit
<< 12) | 0xfff;
4845 var
.type
= desc
->type
;
4846 var
.dpl
= desc
->dpl
;
4851 var
.avl
= desc
->avl
;
4852 var
.present
= desc
->p
;
4853 var
.unusable
= !var
.present
;
4856 kvm_set_segment(vcpu
, &var
, seg
);
4860 static int emulator_get_msr(struct x86_emulate_ctxt
*ctxt
,
4861 u32 msr_index
, u64
*pdata
)
4863 struct msr_data msr
;
4866 msr
.index
= msr_index
;
4867 msr
.host_initiated
= false;
4868 r
= kvm_get_msr(emul_to_vcpu(ctxt
), &msr
);
4876 static int emulator_set_msr(struct x86_emulate_ctxt
*ctxt
,
4877 u32 msr_index
, u64 data
)
4879 struct msr_data msr
;
4882 msr
.index
= msr_index
;
4883 msr
.host_initiated
= false;
4884 return kvm_set_msr(emul_to_vcpu(ctxt
), &msr
);
4887 static u64
emulator_get_smbase(struct x86_emulate_ctxt
*ctxt
)
4889 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4891 return vcpu
->arch
.smbase
;
4894 static void emulator_set_smbase(struct x86_emulate_ctxt
*ctxt
, u64 smbase
)
4896 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4898 vcpu
->arch
.smbase
= smbase
;
4901 static int emulator_check_pmc(struct x86_emulate_ctxt
*ctxt
,
4904 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt
), pmc
);
4907 static int emulator_read_pmc(struct x86_emulate_ctxt
*ctxt
,
4908 u32 pmc
, u64
*pdata
)
4910 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt
), pmc
, pdata
);
4913 static void emulator_halt(struct x86_emulate_ctxt
*ctxt
)
4915 emul_to_vcpu(ctxt
)->arch
.halt_request
= 1;
4918 static void emulator_get_fpu(struct x86_emulate_ctxt
*ctxt
)
4921 kvm_load_guest_fpu(emul_to_vcpu(ctxt
));
4923 * CR0.TS may reference the host fpu state, not the guest fpu state,
4924 * so it may be clear at this point.
4929 static void emulator_put_fpu(struct x86_emulate_ctxt
*ctxt
)
4934 static int emulator_intercept(struct x86_emulate_ctxt
*ctxt
,
4935 struct x86_instruction_info
*info
,
4936 enum x86_intercept_stage stage
)
4938 return kvm_x86_ops
->check_intercept(emul_to_vcpu(ctxt
), info
, stage
);
4941 static void emulator_get_cpuid(struct x86_emulate_ctxt
*ctxt
,
4942 u32
*eax
, u32
*ebx
, u32
*ecx
, u32
*edx
)
4944 kvm_cpuid(emul_to_vcpu(ctxt
), eax
, ebx
, ecx
, edx
);
4947 static ulong
emulator_read_gpr(struct x86_emulate_ctxt
*ctxt
, unsigned reg
)
4949 return kvm_register_read(emul_to_vcpu(ctxt
), reg
);
4952 static void emulator_write_gpr(struct x86_emulate_ctxt
*ctxt
, unsigned reg
, ulong val
)
4954 kvm_register_write(emul_to_vcpu(ctxt
), reg
, val
);
4957 static void emulator_set_nmi_mask(struct x86_emulate_ctxt
*ctxt
, bool masked
)
4959 kvm_x86_ops
->set_nmi_mask(emul_to_vcpu(ctxt
), masked
);
4962 static const struct x86_emulate_ops emulate_ops
= {
4963 .read_gpr
= emulator_read_gpr
,
4964 .write_gpr
= emulator_write_gpr
,
4965 .read_std
= kvm_read_guest_virt_system
,
4966 .write_std
= kvm_write_guest_virt_system
,
4967 .read_phys
= kvm_read_guest_phys_system
,
4968 .fetch
= kvm_fetch_guest_virt
,
4969 .read_emulated
= emulator_read_emulated
,
4970 .write_emulated
= emulator_write_emulated
,
4971 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
4972 .invlpg
= emulator_invlpg
,
4973 .pio_in_emulated
= emulator_pio_in_emulated
,
4974 .pio_out_emulated
= emulator_pio_out_emulated
,
4975 .get_segment
= emulator_get_segment
,
4976 .set_segment
= emulator_set_segment
,
4977 .get_cached_segment_base
= emulator_get_cached_segment_base
,
4978 .get_gdt
= emulator_get_gdt
,
4979 .get_idt
= emulator_get_idt
,
4980 .set_gdt
= emulator_set_gdt
,
4981 .set_idt
= emulator_set_idt
,
4982 .get_cr
= emulator_get_cr
,
4983 .set_cr
= emulator_set_cr
,
4984 .cpl
= emulator_get_cpl
,
4985 .get_dr
= emulator_get_dr
,
4986 .set_dr
= emulator_set_dr
,
4987 .get_smbase
= emulator_get_smbase
,
4988 .set_smbase
= emulator_set_smbase
,
4989 .set_msr
= emulator_set_msr
,
4990 .get_msr
= emulator_get_msr
,
4991 .check_pmc
= emulator_check_pmc
,
4992 .read_pmc
= emulator_read_pmc
,
4993 .halt
= emulator_halt
,
4994 .wbinvd
= emulator_wbinvd
,
4995 .fix_hypercall
= emulator_fix_hypercall
,
4996 .get_fpu
= emulator_get_fpu
,
4997 .put_fpu
= emulator_put_fpu
,
4998 .intercept
= emulator_intercept
,
4999 .get_cpuid
= emulator_get_cpuid
,
5000 .set_nmi_mask
= emulator_set_nmi_mask
,
5003 static void toggle_interruptibility(struct kvm_vcpu
*vcpu
, u32 mask
)
5005 u32 int_shadow
= kvm_x86_ops
->get_interrupt_shadow(vcpu
);
5007 * an sti; sti; sequence only disable interrupts for the first
5008 * instruction. So, if the last instruction, be it emulated or
5009 * not, left the system with the INT_STI flag enabled, it
5010 * means that the last instruction is an sti. We should not
5011 * leave the flag on in this case. The same goes for mov ss
5013 if (int_shadow
& mask
)
5015 if (unlikely(int_shadow
|| mask
)) {
5016 kvm_x86_ops
->set_interrupt_shadow(vcpu
, mask
);
5018 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5022 static bool inject_emulated_exception(struct kvm_vcpu
*vcpu
)
5024 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5025 if (ctxt
->exception
.vector
== PF_VECTOR
)
5026 return kvm_propagate_fault(vcpu
, &ctxt
->exception
);
5028 if (ctxt
->exception
.error_code_valid
)
5029 kvm_queue_exception_e(vcpu
, ctxt
->exception
.vector
,
5030 ctxt
->exception
.error_code
);
5032 kvm_queue_exception(vcpu
, ctxt
->exception
.vector
);
5036 static void init_emulate_ctxt(struct kvm_vcpu
*vcpu
)
5038 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5041 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
5043 ctxt
->eflags
= kvm_get_rflags(vcpu
);
5044 ctxt
->eip
= kvm_rip_read(vcpu
);
5045 ctxt
->mode
= (!is_protmode(vcpu
)) ? X86EMUL_MODE_REAL
:
5046 (ctxt
->eflags
& X86_EFLAGS_VM
) ? X86EMUL_MODE_VM86
:
5047 (cs_l
&& is_long_mode(vcpu
)) ? X86EMUL_MODE_PROT64
:
5048 cs_db
? X86EMUL_MODE_PROT32
:
5049 X86EMUL_MODE_PROT16
;
5050 BUILD_BUG_ON(HF_GUEST_MASK
!= X86EMUL_GUEST_MASK
);
5051 BUILD_BUG_ON(HF_SMM_MASK
!= X86EMUL_SMM_MASK
);
5052 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK
!= X86EMUL_SMM_INSIDE_NMI_MASK
);
5053 ctxt
->emul_flags
= vcpu
->arch
.hflags
;
5055 init_decode_cache(ctxt
);
5056 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
5059 int kvm_inject_realmode_interrupt(struct kvm_vcpu
*vcpu
, int irq
, int inc_eip
)
5061 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5064 init_emulate_ctxt(vcpu
);
5068 ctxt
->_eip
= ctxt
->eip
+ inc_eip
;
5069 ret
= emulate_int_real(ctxt
, irq
);
5071 if (ret
!= X86EMUL_CONTINUE
)
5072 return EMULATE_FAIL
;
5074 ctxt
->eip
= ctxt
->_eip
;
5075 kvm_rip_write(vcpu
, ctxt
->eip
);
5076 kvm_set_rflags(vcpu
, ctxt
->eflags
);
5078 if (irq
== NMI_VECTOR
)
5079 vcpu
->arch
.nmi_pending
= 0;
5081 vcpu
->arch
.interrupt
.pending
= false;
5083 return EMULATE_DONE
;
5085 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt
);
5087 static int handle_emulation_failure(struct kvm_vcpu
*vcpu
)
5089 int r
= EMULATE_DONE
;
5091 ++vcpu
->stat
.insn_emulation_fail
;
5092 trace_kvm_emulate_insn_failed(vcpu
);
5093 if (!is_guest_mode(vcpu
) && kvm_x86_ops
->get_cpl(vcpu
) == 0) {
5094 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
5095 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
5096 vcpu
->run
->internal
.ndata
= 0;
5099 kvm_queue_exception(vcpu
, UD_VECTOR
);
5104 static bool reexecute_instruction(struct kvm_vcpu
*vcpu
, gva_t cr2
,
5105 bool write_fault_to_shadow_pgtable
,
5111 if (emulation_type
& EMULTYPE_NO_REEXECUTE
)
5114 if (!vcpu
->arch
.mmu
.direct_map
) {
5116 * Write permission should be allowed since only
5117 * write access need to be emulated.
5119 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, cr2
, NULL
);
5122 * If the mapping is invalid in guest, let cpu retry
5123 * it to generate fault.
5125 if (gpa
== UNMAPPED_GVA
)
5130 * Do not retry the unhandleable instruction if it faults on the
5131 * readonly host memory, otherwise it will goto a infinite loop:
5132 * retry instruction -> write #PF -> emulation fail -> retry
5133 * instruction -> ...
5135 pfn
= gfn_to_pfn(vcpu
->kvm
, gpa_to_gfn(gpa
));
5138 * If the instruction failed on the error pfn, it can not be fixed,
5139 * report the error to userspace.
5141 if (is_error_noslot_pfn(pfn
))
5144 kvm_release_pfn_clean(pfn
);
5146 /* The instructions are well-emulated on direct mmu. */
5147 if (vcpu
->arch
.mmu
.direct_map
) {
5148 unsigned int indirect_shadow_pages
;
5150 spin_lock(&vcpu
->kvm
->mmu_lock
);
5151 indirect_shadow_pages
= vcpu
->kvm
->arch
.indirect_shadow_pages
;
5152 spin_unlock(&vcpu
->kvm
->mmu_lock
);
5154 if (indirect_shadow_pages
)
5155 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
5161 * if emulation was due to access to shadowed page table
5162 * and it failed try to unshadow page and re-enter the
5163 * guest to let CPU execute the instruction.
5165 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
5168 * If the access faults on its page table, it can not
5169 * be fixed by unprotecting shadow page and it should
5170 * be reported to userspace.
5172 return !write_fault_to_shadow_pgtable
;
5175 static bool retry_instruction(struct x86_emulate_ctxt
*ctxt
,
5176 unsigned long cr2
, int emulation_type
)
5178 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5179 unsigned long last_retry_eip
, last_retry_addr
, gpa
= cr2
;
5181 last_retry_eip
= vcpu
->arch
.last_retry_eip
;
5182 last_retry_addr
= vcpu
->arch
.last_retry_addr
;
5185 * If the emulation is caused by #PF and it is non-page_table
5186 * writing instruction, it means the VM-EXIT is caused by shadow
5187 * page protected, we can zap the shadow page and retry this
5188 * instruction directly.
5190 * Note: if the guest uses a non-page-table modifying instruction
5191 * on the PDE that points to the instruction, then we will unmap
5192 * the instruction and go to an infinite loop. So, we cache the
5193 * last retried eip and the last fault address, if we meet the eip
5194 * and the address again, we can break out of the potential infinite
5197 vcpu
->arch
.last_retry_eip
= vcpu
->arch
.last_retry_addr
= 0;
5199 if (!(emulation_type
& EMULTYPE_RETRY
))
5202 if (x86_page_table_writing_insn(ctxt
))
5205 if (ctxt
->eip
== last_retry_eip
&& last_retry_addr
== cr2
)
5208 vcpu
->arch
.last_retry_eip
= ctxt
->eip
;
5209 vcpu
->arch
.last_retry_addr
= cr2
;
5211 if (!vcpu
->arch
.mmu
.direct_map
)
5212 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, cr2
, NULL
);
5214 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
5219 static int complete_emulated_mmio(struct kvm_vcpu
*vcpu
);
5220 static int complete_emulated_pio(struct kvm_vcpu
*vcpu
);
5222 static void kvm_smm_changed(struct kvm_vcpu
*vcpu
)
5224 if (!(vcpu
->arch
.hflags
& HF_SMM_MASK
)) {
5225 /* This is a good place to trace that we are exiting SMM. */
5226 trace_kvm_enter_smm(vcpu
->vcpu_id
, vcpu
->arch
.smbase
, false);
5228 if (unlikely(vcpu
->arch
.smi_pending
)) {
5229 kvm_make_request(KVM_REQ_SMI
, vcpu
);
5230 vcpu
->arch
.smi_pending
= 0;
5232 /* Process a latched INIT, if any. */
5233 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5237 kvm_mmu_reset_context(vcpu
);
5240 static void kvm_set_hflags(struct kvm_vcpu
*vcpu
, unsigned emul_flags
)
5242 unsigned changed
= vcpu
->arch
.hflags
^ emul_flags
;
5244 vcpu
->arch
.hflags
= emul_flags
;
5246 if (changed
& HF_SMM_MASK
)
5247 kvm_smm_changed(vcpu
);
5250 static int kvm_vcpu_check_hw_bp(unsigned long addr
, u32 type
, u32 dr7
,
5259 for (i
= 0; i
< 4; i
++, enable
>>= 2, rwlen
>>= 4)
5260 if ((enable
& 3) && (rwlen
& 15) == type
&& db
[i
] == addr
)
5265 static void kvm_vcpu_check_singlestep(struct kvm_vcpu
*vcpu
, unsigned long rflags
, int *r
)
5267 struct kvm_run
*kvm_run
= vcpu
->run
;
5270 * rflags is the old, "raw" value of the flags. The new value has
5271 * not been saved yet.
5273 * This is correct even for TF set by the guest, because "the
5274 * processor will not generate this exception after the instruction
5275 * that sets the TF flag".
5277 if (unlikely(rflags
& X86_EFLAGS_TF
)) {
5278 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
) {
5279 kvm_run
->debug
.arch
.dr6
= DR6_BS
| DR6_FIXED_1
|
5281 kvm_run
->debug
.arch
.pc
= vcpu
->arch
.singlestep_rip
;
5282 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
5283 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
5284 *r
= EMULATE_USER_EXIT
;
5286 vcpu
->arch
.emulate_ctxt
.eflags
&= ~X86_EFLAGS_TF
;
5288 * "Certain debug exceptions may clear bit 0-3. The
5289 * remaining contents of the DR6 register are never
5290 * cleared by the processor".
5292 vcpu
->arch
.dr6
&= ~15;
5293 vcpu
->arch
.dr6
|= DR6_BS
| DR6_RTM
;
5294 kvm_queue_exception(vcpu
, DB_VECTOR
);
5299 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu
*vcpu
, int *r
)
5301 if (unlikely(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) &&
5302 (vcpu
->arch
.guest_debug_dr7
& DR7_BP_EN_MASK
)) {
5303 struct kvm_run
*kvm_run
= vcpu
->run
;
5304 unsigned long eip
= kvm_get_linear_rip(vcpu
);
5305 u32 dr6
= kvm_vcpu_check_hw_bp(eip
, 0,
5306 vcpu
->arch
.guest_debug_dr7
,
5310 kvm_run
->debug
.arch
.dr6
= dr6
| DR6_FIXED_1
| DR6_RTM
;
5311 kvm_run
->debug
.arch
.pc
= eip
;
5312 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
5313 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
5314 *r
= EMULATE_USER_EXIT
;
5319 if (unlikely(vcpu
->arch
.dr7
& DR7_BP_EN_MASK
) &&
5320 !(kvm_get_rflags(vcpu
) & X86_EFLAGS_RF
)) {
5321 unsigned long eip
= kvm_get_linear_rip(vcpu
);
5322 u32 dr6
= kvm_vcpu_check_hw_bp(eip
, 0,
5327 vcpu
->arch
.dr6
&= ~15;
5328 vcpu
->arch
.dr6
|= dr6
| DR6_RTM
;
5329 kvm_queue_exception(vcpu
, DB_VECTOR
);
5338 int x86_emulate_instruction(struct kvm_vcpu
*vcpu
,
5345 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5346 bool writeback
= true;
5347 bool write_fault_to_spt
= vcpu
->arch
.write_fault_to_shadow_pgtable
;
5350 * Clear write_fault_to_shadow_pgtable here to ensure it is
5353 vcpu
->arch
.write_fault_to_shadow_pgtable
= false;
5354 kvm_clear_exception_queue(vcpu
);
5356 if (!(emulation_type
& EMULTYPE_NO_DECODE
)) {
5357 init_emulate_ctxt(vcpu
);
5360 * We will reenter on the same instruction since
5361 * we do not set complete_userspace_io. This does not
5362 * handle watchpoints yet, those would be handled in
5365 if (kvm_vcpu_check_breakpoint(vcpu
, &r
))
5368 ctxt
->interruptibility
= 0;
5369 ctxt
->have_exception
= false;
5370 ctxt
->exception
.vector
= -1;
5371 ctxt
->perm_ok
= false;
5373 ctxt
->ud
= emulation_type
& EMULTYPE_TRAP_UD
;
5375 r
= x86_decode_insn(ctxt
, insn
, insn_len
);
5377 trace_kvm_emulate_insn_start(vcpu
);
5378 ++vcpu
->stat
.insn_emulation
;
5379 if (r
!= EMULATION_OK
) {
5380 if (emulation_type
& EMULTYPE_TRAP_UD
)
5381 return EMULATE_FAIL
;
5382 if (reexecute_instruction(vcpu
, cr2
, write_fault_to_spt
,
5384 return EMULATE_DONE
;
5385 if (emulation_type
& EMULTYPE_SKIP
)
5386 return EMULATE_FAIL
;
5387 return handle_emulation_failure(vcpu
);
5391 if (emulation_type
& EMULTYPE_SKIP
) {
5392 kvm_rip_write(vcpu
, ctxt
->_eip
);
5393 if (ctxt
->eflags
& X86_EFLAGS_RF
)
5394 kvm_set_rflags(vcpu
, ctxt
->eflags
& ~X86_EFLAGS_RF
);
5395 return EMULATE_DONE
;
5398 if (retry_instruction(ctxt
, cr2
, emulation_type
))
5399 return EMULATE_DONE
;
5401 /* this is needed for vmware backdoor interface to work since it
5402 changes registers values during IO operation */
5403 if (vcpu
->arch
.emulate_regs_need_sync_from_vcpu
) {
5404 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
5405 emulator_invalidate_register_cache(ctxt
);
5409 r
= x86_emulate_insn(ctxt
);
5411 if (r
== EMULATION_INTERCEPTED
)
5412 return EMULATE_DONE
;
5414 if (r
== EMULATION_FAILED
) {
5415 if (reexecute_instruction(vcpu
, cr2
, write_fault_to_spt
,
5417 return EMULATE_DONE
;
5419 return handle_emulation_failure(vcpu
);
5422 if (ctxt
->have_exception
) {
5424 if (inject_emulated_exception(vcpu
))
5426 } else if (vcpu
->arch
.pio
.count
) {
5427 if (!vcpu
->arch
.pio
.in
) {
5428 /* FIXME: return into emulator if single-stepping. */
5429 vcpu
->arch
.pio
.count
= 0;
5432 vcpu
->arch
.complete_userspace_io
= complete_emulated_pio
;
5434 r
= EMULATE_USER_EXIT
;
5435 } else if (vcpu
->mmio_needed
) {
5436 if (!vcpu
->mmio_is_write
)
5438 r
= EMULATE_USER_EXIT
;
5439 vcpu
->arch
.complete_userspace_io
= complete_emulated_mmio
;
5440 } else if (r
== EMULATION_RESTART
)
5446 unsigned long rflags
= kvm_x86_ops
->get_rflags(vcpu
);
5447 toggle_interruptibility(vcpu
, ctxt
->interruptibility
);
5448 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
5449 if (vcpu
->arch
.hflags
!= ctxt
->emul_flags
)
5450 kvm_set_hflags(vcpu
, ctxt
->emul_flags
);
5451 kvm_rip_write(vcpu
, ctxt
->eip
);
5452 if (r
== EMULATE_DONE
)
5453 kvm_vcpu_check_singlestep(vcpu
, rflags
, &r
);
5454 if (!ctxt
->have_exception
||
5455 exception_type(ctxt
->exception
.vector
) == EXCPT_TRAP
)
5456 __kvm_set_rflags(vcpu
, ctxt
->eflags
);
5459 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5460 * do nothing, and it will be requested again as soon as
5461 * the shadow expires. But we still need to check here,
5462 * because POPF has no interrupt shadow.
5464 if (unlikely((ctxt
->eflags
& ~rflags
) & X86_EFLAGS_IF
))
5465 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5467 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= true;
5471 EXPORT_SYMBOL_GPL(x86_emulate_instruction
);
5473 int kvm_fast_pio_out(struct kvm_vcpu
*vcpu
, int size
, unsigned short port
)
5475 unsigned long val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
5476 int ret
= emulator_pio_out_emulated(&vcpu
->arch
.emulate_ctxt
,
5477 size
, port
, &val
, 1);
5478 /* do not return to emulator after return from userspace */
5479 vcpu
->arch
.pio
.count
= 0;
5482 EXPORT_SYMBOL_GPL(kvm_fast_pio_out
);
5484 static void tsc_bad(void *info
)
5486 __this_cpu_write(cpu_tsc_khz
, 0);
5489 static void tsc_khz_changed(void *data
)
5491 struct cpufreq_freqs
*freq
= data
;
5492 unsigned long khz
= 0;
5496 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
5497 khz
= cpufreq_quick_get(raw_smp_processor_id());
5500 __this_cpu_write(cpu_tsc_khz
, khz
);
5503 static int kvmclock_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
5506 struct cpufreq_freqs
*freq
= data
;
5508 struct kvm_vcpu
*vcpu
;
5509 int i
, send_ipi
= 0;
5512 * We allow guests to temporarily run on slowing clocks,
5513 * provided we notify them after, or to run on accelerating
5514 * clocks, provided we notify them before. Thus time never
5517 * However, we have a problem. We can't atomically update
5518 * the frequency of a given CPU from this function; it is
5519 * merely a notifier, which can be called from any CPU.
5520 * Changing the TSC frequency at arbitrary points in time
5521 * requires a recomputation of local variables related to
5522 * the TSC for each VCPU. We must flag these local variables
5523 * to be updated and be sure the update takes place with the
5524 * new frequency before any guests proceed.
5526 * Unfortunately, the combination of hotplug CPU and frequency
5527 * change creates an intractable locking scenario; the order
5528 * of when these callouts happen is undefined with respect to
5529 * CPU hotplug, and they can race with each other. As such,
5530 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5531 * undefined; you can actually have a CPU frequency change take
5532 * place in between the computation of X and the setting of the
5533 * variable. To protect against this problem, all updates of
5534 * the per_cpu tsc_khz variable are done in an interrupt
5535 * protected IPI, and all callers wishing to update the value
5536 * must wait for a synchronous IPI to complete (which is trivial
5537 * if the caller is on the CPU already). This establishes the
5538 * necessary total order on variable updates.
5540 * Note that because a guest time update may take place
5541 * anytime after the setting of the VCPU's request bit, the
5542 * correct TSC value must be set before the request. However,
5543 * to ensure the update actually makes it to any guest which
5544 * starts running in hardware virtualization between the set
5545 * and the acquisition of the spinlock, we must also ping the
5546 * CPU after setting the request bit.
5550 if (val
== CPUFREQ_PRECHANGE
&& freq
->old
> freq
->new)
5552 if (val
== CPUFREQ_POSTCHANGE
&& freq
->old
< freq
->new)
5555 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
5557 spin_lock(&kvm_lock
);
5558 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
5559 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
5560 if (vcpu
->cpu
!= freq
->cpu
)
5562 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
5563 if (vcpu
->cpu
!= smp_processor_id())
5567 spin_unlock(&kvm_lock
);
5569 if (freq
->old
< freq
->new && send_ipi
) {
5571 * We upscale the frequency. Must make the guest
5572 * doesn't see old kvmclock values while running with
5573 * the new frequency, otherwise we risk the guest sees
5574 * time go backwards.
5576 * In case we update the frequency for another cpu
5577 * (which might be in guest context) send an interrupt
5578 * to kick the cpu out of guest context. Next time
5579 * guest context is entered kvmclock will be updated,
5580 * so the guest will not see stale values.
5582 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
5587 static struct notifier_block kvmclock_cpufreq_notifier_block
= {
5588 .notifier_call
= kvmclock_cpufreq_notifier
5591 static int kvmclock_cpu_notifier(struct notifier_block
*nfb
,
5592 unsigned long action
, void *hcpu
)
5594 unsigned int cpu
= (unsigned long)hcpu
;
5598 case CPU_DOWN_FAILED
:
5599 smp_call_function_single(cpu
, tsc_khz_changed
, NULL
, 1);
5601 case CPU_DOWN_PREPARE
:
5602 smp_call_function_single(cpu
, tsc_bad
, NULL
, 1);
5608 static struct notifier_block kvmclock_cpu_notifier_block
= {
5609 .notifier_call
= kvmclock_cpu_notifier
,
5610 .priority
= -INT_MAX
5613 static void kvm_timer_init(void)
5617 max_tsc_khz
= tsc_khz
;
5619 cpu_notifier_register_begin();
5620 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
)) {
5621 #ifdef CONFIG_CPU_FREQ
5622 struct cpufreq_policy policy
;
5623 memset(&policy
, 0, sizeof(policy
));
5625 cpufreq_get_policy(&policy
, cpu
);
5626 if (policy
.cpuinfo
.max_freq
)
5627 max_tsc_khz
= policy
.cpuinfo
.max_freq
;
5630 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block
,
5631 CPUFREQ_TRANSITION_NOTIFIER
);
5633 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz
);
5634 for_each_online_cpu(cpu
)
5635 smp_call_function_single(cpu
, tsc_khz_changed
, NULL
, 1);
5637 __register_hotcpu_notifier(&kvmclock_cpu_notifier_block
);
5638 cpu_notifier_register_done();
5642 static DEFINE_PER_CPU(struct kvm_vcpu
*, current_vcpu
);
5644 int kvm_is_in_guest(void)
5646 return __this_cpu_read(current_vcpu
) != NULL
;
5649 static int kvm_is_user_mode(void)
5653 if (__this_cpu_read(current_vcpu
))
5654 user_mode
= kvm_x86_ops
->get_cpl(__this_cpu_read(current_vcpu
));
5656 return user_mode
!= 0;
5659 static unsigned long kvm_get_guest_ip(void)
5661 unsigned long ip
= 0;
5663 if (__this_cpu_read(current_vcpu
))
5664 ip
= kvm_rip_read(__this_cpu_read(current_vcpu
));
5669 static struct perf_guest_info_callbacks kvm_guest_cbs
= {
5670 .is_in_guest
= kvm_is_in_guest
,
5671 .is_user_mode
= kvm_is_user_mode
,
5672 .get_guest_ip
= kvm_get_guest_ip
,
5675 void kvm_before_handle_nmi(struct kvm_vcpu
*vcpu
)
5677 __this_cpu_write(current_vcpu
, vcpu
);
5679 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi
);
5681 void kvm_after_handle_nmi(struct kvm_vcpu
*vcpu
)
5683 __this_cpu_write(current_vcpu
, NULL
);
5685 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi
);
5687 static void kvm_set_mmio_spte_mask(void)
5690 int maxphyaddr
= boot_cpu_data
.x86_phys_bits
;
5693 * Set the reserved bits and the present bit of an paging-structure
5694 * entry to generate page fault with PFER.RSV = 1.
5696 /* Mask the reserved physical address bits. */
5697 mask
= rsvd_bits(maxphyaddr
, 51);
5699 /* Bit 62 is always reserved for 32bit host. */
5700 mask
|= 0x3ull
<< 62;
5702 /* Set the present bit. */
5705 #ifdef CONFIG_X86_64
5707 * If reserved bit is not supported, clear the present bit to disable
5710 if (maxphyaddr
== 52)
5714 kvm_mmu_set_mmio_spte_mask(mask
);
5717 #ifdef CONFIG_X86_64
5718 static void pvclock_gtod_update_fn(struct work_struct
*work
)
5722 struct kvm_vcpu
*vcpu
;
5725 spin_lock(&kvm_lock
);
5726 list_for_each_entry(kvm
, &vm_list
, vm_list
)
5727 kvm_for_each_vcpu(i
, vcpu
, kvm
)
5728 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
5729 atomic_set(&kvm_guest_has_master_clock
, 0);
5730 spin_unlock(&kvm_lock
);
5733 static DECLARE_WORK(pvclock_gtod_work
, pvclock_gtod_update_fn
);
5736 * Notification about pvclock gtod data update.
5738 static int pvclock_gtod_notify(struct notifier_block
*nb
, unsigned long unused
,
5741 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
5742 struct timekeeper
*tk
= priv
;
5744 update_pvclock_gtod(tk
);
5746 /* disable master clock if host does not trust, or does not
5747 * use, TSC clocksource
5749 if (gtod
->clock
.vclock_mode
!= VCLOCK_TSC
&&
5750 atomic_read(&kvm_guest_has_master_clock
) != 0)
5751 queue_work(system_long_wq
, &pvclock_gtod_work
);
5756 static struct notifier_block pvclock_gtod_notifier
= {
5757 .notifier_call
= pvclock_gtod_notify
,
5761 int kvm_arch_init(void *opaque
)
5764 struct kvm_x86_ops
*ops
= opaque
;
5767 printk(KERN_ERR
"kvm: already loaded the other module\n");
5772 if (!ops
->cpu_has_kvm_support()) {
5773 printk(KERN_ERR
"kvm: no hardware support\n");
5777 if (ops
->disabled_by_bios()) {
5778 printk(KERN_ERR
"kvm: disabled by bios\n");
5784 shared_msrs
= alloc_percpu(struct kvm_shared_msrs
);
5786 printk(KERN_ERR
"kvm: failed to allocate percpu kvm_shared_msrs\n");
5790 r
= kvm_mmu_module_init();
5792 goto out_free_percpu
;
5794 kvm_set_mmio_spte_mask();
5798 kvm_mmu_set_mask_ptes(PT_USER_MASK
, PT_ACCESSED_MASK
,
5799 PT_DIRTY_MASK
, PT64_NX_MASK
, 0);
5803 perf_register_guest_info_callbacks(&kvm_guest_cbs
);
5806 host_xcr0
= xgetbv(XCR_XFEATURE_ENABLED_MASK
);
5809 #ifdef CONFIG_X86_64
5810 pvclock_gtod_register_notifier(&pvclock_gtod_notifier
);
5816 free_percpu(shared_msrs
);
5821 void kvm_arch_exit(void)
5823 perf_unregister_guest_info_callbacks(&kvm_guest_cbs
);
5825 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
5826 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block
,
5827 CPUFREQ_TRANSITION_NOTIFIER
);
5828 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block
);
5829 #ifdef CONFIG_X86_64
5830 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier
);
5833 kvm_mmu_module_exit();
5834 free_percpu(shared_msrs
);
5837 int kvm_vcpu_halt(struct kvm_vcpu
*vcpu
)
5839 ++vcpu
->stat
.halt_exits
;
5840 if (lapic_in_kernel(vcpu
)) {
5841 vcpu
->arch
.mp_state
= KVM_MP_STATE_HALTED
;
5844 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
5848 EXPORT_SYMBOL_GPL(kvm_vcpu_halt
);
5850 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
5852 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
5853 return kvm_vcpu_halt(vcpu
);
5855 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
5858 * kvm_pv_kick_cpu_op: Kick a vcpu.
5860 * @apicid - apicid of vcpu to be kicked.
5862 static void kvm_pv_kick_cpu_op(struct kvm
*kvm
, unsigned long flags
, int apicid
)
5864 struct kvm_lapic_irq lapic_irq
;
5866 lapic_irq
.shorthand
= 0;
5867 lapic_irq
.dest_mode
= 0;
5868 lapic_irq
.dest_id
= apicid
;
5869 lapic_irq
.msi_redir_hint
= false;
5871 lapic_irq
.delivery_mode
= APIC_DM_REMRD
;
5872 kvm_irq_delivery_to_apic(kvm
, NULL
, &lapic_irq
, NULL
);
5875 int kvm_emulate_hypercall(struct kvm_vcpu
*vcpu
)
5877 unsigned long nr
, a0
, a1
, a2
, a3
, ret
;
5878 int op_64_bit
, r
= 1;
5880 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
5882 if (kvm_hv_hypercall_enabled(vcpu
->kvm
))
5883 return kvm_hv_hypercall(vcpu
);
5885 nr
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
5886 a0
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
5887 a1
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
5888 a2
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
5889 a3
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
5891 trace_kvm_hypercall(nr
, a0
, a1
, a2
, a3
);
5893 op_64_bit
= is_64_bit_mode(vcpu
);
5902 if (kvm_x86_ops
->get_cpl(vcpu
) != 0) {
5908 case KVM_HC_VAPIC_POLL_IRQ
:
5911 case KVM_HC_KICK_CPU
:
5912 kvm_pv_kick_cpu_op(vcpu
->kvm
, a0
, a1
);
5922 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
5923 ++vcpu
->stat
.hypercalls
;
5926 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall
);
5928 static int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
)
5930 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5931 char instruction
[3];
5932 unsigned long rip
= kvm_rip_read(vcpu
);
5934 kvm_x86_ops
->patch_hypercall(vcpu
, instruction
);
5936 return emulator_write_emulated(ctxt
, rip
, instruction
, 3, NULL
);
5939 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
)
5941 return vcpu
->run
->request_interrupt_window
&&
5942 likely(!pic_in_kernel(vcpu
->kvm
));
5945 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
)
5947 struct kvm_run
*kvm_run
= vcpu
->run
;
5949 kvm_run
->if_flag
= (kvm_get_rflags(vcpu
) & X86_EFLAGS_IF
) != 0;
5950 kvm_run
->flags
= is_smm(vcpu
) ? KVM_RUN_X86_SMM
: 0;
5951 kvm_run
->cr8
= kvm_get_cr8(vcpu
);
5952 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
5953 kvm_run
->ready_for_interrupt_injection
=
5954 pic_in_kernel(vcpu
->kvm
) ||
5955 kvm_vcpu_ready_for_interrupt_injection(vcpu
);
5958 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
)
5962 if (!kvm_x86_ops
->update_cr8_intercept
)
5965 if (!vcpu
->arch
.apic
)
5968 if (!vcpu
->arch
.apic
->vapic_addr
)
5969 max_irr
= kvm_lapic_find_highest_irr(vcpu
);
5976 tpr
= kvm_lapic_get_cr8(vcpu
);
5978 kvm_x86_ops
->update_cr8_intercept(vcpu
, tpr
, max_irr
);
5981 static int inject_pending_event(struct kvm_vcpu
*vcpu
, bool req_int_win
)
5985 /* try to reinject previous events if any */
5986 if (vcpu
->arch
.exception
.pending
) {
5987 trace_kvm_inj_exception(vcpu
->arch
.exception
.nr
,
5988 vcpu
->arch
.exception
.has_error_code
,
5989 vcpu
->arch
.exception
.error_code
);
5991 if (exception_type(vcpu
->arch
.exception
.nr
) == EXCPT_FAULT
)
5992 __kvm_set_rflags(vcpu
, kvm_get_rflags(vcpu
) |
5995 if (vcpu
->arch
.exception
.nr
== DB_VECTOR
&&
5996 (vcpu
->arch
.dr7
& DR7_GD
)) {
5997 vcpu
->arch
.dr7
&= ~DR7_GD
;
5998 kvm_update_dr7(vcpu
);
6001 kvm_x86_ops
->queue_exception(vcpu
, vcpu
->arch
.exception
.nr
,
6002 vcpu
->arch
.exception
.has_error_code
,
6003 vcpu
->arch
.exception
.error_code
,
6004 vcpu
->arch
.exception
.reinject
);
6008 if (vcpu
->arch
.nmi_injected
) {
6009 kvm_x86_ops
->set_nmi(vcpu
);
6013 if (vcpu
->arch
.interrupt
.pending
) {
6014 kvm_x86_ops
->set_irq(vcpu
);
6018 if (is_guest_mode(vcpu
) && kvm_x86_ops
->check_nested_events
) {
6019 r
= kvm_x86_ops
->check_nested_events(vcpu
, req_int_win
);
6024 /* try to inject new event if pending */
6025 if (vcpu
->arch
.nmi_pending
) {
6026 if (kvm_x86_ops
->nmi_allowed(vcpu
)) {
6027 --vcpu
->arch
.nmi_pending
;
6028 vcpu
->arch
.nmi_injected
= true;
6029 kvm_x86_ops
->set_nmi(vcpu
);
6031 } else if (kvm_cpu_has_injectable_intr(vcpu
)) {
6033 * Because interrupts can be injected asynchronously, we are
6034 * calling check_nested_events again here to avoid a race condition.
6035 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6036 * proposal and current concerns. Perhaps we should be setting
6037 * KVM_REQ_EVENT only on certain events and not unconditionally?
6039 if (is_guest_mode(vcpu
) && kvm_x86_ops
->check_nested_events
) {
6040 r
= kvm_x86_ops
->check_nested_events(vcpu
, req_int_win
);
6044 if (kvm_x86_ops
->interrupt_allowed(vcpu
)) {
6045 kvm_queue_interrupt(vcpu
, kvm_cpu_get_interrupt(vcpu
),
6047 kvm_x86_ops
->set_irq(vcpu
);
6053 static void process_nmi(struct kvm_vcpu
*vcpu
)
6058 * x86 is limited to one NMI running, and one NMI pending after it.
6059 * If an NMI is already in progress, limit further NMIs to just one.
6060 * Otherwise, allow two (and we'll inject the first one immediately).
6062 if (kvm_x86_ops
->get_nmi_mask(vcpu
) || vcpu
->arch
.nmi_injected
)
6065 vcpu
->arch
.nmi_pending
+= atomic_xchg(&vcpu
->arch
.nmi_queued
, 0);
6066 vcpu
->arch
.nmi_pending
= min(vcpu
->arch
.nmi_pending
, limit
);
6067 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6070 #define put_smstate(type, buf, offset, val) \
6071 *(type *)((buf) + (offset) - 0x7e00) = val
6073 static u32
process_smi_get_segment_flags(struct kvm_segment
*seg
)
6076 flags
|= seg
->g
<< 23;
6077 flags
|= seg
->db
<< 22;
6078 flags
|= seg
->l
<< 21;
6079 flags
|= seg
->avl
<< 20;
6080 flags
|= seg
->present
<< 15;
6081 flags
|= seg
->dpl
<< 13;
6082 flags
|= seg
->s
<< 12;
6083 flags
|= seg
->type
<< 8;
6087 static void process_smi_save_seg_32(struct kvm_vcpu
*vcpu
, char *buf
, int n
)
6089 struct kvm_segment seg
;
6092 kvm_get_segment(vcpu
, &seg
, n
);
6093 put_smstate(u32
, buf
, 0x7fa8 + n
* 4, seg
.selector
);
6096 offset
= 0x7f84 + n
* 12;
6098 offset
= 0x7f2c + (n
- 3) * 12;
6100 put_smstate(u32
, buf
, offset
+ 8, seg
.base
);
6101 put_smstate(u32
, buf
, offset
+ 4, seg
.limit
);
6102 put_smstate(u32
, buf
, offset
, process_smi_get_segment_flags(&seg
));
6105 #ifdef CONFIG_X86_64
6106 static void process_smi_save_seg_64(struct kvm_vcpu
*vcpu
, char *buf
, int n
)
6108 struct kvm_segment seg
;
6112 kvm_get_segment(vcpu
, &seg
, n
);
6113 offset
= 0x7e00 + n
* 16;
6115 flags
= process_smi_get_segment_flags(&seg
) >> 8;
6116 put_smstate(u16
, buf
, offset
, seg
.selector
);
6117 put_smstate(u16
, buf
, offset
+ 2, flags
);
6118 put_smstate(u32
, buf
, offset
+ 4, seg
.limit
);
6119 put_smstate(u64
, buf
, offset
+ 8, seg
.base
);
6123 static void process_smi_save_state_32(struct kvm_vcpu
*vcpu
, char *buf
)
6126 struct kvm_segment seg
;
6130 put_smstate(u32
, buf
, 0x7ffc, kvm_read_cr0(vcpu
));
6131 put_smstate(u32
, buf
, 0x7ff8, kvm_read_cr3(vcpu
));
6132 put_smstate(u32
, buf
, 0x7ff4, kvm_get_rflags(vcpu
));
6133 put_smstate(u32
, buf
, 0x7ff0, kvm_rip_read(vcpu
));
6135 for (i
= 0; i
< 8; i
++)
6136 put_smstate(u32
, buf
, 0x7fd0 + i
* 4, kvm_register_read(vcpu
, i
));
6138 kvm_get_dr(vcpu
, 6, &val
);
6139 put_smstate(u32
, buf
, 0x7fcc, (u32
)val
);
6140 kvm_get_dr(vcpu
, 7, &val
);
6141 put_smstate(u32
, buf
, 0x7fc8, (u32
)val
);
6143 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_TR
);
6144 put_smstate(u32
, buf
, 0x7fc4, seg
.selector
);
6145 put_smstate(u32
, buf
, 0x7f64, seg
.base
);
6146 put_smstate(u32
, buf
, 0x7f60, seg
.limit
);
6147 put_smstate(u32
, buf
, 0x7f5c, process_smi_get_segment_flags(&seg
));
6149 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_LDTR
);
6150 put_smstate(u32
, buf
, 0x7fc0, seg
.selector
);
6151 put_smstate(u32
, buf
, 0x7f80, seg
.base
);
6152 put_smstate(u32
, buf
, 0x7f7c, seg
.limit
);
6153 put_smstate(u32
, buf
, 0x7f78, process_smi_get_segment_flags(&seg
));
6155 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
6156 put_smstate(u32
, buf
, 0x7f74, dt
.address
);
6157 put_smstate(u32
, buf
, 0x7f70, dt
.size
);
6159 kvm_x86_ops
->get_idt(vcpu
, &dt
);
6160 put_smstate(u32
, buf
, 0x7f58, dt
.address
);
6161 put_smstate(u32
, buf
, 0x7f54, dt
.size
);
6163 for (i
= 0; i
< 6; i
++)
6164 process_smi_save_seg_32(vcpu
, buf
, i
);
6166 put_smstate(u32
, buf
, 0x7f14, kvm_read_cr4(vcpu
));
6169 put_smstate(u32
, buf
, 0x7efc, 0x00020000);
6170 put_smstate(u32
, buf
, 0x7ef8, vcpu
->arch
.smbase
);
6173 static void process_smi_save_state_64(struct kvm_vcpu
*vcpu
, char *buf
)
6175 #ifdef CONFIG_X86_64
6177 struct kvm_segment seg
;
6181 for (i
= 0; i
< 16; i
++)
6182 put_smstate(u64
, buf
, 0x7ff8 - i
* 8, kvm_register_read(vcpu
, i
));
6184 put_smstate(u64
, buf
, 0x7f78, kvm_rip_read(vcpu
));
6185 put_smstate(u32
, buf
, 0x7f70, kvm_get_rflags(vcpu
));
6187 kvm_get_dr(vcpu
, 6, &val
);
6188 put_smstate(u64
, buf
, 0x7f68, val
);
6189 kvm_get_dr(vcpu
, 7, &val
);
6190 put_smstate(u64
, buf
, 0x7f60, val
);
6192 put_smstate(u64
, buf
, 0x7f58, kvm_read_cr0(vcpu
));
6193 put_smstate(u64
, buf
, 0x7f50, kvm_read_cr3(vcpu
));
6194 put_smstate(u64
, buf
, 0x7f48, kvm_read_cr4(vcpu
));
6196 put_smstate(u32
, buf
, 0x7f00, vcpu
->arch
.smbase
);
6199 put_smstate(u32
, buf
, 0x7efc, 0x00020064);
6201 put_smstate(u64
, buf
, 0x7ed0, vcpu
->arch
.efer
);
6203 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_TR
);
6204 put_smstate(u16
, buf
, 0x7e90, seg
.selector
);
6205 put_smstate(u16
, buf
, 0x7e92, process_smi_get_segment_flags(&seg
) >> 8);
6206 put_smstate(u32
, buf
, 0x7e94, seg
.limit
);
6207 put_smstate(u64
, buf
, 0x7e98, seg
.base
);
6209 kvm_x86_ops
->get_idt(vcpu
, &dt
);
6210 put_smstate(u32
, buf
, 0x7e84, dt
.size
);
6211 put_smstate(u64
, buf
, 0x7e88, dt
.address
);
6213 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_LDTR
);
6214 put_smstate(u16
, buf
, 0x7e70, seg
.selector
);
6215 put_smstate(u16
, buf
, 0x7e72, process_smi_get_segment_flags(&seg
) >> 8);
6216 put_smstate(u32
, buf
, 0x7e74, seg
.limit
);
6217 put_smstate(u64
, buf
, 0x7e78, seg
.base
);
6219 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
6220 put_smstate(u32
, buf
, 0x7e64, dt
.size
);
6221 put_smstate(u64
, buf
, 0x7e68, dt
.address
);
6223 for (i
= 0; i
< 6; i
++)
6224 process_smi_save_seg_64(vcpu
, buf
, i
);
6230 static void process_smi(struct kvm_vcpu
*vcpu
)
6232 struct kvm_segment cs
, ds
;
6238 vcpu
->arch
.smi_pending
= true;
6242 trace_kvm_enter_smm(vcpu
->vcpu_id
, vcpu
->arch
.smbase
, true);
6243 vcpu
->arch
.hflags
|= HF_SMM_MASK
;
6244 memset(buf
, 0, 512);
6245 if (guest_cpuid_has_longmode(vcpu
))
6246 process_smi_save_state_64(vcpu
, buf
);
6248 process_smi_save_state_32(vcpu
, buf
);
6250 kvm_vcpu_write_guest(vcpu
, vcpu
->arch
.smbase
+ 0xfe00, buf
, sizeof(buf
));
6252 if (kvm_x86_ops
->get_nmi_mask(vcpu
))
6253 vcpu
->arch
.hflags
|= HF_SMM_INSIDE_NMI_MASK
;
6255 kvm_x86_ops
->set_nmi_mask(vcpu
, true);
6257 kvm_set_rflags(vcpu
, X86_EFLAGS_FIXED
);
6258 kvm_rip_write(vcpu
, 0x8000);
6260 cr0
= vcpu
->arch
.cr0
& ~(X86_CR0_PE
| X86_CR0_EM
| X86_CR0_TS
| X86_CR0_PG
);
6261 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
6262 vcpu
->arch
.cr0
= cr0
;
6264 kvm_x86_ops
->set_cr4(vcpu
, 0);
6266 /* Undocumented: IDT limit is set to zero on entry to SMM. */
6267 dt
.address
= dt
.size
= 0;
6268 kvm_x86_ops
->set_idt(vcpu
, &dt
);
6270 __kvm_set_dr(vcpu
, 7, DR7_FIXED_1
);
6272 cs
.selector
= (vcpu
->arch
.smbase
>> 4) & 0xffff;
6273 cs
.base
= vcpu
->arch
.smbase
;
6278 cs
.limit
= ds
.limit
= 0xffffffff;
6279 cs
.type
= ds
.type
= 0x3;
6280 cs
.dpl
= ds
.dpl
= 0;
6285 cs
.avl
= ds
.avl
= 0;
6286 cs
.present
= ds
.present
= 1;
6287 cs
.unusable
= ds
.unusable
= 0;
6288 cs
.padding
= ds
.padding
= 0;
6290 kvm_set_segment(vcpu
, &cs
, VCPU_SREG_CS
);
6291 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_DS
);
6292 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_ES
);
6293 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_FS
);
6294 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_GS
);
6295 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_SS
);
6297 if (guest_cpuid_has_longmode(vcpu
))
6298 kvm_x86_ops
->set_efer(vcpu
, 0);
6300 kvm_update_cpuid(vcpu
);
6301 kvm_mmu_reset_context(vcpu
);
6304 static void vcpu_scan_ioapic(struct kvm_vcpu
*vcpu
)
6306 if (!kvm_apic_hw_enabled(vcpu
->arch
.apic
))
6309 memset(vcpu
->arch
.eoi_exit_bitmap
, 0, 256 / 8);
6311 if (irqchip_split(vcpu
->kvm
))
6312 kvm_scan_ioapic_routes(vcpu
, vcpu
->arch
.eoi_exit_bitmap
);
6314 kvm_x86_ops
->sync_pir_to_irr(vcpu
);
6315 kvm_ioapic_scan_entry(vcpu
, vcpu
->arch
.eoi_exit_bitmap
);
6317 kvm_x86_ops
->load_eoi_exitmap(vcpu
);
6320 static void kvm_vcpu_flush_tlb(struct kvm_vcpu
*vcpu
)
6322 ++vcpu
->stat
.tlb_flush
;
6323 kvm_x86_ops
->tlb_flush(vcpu
);
6326 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu
*vcpu
)
6328 struct page
*page
= NULL
;
6330 if (!lapic_in_kernel(vcpu
))
6333 if (!kvm_x86_ops
->set_apic_access_page_addr
)
6336 page
= gfn_to_page(vcpu
->kvm
, APIC_DEFAULT_PHYS_BASE
>> PAGE_SHIFT
);
6337 if (is_error_page(page
))
6339 kvm_x86_ops
->set_apic_access_page_addr(vcpu
, page_to_phys(page
));
6342 * Do not pin apic access page in memory, the MMU notifier
6343 * will call us again if it is migrated or swapped out.
6347 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page
);
6349 void kvm_arch_mmu_notifier_invalidate_page(struct kvm
*kvm
,
6350 unsigned long address
)
6353 * The physical address of apic access page is stored in the VMCS.
6354 * Update it when it becomes invalid.
6356 if (address
== gfn_to_hva(kvm
, APIC_DEFAULT_PHYS_BASE
>> PAGE_SHIFT
))
6357 kvm_make_all_cpus_request(kvm
, KVM_REQ_APIC_PAGE_RELOAD
);
6361 * Returns 1 to let vcpu_run() continue the guest execution loop without
6362 * exiting to the userspace. Otherwise, the value will be returned to the
6365 static int vcpu_enter_guest(struct kvm_vcpu
*vcpu
)
6369 dm_request_for_irq_injection(vcpu
) &&
6370 kvm_cpu_accept_dm_intr(vcpu
);
6372 bool req_immediate_exit
= false;
6374 if (vcpu
->requests
) {
6375 if (kvm_check_request(KVM_REQ_MMU_RELOAD
, vcpu
))
6376 kvm_mmu_unload(vcpu
);
6377 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER
, vcpu
))
6378 __kvm_migrate_timers(vcpu
);
6379 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
))
6380 kvm_gen_update_masterclock(vcpu
->kvm
);
6381 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
))
6382 kvm_gen_kvmclock_update(vcpu
);
6383 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE
, vcpu
)) {
6384 r
= kvm_guest_time_update(vcpu
);
6388 if (kvm_check_request(KVM_REQ_MMU_SYNC
, vcpu
))
6389 kvm_mmu_sync_roots(vcpu
);
6390 if (kvm_check_request(KVM_REQ_TLB_FLUSH
, vcpu
))
6391 kvm_vcpu_flush_tlb(vcpu
);
6392 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS
, vcpu
)) {
6393 vcpu
->run
->exit_reason
= KVM_EXIT_TPR_ACCESS
;
6397 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT
, vcpu
)) {
6398 vcpu
->run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
6402 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU
, vcpu
)) {
6403 vcpu
->fpu_active
= 0;
6404 kvm_x86_ops
->fpu_deactivate(vcpu
);
6406 if (kvm_check_request(KVM_REQ_APF_HALT
, vcpu
)) {
6407 /* Page is swapped out. Do synthetic halt */
6408 vcpu
->arch
.apf
.halted
= true;
6412 if (kvm_check_request(KVM_REQ_STEAL_UPDATE
, vcpu
))
6413 record_steal_time(vcpu
);
6414 if (kvm_check_request(KVM_REQ_SMI
, vcpu
))
6416 if (kvm_check_request(KVM_REQ_NMI
, vcpu
))
6418 if (kvm_check_request(KVM_REQ_PMU
, vcpu
))
6419 kvm_pmu_handle_event(vcpu
);
6420 if (kvm_check_request(KVM_REQ_PMI
, vcpu
))
6421 kvm_pmu_deliver_pmi(vcpu
);
6422 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT
, vcpu
)) {
6423 BUG_ON(vcpu
->arch
.pending_ioapic_eoi
> 255);
6424 if (test_bit(vcpu
->arch
.pending_ioapic_eoi
,
6425 (void *) vcpu
->arch
.eoi_exit_bitmap
)) {
6426 vcpu
->run
->exit_reason
= KVM_EXIT_IOAPIC_EOI
;
6427 vcpu
->run
->eoi
.vector
=
6428 vcpu
->arch
.pending_ioapic_eoi
;
6433 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC
, vcpu
))
6434 vcpu_scan_ioapic(vcpu
);
6435 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD
, vcpu
))
6436 kvm_vcpu_reload_apic_access_page(vcpu
);
6437 if (kvm_check_request(KVM_REQ_HV_CRASH
, vcpu
)) {
6438 vcpu
->run
->exit_reason
= KVM_EXIT_SYSTEM_EVENT
;
6439 vcpu
->run
->system_event
.type
= KVM_SYSTEM_EVENT_CRASH
;
6443 if (kvm_check_request(KVM_REQ_HV_RESET
, vcpu
)) {
6444 vcpu
->run
->exit_reason
= KVM_EXIT_SYSTEM_EVENT
;
6445 vcpu
->run
->system_event
.type
= KVM_SYSTEM_EVENT_RESET
;
6452 * KVM_REQ_EVENT is not set when posted interrupts are set by
6453 * VT-d hardware, so we have to update RVI unconditionally.
6455 if (kvm_lapic_enabled(vcpu
)) {
6457 * Update architecture specific hints for APIC
6458 * virtual interrupt delivery.
6460 if (kvm_x86_ops
->hwapic_irr_update
)
6461 kvm_x86_ops
->hwapic_irr_update(vcpu
,
6462 kvm_lapic_find_highest_irr(vcpu
));
6465 if (kvm_check_request(KVM_REQ_EVENT
, vcpu
) || req_int_win
) {
6466 kvm_apic_accept_events(vcpu
);
6467 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_INIT_RECEIVED
) {
6472 if (inject_pending_event(vcpu
, req_int_win
) != 0)
6473 req_immediate_exit
= true;
6474 /* enable NMI/IRQ window open exits if needed */
6475 else if (vcpu
->arch
.nmi_pending
)
6476 kvm_x86_ops
->enable_nmi_window(vcpu
);
6477 else if (kvm_cpu_has_injectable_intr(vcpu
) || req_int_win
)
6478 kvm_x86_ops
->enable_irq_window(vcpu
);
6480 if (kvm_lapic_enabled(vcpu
)) {
6481 update_cr8_intercept(vcpu
);
6482 kvm_lapic_sync_to_vapic(vcpu
);
6486 r
= kvm_mmu_reload(vcpu
);
6488 goto cancel_injection
;
6493 kvm_x86_ops
->prepare_guest_switch(vcpu
);
6494 if (vcpu
->fpu_active
)
6495 kvm_load_guest_fpu(vcpu
);
6496 kvm_load_guest_xcr0(vcpu
);
6498 vcpu
->mode
= IN_GUEST_MODE
;
6500 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
6502 /* We should set ->mode before check ->requests,
6503 * see the comment in make_all_cpus_request.
6505 smp_mb__after_srcu_read_unlock();
6507 local_irq_disable();
6509 if (vcpu
->mode
== EXITING_GUEST_MODE
|| vcpu
->requests
6510 || need_resched() || signal_pending(current
)) {
6511 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
6515 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6517 goto cancel_injection
;
6520 if (req_immediate_exit
)
6521 smp_send_reschedule(vcpu
->cpu
);
6523 trace_kvm_entry(vcpu
->vcpu_id
);
6524 wait_lapic_expire(vcpu
);
6525 __kvm_guest_enter();
6527 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
6529 set_debugreg(vcpu
->arch
.eff_db
[0], 0);
6530 set_debugreg(vcpu
->arch
.eff_db
[1], 1);
6531 set_debugreg(vcpu
->arch
.eff_db
[2], 2);
6532 set_debugreg(vcpu
->arch
.eff_db
[3], 3);
6533 set_debugreg(vcpu
->arch
.dr6
, 6);
6534 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_RELOAD
;
6537 kvm_x86_ops
->run(vcpu
);
6540 * Do this here before restoring debug registers on the host. And
6541 * since we do this before handling the vmexit, a DR access vmexit
6542 * can (a) read the correct value of the debug registers, (b) set
6543 * KVM_DEBUGREG_WONT_EXIT again.
6545 if (unlikely(vcpu
->arch
.switch_db_regs
& KVM_DEBUGREG_WONT_EXIT
)) {
6548 WARN_ON(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
);
6549 kvm_x86_ops
->sync_dirty_debug_regs(vcpu
);
6550 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
6551 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
6555 * If the guest has used debug registers, at least dr7
6556 * will be disabled while returning to the host.
6557 * If we don't have active breakpoints in the host, we don't
6558 * care about the messed up debug address registers. But if
6559 * we have some of them active, restore the old state.
6561 if (hw_breakpoint_active())
6562 hw_breakpoint_restore();
6564 vcpu
->arch
.last_guest_tsc
= kvm_read_l1_tsc(vcpu
, rdtsc());
6566 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
6569 /* Interrupt is enabled by handle_external_intr() */
6570 kvm_x86_ops
->handle_external_intr(vcpu
);
6575 * We must have an instruction between local_irq_enable() and
6576 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6577 * the interrupt shadow. The stat.exits increment will do nicely.
6578 * But we need to prevent reordering, hence this barrier():
6586 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6589 * Profile KVM exit RIPs:
6591 if (unlikely(prof_on
== KVM_PROFILING
)) {
6592 unsigned long rip
= kvm_rip_read(vcpu
);
6593 profile_hit(KVM_PROFILING
, (void *)rip
);
6596 if (unlikely(vcpu
->arch
.tsc_always_catchup
))
6597 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
6599 if (vcpu
->arch
.apic_attention
)
6600 kvm_lapic_sync_from_vapic(vcpu
);
6602 r
= kvm_x86_ops
->handle_exit(vcpu
);
6606 kvm_x86_ops
->cancel_injection(vcpu
);
6607 if (unlikely(vcpu
->arch
.apic_attention
))
6608 kvm_lapic_sync_from_vapic(vcpu
);
6613 static inline int vcpu_block(struct kvm
*kvm
, struct kvm_vcpu
*vcpu
)
6615 if (!kvm_arch_vcpu_runnable(vcpu
) &&
6616 (!kvm_x86_ops
->pre_block
|| kvm_x86_ops
->pre_block(vcpu
) == 0)) {
6617 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
6618 kvm_vcpu_block(vcpu
);
6619 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
6621 if (kvm_x86_ops
->post_block
)
6622 kvm_x86_ops
->post_block(vcpu
);
6624 if (!kvm_check_request(KVM_REQ_UNHALT
, vcpu
))
6628 kvm_apic_accept_events(vcpu
);
6629 switch(vcpu
->arch
.mp_state
) {
6630 case KVM_MP_STATE_HALTED
:
6631 vcpu
->arch
.pv
.pv_unhalted
= false;
6632 vcpu
->arch
.mp_state
=
6633 KVM_MP_STATE_RUNNABLE
;
6634 case KVM_MP_STATE_RUNNABLE
:
6635 vcpu
->arch
.apf
.halted
= false;
6637 case KVM_MP_STATE_INIT_RECEIVED
:
6646 static inline bool kvm_vcpu_running(struct kvm_vcpu
*vcpu
)
6648 return (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
&&
6649 !vcpu
->arch
.apf
.halted
);
6652 static int vcpu_run(struct kvm_vcpu
*vcpu
)
6655 struct kvm
*kvm
= vcpu
->kvm
;
6657 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
6660 if (kvm_vcpu_running(vcpu
)) {
6661 r
= vcpu_enter_guest(vcpu
);
6663 r
= vcpu_block(kvm
, vcpu
);
6669 clear_bit(KVM_REQ_PENDING_TIMER
, &vcpu
->requests
);
6670 if (kvm_cpu_has_pending_timer(vcpu
))
6671 kvm_inject_pending_timer_irqs(vcpu
);
6673 if (dm_request_for_irq_injection(vcpu
) &&
6674 kvm_vcpu_ready_for_interrupt_injection(vcpu
)) {
6676 vcpu
->run
->exit_reason
= KVM_EXIT_IRQ_WINDOW_OPEN
;
6677 ++vcpu
->stat
.request_irq_exits
;
6681 kvm_check_async_pf_completion(vcpu
);
6683 if (signal_pending(current
)) {
6685 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
6686 ++vcpu
->stat
.signal_exits
;
6689 if (need_resched()) {
6690 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
6692 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
6696 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
6701 static inline int complete_emulated_io(struct kvm_vcpu
*vcpu
)
6704 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6705 r
= emulate_instruction(vcpu
, EMULTYPE_NO_DECODE
);
6706 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
6707 if (r
!= EMULATE_DONE
)
6712 static int complete_emulated_pio(struct kvm_vcpu
*vcpu
)
6714 BUG_ON(!vcpu
->arch
.pio
.count
);
6716 return complete_emulated_io(vcpu
);
6720 * Implements the following, as a state machine:
6724 * for each mmio piece in the fragment
6732 * for each mmio piece in the fragment
6737 static int complete_emulated_mmio(struct kvm_vcpu
*vcpu
)
6739 struct kvm_run
*run
= vcpu
->run
;
6740 struct kvm_mmio_fragment
*frag
;
6743 BUG_ON(!vcpu
->mmio_needed
);
6745 /* Complete previous fragment */
6746 frag
= &vcpu
->mmio_fragments
[vcpu
->mmio_cur_fragment
];
6747 len
= min(8u, frag
->len
);
6748 if (!vcpu
->mmio_is_write
)
6749 memcpy(frag
->data
, run
->mmio
.data
, len
);
6751 if (frag
->len
<= 8) {
6752 /* Switch to the next fragment. */
6754 vcpu
->mmio_cur_fragment
++;
6756 /* Go forward to the next mmio piece. */
6762 if (vcpu
->mmio_cur_fragment
>= vcpu
->mmio_nr_fragments
) {
6763 vcpu
->mmio_needed
= 0;
6765 /* FIXME: return into emulator if single-stepping. */
6766 if (vcpu
->mmio_is_write
)
6768 vcpu
->mmio_read_completed
= 1;
6769 return complete_emulated_io(vcpu
);
6772 run
->exit_reason
= KVM_EXIT_MMIO
;
6773 run
->mmio
.phys_addr
= frag
->gpa
;
6774 if (vcpu
->mmio_is_write
)
6775 memcpy(run
->mmio
.data
, frag
->data
, min(8u, frag
->len
));
6776 run
->mmio
.len
= min(8u, frag
->len
);
6777 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
6778 vcpu
->arch
.complete_userspace_io
= complete_emulated_mmio
;
6783 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
6785 struct fpu
*fpu
= ¤t
->thread
.fpu
;
6789 fpu__activate_curr(fpu
);
6791 if (vcpu
->sigset_active
)
6792 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
6794 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_UNINITIALIZED
)) {
6795 kvm_vcpu_block(vcpu
);
6796 kvm_apic_accept_events(vcpu
);
6797 clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
);
6802 /* re-sync apic's tpr */
6803 if (!lapic_in_kernel(vcpu
)) {
6804 if (kvm_set_cr8(vcpu
, kvm_run
->cr8
) != 0) {
6810 if (unlikely(vcpu
->arch
.complete_userspace_io
)) {
6811 int (*cui
)(struct kvm_vcpu
*) = vcpu
->arch
.complete_userspace_io
;
6812 vcpu
->arch
.complete_userspace_io
= NULL
;
6817 WARN_ON(vcpu
->arch
.pio
.count
|| vcpu
->mmio_needed
);
6822 post_kvm_run_save(vcpu
);
6823 if (vcpu
->sigset_active
)
6824 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
6829 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
6831 if (vcpu
->arch
.emulate_regs_need_sync_to_vcpu
) {
6833 * We are here if userspace calls get_regs() in the middle of
6834 * instruction emulation. Registers state needs to be copied
6835 * back from emulation context to vcpu. Userspace shouldn't do
6836 * that usually, but some bad designed PV devices (vmware
6837 * backdoor interface) need this to work
6839 emulator_writeback_register_cache(&vcpu
->arch
.emulate_ctxt
);
6840 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
6842 regs
->rax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
6843 regs
->rbx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
6844 regs
->rcx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
6845 regs
->rdx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
6846 regs
->rsi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
6847 regs
->rdi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
6848 regs
->rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
6849 regs
->rbp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
6850 #ifdef CONFIG_X86_64
6851 regs
->r8
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
6852 regs
->r9
= kvm_register_read(vcpu
, VCPU_REGS_R9
);
6853 regs
->r10
= kvm_register_read(vcpu
, VCPU_REGS_R10
);
6854 regs
->r11
= kvm_register_read(vcpu
, VCPU_REGS_R11
);
6855 regs
->r12
= kvm_register_read(vcpu
, VCPU_REGS_R12
);
6856 regs
->r13
= kvm_register_read(vcpu
, VCPU_REGS_R13
);
6857 regs
->r14
= kvm_register_read(vcpu
, VCPU_REGS_R14
);
6858 regs
->r15
= kvm_register_read(vcpu
, VCPU_REGS_R15
);
6861 regs
->rip
= kvm_rip_read(vcpu
);
6862 regs
->rflags
= kvm_get_rflags(vcpu
);
6867 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
6869 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= true;
6870 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
6872 kvm_register_write(vcpu
, VCPU_REGS_RAX
, regs
->rax
);
6873 kvm_register_write(vcpu
, VCPU_REGS_RBX
, regs
->rbx
);
6874 kvm_register_write(vcpu
, VCPU_REGS_RCX
, regs
->rcx
);
6875 kvm_register_write(vcpu
, VCPU_REGS_RDX
, regs
->rdx
);
6876 kvm_register_write(vcpu
, VCPU_REGS_RSI
, regs
->rsi
);
6877 kvm_register_write(vcpu
, VCPU_REGS_RDI
, regs
->rdi
);
6878 kvm_register_write(vcpu
, VCPU_REGS_RSP
, regs
->rsp
);
6879 kvm_register_write(vcpu
, VCPU_REGS_RBP
, regs
->rbp
);
6880 #ifdef CONFIG_X86_64
6881 kvm_register_write(vcpu
, VCPU_REGS_R8
, regs
->r8
);
6882 kvm_register_write(vcpu
, VCPU_REGS_R9
, regs
->r9
);
6883 kvm_register_write(vcpu
, VCPU_REGS_R10
, regs
->r10
);
6884 kvm_register_write(vcpu
, VCPU_REGS_R11
, regs
->r11
);
6885 kvm_register_write(vcpu
, VCPU_REGS_R12
, regs
->r12
);
6886 kvm_register_write(vcpu
, VCPU_REGS_R13
, regs
->r13
);
6887 kvm_register_write(vcpu
, VCPU_REGS_R14
, regs
->r14
);
6888 kvm_register_write(vcpu
, VCPU_REGS_R15
, regs
->r15
);
6891 kvm_rip_write(vcpu
, regs
->rip
);
6892 kvm_set_rflags(vcpu
, regs
->rflags
);
6894 vcpu
->arch
.exception
.pending
= false;
6896 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6901 void kvm_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
6903 struct kvm_segment cs
;
6905 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
6909 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits
);
6911 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
6912 struct kvm_sregs
*sregs
)
6916 kvm_get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
6917 kvm_get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
6918 kvm_get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
6919 kvm_get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
6920 kvm_get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
6921 kvm_get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
6923 kvm_get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
6924 kvm_get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
6926 kvm_x86_ops
->get_idt(vcpu
, &dt
);
6927 sregs
->idt
.limit
= dt
.size
;
6928 sregs
->idt
.base
= dt
.address
;
6929 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
6930 sregs
->gdt
.limit
= dt
.size
;
6931 sregs
->gdt
.base
= dt
.address
;
6933 sregs
->cr0
= kvm_read_cr0(vcpu
);
6934 sregs
->cr2
= vcpu
->arch
.cr2
;
6935 sregs
->cr3
= kvm_read_cr3(vcpu
);
6936 sregs
->cr4
= kvm_read_cr4(vcpu
);
6937 sregs
->cr8
= kvm_get_cr8(vcpu
);
6938 sregs
->efer
= vcpu
->arch
.efer
;
6939 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
6941 memset(sregs
->interrupt_bitmap
, 0, sizeof sregs
->interrupt_bitmap
);
6943 if (vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
)
6944 set_bit(vcpu
->arch
.interrupt
.nr
,
6945 (unsigned long *)sregs
->interrupt_bitmap
);
6950 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
6951 struct kvm_mp_state
*mp_state
)
6953 kvm_apic_accept_events(vcpu
);
6954 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_HALTED
&&
6955 vcpu
->arch
.pv
.pv_unhalted
)
6956 mp_state
->mp_state
= KVM_MP_STATE_RUNNABLE
;
6958 mp_state
->mp_state
= vcpu
->arch
.mp_state
;
6963 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
6964 struct kvm_mp_state
*mp_state
)
6966 if (!kvm_vcpu_has_lapic(vcpu
) &&
6967 mp_state
->mp_state
!= KVM_MP_STATE_RUNNABLE
)
6970 if (mp_state
->mp_state
== KVM_MP_STATE_SIPI_RECEIVED
) {
6971 vcpu
->arch
.mp_state
= KVM_MP_STATE_INIT_RECEIVED
;
6972 set_bit(KVM_APIC_SIPI
, &vcpu
->arch
.apic
->pending_events
);
6974 vcpu
->arch
.mp_state
= mp_state
->mp_state
;
6975 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6979 int kvm_task_switch(struct kvm_vcpu
*vcpu
, u16 tss_selector
, int idt_index
,
6980 int reason
, bool has_error_code
, u32 error_code
)
6982 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
6985 init_emulate_ctxt(vcpu
);
6987 ret
= emulator_task_switch(ctxt
, tss_selector
, idt_index
, reason
,
6988 has_error_code
, error_code
);
6991 return EMULATE_FAIL
;
6993 kvm_rip_write(vcpu
, ctxt
->eip
);
6994 kvm_set_rflags(vcpu
, ctxt
->eflags
);
6995 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6996 return EMULATE_DONE
;
6998 EXPORT_SYMBOL_GPL(kvm_task_switch
);
7000 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
7001 struct kvm_sregs
*sregs
)
7003 struct msr_data apic_base_msr
;
7004 int mmu_reset_needed
= 0;
7005 int pending_vec
, max_bits
, idx
;
7008 if (!guest_cpuid_has_xsave(vcpu
) && (sregs
->cr4
& X86_CR4_OSXSAVE
))
7011 dt
.size
= sregs
->idt
.limit
;
7012 dt
.address
= sregs
->idt
.base
;
7013 kvm_x86_ops
->set_idt(vcpu
, &dt
);
7014 dt
.size
= sregs
->gdt
.limit
;
7015 dt
.address
= sregs
->gdt
.base
;
7016 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
7018 vcpu
->arch
.cr2
= sregs
->cr2
;
7019 mmu_reset_needed
|= kvm_read_cr3(vcpu
) != sregs
->cr3
;
7020 vcpu
->arch
.cr3
= sregs
->cr3
;
7021 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
7023 kvm_set_cr8(vcpu
, sregs
->cr8
);
7025 mmu_reset_needed
|= vcpu
->arch
.efer
!= sregs
->efer
;
7026 kvm_x86_ops
->set_efer(vcpu
, sregs
->efer
);
7027 apic_base_msr
.data
= sregs
->apic_base
;
7028 apic_base_msr
.host_initiated
= true;
7029 kvm_set_apic_base(vcpu
, &apic_base_msr
);
7031 mmu_reset_needed
|= kvm_read_cr0(vcpu
) != sregs
->cr0
;
7032 kvm_x86_ops
->set_cr0(vcpu
, sregs
->cr0
);
7033 vcpu
->arch
.cr0
= sregs
->cr0
;
7035 mmu_reset_needed
|= kvm_read_cr4(vcpu
) != sregs
->cr4
;
7036 kvm_x86_ops
->set_cr4(vcpu
, sregs
->cr4
);
7037 if (sregs
->cr4
& X86_CR4_OSXSAVE
)
7038 kvm_update_cpuid(vcpu
);
7040 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
7041 if (!is_long_mode(vcpu
) && is_pae(vcpu
)) {
7042 load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, kvm_read_cr3(vcpu
));
7043 mmu_reset_needed
= 1;
7045 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
7047 if (mmu_reset_needed
)
7048 kvm_mmu_reset_context(vcpu
);
7050 max_bits
= KVM_NR_INTERRUPTS
;
7051 pending_vec
= find_first_bit(
7052 (const unsigned long *)sregs
->interrupt_bitmap
, max_bits
);
7053 if (pending_vec
< max_bits
) {
7054 kvm_queue_interrupt(vcpu
, pending_vec
, false);
7055 pr_debug("Set back pending irq %d\n", pending_vec
);
7058 kvm_set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
7059 kvm_set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
7060 kvm_set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
7061 kvm_set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
7062 kvm_set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
7063 kvm_set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
7065 kvm_set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
7066 kvm_set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
7068 update_cr8_intercept(vcpu
);
7070 /* Older userspace won't unhalt the vcpu on reset. */
7071 if (kvm_vcpu_is_bsp(vcpu
) && kvm_rip_read(vcpu
) == 0xfff0 &&
7072 sregs
->cs
.selector
== 0xf000 && sregs
->cs
.base
== 0xffff0000 &&
7074 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
7076 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7081 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
7082 struct kvm_guest_debug
*dbg
)
7084 unsigned long rflags
;
7087 if (dbg
->control
& (KVM_GUESTDBG_INJECT_DB
| KVM_GUESTDBG_INJECT_BP
)) {
7089 if (vcpu
->arch
.exception
.pending
)
7091 if (dbg
->control
& KVM_GUESTDBG_INJECT_DB
)
7092 kvm_queue_exception(vcpu
, DB_VECTOR
);
7094 kvm_queue_exception(vcpu
, BP_VECTOR
);
7098 * Read rflags as long as potentially injected trace flags are still
7101 rflags
= kvm_get_rflags(vcpu
);
7103 vcpu
->guest_debug
= dbg
->control
;
7104 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
))
7105 vcpu
->guest_debug
= 0;
7107 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
7108 for (i
= 0; i
< KVM_NR_DB_REGS
; ++i
)
7109 vcpu
->arch
.eff_db
[i
] = dbg
->arch
.debugreg
[i
];
7110 vcpu
->arch
.guest_debug_dr7
= dbg
->arch
.debugreg
[7];
7112 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
7113 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
7115 kvm_update_dr7(vcpu
);
7117 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
7118 vcpu
->arch
.singlestep_rip
= kvm_rip_read(vcpu
) +
7119 get_segment_base(vcpu
, VCPU_SREG_CS
);
7122 * Trigger an rflags update that will inject or remove the trace
7125 kvm_set_rflags(vcpu
, rflags
);
7127 kvm_x86_ops
->update_bp_intercept(vcpu
);
7137 * Translate a guest virtual address to a guest physical address.
7139 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
7140 struct kvm_translation
*tr
)
7142 unsigned long vaddr
= tr
->linear_address
;
7146 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
7147 gpa
= kvm_mmu_gva_to_gpa_system(vcpu
, vaddr
, NULL
);
7148 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
7149 tr
->physical_address
= gpa
;
7150 tr
->valid
= gpa
!= UNMAPPED_GVA
;
7157 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
7159 struct fxregs_state
*fxsave
=
7160 &vcpu
->arch
.guest_fpu
.state
.fxsave
;
7162 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
7163 fpu
->fcw
= fxsave
->cwd
;
7164 fpu
->fsw
= fxsave
->swd
;
7165 fpu
->ftwx
= fxsave
->twd
;
7166 fpu
->last_opcode
= fxsave
->fop
;
7167 fpu
->last_ip
= fxsave
->rip
;
7168 fpu
->last_dp
= fxsave
->rdp
;
7169 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof fxsave
->xmm_space
);
7174 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
7176 struct fxregs_state
*fxsave
=
7177 &vcpu
->arch
.guest_fpu
.state
.fxsave
;
7179 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
7180 fxsave
->cwd
= fpu
->fcw
;
7181 fxsave
->swd
= fpu
->fsw
;
7182 fxsave
->twd
= fpu
->ftwx
;
7183 fxsave
->fop
= fpu
->last_opcode
;
7184 fxsave
->rip
= fpu
->last_ip
;
7185 fxsave
->rdp
= fpu
->last_dp
;
7186 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof fxsave
->xmm_space
);
7191 static void fx_init(struct kvm_vcpu
*vcpu
)
7193 fpstate_init(&vcpu
->arch
.guest_fpu
.state
);
7195 vcpu
->arch
.guest_fpu
.state
.xsave
.header
.xcomp_bv
=
7196 host_xcr0
| XSTATE_COMPACTION_ENABLED
;
7199 * Ensure guest xcr0 is valid for loading
7201 vcpu
->arch
.xcr0
= XFEATURE_MASK_FP
;
7203 vcpu
->arch
.cr0
|= X86_CR0_ET
;
7206 void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
7208 if (vcpu
->guest_fpu_loaded
)
7212 * Restore all possible states in the guest,
7213 * and assume host would use all available bits.
7214 * Guest xcr0 would be loaded later.
7216 kvm_put_guest_xcr0(vcpu
);
7217 vcpu
->guest_fpu_loaded
= 1;
7218 __kernel_fpu_begin();
7219 __copy_kernel_to_fpregs(&vcpu
->arch
.guest_fpu
.state
);
7223 void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
7225 kvm_put_guest_xcr0(vcpu
);
7227 if (!vcpu
->guest_fpu_loaded
) {
7228 vcpu
->fpu_counter
= 0;
7232 vcpu
->guest_fpu_loaded
= 0;
7233 copy_fpregs_to_fpstate(&vcpu
->arch
.guest_fpu
);
7235 ++vcpu
->stat
.fpu_reload
;
7237 * If using eager FPU mode, or if the guest is a frequent user
7238 * of the FPU, just leave the FPU active for next time.
7239 * Every 255 times fpu_counter rolls over to 0; a guest that uses
7240 * the FPU in bursts will revert to loading it on demand.
7242 if (!vcpu
->arch
.eager_fpu
) {
7243 if (++vcpu
->fpu_counter
< 5)
7244 kvm_make_request(KVM_REQ_DEACTIVATE_FPU
, vcpu
);
7249 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
7251 kvmclock_reset(vcpu
);
7253 free_cpumask_var(vcpu
->arch
.wbinvd_dirty_mask
);
7254 kvm_x86_ops
->vcpu_free(vcpu
);
7257 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
,
7260 struct kvm_vcpu
*vcpu
;
7262 if (check_tsc_unstable() && atomic_read(&kvm
->online_vcpus
) != 0)
7263 printk_once(KERN_WARNING
7264 "kvm: SMP vm created on host with unstable TSC; "
7265 "guest TSC will not be reliable\n");
7267 vcpu
= kvm_x86_ops
->vcpu_create(kvm
, id
);
7272 int kvm_arch_vcpu_setup(struct kvm_vcpu
*vcpu
)
7276 kvm_vcpu_mtrr_init(vcpu
);
7277 r
= vcpu_load(vcpu
);
7280 kvm_vcpu_reset(vcpu
, false);
7281 kvm_mmu_setup(vcpu
);
7286 void kvm_arch_vcpu_postcreate(struct kvm_vcpu
*vcpu
)
7288 struct msr_data msr
;
7289 struct kvm
*kvm
= vcpu
->kvm
;
7291 if (vcpu_load(vcpu
))
7294 msr
.index
= MSR_IA32_TSC
;
7295 msr
.host_initiated
= true;
7296 kvm_write_tsc(vcpu
, &msr
);
7299 if (!kvmclock_periodic_sync
)
7302 schedule_delayed_work(&kvm
->arch
.kvmclock_sync_work
,
7303 KVMCLOCK_SYNC_PERIOD
);
7306 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
7309 vcpu
->arch
.apf
.msr_val
= 0;
7311 r
= vcpu_load(vcpu
);
7313 kvm_mmu_unload(vcpu
);
7316 kvm_x86_ops
->vcpu_free(vcpu
);
7319 void kvm_vcpu_reset(struct kvm_vcpu
*vcpu
, bool init_event
)
7321 vcpu
->arch
.hflags
= 0;
7323 atomic_set(&vcpu
->arch
.nmi_queued
, 0);
7324 vcpu
->arch
.nmi_pending
= 0;
7325 vcpu
->arch
.nmi_injected
= false;
7326 kvm_clear_interrupt_queue(vcpu
);
7327 kvm_clear_exception_queue(vcpu
);
7329 memset(vcpu
->arch
.db
, 0, sizeof(vcpu
->arch
.db
));
7330 kvm_update_dr0123(vcpu
);
7331 vcpu
->arch
.dr6
= DR6_INIT
;
7332 kvm_update_dr6(vcpu
);
7333 vcpu
->arch
.dr7
= DR7_FIXED_1
;
7334 kvm_update_dr7(vcpu
);
7338 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7339 vcpu
->arch
.apf
.msr_val
= 0;
7340 vcpu
->arch
.st
.msr_val
= 0;
7342 kvmclock_reset(vcpu
);
7344 kvm_clear_async_pf_completion_queue(vcpu
);
7345 kvm_async_pf_hash_reset(vcpu
);
7346 vcpu
->arch
.apf
.halted
= false;
7349 kvm_pmu_reset(vcpu
);
7350 vcpu
->arch
.smbase
= 0x30000;
7353 memset(vcpu
->arch
.regs
, 0, sizeof(vcpu
->arch
.regs
));
7354 vcpu
->arch
.regs_avail
= ~0;
7355 vcpu
->arch
.regs_dirty
= ~0;
7357 kvm_x86_ops
->vcpu_reset(vcpu
, init_event
);
7360 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu
*vcpu
, u8 vector
)
7362 struct kvm_segment cs
;
7364 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
7365 cs
.selector
= vector
<< 8;
7366 cs
.base
= vector
<< 12;
7367 kvm_set_segment(vcpu
, &cs
, VCPU_SREG_CS
);
7368 kvm_rip_write(vcpu
, 0);
7371 int kvm_arch_hardware_enable(void)
7374 struct kvm_vcpu
*vcpu
;
7379 bool stable
, backwards_tsc
= false;
7381 kvm_shared_msr_cpu_online();
7382 ret
= kvm_x86_ops
->hardware_enable();
7386 local_tsc
= rdtsc();
7387 stable
= !check_tsc_unstable();
7388 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
7389 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
7390 if (!stable
&& vcpu
->cpu
== smp_processor_id())
7391 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
7392 if (stable
&& vcpu
->arch
.last_host_tsc
> local_tsc
) {
7393 backwards_tsc
= true;
7394 if (vcpu
->arch
.last_host_tsc
> max_tsc
)
7395 max_tsc
= vcpu
->arch
.last_host_tsc
;
7401 * Sometimes, even reliable TSCs go backwards. This happens on
7402 * platforms that reset TSC during suspend or hibernate actions, but
7403 * maintain synchronization. We must compensate. Fortunately, we can
7404 * detect that condition here, which happens early in CPU bringup,
7405 * before any KVM threads can be running. Unfortunately, we can't
7406 * bring the TSCs fully up to date with real time, as we aren't yet far
7407 * enough into CPU bringup that we know how much real time has actually
7408 * elapsed; our helper function, get_kernel_ns() will be using boot
7409 * variables that haven't been updated yet.
7411 * So we simply find the maximum observed TSC above, then record the
7412 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
7413 * the adjustment will be applied. Note that we accumulate
7414 * adjustments, in case multiple suspend cycles happen before some VCPU
7415 * gets a chance to run again. In the event that no KVM threads get a
7416 * chance to run, we will miss the entire elapsed period, as we'll have
7417 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7418 * loose cycle time. This isn't too big a deal, since the loss will be
7419 * uniform across all VCPUs (not to mention the scenario is extremely
7420 * unlikely). It is possible that a second hibernate recovery happens
7421 * much faster than a first, causing the observed TSC here to be
7422 * smaller; this would require additional padding adjustment, which is
7423 * why we set last_host_tsc to the local tsc observed here.
7425 * N.B. - this code below runs only on platforms with reliable TSC,
7426 * as that is the only way backwards_tsc is set above. Also note
7427 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7428 * have the same delta_cyc adjustment applied if backwards_tsc
7429 * is detected. Note further, this adjustment is only done once,
7430 * as we reset last_host_tsc on all VCPUs to stop this from being
7431 * called multiple times (one for each physical CPU bringup).
7433 * Platforms with unreliable TSCs don't have to deal with this, they
7434 * will be compensated by the logic in vcpu_load, which sets the TSC to
7435 * catchup mode. This will catchup all VCPUs to real time, but cannot
7436 * guarantee that they stay in perfect synchronization.
7438 if (backwards_tsc
) {
7439 u64 delta_cyc
= max_tsc
- local_tsc
;
7440 backwards_tsc_observed
= true;
7441 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
7442 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
7443 vcpu
->arch
.tsc_offset_adjustment
+= delta_cyc
;
7444 vcpu
->arch
.last_host_tsc
= local_tsc
;
7445 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
7449 * We have to disable TSC offset matching.. if you were
7450 * booting a VM while issuing an S4 host suspend....
7451 * you may have some problem. Solving this issue is
7452 * left as an exercise to the reader.
7454 kvm
->arch
.last_tsc_nsec
= 0;
7455 kvm
->arch
.last_tsc_write
= 0;
7462 void kvm_arch_hardware_disable(void)
7464 kvm_x86_ops
->hardware_disable();
7465 drop_user_return_notifiers();
7468 int kvm_arch_hardware_setup(void)
7472 r
= kvm_x86_ops
->hardware_setup();
7476 if (kvm_has_tsc_control
) {
7478 * Make sure the user can only configure tsc_khz values that
7479 * fit into a signed integer.
7480 * A min value is not calculated needed because it will always
7481 * be 1 on all machines.
7483 u64 max
= min(0x7fffffffULL
,
7484 __scale_tsc(kvm_max_tsc_scaling_ratio
, tsc_khz
));
7485 kvm_max_guest_tsc_khz
= max
;
7487 kvm_default_tsc_scaling_ratio
= 1ULL << kvm_tsc_scaling_ratio_frac_bits
;
7490 kvm_init_msr_list();
7494 void kvm_arch_hardware_unsetup(void)
7496 kvm_x86_ops
->hardware_unsetup();
7499 void kvm_arch_check_processor_compat(void *rtn
)
7501 kvm_x86_ops
->check_processor_compatibility(rtn
);
7504 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu
*vcpu
)
7506 return vcpu
->kvm
->arch
.bsp_vcpu_id
== vcpu
->vcpu_id
;
7508 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp
);
7510 bool kvm_vcpu_is_bsp(struct kvm_vcpu
*vcpu
)
7512 return (vcpu
->arch
.apic_base
& MSR_IA32_APICBASE_BSP
) != 0;
7515 bool kvm_vcpu_compatible(struct kvm_vcpu
*vcpu
)
7517 return irqchip_in_kernel(vcpu
->kvm
) == lapic_in_kernel(vcpu
);
7520 struct static_key kvm_no_apic_vcpu __read_mostly
;
7522 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
7528 BUG_ON(vcpu
->kvm
== NULL
);
7531 vcpu
->arch
.pv
.pv_unhalted
= false;
7532 vcpu
->arch
.emulate_ctxt
.ops
= &emulate_ops
;
7533 if (!irqchip_in_kernel(kvm
) || kvm_vcpu_is_reset_bsp(vcpu
))
7534 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
7536 vcpu
->arch
.mp_state
= KVM_MP_STATE_UNINITIALIZED
;
7538 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
7543 vcpu
->arch
.pio_data
= page_address(page
);
7545 kvm_set_tsc_khz(vcpu
, max_tsc_khz
);
7547 r
= kvm_mmu_create(vcpu
);
7549 goto fail_free_pio_data
;
7551 if (irqchip_in_kernel(kvm
)) {
7552 r
= kvm_create_lapic(vcpu
);
7554 goto fail_mmu_destroy
;
7556 static_key_slow_inc(&kvm_no_apic_vcpu
);
7558 vcpu
->arch
.mce_banks
= kzalloc(KVM_MAX_MCE_BANKS
* sizeof(u64
) * 4,
7560 if (!vcpu
->arch
.mce_banks
) {
7562 goto fail_free_lapic
;
7564 vcpu
->arch
.mcg_cap
= KVM_MAX_MCE_BANKS
;
7566 if (!zalloc_cpumask_var(&vcpu
->arch
.wbinvd_dirty_mask
, GFP_KERNEL
)) {
7568 goto fail_free_mce_banks
;
7573 vcpu
->arch
.ia32_tsc_adjust_msr
= 0x0;
7574 vcpu
->arch
.pv_time_enabled
= false;
7576 vcpu
->arch
.guest_supported_xcr0
= 0;
7577 vcpu
->arch
.guest_xstate_size
= XSAVE_HDR_SIZE
+ XSAVE_HDR_OFFSET
;
7579 vcpu
->arch
.maxphyaddr
= cpuid_query_maxphyaddr(vcpu
);
7581 vcpu
->arch
.pat
= MSR_IA32_CR_PAT_DEFAULT
;
7583 kvm_async_pf_hash_reset(vcpu
);
7586 vcpu
->arch
.pending_external_vector
= -1;
7590 fail_free_mce_banks
:
7591 kfree(vcpu
->arch
.mce_banks
);
7593 kvm_free_lapic(vcpu
);
7595 kvm_mmu_destroy(vcpu
);
7597 free_page((unsigned long)vcpu
->arch
.pio_data
);
7602 void kvm_arch_vcpu_uninit(struct kvm_vcpu
*vcpu
)
7606 kvm_pmu_destroy(vcpu
);
7607 kfree(vcpu
->arch
.mce_banks
);
7608 kvm_free_lapic(vcpu
);
7609 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
7610 kvm_mmu_destroy(vcpu
);
7611 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
7612 free_page((unsigned long)vcpu
->arch
.pio_data
);
7613 if (!lapic_in_kernel(vcpu
))
7614 static_key_slow_dec(&kvm_no_apic_vcpu
);
7617 void kvm_arch_sched_in(struct kvm_vcpu
*vcpu
, int cpu
)
7619 kvm_x86_ops
->sched_in(vcpu
, cpu
);
7622 int kvm_arch_init_vm(struct kvm
*kvm
, unsigned long type
)
7627 INIT_HLIST_HEAD(&kvm
->arch
.mask_notifier_list
);
7628 INIT_LIST_HEAD(&kvm
->arch
.active_mmu_pages
);
7629 INIT_LIST_HEAD(&kvm
->arch
.zapped_obsolete_pages
);
7630 INIT_LIST_HEAD(&kvm
->arch
.assigned_dev_head
);
7631 atomic_set(&kvm
->arch
.noncoherent_dma_count
, 0);
7633 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7634 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID
, &kvm
->arch
.irq_sources_bitmap
);
7635 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7636 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID
,
7637 &kvm
->arch
.irq_sources_bitmap
);
7639 raw_spin_lock_init(&kvm
->arch
.tsc_write_lock
);
7640 mutex_init(&kvm
->arch
.apic_map_lock
);
7641 spin_lock_init(&kvm
->arch
.pvclock_gtod_sync_lock
);
7643 pvclock_update_vm_gtod_copy(kvm
);
7645 INIT_DELAYED_WORK(&kvm
->arch
.kvmclock_update_work
, kvmclock_update_fn
);
7646 INIT_DELAYED_WORK(&kvm
->arch
.kvmclock_sync_work
, kvmclock_sync_fn
);
7651 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
7654 r
= vcpu_load(vcpu
);
7656 kvm_mmu_unload(vcpu
);
7660 static void kvm_free_vcpus(struct kvm
*kvm
)
7663 struct kvm_vcpu
*vcpu
;
7666 * Unpin any mmu pages first.
7668 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
7669 kvm_clear_async_pf_completion_queue(vcpu
);
7670 kvm_unload_vcpu_mmu(vcpu
);
7672 kvm_for_each_vcpu(i
, vcpu
, kvm
)
7673 kvm_arch_vcpu_free(vcpu
);
7675 mutex_lock(&kvm
->lock
);
7676 for (i
= 0; i
< atomic_read(&kvm
->online_vcpus
); i
++)
7677 kvm
->vcpus
[i
] = NULL
;
7679 atomic_set(&kvm
->online_vcpus
, 0);
7680 mutex_unlock(&kvm
->lock
);
7683 void kvm_arch_sync_events(struct kvm
*kvm
)
7685 cancel_delayed_work_sync(&kvm
->arch
.kvmclock_sync_work
);
7686 cancel_delayed_work_sync(&kvm
->arch
.kvmclock_update_work
);
7687 kvm_free_all_assigned_devices(kvm
);
7691 int __x86_set_memory_region(struct kvm
*kvm
, int id
, gpa_t gpa
, u32 size
)
7695 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
7696 struct kvm_memory_slot
*slot
, old
;
7698 /* Called with kvm->slots_lock held. */
7699 if (WARN_ON(id
>= KVM_MEM_SLOTS_NUM
))
7702 slot
= id_to_memslot(slots
, id
);
7704 if (WARN_ON(slot
->npages
))
7708 * MAP_SHARED to prevent internal slot pages from being moved
7711 hva
= vm_mmap(NULL
, 0, size
, PROT_READ
| PROT_WRITE
,
7712 MAP_SHARED
| MAP_ANONYMOUS
, 0);
7713 if (IS_ERR((void *)hva
))
7714 return PTR_ERR((void *)hva
);
7723 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++) {
7724 struct kvm_userspace_memory_region m
;
7726 m
.slot
= id
| (i
<< 16);
7728 m
.guest_phys_addr
= gpa
;
7729 m
.userspace_addr
= hva
;
7730 m
.memory_size
= size
;
7731 r
= __kvm_set_memory_region(kvm
, &m
);
7737 r
= vm_munmap(old
.userspace_addr
, old
.npages
* PAGE_SIZE
);
7743 EXPORT_SYMBOL_GPL(__x86_set_memory_region
);
7745 int x86_set_memory_region(struct kvm
*kvm
, int id
, gpa_t gpa
, u32 size
)
7749 mutex_lock(&kvm
->slots_lock
);
7750 r
= __x86_set_memory_region(kvm
, id
, gpa
, size
);
7751 mutex_unlock(&kvm
->slots_lock
);
7755 EXPORT_SYMBOL_GPL(x86_set_memory_region
);
7757 void kvm_arch_destroy_vm(struct kvm
*kvm
)
7759 if (current
->mm
== kvm
->mm
) {
7761 * Free memory regions allocated on behalf of userspace,
7762 * unless the the memory map has changed due to process exit
7765 x86_set_memory_region(kvm
, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
, 0, 0);
7766 x86_set_memory_region(kvm
, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT
, 0, 0);
7767 x86_set_memory_region(kvm
, TSS_PRIVATE_MEMSLOT
, 0, 0);
7769 kvm_iommu_unmap_guest(kvm
);
7770 kfree(kvm
->arch
.vpic
);
7771 kfree(kvm
->arch
.vioapic
);
7772 kvm_free_vcpus(kvm
);
7773 kfree(rcu_dereference_check(kvm
->arch
.apic_map
, 1));
7776 void kvm_arch_free_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*free
,
7777 struct kvm_memory_slot
*dont
)
7781 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
7782 if (!dont
|| free
->arch
.rmap
[i
] != dont
->arch
.rmap
[i
]) {
7783 kvfree(free
->arch
.rmap
[i
]);
7784 free
->arch
.rmap
[i
] = NULL
;
7789 if (!dont
|| free
->arch
.lpage_info
[i
- 1] !=
7790 dont
->arch
.lpage_info
[i
- 1]) {
7791 kvfree(free
->arch
.lpage_info
[i
- 1]);
7792 free
->arch
.lpage_info
[i
- 1] = NULL
;
7797 int kvm_arch_create_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*slot
,
7798 unsigned long npages
)
7802 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
7807 lpages
= gfn_to_index(slot
->base_gfn
+ npages
- 1,
7808 slot
->base_gfn
, level
) + 1;
7810 slot
->arch
.rmap
[i
] =
7811 kvm_kvzalloc(lpages
* sizeof(*slot
->arch
.rmap
[i
]));
7812 if (!slot
->arch
.rmap
[i
])
7817 slot
->arch
.lpage_info
[i
- 1] = kvm_kvzalloc(lpages
*
7818 sizeof(*slot
->arch
.lpage_info
[i
- 1]));
7819 if (!slot
->arch
.lpage_info
[i
- 1])
7822 if (slot
->base_gfn
& (KVM_PAGES_PER_HPAGE(level
) - 1))
7823 slot
->arch
.lpage_info
[i
- 1][0].write_count
= 1;
7824 if ((slot
->base_gfn
+ npages
) & (KVM_PAGES_PER_HPAGE(level
) - 1))
7825 slot
->arch
.lpage_info
[i
- 1][lpages
- 1].write_count
= 1;
7826 ugfn
= slot
->userspace_addr
>> PAGE_SHIFT
;
7828 * If the gfn and userspace address are not aligned wrt each
7829 * other, or if explicitly asked to, disable large page
7830 * support for this slot
7832 if ((slot
->base_gfn
^ ugfn
) & (KVM_PAGES_PER_HPAGE(level
) - 1) ||
7833 !kvm_largepages_enabled()) {
7836 for (j
= 0; j
< lpages
; ++j
)
7837 slot
->arch
.lpage_info
[i
- 1][j
].write_count
= 1;
7844 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
7845 kvfree(slot
->arch
.rmap
[i
]);
7846 slot
->arch
.rmap
[i
] = NULL
;
7850 kvfree(slot
->arch
.lpage_info
[i
- 1]);
7851 slot
->arch
.lpage_info
[i
- 1] = NULL
;
7856 void kvm_arch_memslots_updated(struct kvm
*kvm
, struct kvm_memslots
*slots
)
7859 * memslots->generation has been incremented.
7860 * mmio generation may have reached its maximum value.
7862 kvm_mmu_invalidate_mmio_sptes(kvm
, slots
);
7865 int kvm_arch_prepare_memory_region(struct kvm
*kvm
,
7866 struct kvm_memory_slot
*memslot
,
7867 const struct kvm_userspace_memory_region
*mem
,
7868 enum kvm_mr_change change
)
7873 static void kvm_mmu_slot_apply_flags(struct kvm
*kvm
,
7874 struct kvm_memory_slot
*new)
7876 /* Still write protect RO slot */
7877 if (new->flags
& KVM_MEM_READONLY
) {
7878 kvm_mmu_slot_remove_write_access(kvm
, new);
7883 * Call kvm_x86_ops dirty logging hooks when they are valid.
7885 * kvm_x86_ops->slot_disable_log_dirty is called when:
7887 * - KVM_MR_CREATE with dirty logging is disabled
7888 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7890 * The reason is, in case of PML, we need to set D-bit for any slots
7891 * with dirty logging disabled in order to eliminate unnecessary GPA
7892 * logging in PML buffer (and potential PML buffer full VMEXT). This
7893 * guarantees leaving PML enabled during guest's lifetime won't have
7894 * any additonal overhead from PML when guest is running with dirty
7895 * logging disabled for memory slots.
7897 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
7898 * to dirty logging mode.
7900 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
7902 * In case of write protect:
7904 * Write protect all pages for dirty logging.
7906 * All the sptes including the large sptes which point to this
7907 * slot are set to readonly. We can not create any new large
7908 * spte on this slot until the end of the logging.
7910 * See the comments in fast_page_fault().
7912 if (new->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
7913 if (kvm_x86_ops
->slot_enable_log_dirty
)
7914 kvm_x86_ops
->slot_enable_log_dirty(kvm
, new);
7916 kvm_mmu_slot_remove_write_access(kvm
, new);
7918 if (kvm_x86_ops
->slot_disable_log_dirty
)
7919 kvm_x86_ops
->slot_disable_log_dirty(kvm
, new);
7923 void kvm_arch_commit_memory_region(struct kvm
*kvm
,
7924 const struct kvm_userspace_memory_region
*mem
,
7925 const struct kvm_memory_slot
*old
,
7926 const struct kvm_memory_slot
*new,
7927 enum kvm_mr_change change
)
7929 int nr_mmu_pages
= 0;
7931 if (!kvm
->arch
.n_requested_mmu_pages
)
7932 nr_mmu_pages
= kvm_mmu_calculate_mmu_pages(kvm
);
7935 kvm_mmu_change_mmu_pages(kvm
, nr_mmu_pages
);
7938 * Dirty logging tracks sptes in 4k granularity, meaning that large
7939 * sptes have to be split. If live migration is successful, the guest
7940 * in the source machine will be destroyed and large sptes will be
7941 * created in the destination. However, if the guest continues to run
7942 * in the source machine (for example if live migration fails), small
7943 * sptes will remain around and cause bad performance.
7945 * Scan sptes if dirty logging has been stopped, dropping those
7946 * which can be collapsed into a single large-page spte. Later
7947 * page faults will create the large-page sptes.
7949 if ((change
!= KVM_MR_DELETE
) &&
7950 (old
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) &&
7951 !(new->flags
& KVM_MEM_LOG_DIRTY_PAGES
))
7952 kvm_mmu_zap_collapsible_sptes(kvm
, new);
7955 * Set up write protection and/or dirty logging for the new slot.
7957 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
7958 * been zapped so no dirty logging staff is needed for old slot. For
7959 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
7960 * new and it's also covered when dealing with the new slot.
7962 * FIXME: const-ify all uses of struct kvm_memory_slot.
7964 if (change
!= KVM_MR_DELETE
)
7965 kvm_mmu_slot_apply_flags(kvm
, (struct kvm_memory_slot
*) new);
7968 void kvm_arch_flush_shadow_all(struct kvm
*kvm
)
7970 kvm_mmu_invalidate_zap_all_pages(kvm
);
7973 void kvm_arch_flush_shadow_memslot(struct kvm
*kvm
,
7974 struct kvm_memory_slot
*slot
)
7976 kvm_mmu_invalidate_zap_all_pages(kvm
);
7979 static inline bool kvm_vcpu_has_events(struct kvm_vcpu
*vcpu
)
7981 if (!list_empty_careful(&vcpu
->async_pf
.done
))
7984 if (kvm_apic_has_events(vcpu
))
7987 if (vcpu
->arch
.pv
.pv_unhalted
)
7990 if (atomic_read(&vcpu
->arch
.nmi_queued
))
7993 if (test_bit(KVM_REQ_SMI
, &vcpu
->requests
))
7996 if (kvm_arch_interrupt_allowed(vcpu
) &&
7997 kvm_cpu_has_interrupt(vcpu
))
8003 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
8005 if (is_guest_mode(vcpu
) && kvm_x86_ops
->check_nested_events
)
8006 kvm_x86_ops
->check_nested_events(vcpu
, false);
8008 return kvm_vcpu_running(vcpu
) || kvm_vcpu_has_events(vcpu
);
8011 int kvm_arch_vcpu_should_kick(struct kvm_vcpu
*vcpu
)
8013 return kvm_vcpu_exiting_guest_mode(vcpu
) == IN_GUEST_MODE
;
8016 int kvm_arch_interrupt_allowed(struct kvm_vcpu
*vcpu
)
8018 return kvm_x86_ops
->interrupt_allowed(vcpu
);
8021 unsigned long kvm_get_linear_rip(struct kvm_vcpu
*vcpu
)
8023 if (is_64_bit_mode(vcpu
))
8024 return kvm_rip_read(vcpu
);
8025 return (u32
)(get_segment_base(vcpu
, VCPU_SREG_CS
) +
8026 kvm_rip_read(vcpu
));
8028 EXPORT_SYMBOL_GPL(kvm_get_linear_rip
);
8030 bool kvm_is_linear_rip(struct kvm_vcpu
*vcpu
, unsigned long linear_rip
)
8032 return kvm_get_linear_rip(vcpu
) == linear_rip
;
8034 EXPORT_SYMBOL_GPL(kvm_is_linear_rip
);
8036 unsigned long kvm_get_rflags(struct kvm_vcpu
*vcpu
)
8038 unsigned long rflags
;
8040 rflags
= kvm_x86_ops
->get_rflags(vcpu
);
8041 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
8042 rflags
&= ~X86_EFLAGS_TF
;
8045 EXPORT_SYMBOL_GPL(kvm_get_rflags
);
8047 static void __kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
8049 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
&&
8050 kvm_is_linear_rip(vcpu
, vcpu
->arch
.singlestep_rip
))
8051 rflags
|= X86_EFLAGS_TF
;
8052 kvm_x86_ops
->set_rflags(vcpu
, rflags
);
8055 void kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
8057 __kvm_set_rflags(vcpu
, rflags
);
8058 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
8060 EXPORT_SYMBOL_GPL(kvm_set_rflags
);
8062 void kvm_arch_async_page_ready(struct kvm_vcpu
*vcpu
, struct kvm_async_pf
*work
)
8066 if ((vcpu
->arch
.mmu
.direct_map
!= work
->arch
.direct_map
) ||
8070 r
= kvm_mmu_reload(vcpu
);
8074 if (!vcpu
->arch
.mmu
.direct_map
&&
8075 work
->arch
.cr3
!= vcpu
->arch
.mmu
.get_cr3(vcpu
))
8078 vcpu
->arch
.mmu
.page_fault(vcpu
, work
->gva
, 0, true);
8081 static inline u32
kvm_async_pf_hash_fn(gfn_t gfn
)
8083 return hash_32(gfn
& 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU
));
8086 static inline u32
kvm_async_pf_next_probe(u32 key
)
8088 return (key
+ 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU
) - 1);
8091 static void kvm_add_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
8093 u32 key
= kvm_async_pf_hash_fn(gfn
);
8095 while (vcpu
->arch
.apf
.gfns
[key
] != ~0)
8096 key
= kvm_async_pf_next_probe(key
);
8098 vcpu
->arch
.apf
.gfns
[key
] = gfn
;
8101 static u32
kvm_async_pf_gfn_slot(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
8104 u32 key
= kvm_async_pf_hash_fn(gfn
);
8106 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
) &&
8107 (vcpu
->arch
.apf
.gfns
[key
] != gfn
&&
8108 vcpu
->arch
.apf
.gfns
[key
] != ~0); i
++)
8109 key
= kvm_async_pf_next_probe(key
);
8114 bool kvm_find_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
8116 return vcpu
->arch
.apf
.gfns
[kvm_async_pf_gfn_slot(vcpu
, gfn
)] == gfn
;
8119 static void kvm_del_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
8123 i
= j
= kvm_async_pf_gfn_slot(vcpu
, gfn
);
8125 vcpu
->arch
.apf
.gfns
[i
] = ~0;
8127 j
= kvm_async_pf_next_probe(j
);
8128 if (vcpu
->arch
.apf
.gfns
[j
] == ~0)
8130 k
= kvm_async_pf_hash_fn(vcpu
->arch
.apf
.gfns
[j
]);
8132 * k lies cyclically in ]i,j]
8134 * |....j i.k.| or |.k..j i...|
8136 } while ((i
<= j
) ? (i
< k
&& k
<= j
) : (i
< k
|| k
<= j
));
8137 vcpu
->arch
.apf
.gfns
[i
] = vcpu
->arch
.apf
.gfns
[j
];
8142 static int apf_put_user(struct kvm_vcpu
*vcpu
, u32 val
)
8145 return kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, &val
,
8149 void kvm_arch_async_page_not_present(struct kvm_vcpu
*vcpu
,
8150 struct kvm_async_pf
*work
)
8152 struct x86_exception fault
;
8154 trace_kvm_async_pf_not_present(work
->arch
.token
, work
->gva
);
8155 kvm_add_async_pf_gfn(vcpu
, work
->arch
.gfn
);
8157 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) ||
8158 (vcpu
->arch
.apf
.send_user_only
&&
8159 kvm_x86_ops
->get_cpl(vcpu
) == 0))
8160 kvm_make_request(KVM_REQ_APF_HALT
, vcpu
);
8161 else if (!apf_put_user(vcpu
, KVM_PV_REASON_PAGE_NOT_PRESENT
)) {
8162 fault
.vector
= PF_VECTOR
;
8163 fault
.error_code_valid
= true;
8164 fault
.error_code
= 0;
8165 fault
.nested_page_fault
= false;
8166 fault
.address
= work
->arch
.token
;
8167 kvm_inject_page_fault(vcpu
, &fault
);
8171 void kvm_arch_async_page_present(struct kvm_vcpu
*vcpu
,
8172 struct kvm_async_pf
*work
)
8174 struct x86_exception fault
;
8176 trace_kvm_async_pf_ready(work
->arch
.token
, work
->gva
);
8177 if (work
->wakeup_all
)
8178 work
->arch
.token
= ~0; /* broadcast wakeup */
8180 kvm_del_async_pf_gfn(vcpu
, work
->arch
.gfn
);
8182 if ((vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) &&
8183 !apf_put_user(vcpu
, KVM_PV_REASON_PAGE_READY
)) {
8184 fault
.vector
= PF_VECTOR
;
8185 fault
.error_code_valid
= true;
8186 fault
.error_code
= 0;
8187 fault
.nested_page_fault
= false;
8188 fault
.address
= work
->arch
.token
;
8189 kvm_inject_page_fault(vcpu
, &fault
);
8191 vcpu
->arch
.apf
.halted
= false;
8192 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
8195 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu
*vcpu
)
8197 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
))
8200 return !kvm_event_needs_reinjection(vcpu
) &&
8201 kvm_x86_ops
->interrupt_allowed(vcpu
);
8204 void kvm_arch_start_assignment(struct kvm
*kvm
)
8206 atomic_inc(&kvm
->arch
.assigned_device_count
);
8208 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment
);
8210 void kvm_arch_end_assignment(struct kvm
*kvm
)
8212 atomic_dec(&kvm
->arch
.assigned_device_count
);
8214 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment
);
8216 bool kvm_arch_has_assigned_device(struct kvm
*kvm
)
8218 return atomic_read(&kvm
->arch
.assigned_device_count
);
8220 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device
);
8222 void kvm_arch_register_noncoherent_dma(struct kvm
*kvm
)
8224 atomic_inc(&kvm
->arch
.noncoherent_dma_count
);
8226 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma
);
8228 void kvm_arch_unregister_noncoherent_dma(struct kvm
*kvm
)
8230 atomic_dec(&kvm
->arch
.noncoherent_dma_count
);
8232 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma
);
8234 bool kvm_arch_has_noncoherent_dma(struct kvm
*kvm
)
8236 return atomic_read(&kvm
->arch
.noncoherent_dma_count
);
8238 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma
);
8240 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer
*cons
,
8241 struct irq_bypass_producer
*prod
)
8243 struct kvm_kernel_irqfd
*irqfd
=
8244 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
8246 if (kvm_x86_ops
->update_pi_irte
) {
8247 irqfd
->producer
= prod
;
8248 return kvm_x86_ops
->update_pi_irte(irqfd
->kvm
,
8249 prod
->irq
, irqfd
->gsi
, 1);
8255 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer
*cons
,
8256 struct irq_bypass_producer
*prod
)
8259 struct kvm_kernel_irqfd
*irqfd
=
8260 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
8262 if (!kvm_x86_ops
->update_pi_irte
) {
8263 WARN_ON(irqfd
->producer
!= NULL
);
8267 WARN_ON(irqfd
->producer
!= prod
);
8268 irqfd
->producer
= NULL
;
8271 * When producer of consumer is unregistered, we change back to
8272 * remapped mode, so we can re-use the current implementation
8273 * when the irq is masked/disabed or the consumer side (KVM
8274 * int this case doesn't want to receive the interrupts.
8276 ret
= kvm_x86_ops
->update_pi_irte(irqfd
->kvm
, prod
->irq
, irqfd
->gsi
, 0);
8278 printk(KERN_INFO
"irq bypass consumer (token %p) unregistration"
8279 " fails: %d\n", irqfd
->consumer
.token
, ret
);
8282 int kvm_arch_update_irqfd_routing(struct kvm
*kvm
, unsigned int host_irq
,
8283 uint32_t guest_irq
, bool set
)
8285 if (!kvm_x86_ops
->update_pi_irte
)
8288 return kvm_x86_ops
->update_pi_irte(kvm
, host_irq
, guest_irq
, set
);
8291 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit
);
8292 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio
);
8293 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq
);
8294 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault
);
8295 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr
);
8296 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr
);
8297 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun
);
8298 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit
);
8299 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject
);
8300 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit
);
8301 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga
);
8302 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit
);
8303 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts
);
8304 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset
);
8305 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window
);
8306 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full
);
8307 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update
);