2 * Register map access API
4 * Copyright 2011 Wolfson Microelectronics plc
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21 #include <linux/delay.h>
23 #define CREATE_TRACE_POINTS
29 * Sometimes for failures during very early init the trace
30 * infrastructure isn't available early enough to be used. For this
31 * sort of problem defining LOG_DEVICE will add printks for basic
32 * register I/O on a specific device.
36 static int _regmap_update_bits(struct regmap
*map
, unsigned int reg
,
37 unsigned int mask
, unsigned int val
,
38 bool *change
, bool force_write
);
40 static int _regmap_bus_reg_read(void *context
, unsigned int reg
,
42 static int _regmap_bus_read(void *context
, unsigned int reg
,
44 static int _regmap_bus_formatted_write(void *context
, unsigned int reg
,
46 static int _regmap_bus_reg_write(void *context
, unsigned int reg
,
48 static int _regmap_bus_raw_write(void *context
, unsigned int reg
,
51 bool regmap_reg_in_ranges(unsigned int reg
,
52 const struct regmap_range
*ranges
,
55 const struct regmap_range
*r
;
58 for (i
= 0, r
= ranges
; i
< nranges
; i
++, r
++)
59 if (regmap_reg_in_range(reg
, r
))
63 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges
);
65 bool regmap_check_range_table(struct regmap
*map
, unsigned int reg
,
66 const struct regmap_access_table
*table
)
68 /* Check "no ranges" first */
69 if (regmap_reg_in_ranges(reg
, table
->no_ranges
, table
->n_no_ranges
))
72 /* In case zero "yes ranges" are supplied, any reg is OK */
73 if (!table
->n_yes_ranges
)
76 return regmap_reg_in_ranges(reg
, table
->yes_ranges
,
79 EXPORT_SYMBOL_GPL(regmap_check_range_table
);
81 bool regmap_writeable(struct regmap
*map
, unsigned int reg
)
83 if (map
->max_register
&& reg
> map
->max_register
)
86 if (map
->writeable_reg
)
87 return map
->writeable_reg(map
->dev
, reg
);
90 return regmap_check_range_table(map
, reg
, map
->wr_table
);
95 bool regmap_readable(struct regmap
*map
, unsigned int reg
)
100 if (map
->max_register
&& reg
> map
->max_register
)
103 if (map
->format
.format_write
)
106 if (map
->readable_reg
)
107 return map
->readable_reg(map
->dev
, reg
);
110 return regmap_check_range_table(map
, reg
, map
->rd_table
);
115 bool regmap_volatile(struct regmap
*map
, unsigned int reg
)
117 if (!map
->format
.format_write
&& !regmap_readable(map
, reg
))
120 if (map
->volatile_reg
)
121 return map
->volatile_reg(map
->dev
, reg
);
123 if (map
->volatile_table
)
124 return regmap_check_range_table(map
, reg
, map
->volatile_table
);
132 bool regmap_precious(struct regmap
*map
, unsigned int reg
)
134 if (!regmap_readable(map
, reg
))
137 if (map
->precious_reg
)
138 return map
->precious_reg(map
->dev
, reg
);
140 if (map
->precious_table
)
141 return regmap_check_range_table(map
, reg
, map
->precious_table
);
146 static bool regmap_volatile_range(struct regmap
*map
, unsigned int reg
,
151 for (i
= 0; i
< num
; i
++)
152 if (!regmap_volatile(map
, reg
+ i
))
158 static void regmap_format_2_6_write(struct regmap
*map
,
159 unsigned int reg
, unsigned int val
)
161 u8
*out
= map
->work_buf
;
163 *out
= (reg
<< 6) | val
;
166 static void regmap_format_4_12_write(struct regmap
*map
,
167 unsigned int reg
, unsigned int val
)
169 __be16
*out
= map
->work_buf
;
170 *out
= cpu_to_be16((reg
<< 12) | val
);
173 static void regmap_format_7_9_write(struct regmap
*map
,
174 unsigned int reg
, unsigned int val
)
176 __be16
*out
= map
->work_buf
;
177 *out
= cpu_to_be16((reg
<< 9) | val
);
180 static void regmap_format_10_14_write(struct regmap
*map
,
181 unsigned int reg
, unsigned int val
)
183 u8
*out
= map
->work_buf
;
186 out
[1] = (val
>> 8) | (reg
<< 6);
190 static void regmap_format_8(void *buf
, unsigned int val
, unsigned int shift
)
197 static void regmap_format_16_be(void *buf
, unsigned int val
, unsigned int shift
)
201 b
[0] = cpu_to_be16(val
<< shift
);
204 static void regmap_format_16_le(void *buf
, unsigned int val
, unsigned int shift
)
208 b
[0] = cpu_to_le16(val
<< shift
);
211 static void regmap_format_16_native(void *buf
, unsigned int val
,
214 *(u16
*)buf
= val
<< shift
;
217 static void regmap_format_24(void *buf
, unsigned int val
, unsigned int shift
)
228 static void regmap_format_32_be(void *buf
, unsigned int val
, unsigned int shift
)
232 b
[0] = cpu_to_be32(val
<< shift
);
235 static void regmap_format_32_le(void *buf
, unsigned int val
, unsigned int shift
)
239 b
[0] = cpu_to_le32(val
<< shift
);
242 static void regmap_format_32_native(void *buf
, unsigned int val
,
245 *(u32
*)buf
= val
<< shift
;
248 static void regmap_parse_inplace_noop(void *buf
)
252 static unsigned int regmap_parse_8(const void *buf
)
259 static unsigned int regmap_parse_16_be(const void *buf
)
261 const __be16
*b
= buf
;
263 return be16_to_cpu(b
[0]);
266 static unsigned int regmap_parse_16_le(const void *buf
)
268 const __le16
*b
= buf
;
270 return le16_to_cpu(b
[0]);
273 static void regmap_parse_16_be_inplace(void *buf
)
277 b
[0] = be16_to_cpu(b
[0]);
280 static void regmap_parse_16_le_inplace(void *buf
)
284 b
[0] = le16_to_cpu(b
[0]);
287 static unsigned int regmap_parse_16_native(const void *buf
)
292 static unsigned int regmap_parse_24(const void *buf
)
295 unsigned int ret
= b
[2];
296 ret
|= ((unsigned int)b
[1]) << 8;
297 ret
|= ((unsigned int)b
[0]) << 16;
302 static unsigned int regmap_parse_32_be(const void *buf
)
304 const __be32
*b
= buf
;
306 return be32_to_cpu(b
[0]);
309 static unsigned int regmap_parse_32_le(const void *buf
)
311 const __le32
*b
= buf
;
313 return le32_to_cpu(b
[0]);
316 static void regmap_parse_32_be_inplace(void *buf
)
320 b
[0] = be32_to_cpu(b
[0]);
323 static void regmap_parse_32_le_inplace(void *buf
)
327 b
[0] = le32_to_cpu(b
[0]);
330 static unsigned int regmap_parse_32_native(const void *buf
)
335 static void regmap_lock_mutex(void *__map
)
337 struct regmap
*map
= __map
;
338 mutex_lock(&map
->mutex
);
341 static void regmap_unlock_mutex(void *__map
)
343 struct regmap
*map
= __map
;
344 mutex_unlock(&map
->mutex
);
347 static void regmap_lock_spinlock(void *__map
)
348 __acquires(&map
->spinlock
)
350 struct regmap
*map
= __map
;
353 spin_lock_irqsave(&map
->spinlock
, flags
);
354 map
->spinlock_flags
= flags
;
357 static void regmap_unlock_spinlock(void *__map
)
358 __releases(&map
->spinlock
)
360 struct regmap
*map
= __map
;
361 spin_unlock_irqrestore(&map
->spinlock
, map
->spinlock_flags
);
364 static void dev_get_regmap_release(struct device
*dev
, void *res
)
367 * We don't actually have anything to do here; the goal here
368 * is not to manage the regmap but to provide a simple way to
369 * get the regmap back given a struct device.
373 static bool _regmap_range_add(struct regmap
*map
,
374 struct regmap_range_node
*data
)
376 struct rb_root
*root
= &map
->range_tree
;
377 struct rb_node
**new = &(root
->rb_node
), *parent
= NULL
;
380 struct regmap_range_node
*this =
381 container_of(*new, struct regmap_range_node
, node
);
384 if (data
->range_max
< this->range_min
)
385 new = &((*new)->rb_left
);
386 else if (data
->range_min
> this->range_max
)
387 new = &((*new)->rb_right
);
392 rb_link_node(&data
->node
, parent
, new);
393 rb_insert_color(&data
->node
, root
);
398 static struct regmap_range_node
*_regmap_range_lookup(struct regmap
*map
,
401 struct rb_node
*node
= map
->range_tree
.rb_node
;
404 struct regmap_range_node
*this =
405 container_of(node
, struct regmap_range_node
, node
);
407 if (reg
< this->range_min
)
408 node
= node
->rb_left
;
409 else if (reg
> this->range_max
)
410 node
= node
->rb_right
;
418 static void regmap_range_exit(struct regmap
*map
)
420 struct rb_node
*next
;
421 struct regmap_range_node
*range_node
;
423 next
= rb_first(&map
->range_tree
);
425 range_node
= rb_entry(next
, struct regmap_range_node
, node
);
426 next
= rb_next(&range_node
->node
);
427 rb_erase(&range_node
->node
, &map
->range_tree
);
431 kfree(map
->selector_work_buf
);
434 int regmap_attach_dev(struct device
*dev
, struct regmap
*map
,
435 const struct regmap_config
*config
)
441 regmap_debugfs_init(map
, config
->name
);
443 /* Add a devres resource for dev_get_regmap() */
444 m
= devres_alloc(dev_get_regmap_release
, sizeof(*m
), GFP_KERNEL
);
446 regmap_debugfs_exit(map
);
454 EXPORT_SYMBOL_GPL(regmap_attach_dev
);
456 static enum regmap_endian
regmap_get_reg_endian(const struct regmap_bus
*bus
,
457 const struct regmap_config
*config
)
459 enum regmap_endian endian
;
461 /* Retrieve the endianness specification from the regmap config */
462 endian
= config
->reg_format_endian
;
464 /* If the regmap config specified a non-default value, use that */
465 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
468 /* Retrieve the endianness specification from the bus config */
469 if (bus
&& bus
->reg_format_endian_default
)
470 endian
= bus
->reg_format_endian_default
;
472 /* If the bus specified a non-default value, use that */
473 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
476 /* Use this if no other value was found */
477 return REGMAP_ENDIAN_BIG
;
480 enum regmap_endian
regmap_get_val_endian(struct device
*dev
,
481 const struct regmap_bus
*bus
,
482 const struct regmap_config
*config
)
484 struct device_node
*np
;
485 enum regmap_endian endian
;
487 /* Retrieve the endianness specification from the regmap config */
488 endian
= config
->val_format_endian
;
490 /* If the regmap config specified a non-default value, use that */
491 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
494 /* If the dev and dev->of_node exist try to get endianness from DT */
495 if (dev
&& dev
->of_node
) {
498 /* Parse the device's DT node for an endianness specification */
499 if (of_property_read_bool(np
, "big-endian"))
500 endian
= REGMAP_ENDIAN_BIG
;
501 else if (of_property_read_bool(np
, "little-endian"))
502 endian
= REGMAP_ENDIAN_LITTLE
;
504 /* If the endianness was specified in DT, use that */
505 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
509 /* Retrieve the endianness specification from the bus config */
510 if (bus
&& bus
->val_format_endian_default
)
511 endian
= bus
->val_format_endian_default
;
513 /* If the bus specified a non-default value, use that */
514 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
517 /* Use this if no other value was found */
518 return REGMAP_ENDIAN_BIG
;
520 EXPORT_SYMBOL_GPL(regmap_get_val_endian
);
522 struct regmap
*__regmap_init(struct device
*dev
,
523 const struct regmap_bus
*bus
,
525 const struct regmap_config
*config
,
526 struct lock_class_key
*lock_key
,
527 const char *lock_name
)
531 enum regmap_endian reg_endian
, val_endian
;
537 map
= kzalloc(sizeof(*map
), GFP_KERNEL
);
543 if (config
->lock
&& config
->unlock
) {
544 map
->lock
= config
->lock
;
545 map
->unlock
= config
->unlock
;
546 map
->lock_arg
= config
->lock_arg
;
548 if ((bus
&& bus
->fast_io
) ||
550 spin_lock_init(&map
->spinlock
);
551 map
->lock
= regmap_lock_spinlock
;
552 map
->unlock
= regmap_unlock_spinlock
;
553 lockdep_set_class_and_name(&map
->spinlock
,
554 lock_key
, lock_name
);
556 mutex_init(&map
->mutex
);
557 map
->lock
= regmap_lock_mutex
;
558 map
->unlock
= regmap_unlock_mutex
;
559 lockdep_set_class_and_name(&map
->mutex
,
560 lock_key
, lock_name
);
566 * When we write in fast-paths with regmap_bulk_write() don't allocate
567 * scratch buffers with sleeping allocations.
569 if ((bus
&& bus
->fast_io
) || config
->fast_io
)
570 map
->alloc_flags
= GFP_ATOMIC
;
572 map
->alloc_flags
= GFP_KERNEL
;
574 map
->format
.reg_bytes
= DIV_ROUND_UP(config
->reg_bits
, 8);
575 map
->format
.pad_bytes
= config
->pad_bits
/ 8;
576 map
->format
.val_bytes
= DIV_ROUND_UP(config
->val_bits
, 8);
577 map
->format
.buf_size
= DIV_ROUND_UP(config
->reg_bits
+
578 config
->val_bits
+ config
->pad_bits
, 8);
579 map
->reg_shift
= config
->pad_bits
% 8;
580 if (config
->reg_stride
)
581 map
->reg_stride
= config
->reg_stride
;
584 map
->use_single_read
= config
->use_single_rw
|| !bus
|| !bus
->read
;
585 map
->use_single_write
= config
->use_single_rw
|| !bus
|| !bus
->write
;
586 map
->can_multi_write
= config
->can_multi_write
&& bus
&& bus
->write
;
588 map
->max_raw_read
= bus
->max_raw_read
;
589 map
->max_raw_write
= bus
->max_raw_write
;
593 map
->bus_context
= bus_context
;
594 map
->max_register
= config
->max_register
;
595 map
->wr_table
= config
->wr_table
;
596 map
->rd_table
= config
->rd_table
;
597 map
->volatile_table
= config
->volatile_table
;
598 map
->precious_table
= config
->precious_table
;
599 map
->writeable_reg
= config
->writeable_reg
;
600 map
->readable_reg
= config
->readable_reg
;
601 map
->volatile_reg
= config
->volatile_reg
;
602 map
->precious_reg
= config
->precious_reg
;
603 map
->cache_type
= config
->cache_type
;
604 map
->name
= config
->name
;
606 spin_lock_init(&map
->async_lock
);
607 INIT_LIST_HEAD(&map
->async_list
);
608 INIT_LIST_HEAD(&map
->async_free
);
609 init_waitqueue_head(&map
->async_waitq
);
611 if (config
->read_flag_mask
|| config
->write_flag_mask
) {
612 map
->read_flag_mask
= config
->read_flag_mask
;
613 map
->write_flag_mask
= config
->write_flag_mask
;
615 map
->read_flag_mask
= bus
->read_flag_mask
;
619 map
->reg_read
= config
->reg_read
;
620 map
->reg_write
= config
->reg_write
;
622 map
->defer_caching
= false;
623 goto skip_format_initialization
;
624 } else if (!bus
->read
|| !bus
->write
) {
625 map
->reg_read
= _regmap_bus_reg_read
;
626 map
->reg_write
= _regmap_bus_reg_write
;
628 map
->defer_caching
= false;
629 goto skip_format_initialization
;
631 map
->reg_read
= _regmap_bus_read
;
632 map
->reg_update_bits
= bus
->reg_update_bits
;
635 reg_endian
= regmap_get_reg_endian(bus
, config
);
636 val_endian
= regmap_get_val_endian(dev
, bus
, config
);
638 switch (config
->reg_bits
+ map
->reg_shift
) {
640 switch (config
->val_bits
) {
642 map
->format
.format_write
= regmap_format_2_6_write
;
650 switch (config
->val_bits
) {
652 map
->format
.format_write
= regmap_format_4_12_write
;
660 switch (config
->val_bits
) {
662 map
->format
.format_write
= regmap_format_7_9_write
;
670 switch (config
->val_bits
) {
672 map
->format
.format_write
= regmap_format_10_14_write
;
680 map
->format
.format_reg
= regmap_format_8
;
684 switch (reg_endian
) {
685 case REGMAP_ENDIAN_BIG
:
686 map
->format
.format_reg
= regmap_format_16_be
;
688 case REGMAP_ENDIAN_NATIVE
:
689 map
->format
.format_reg
= regmap_format_16_native
;
697 if (reg_endian
!= REGMAP_ENDIAN_BIG
)
699 map
->format
.format_reg
= regmap_format_24
;
703 switch (reg_endian
) {
704 case REGMAP_ENDIAN_BIG
:
705 map
->format
.format_reg
= regmap_format_32_be
;
707 case REGMAP_ENDIAN_NATIVE
:
708 map
->format
.format_reg
= regmap_format_32_native
;
719 if (val_endian
== REGMAP_ENDIAN_NATIVE
)
720 map
->format
.parse_inplace
= regmap_parse_inplace_noop
;
722 switch (config
->val_bits
) {
724 map
->format
.format_val
= regmap_format_8
;
725 map
->format
.parse_val
= regmap_parse_8
;
726 map
->format
.parse_inplace
= regmap_parse_inplace_noop
;
729 switch (val_endian
) {
730 case REGMAP_ENDIAN_BIG
:
731 map
->format
.format_val
= regmap_format_16_be
;
732 map
->format
.parse_val
= regmap_parse_16_be
;
733 map
->format
.parse_inplace
= regmap_parse_16_be_inplace
;
735 case REGMAP_ENDIAN_LITTLE
:
736 map
->format
.format_val
= regmap_format_16_le
;
737 map
->format
.parse_val
= regmap_parse_16_le
;
738 map
->format
.parse_inplace
= regmap_parse_16_le_inplace
;
740 case REGMAP_ENDIAN_NATIVE
:
741 map
->format
.format_val
= regmap_format_16_native
;
742 map
->format
.parse_val
= regmap_parse_16_native
;
749 if (val_endian
!= REGMAP_ENDIAN_BIG
)
751 map
->format
.format_val
= regmap_format_24
;
752 map
->format
.parse_val
= regmap_parse_24
;
755 switch (val_endian
) {
756 case REGMAP_ENDIAN_BIG
:
757 map
->format
.format_val
= regmap_format_32_be
;
758 map
->format
.parse_val
= regmap_parse_32_be
;
759 map
->format
.parse_inplace
= regmap_parse_32_be_inplace
;
761 case REGMAP_ENDIAN_LITTLE
:
762 map
->format
.format_val
= regmap_format_32_le
;
763 map
->format
.parse_val
= regmap_parse_32_le
;
764 map
->format
.parse_inplace
= regmap_parse_32_le_inplace
;
766 case REGMAP_ENDIAN_NATIVE
:
767 map
->format
.format_val
= regmap_format_32_native
;
768 map
->format
.parse_val
= regmap_parse_32_native
;
776 if (map
->format
.format_write
) {
777 if ((reg_endian
!= REGMAP_ENDIAN_BIG
) ||
778 (val_endian
!= REGMAP_ENDIAN_BIG
))
780 map
->use_single_write
= true;
783 if (!map
->format
.format_write
&&
784 !(map
->format
.format_reg
&& map
->format
.format_val
))
787 map
->work_buf
= kzalloc(map
->format
.buf_size
, GFP_KERNEL
);
788 if (map
->work_buf
== NULL
) {
793 if (map
->format
.format_write
) {
794 map
->defer_caching
= false;
795 map
->reg_write
= _regmap_bus_formatted_write
;
796 } else if (map
->format
.format_val
) {
797 map
->defer_caching
= true;
798 map
->reg_write
= _regmap_bus_raw_write
;
801 skip_format_initialization
:
803 map
->range_tree
= RB_ROOT
;
804 for (i
= 0; i
< config
->num_ranges
; i
++) {
805 const struct regmap_range_cfg
*range_cfg
= &config
->ranges
[i
];
806 struct regmap_range_node
*new;
809 if (range_cfg
->range_max
< range_cfg
->range_min
) {
810 dev_err(map
->dev
, "Invalid range %d: %d < %d\n", i
,
811 range_cfg
->range_max
, range_cfg
->range_min
);
815 if (range_cfg
->range_max
> map
->max_register
) {
816 dev_err(map
->dev
, "Invalid range %d: %d > %d\n", i
,
817 range_cfg
->range_max
, map
->max_register
);
821 if (range_cfg
->selector_reg
> map
->max_register
) {
823 "Invalid range %d: selector out of map\n", i
);
827 if (range_cfg
->window_len
== 0) {
828 dev_err(map
->dev
, "Invalid range %d: window_len 0\n",
833 /* Make sure, that this register range has no selector
834 or data window within its boundary */
835 for (j
= 0; j
< config
->num_ranges
; j
++) {
836 unsigned sel_reg
= config
->ranges
[j
].selector_reg
;
837 unsigned win_min
= config
->ranges
[j
].window_start
;
838 unsigned win_max
= win_min
+
839 config
->ranges
[j
].window_len
- 1;
841 /* Allow data window inside its own virtual range */
845 if (range_cfg
->range_min
<= sel_reg
&&
846 sel_reg
<= range_cfg
->range_max
) {
848 "Range %d: selector for %d in window\n",
853 if (!(win_max
< range_cfg
->range_min
||
854 win_min
> range_cfg
->range_max
)) {
856 "Range %d: window for %d in window\n",
862 new = kzalloc(sizeof(*new), GFP_KERNEL
);
869 new->name
= range_cfg
->name
;
870 new->range_min
= range_cfg
->range_min
;
871 new->range_max
= range_cfg
->range_max
;
872 new->selector_reg
= range_cfg
->selector_reg
;
873 new->selector_mask
= range_cfg
->selector_mask
;
874 new->selector_shift
= range_cfg
->selector_shift
;
875 new->window_start
= range_cfg
->window_start
;
876 new->window_len
= range_cfg
->window_len
;
878 if (!_regmap_range_add(map
, new)) {
879 dev_err(map
->dev
, "Failed to add range %d\n", i
);
884 if (map
->selector_work_buf
== NULL
) {
885 map
->selector_work_buf
=
886 kzalloc(map
->format
.buf_size
, GFP_KERNEL
);
887 if (map
->selector_work_buf
== NULL
) {
894 ret
= regcache_init(map
, config
);
899 ret
= regmap_attach_dev(dev
, map
, config
);
909 regmap_range_exit(map
);
910 kfree(map
->work_buf
);
916 EXPORT_SYMBOL_GPL(__regmap_init
);
918 static void devm_regmap_release(struct device
*dev
, void *res
)
920 regmap_exit(*(struct regmap
**)res
);
923 struct regmap
*__devm_regmap_init(struct device
*dev
,
924 const struct regmap_bus
*bus
,
926 const struct regmap_config
*config
,
927 struct lock_class_key
*lock_key
,
928 const char *lock_name
)
930 struct regmap
**ptr
, *regmap
;
932 ptr
= devres_alloc(devm_regmap_release
, sizeof(*ptr
), GFP_KERNEL
);
934 return ERR_PTR(-ENOMEM
);
936 regmap
= __regmap_init(dev
, bus
, bus_context
, config
,
937 lock_key
, lock_name
);
938 if (!IS_ERR(regmap
)) {
940 devres_add(dev
, ptr
);
947 EXPORT_SYMBOL_GPL(__devm_regmap_init
);
949 static void regmap_field_init(struct regmap_field
*rm_field
,
950 struct regmap
*regmap
, struct reg_field reg_field
)
952 rm_field
->regmap
= regmap
;
953 rm_field
->reg
= reg_field
.reg
;
954 rm_field
->shift
= reg_field
.lsb
;
955 rm_field
->mask
= GENMASK(reg_field
.msb
, reg_field
.lsb
);
956 rm_field
->id_size
= reg_field
.id_size
;
957 rm_field
->id_offset
= reg_field
.id_offset
;
961 * devm_regmap_field_alloc(): Allocate and initialise a register field
964 * @dev: Device that will be interacted with
965 * @regmap: regmap bank in which this register field is located.
966 * @reg_field: Register field with in the bank.
968 * The return value will be an ERR_PTR() on error or a valid pointer
969 * to a struct regmap_field. The regmap_field will be automatically freed
970 * by the device management code.
972 struct regmap_field
*devm_regmap_field_alloc(struct device
*dev
,
973 struct regmap
*regmap
, struct reg_field reg_field
)
975 struct regmap_field
*rm_field
= devm_kzalloc(dev
,
976 sizeof(*rm_field
), GFP_KERNEL
);
978 return ERR_PTR(-ENOMEM
);
980 regmap_field_init(rm_field
, regmap
, reg_field
);
985 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc
);
988 * devm_regmap_field_free(): Free register field allocated using
989 * devm_regmap_field_alloc. Usally drivers need not call this function,
990 * as the memory allocated via devm will be freed as per device-driver
993 * @dev: Device that will be interacted with
994 * @field: regmap field which should be freed.
996 void devm_regmap_field_free(struct device
*dev
,
997 struct regmap_field
*field
)
999 devm_kfree(dev
, field
);
1001 EXPORT_SYMBOL_GPL(devm_regmap_field_free
);
1004 * regmap_field_alloc(): Allocate and initialise a register field
1005 * in a register map.
1007 * @regmap: regmap bank in which this register field is located.
1008 * @reg_field: Register field with in the bank.
1010 * The return value will be an ERR_PTR() on error or a valid pointer
1011 * to a struct regmap_field. The regmap_field should be freed by the
1012 * user once its finished working with it using regmap_field_free().
1014 struct regmap_field
*regmap_field_alloc(struct regmap
*regmap
,
1015 struct reg_field reg_field
)
1017 struct regmap_field
*rm_field
= kzalloc(sizeof(*rm_field
), GFP_KERNEL
);
1020 return ERR_PTR(-ENOMEM
);
1022 regmap_field_init(rm_field
, regmap
, reg_field
);
1026 EXPORT_SYMBOL_GPL(regmap_field_alloc
);
1029 * regmap_field_free(): Free register field allocated using regmap_field_alloc
1031 * @field: regmap field which should be freed.
1033 void regmap_field_free(struct regmap_field
*field
)
1037 EXPORT_SYMBOL_GPL(regmap_field_free
);
1040 * regmap_reinit_cache(): Reinitialise the current register cache
1042 * @map: Register map to operate on.
1043 * @config: New configuration. Only the cache data will be used.
1045 * Discard any existing register cache for the map and initialize a
1046 * new cache. This can be used to restore the cache to defaults or to
1047 * update the cache configuration to reflect runtime discovery of the
1050 * No explicit locking is done here, the user needs to ensure that
1051 * this function will not race with other calls to regmap.
1053 int regmap_reinit_cache(struct regmap
*map
, const struct regmap_config
*config
)
1056 regmap_debugfs_exit(map
);
1058 map
->max_register
= config
->max_register
;
1059 map
->writeable_reg
= config
->writeable_reg
;
1060 map
->readable_reg
= config
->readable_reg
;
1061 map
->volatile_reg
= config
->volatile_reg
;
1062 map
->precious_reg
= config
->precious_reg
;
1063 map
->cache_type
= config
->cache_type
;
1065 regmap_debugfs_init(map
, config
->name
);
1067 map
->cache_bypass
= false;
1068 map
->cache_only
= false;
1070 return regcache_init(map
, config
);
1072 EXPORT_SYMBOL_GPL(regmap_reinit_cache
);
1075 * regmap_exit(): Free a previously allocated register map
1077 void regmap_exit(struct regmap
*map
)
1079 struct regmap_async
*async
;
1082 regmap_debugfs_exit(map
);
1083 regmap_range_exit(map
);
1084 if (map
->bus
&& map
->bus
->free_context
)
1085 map
->bus
->free_context(map
->bus_context
);
1086 kfree(map
->work_buf
);
1087 while (!list_empty(&map
->async_free
)) {
1088 async
= list_first_entry_or_null(&map
->async_free
,
1089 struct regmap_async
,
1091 list_del(&async
->list
);
1092 kfree(async
->work_buf
);
1097 EXPORT_SYMBOL_GPL(regmap_exit
);
1099 static int dev_get_regmap_match(struct device
*dev
, void *res
, void *data
)
1101 struct regmap
**r
= res
;
1107 /* If the user didn't specify a name match any */
1109 return (*r
)->name
== data
;
1115 * dev_get_regmap(): Obtain the regmap (if any) for a device
1117 * @dev: Device to retrieve the map for
1118 * @name: Optional name for the register map, usually NULL.
1120 * Returns the regmap for the device if one is present, or NULL. If
1121 * name is specified then it must match the name specified when
1122 * registering the device, if it is NULL then the first regmap found
1123 * will be used. Devices with multiple register maps are very rare,
1124 * generic code should normally not need to specify a name.
1126 struct regmap
*dev_get_regmap(struct device
*dev
, const char *name
)
1128 struct regmap
**r
= devres_find(dev
, dev_get_regmap_release
,
1129 dev_get_regmap_match
, (void *)name
);
1135 EXPORT_SYMBOL_GPL(dev_get_regmap
);
1138 * regmap_get_device(): Obtain the device from a regmap
1140 * @map: Register map to operate on.
1142 * Returns the underlying device that the regmap has been created for.
1144 struct device
*regmap_get_device(struct regmap
*map
)
1148 EXPORT_SYMBOL_GPL(regmap_get_device
);
1150 static int _regmap_select_page(struct regmap
*map
, unsigned int *reg
,
1151 struct regmap_range_node
*range
,
1152 unsigned int val_num
)
1154 void *orig_work_buf
;
1155 unsigned int win_offset
;
1156 unsigned int win_page
;
1160 win_offset
= (*reg
- range
->range_min
) % range
->window_len
;
1161 win_page
= (*reg
- range
->range_min
) / range
->window_len
;
1164 /* Bulk write shouldn't cross range boundary */
1165 if (*reg
+ val_num
- 1 > range
->range_max
)
1168 /* ... or single page boundary */
1169 if (val_num
> range
->window_len
- win_offset
)
1173 /* It is possible to have selector register inside data window.
1174 In that case, selector register is located on every page and
1175 it needs no page switching, when accessed alone. */
1177 range
->window_start
+ win_offset
!= range
->selector_reg
) {
1178 /* Use separate work_buf during page switching */
1179 orig_work_buf
= map
->work_buf
;
1180 map
->work_buf
= map
->selector_work_buf
;
1182 ret
= _regmap_update_bits(map
, range
->selector_reg
,
1183 range
->selector_mask
,
1184 win_page
<< range
->selector_shift
,
1187 map
->work_buf
= orig_work_buf
;
1193 *reg
= range
->window_start
+ win_offset
;
1198 int _regmap_raw_write(struct regmap
*map
, unsigned int reg
,
1199 const void *val
, size_t val_len
)
1201 struct regmap_range_node
*range
;
1202 unsigned long flags
;
1203 u8
*u8
= map
->work_buf
;
1204 void *work_val
= map
->work_buf
+ map
->format
.reg_bytes
+
1205 map
->format
.pad_bytes
;
1207 int ret
= -ENOTSUPP
;
1213 /* Check for unwritable registers before we start */
1214 if (map
->writeable_reg
)
1215 for (i
= 0; i
< val_len
/ map
->format
.val_bytes
; i
++)
1216 if (!map
->writeable_reg(map
->dev
,
1217 reg
+ (i
* map
->reg_stride
)))
1220 if (!map
->cache_bypass
&& map
->format
.parse_val
) {
1222 int val_bytes
= map
->format
.val_bytes
;
1223 for (i
= 0; i
< val_len
/ val_bytes
; i
++) {
1224 ival
= map
->format
.parse_val(val
+ (i
* val_bytes
));
1225 ret
= regcache_write(map
, reg
+ (i
* map
->reg_stride
),
1229 "Error in caching of register: %x ret: %d\n",
1234 if (map
->cache_only
) {
1235 map
->cache_dirty
= true;
1240 range
= _regmap_range_lookup(map
, reg
);
1242 int val_num
= val_len
/ map
->format
.val_bytes
;
1243 int win_offset
= (reg
- range
->range_min
) % range
->window_len
;
1244 int win_residue
= range
->window_len
- win_offset
;
1246 /* If the write goes beyond the end of the window split it */
1247 while (val_num
> win_residue
) {
1248 dev_dbg(map
->dev
, "Writing window %d/%zu\n",
1249 win_residue
, val_len
/ map
->format
.val_bytes
);
1250 ret
= _regmap_raw_write(map
, reg
, val
, win_residue
*
1251 map
->format
.val_bytes
);
1256 val_num
-= win_residue
;
1257 val
+= win_residue
* map
->format
.val_bytes
;
1258 val_len
-= win_residue
* map
->format
.val_bytes
;
1260 win_offset
= (reg
- range
->range_min
) %
1262 win_residue
= range
->window_len
- win_offset
;
1265 ret
= _regmap_select_page(map
, ®
, range
, val_num
);
1270 map
->format
.format_reg(map
->work_buf
, reg
, map
->reg_shift
);
1272 u8
[0] |= map
->write_flag_mask
;
1275 * Essentially all I/O mechanisms will be faster with a single
1276 * buffer to write. Since register syncs often generate raw
1277 * writes of single registers optimise that case.
1279 if (val
!= work_val
&& val_len
== map
->format
.val_bytes
) {
1280 memcpy(work_val
, val
, map
->format
.val_bytes
);
1284 if (map
->async
&& map
->bus
->async_write
) {
1285 struct regmap_async
*async
;
1287 trace_regmap_async_write_start(map
, reg
, val_len
);
1289 spin_lock_irqsave(&map
->async_lock
, flags
);
1290 async
= list_first_entry_or_null(&map
->async_free
,
1291 struct regmap_async
,
1294 list_del(&async
->list
);
1295 spin_unlock_irqrestore(&map
->async_lock
, flags
);
1298 async
= map
->bus
->async_alloc();
1302 async
->work_buf
= kzalloc(map
->format
.buf_size
,
1303 GFP_KERNEL
| GFP_DMA
);
1304 if (!async
->work_buf
) {
1312 /* If the caller supplied the value we can use it safely. */
1313 memcpy(async
->work_buf
, map
->work_buf
, map
->format
.pad_bytes
+
1314 map
->format
.reg_bytes
+ map
->format
.val_bytes
);
1316 spin_lock_irqsave(&map
->async_lock
, flags
);
1317 list_add_tail(&async
->list
, &map
->async_list
);
1318 spin_unlock_irqrestore(&map
->async_lock
, flags
);
1320 if (val
!= work_val
)
1321 ret
= map
->bus
->async_write(map
->bus_context
,
1323 map
->format
.reg_bytes
+
1324 map
->format
.pad_bytes
,
1325 val
, val_len
, async
);
1327 ret
= map
->bus
->async_write(map
->bus_context
,
1329 map
->format
.reg_bytes
+
1330 map
->format
.pad_bytes
+
1331 val_len
, NULL
, 0, async
);
1334 dev_err(map
->dev
, "Failed to schedule write: %d\n",
1337 spin_lock_irqsave(&map
->async_lock
, flags
);
1338 list_move(&async
->list
, &map
->async_free
);
1339 spin_unlock_irqrestore(&map
->async_lock
, flags
);
1345 trace_regmap_hw_write_start(map
, reg
, val_len
/ map
->format
.val_bytes
);
1347 /* If we're doing a single register write we can probably just
1348 * send the work_buf directly, otherwise try to do a gather
1351 if (val
== work_val
)
1352 ret
= map
->bus
->write(map
->bus_context
, map
->work_buf
,
1353 map
->format
.reg_bytes
+
1354 map
->format
.pad_bytes
+
1356 else if (map
->bus
->gather_write
)
1357 ret
= map
->bus
->gather_write(map
->bus_context
, map
->work_buf
,
1358 map
->format
.reg_bytes
+
1359 map
->format
.pad_bytes
,
1362 /* If that didn't work fall back on linearising by hand. */
1363 if (ret
== -ENOTSUPP
) {
1364 len
= map
->format
.reg_bytes
+ map
->format
.pad_bytes
+ val_len
;
1365 buf
= kzalloc(len
, GFP_KERNEL
);
1369 memcpy(buf
, map
->work_buf
, map
->format
.reg_bytes
);
1370 memcpy(buf
+ map
->format
.reg_bytes
+ map
->format
.pad_bytes
,
1372 ret
= map
->bus
->write(map
->bus_context
, buf
, len
);
1377 trace_regmap_hw_write_done(map
, reg
, val_len
/ map
->format
.val_bytes
);
1383 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1385 * @map: Map to check.
1387 bool regmap_can_raw_write(struct regmap
*map
)
1389 return map
->bus
&& map
->bus
->write
&& map
->format
.format_val
&&
1390 map
->format
.format_reg
;
1392 EXPORT_SYMBOL_GPL(regmap_can_raw_write
);
1395 * regmap_get_raw_read_max - Get the maximum size we can read
1397 * @map: Map to check.
1399 size_t regmap_get_raw_read_max(struct regmap
*map
)
1401 return map
->max_raw_read
;
1403 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max
);
1406 * regmap_get_raw_write_max - Get the maximum size we can read
1408 * @map: Map to check.
1410 size_t regmap_get_raw_write_max(struct regmap
*map
)
1412 return map
->max_raw_write
;
1414 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max
);
1416 static int _regmap_bus_formatted_write(void *context
, unsigned int reg
,
1420 struct regmap_range_node
*range
;
1421 struct regmap
*map
= context
;
1423 WARN_ON(!map
->bus
|| !map
->format
.format_write
);
1425 range
= _regmap_range_lookup(map
, reg
);
1427 ret
= _regmap_select_page(map
, ®
, range
, 1);
1432 map
->format
.format_write(map
, reg
, val
);
1434 trace_regmap_hw_write_start(map
, reg
, 1);
1436 ret
= map
->bus
->write(map
->bus_context
, map
->work_buf
,
1437 map
->format
.buf_size
);
1439 trace_regmap_hw_write_done(map
, reg
, 1);
1444 static int _regmap_bus_reg_write(void *context
, unsigned int reg
,
1447 struct regmap
*map
= context
;
1449 return map
->bus
->reg_write(map
->bus_context
, reg
, val
);
1452 static int _regmap_bus_raw_write(void *context
, unsigned int reg
,
1455 struct regmap
*map
= context
;
1457 WARN_ON(!map
->bus
|| !map
->format
.format_val
);
1459 map
->format
.format_val(map
->work_buf
+ map
->format
.reg_bytes
1460 + map
->format
.pad_bytes
, val
, 0);
1461 return _regmap_raw_write(map
, reg
,
1463 map
->format
.reg_bytes
+
1464 map
->format
.pad_bytes
,
1465 map
->format
.val_bytes
);
1468 static inline void *_regmap_map_get_context(struct regmap
*map
)
1470 return (map
->bus
) ? map
: map
->bus_context
;
1473 int _regmap_write(struct regmap
*map
, unsigned int reg
,
1477 void *context
= _regmap_map_get_context(map
);
1479 if (!regmap_writeable(map
, reg
))
1482 if (!map
->cache_bypass
&& !map
->defer_caching
) {
1483 ret
= regcache_write(map
, reg
, val
);
1486 if (map
->cache_only
) {
1487 map
->cache_dirty
= true;
1493 if (map
->dev
&& strcmp(dev_name(map
->dev
), LOG_DEVICE
) == 0)
1494 dev_info(map
->dev
, "%x <= %x\n", reg
, val
);
1497 trace_regmap_reg_write(map
, reg
, val
);
1499 return map
->reg_write(context
, reg
, val
);
1503 * regmap_write(): Write a value to a single register
1505 * @map: Register map to write to
1506 * @reg: Register to write to
1507 * @val: Value to be written
1509 * A value of zero will be returned on success, a negative errno will
1510 * be returned in error cases.
1512 int regmap_write(struct regmap
*map
, unsigned int reg
, unsigned int val
)
1516 if (reg
% map
->reg_stride
)
1519 map
->lock(map
->lock_arg
);
1521 ret
= _regmap_write(map
, reg
, val
);
1523 map
->unlock(map
->lock_arg
);
1527 EXPORT_SYMBOL_GPL(regmap_write
);
1530 * regmap_write_async(): Write a value to a single register asynchronously
1532 * @map: Register map to write to
1533 * @reg: Register to write to
1534 * @val: Value to be written
1536 * A value of zero will be returned on success, a negative errno will
1537 * be returned in error cases.
1539 int regmap_write_async(struct regmap
*map
, unsigned int reg
, unsigned int val
)
1543 if (reg
% map
->reg_stride
)
1546 map
->lock(map
->lock_arg
);
1550 ret
= _regmap_write(map
, reg
, val
);
1554 map
->unlock(map
->lock_arg
);
1558 EXPORT_SYMBOL_GPL(regmap_write_async
);
1561 * regmap_raw_write(): Write raw values to one or more registers
1563 * @map: Register map to write to
1564 * @reg: Initial register to write to
1565 * @val: Block of data to be written, laid out for direct transmission to the
1567 * @val_len: Length of data pointed to by val.
1569 * This function is intended to be used for things like firmware
1570 * download where a large block of data needs to be transferred to the
1571 * device. No formatting will be done on the data provided.
1573 * A value of zero will be returned on success, a negative errno will
1574 * be returned in error cases.
1576 int regmap_raw_write(struct regmap
*map
, unsigned int reg
,
1577 const void *val
, size_t val_len
)
1581 if (!regmap_can_raw_write(map
))
1583 if (val_len
% map
->format
.val_bytes
)
1585 if (map
->max_raw_write
&& map
->max_raw_write
> val_len
)
1588 map
->lock(map
->lock_arg
);
1590 ret
= _regmap_raw_write(map
, reg
, val
, val_len
);
1592 map
->unlock(map
->lock_arg
);
1596 EXPORT_SYMBOL_GPL(regmap_raw_write
);
1599 * regmap_field_write(): Write a value to a single register field
1601 * @field: Register field to write to
1602 * @val: Value to be written
1604 * A value of zero will be returned on success, a negative errno will
1605 * be returned in error cases.
1607 int regmap_field_write(struct regmap_field
*field
, unsigned int val
)
1609 return regmap_update_bits(field
->regmap
, field
->reg
,
1610 field
->mask
, val
<< field
->shift
);
1612 EXPORT_SYMBOL_GPL(regmap_field_write
);
1615 * regmap_field_update_bits(): Perform a read/modify/write cycle
1616 * on the register field
1618 * @field: Register field to write to
1619 * @mask: Bitmask to change
1620 * @val: Value to be written
1622 * A value of zero will be returned on success, a negative errno will
1623 * be returned in error cases.
1625 int regmap_field_update_bits(struct regmap_field
*field
, unsigned int mask
, unsigned int val
)
1627 mask
= (mask
<< field
->shift
) & field
->mask
;
1629 return regmap_update_bits(field
->regmap
, field
->reg
,
1630 mask
, val
<< field
->shift
);
1632 EXPORT_SYMBOL_GPL(regmap_field_update_bits
);
1635 * regmap_fields_write(): Write a value to a single register field with port ID
1637 * @field: Register field to write to
1639 * @val: Value to be written
1641 * A value of zero will be returned on success, a negative errno will
1642 * be returned in error cases.
1644 int regmap_fields_write(struct regmap_field
*field
, unsigned int id
,
1647 if (id
>= field
->id_size
)
1650 return regmap_update_bits(field
->regmap
,
1651 field
->reg
+ (field
->id_offset
* id
),
1652 field
->mask
, val
<< field
->shift
);
1654 EXPORT_SYMBOL_GPL(regmap_fields_write
);
1656 int regmap_fields_force_write(struct regmap_field
*field
, unsigned int id
,
1659 if (id
>= field
->id_size
)
1662 return regmap_write_bits(field
->regmap
,
1663 field
->reg
+ (field
->id_offset
* id
),
1664 field
->mask
, val
<< field
->shift
);
1666 EXPORT_SYMBOL_GPL(regmap_fields_force_write
);
1669 * regmap_fields_update_bits(): Perform a read/modify/write cycle
1670 * on the register field
1672 * @field: Register field to write to
1674 * @mask: Bitmask to change
1675 * @val: Value to be written
1677 * A value of zero will be returned on success, a negative errno will
1678 * be returned in error cases.
1680 int regmap_fields_update_bits(struct regmap_field
*field
, unsigned int id
,
1681 unsigned int mask
, unsigned int val
)
1683 if (id
>= field
->id_size
)
1686 mask
= (mask
<< field
->shift
) & field
->mask
;
1688 return regmap_update_bits(field
->regmap
,
1689 field
->reg
+ (field
->id_offset
* id
),
1690 mask
, val
<< field
->shift
);
1692 EXPORT_SYMBOL_GPL(regmap_fields_update_bits
);
1695 * regmap_bulk_write(): Write multiple registers to the device
1697 * @map: Register map to write to
1698 * @reg: First register to be write from
1699 * @val: Block of data to be written, in native register size for device
1700 * @val_count: Number of registers to write
1702 * This function is intended to be used for writing a large block of
1703 * data to the device either in single transfer or multiple transfer.
1705 * A value of zero will be returned on success, a negative errno will
1706 * be returned in error cases.
1708 int regmap_bulk_write(struct regmap
*map
, unsigned int reg
, const void *val
,
1712 size_t val_bytes
= map
->format
.val_bytes
;
1713 size_t total_size
= val_bytes
* val_count
;
1715 if (map
->bus
&& !map
->format
.parse_inplace
)
1717 if (reg
% map
->reg_stride
)
1721 * Some devices don't support bulk write, for
1722 * them we have a series of single write operations in the first two if
1725 * The first if block is used for memory mapped io. It does not allow
1726 * val_bytes of 3 for example.
1727 * The second one is used for busses which do not have this limitation
1728 * and can write arbitrary value lengths.
1731 map
->lock(map
->lock_arg
);
1732 for (i
= 0; i
< val_count
; i
++) {
1735 switch (val_bytes
) {
1737 ival
= *(u8
*)(val
+ (i
* val_bytes
));
1740 ival
= *(u16
*)(val
+ (i
* val_bytes
));
1743 ival
= *(u32
*)(val
+ (i
* val_bytes
));
1747 ival
= *(u64
*)(val
+ (i
* val_bytes
));
1755 ret
= _regmap_write(map
, reg
+ (i
* map
->reg_stride
),
1761 map
->unlock(map
->lock_arg
);
1762 } else if (map
->use_single_write
||
1763 (map
->max_raw_write
&& map
->max_raw_write
< total_size
)) {
1764 int chunk_stride
= map
->reg_stride
;
1765 size_t chunk_size
= val_bytes
;
1766 size_t chunk_count
= val_count
;
1768 if (!map
->use_single_write
) {
1769 chunk_size
= map
->max_raw_write
;
1770 if (chunk_size
% val_bytes
)
1771 chunk_size
-= chunk_size
% val_bytes
;
1772 chunk_count
= total_size
/ chunk_size
;
1773 chunk_stride
*= chunk_size
/ val_bytes
;
1776 map
->lock(map
->lock_arg
);
1777 /* Write as many bytes as possible with chunk_size */
1778 for (i
= 0; i
< chunk_count
; i
++) {
1779 ret
= _regmap_raw_write(map
,
1780 reg
+ (i
* chunk_stride
),
1781 val
+ (i
* chunk_size
),
1787 /* Write remaining bytes */
1788 if (!ret
&& chunk_size
* i
< total_size
) {
1789 ret
= _regmap_raw_write(map
, reg
+ (i
* chunk_stride
),
1790 val
+ (i
* chunk_size
),
1791 total_size
- i
* chunk_size
);
1793 map
->unlock(map
->lock_arg
);
1800 wval
= kmemdup(val
, val_count
* val_bytes
, map
->alloc_flags
);
1802 dev_err(map
->dev
, "Error in memory allocation\n");
1805 for (i
= 0; i
< val_count
* val_bytes
; i
+= val_bytes
)
1806 map
->format
.parse_inplace(wval
+ i
);
1808 map
->lock(map
->lock_arg
);
1809 ret
= _regmap_raw_write(map
, reg
, wval
, val_bytes
* val_count
);
1810 map
->unlock(map
->lock_arg
);
1816 EXPORT_SYMBOL_GPL(regmap_bulk_write
);
1819 * _regmap_raw_multi_reg_write()
1821 * the (register,newvalue) pairs in regs have not been formatted, but
1822 * they are all in the same page and have been changed to being page
1823 * relative. The page register has been written if that was necessary.
1825 static int _regmap_raw_multi_reg_write(struct regmap
*map
,
1826 const struct reg_sequence
*regs
,
1833 size_t val_bytes
= map
->format
.val_bytes
;
1834 size_t reg_bytes
= map
->format
.reg_bytes
;
1835 size_t pad_bytes
= map
->format
.pad_bytes
;
1836 size_t pair_size
= reg_bytes
+ pad_bytes
+ val_bytes
;
1837 size_t len
= pair_size
* num_regs
;
1842 buf
= kzalloc(len
, GFP_KERNEL
);
1846 /* We have to linearise by hand. */
1850 for (i
= 0; i
< num_regs
; i
++) {
1851 unsigned int reg
= regs
[i
].reg
;
1852 unsigned int val
= regs
[i
].def
;
1853 trace_regmap_hw_write_start(map
, reg
, 1);
1854 map
->format
.format_reg(u8
, reg
, map
->reg_shift
);
1855 u8
+= reg_bytes
+ pad_bytes
;
1856 map
->format
.format_val(u8
, val
, 0);
1860 *u8
|= map
->write_flag_mask
;
1862 ret
= map
->bus
->write(map
->bus_context
, buf
, len
);
1866 for (i
= 0; i
< num_regs
; i
++) {
1867 int reg
= regs
[i
].reg
;
1868 trace_regmap_hw_write_done(map
, reg
, 1);
1873 static unsigned int _regmap_register_page(struct regmap
*map
,
1875 struct regmap_range_node
*range
)
1877 unsigned int win_page
= (reg
- range
->range_min
) / range
->window_len
;
1882 static int _regmap_range_multi_paged_reg_write(struct regmap
*map
,
1883 struct reg_sequence
*regs
,
1888 struct reg_sequence
*base
;
1889 unsigned int this_page
= 0;
1890 unsigned int page_change
= 0;
1892 * the set of registers are not neccessarily in order, but
1893 * since the order of write must be preserved this algorithm
1894 * chops the set each time the page changes. This also applies
1895 * if there is a delay required at any point in the sequence.
1898 for (i
= 0, n
= 0; i
< num_regs
; i
++, n
++) {
1899 unsigned int reg
= regs
[i
].reg
;
1900 struct regmap_range_node
*range
;
1902 range
= _regmap_range_lookup(map
, reg
);
1904 unsigned int win_page
= _regmap_register_page(map
, reg
,
1908 this_page
= win_page
;
1909 if (win_page
!= this_page
) {
1910 this_page
= win_page
;
1915 /* If we have both a page change and a delay make sure to
1916 * write the regs and apply the delay before we change the
1920 if (page_change
|| regs
[i
].delay_us
) {
1922 /* For situations where the first write requires
1923 * a delay we need to make sure we don't call
1924 * raw_multi_reg_write with n=0
1925 * This can't occur with page breaks as we
1926 * never write on the first iteration
1928 if (regs
[i
].delay_us
&& i
== 0)
1931 ret
= _regmap_raw_multi_reg_write(map
, base
, n
);
1935 if (regs
[i
].delay_us
)
1936 udelay(regs
[i
].delay_us
);
1942 ret
= _regmap_select_page(map
,
1955 return _regmap_raw_multi_reg_write(map
, base
, n
);
1959 static int _regmap_multi_reg_write(struct regmap
*map
,
1960 const struct reg_sequence
*regs
,
1966 if (!map
->can_multi_write
) {
1967 for (i
= 0; i
< num_regs
; i
++) {
1968 ret
= _regmap_write(map
, regs
[i
].reg
, regs
[i
].def
);
1972 if (regs
[i
].delay_us
)
1973 udelay(regs
[i
].delay_us
);
1978 if (!map
->format
.parse_inplace
)
1981 if (map
->writeable_reg
)
1982 for (i
= 0; i
< num_regs
; i
++) {
1983 int reg
= regs
[i
].reg
;
1984 if (!map
->writeable_reg(map
->dev
, reg
))
1986 if (reg
% map
->reg_stride
)
1990 if (!map
->cache_bypass
) {
1991 for (i
= 0; i
< num_regs
; i
++) {
1992 unsigned int val
= regs
[i
].def
;
1993 unsigned int reg
= regs
[i
].reg
;
1994 ret
= regcache_write(map
, reg
, val
);
1997 "Error in caching of register: %x ret: %d\n",
2002 if (map
->cache_only
) {
2003 map
->cache_dirty
= true;
2010 for (i
= 0; i
< num_regs
; i
++) {
2011 unsigned int reg
= regs
[i
].reg
;
2012 struct regmap_range_node
*range
;
2014 /* Coalesce all the writes between a page break or a delay
2017 range
= _regmap_range_lookup(map
, reg
);
2018 if (range
|| regs
[i
].delay_us
) {
2019 size_t len
= sizeof(struct reg_sequence
)*num_regs
;
2020 struct reg_sequence
*base
= kmemdup(regs
, len
,
2024 ret
= _regmap_range_multi_paged_reg_write(map
, base
,
2031 return _regmap_raw_multi_reg_write(map
, regs
, num_regs
);
2035 * regmap_multi_reg_write(): Write multiple registers to the device
2037 * where the set of register,value pairs are supplied in any order,
2038 * possibly not all in a single range.
2040 * @map: Register map to write to
2041 * @regs: Array of structures containing register,value to be written
2042 * @num_regs: Number of registers to write
2044 * The 'normal' block write mode will send ultimately send data on the
2045 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
2046 * addressed. However, this alternative block multi write mode will send
2047 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2048 * must of course support the mode.
2050 * A value of zero will be returned on success, a negative errno will be
2051 * returned in error cases.
2053 int regmap_multi_reg_write(struct regmap
*map
, const struct reg_sequence
*regs
,
2058 map
->lock(map
->lock_arg
);
2060 ret
= _regmap_multi_reg_write(map
, regs
, num_regs
);
2062 map
->unlock(map
->lock_arg
);
2066 EXPORT_SYMBOL_GPL(regmap_multi_reg_write
);
2069 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
2070 * device but not the cache
2072 * where the set of register are supplied in any order
2074 * @map: Register map to write to
2075 * @regs: Array of structures containing register,value to be written
2076 * @num_regs: Number of registers to write
2078 * This function is intended to be used for writing a large block of data
2079 * atomically to the device in single transfer for those I2C client devices
2080 * that implement this alternative block write mode.
2082 * A value of zero will be returned on success, a negative errno will
2083 * be returned in error cases.
2085 int regmap_multi_reg_write_bypassed(struct regmap
*map
,
2086 const struct reg_sequence
*regs
,
2092 map
->lock(map
->lock_arg
);
2094 bypass
= map
->cache_bypass
;
2095 map
->cache_bypass
= true;
2097 ret
= _regmap_multi_reg_write(map
, regs
, num_regs
);
2099 map
->cache_bypass
= bypass
;
2101 map
->unlock(map
->lock_arg
);
2105 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed
);
2108 * regmap_raw_write_async(): Write raw values to one or more registers
2111 * @map: Register map to write to
2112 * @reg: Initial register to write to
2113 * @val: Block of data to be written, laid out for direct transmission to the
2114 * device. Must be valid until regmap_async_complete() is called.
2115 * @val_len: Length of data pointed to by val.
2117 * This function is intended to be used for things like firmware
2118 * download where a large block of data needs to be transferred to the
2119 * device. No formatting will be done on the data provided.
2121 * If supported by the underlying bus the write will be scheduled
2122 * asynchronously, helping maximise I/O speed on higher speed buses
2123 * like SPI. regmap_async_complete() can be called to ensure that all
2124 * asynchrnous writes have been completed.
2126 * A value of zero will be returned on success, a negative errno will
2127 * be returned in error cases.
2129 int regmap_raw_write_async(struct regmap
*map
, unsigned int reg
,
2130 const void *val
, size_t val_len
)
2134 if (val_len
% map
->format
.val_bytes
)
2136 if (reg
% map
->reg_stride
)
2139 map
->lock(map
->lock_arg
);
2143 ret
= _regmap_raw_write(map
, reg
, val
, val_len
);
2147 map
->unlock(map
->lock_arg
);
2151 EXPORT_SYMBOL_GPL(regmap_raw_write_async
);
2153 static int _regmap_raw_read(struct regmap
*map
, unsigned int reg
, void *val
,
2154 unsigned int val_len
)
2156 struct regmap_range_node
*range
;
2157 u8
*u8
= map
->work_buf
;
2162 range
= _regmap_range_lookup(map
, reg
);
2164 ret
= _regmap_select_page(map
, ®
, range
,
2165 val_len
/ map
->format
.val_bytes
);
2170 map
->format
.format_reg(map
->work_buf
, reg
, map
->reg_shift
);
2173 * Some buses or devices flag reads by setting the high bits in the
2174 * register address; since it's always the high bits for all
2175 * current formats we can do this here rather than in
2176 * formatting. This may break if we get interesting formats.
2178 u8
[0] |= map
->read_flag_mask
;
2180 trace_regmap_hw_read_start(map
, reg
, val_len
/ map
->format
.val_bytes
);
2182 ret
= map
->bus
->read(map
->bus_context
, map
->work_buf
,
2183 map
->format
.reg_bytes
+ map
->format
.pad_bytes
,
2186 trace_regmap_hw_read_done(map
, reg
, val_len
/ map
->format
.val_bytes
);
2191 static int _regmap_bus_reg_read(void *context
, unsigned int reg
,
2194 struct regmap
*map
= context
;
2196 return map
->bus
->reg_read(map
->bus_context
, reg
, val
);
2199 static int _regmap_bus_read(void *context
, unsigned int reg
,
2203 struct regmap
*map
= context
;
2205 if (!map
->format
.parse_val
)
2208 ret
= _regmap_raw_read(map
, reg
, map
->work_buf
, map
->format
.val_bytes
);
2210 *val
= map
->format
.parse_val(map
->work_buf
);
2215 static int _regmap_read(struct regmap
*map
, unsigned int reg
,
2219 void *context
= _regmap_map_get_context(map
);
2221 if (!map
->cache_bypass
) {
2222 ret
= regcache_read(map
, reg
, val
);
2227 if (map
->cache_only
)
2230 if (!regmap_readable(map
, reg
))
2233 ret
= map
->reg_read(context
, reg
, val
);
2236 if (map
->dev
&& strcmp(dev_name(map
->dev
), LOG_DEVICE
) == 0)
2237 dev_info(map
->dev
, "%x => %x\n", reg
, *val
);
2240 trace_regmap_reg_read(map
, reg
, *val
);
2242 if (!map
->cache_bypass
)
2243 regcache_write(map
, reg
, *val
);
2250 * regmap_read(): Read a value from a single register
2252 * @map: Register map to read from
2253 * @reg: Register to be read from
2254 * @val: Pointer to store read value
2256 * A value of zero will be returned on success, a negative errno will
2257 * be returned in error cases.
2259 int regmap_read(struct regmap
*map
, unsigned int reg
, unsigned int *val
)
2263 if (reg
% map
->reg_stride
)
2266 map
->lock(map
->lock_arg
);
2268 ret
= _regmap_read(map
, reg
, val
);
2270 map
->unlock(map
->lock_arg
);
2274 EXPORT_SYMBOL_GPL(regmap_read
);
2277 * regmap_raw_read(): Read raw data from the device
2279 * @map: Register map to read from
2280 * @reg: First register to be read from
2281 * @val: Pointer to store read value
2282 * @val_len: Size of data to read
2284 * A value of zero will be returned on success, a negative errno will
2285 * be returned in error cases.
2287 int regmap_raw_read(struct regmap
*map
, unsigned int reg
, void *val
,
2290 size_t val_bytes
= map
->format
.val_bytes
;
2291 size_t val_count
= val_len
/ val_bytes
;
2297 if (val_len
% map
->format
.val_bytes
)
2299 if (reg
% map
->reg_stride
)
2304 map
->lock(map
->lock_arg
);
2306 if (regmap_volatile_range(map
, reg
, val_count
) || map
->cache_bypass
||
2307 map
->cache_type
== REGCACHE_NONE
) {
2308 if (!map
->bus
->read
) {
2312 if (map
->max_raw_read
&& map
->max_raw_read
< val_len
) {
2317 /* Physical block read if there's no cache involved */
2318 ret
= _regmap_raw_read(map
, reg
, val
, val_len
);
2321 /* Otherwise go word by word for the cache; should be low
2322 * cost as we expect to hit the cache.
2324 for (i
= 0; i
< val_count
; i
++) {
2325 ret
= _regmap_read(map
, reg
+ (i
* map
->reg_stride
),
2330 map
->format
.format_val(val
+ (i
* val_bytes
), v
, 0);
2335 map
->unlock(map
->lock_arg
);
2339 EXPORT_SYMBOL_GPL(regmap_raw_read
);
2342 * regmap_field_read(): Read a value to a single register field
2344 * @field: Register field to read from
2345 * @val: Pointer to store read value
2347 * A value of zero will be returned on success, a negative errno will
2348 * be returned in error cases.
2350 int regmap_field_read(struct regmap_field
*field
, unsigned int *val
)
2353 unsigned int reg_val
;
2354 ret
= regmap_read(field
->regmap
, field
->reg
, ®_val
);
2358 reg_val
&= field
->mask
;
2359 reg_val
>>= field
->shift
;
2364 EXPORT_SYMBOL_GPL(regmap_field_read
);
2367 * regmap_fields_read(): Read a value to a single register field with port ID
2369 * @field: Register field to read from
2371 * @val: Pointer to store read value
2373 * A value of zero will be returned on success, a negative errno will
2374 * be returned in error cases.
2376 int regmap_fields_read(struct regmap_field
*field
, unsigned int id
,
2380 unsigned int reg_val
;
2382 if (id
>= field
->id_size
)
2385 ret
= regmap_read(field
->regmap
,
2386 field
->reg
+ (field
->id_offset
* id
),
2391 reg_val
&= field
->mask
;
2392 reg_val
>>= field
->shift
;
2397 EXPORT_SYMBOL_GPL(regmap_fields_read
);
2400 * regmap_bulk_read(): Read multiple registers from the device
2402 * @map: Register map to read from
2403 * @reg: First register to be read from
2404 * @val: Pointer to store read value, in native register size for device
2405 * @val_count: Number of registers to read
2407 * A value of zero will be returned on success, a negative errno will
2408 * be returned in error cases.
2410 int regmap_bulk_read(struct regmap
*map
, unsigned int reg
, void *val
,
2414 size_t val_bytes
= map
->format
.val_bytes
;
2415 bool vol
= regmap_volatile_range(map
, reg
, val_count
);
2417 if (reg
% map
->reg_stride
)
2420 if (map
->bus
&& map
->format
.parse_inplace
&& (vol
|| map
->cache_type
== REGCACHE_NONE
)) {
2422 * Some devices does not support bulk read, for
2423 * them we have a series of single read operations.
2425 size_t total_size
= val_bytes
* val_count
;
2427 if (!map
->use_single_read
&&
2428 (!map
->max_raw_read
|| map
->max_raw_read
> total_size
)) {
2429 ret
= regmap_raw_read(map
, reg
, val
,
2430 val_bytes
* val_count
);
2435 * Some devices do not support bulk read or do not
2436 * support large bulk reads, for them we have a series
2437 * of read operations.
2439 int chunk_stride
= map
->reg_stride
;
2440 size_t chunk_size
= val_bytes
;
2441 size_t chunk_count
= val_count
;
2443 if (!map
->use_single_read
) {
2444 chunk_size
= map
->max_raw_read
;
2445 if (chunk_size
% val_bytes
)
2446 chunk_size
-= chunk_size
% val_bytes
;
2447 chunk_count
= total_size
/ chunk_size
;
2448 chunk_stride
*= chunk_size
/ val_bytes
;
2451 /* Read bytes that fit into a multiple of chunk_size */
2452 for (i
= 0; i
< chunk_count
; i
++) {
2453 ret
= regmap_raw_read(map
,
2454 reg
+ (i
* chunk_stride
),
2455 val
+ (i
* chunk_size
),
2461 /* Read remaining bytes */
2462 if (chunk_size
* i
< total_size
) {
2463 ret
= regmap_raw_read(map
,
2464 reg
+ (i
* chunk_stride
),
2465 val
+ (i
* chunk_size
),
2466 total_size
- i
* chunk_size
);
2472 for (i
= 0; i
< val_count
* val_bytes
; i
+= val_bytes
)
2473 map
->format
.parse_inplace(val
+ i
);
2475 for (i
= 0; i
< val_count
; i
++) {
2477 ret
= regmap_read(map
, reg
+ (i
* map
->reg_stride
),
2482 if (map
->format
.format_val
) {
2483 map
->format
.format_val(val
+ (i
* val_bytes
), ival
, 0);
2485 /* Devices providing read and write
2486 * operations can use the bulk I/O
2487 * functions if they define a val_bytes,
2488 * we assume that the values are native
2495 switch (map
->format
.val_bytes
) {
2514 EXPORT_SYMBOL_GPL(regmap_bulk_read
);
2516 static int _regmap_update_bits(struct regmap
*map
, unsigned int reg
,
2517 unsigned int mask
, unsigned int val
,
2518 bool *change
, bool force_write
)
2521 unsigned int tmp
, orig
;
2526 if (regmap_volatile(map
, reg
) && map
->reg_update_bits
) {
2527 ret
= map
->reg_update_bits(map
->bus_context
, reg
, mask
, val
);
2528 if (ret
== 0 && change
)
2531 ret
= _regmap_read(map
, reg
, &orig
);
2538 if (force_write
|| (tmp
!= orig
)) {
2539 ret
= _regmap_write(map
, reg
, tmp
);
2540 if (ret
== 0 && change
)
2549 * regmap_update_bits: Perform a read/modify/write cycle on the register map
2551 * @map: Register map to update
2552 * @reg: Register to update
2553 * @mask: Bitmask to change
2554 * @val: New value for bitmask
2556 * Returns zero for success, a negative number on error.
2558 int regmap_update_bits(struct regmap
*map
, unsigned int reg
,
2559 unsigned int mask
, unsigned int val
)
2563 map
->lock(map
->lock_arg
);
2564 ret
= _regmap_update_bits(map
, reg
, mask
, val
, NULL
, false);
2565 map
->unlock(map
->lock_arg
);
2569 EXPORT_SYMBOL_GPL(regmap_update_bits
);
2572 * regmap_write_bits: Perform a read/modify/write cycle on the register map
2574 * @map: Register map to update
2575 * @reg: Register to update
2576 * @mask: Bitmask to change
2577 * @val: New value for bitmask
2579 * Returns zero for success, a negative number on error.
2581 int regmap_write_bits(struct regmap
*map
, unsigned int reg
,
2582 unsigned int mask
, unsigned int val
)
2586 map
->lock(map
->lock_arg
);
2587 ret
= _regmap_update_bits(map
, reg
, mask
, val
, NULL
, true);
2588 map
->unlock(map
->lock_arg
);
2592 EXPORT_SYMBOL_GPL(regmap_write_bits
);
2595 * regmap_update_bits_async: Perform a read/modify/write cycle on the register
2596 * map asynchronously
2598 * @map: Register map to update
2599 * @reg: Register to update
2600 * @mask: Bitmask to change
2601 * @val: New value for bitmask
2603 * With most buses the read must be done synchronously so this is most
2604 * useful for devices with a cache which do not need to interact with
2605 * the hardware to determine the current register value.
2607 * Returns zero for success, a negative number on error.
2609 int regmap_update_bits_async(struct regmap
*map
, unsigned int reg
,
2610 unsigned int mask
, unsigned int val
)
2614 map
->lock(map
->lock_arg
);
2618 ret
= _regmap_update_bits(map
, reg
, mask
, val
, NULL
, false);
2622 map
->unlock(map
->lock_arg
);
2626 EXPORT_SYMBOL_GPL(regmap_update_bits_async
);
2629 * regmap_update_bits_check: Perform a read/modify/write cycle on the
2630 * register map and report if updated
2632 * @map: Register map to update
2633 * @reg: Register to update
2634 * @mask: Bitmask to change
2635 * @val: New value for bitmask
2636 * @change: Boolean indicating if a write was done
2638 * Returns zero for success, a negative number on error.
2640 int regmap_update_bits_check(struct regmap
*map
, unsigned int reg
,
2641 unsigned int mask
, unsigned int val
,
2646 map
->lock(map
->lock_arg
);
2647 ret
= _regmap_update_bits(map
, reg
, mask
, val
, change
, false);
2648 map
->unlock(map
->lock_arg
);
2651 EXPORT_SYMBOL_GPL(regmap_update_bits_check
);
2654 * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
2655 * register map asynchronously and report if
2658 * @map: Register map to update
2659 * @reg: Register to update
2660 * @mask: Bitmask to change
2661 * @val: New value for bitmask
2662 * @change: Boolean indicating if a write was done
2664 * With most buses the read must be done synchronously so this is most
2665 * useful for devices with a cache which do not need to interact with
2666 * the hardware to determine the current register value.
2668 * Returns zero for success, a negative number on error.
2670 int regmap_update_bits_check_async(struct regmap
*map
, unsigned int reg
,
2671 unsigned int mask
, unsigned int val
,
2676 map
->lock(map
->lock_arg
);
2680 ret
= _regmap_update_bits(map
, reg
, mask
, val
, change
, false);
2684 map
->unlock(map
->lock_arg
);
2688 EXPORT_SYMBOL_GPL(regmap_update_bits_check_async
);
2690 void regmap_async_complete_cb(struct regmap_async
*async
, int ret
)
2692 struct regmap
*map
= async
->map
;
2695 trace_regmap_async_io_complete(map
);
2697 spin_lock(&map
->async_lock
);
2698 list_move(&async
->list
, &map
->async_free
);
2699 wake
= list_empty(&map
->async_list
);
2702 map
->async_ret
= ret
;
2704 spin_unlock(&map
->async_lock
);
2707 wake_up(&map
->async_waitq
);
2709 EXPORT_SYMBOL_GPL(regmap_async_complete_cb
);
2711 static int regmap_async_is_done(struct regmap
*map
)
2713 unsigned long flags
;
2716 spin_lock_irqsave(&map
->async_lock
, flags
);
2717 ret
= list_empty(&map
->async_list
);
2718 spin_unlock_irqrestore(&map
->async_lock
, flags
);
2724 * regmap_async_complete: Ensure all asynchronous I/O has completed.
2726 * @map: Map to operate on.
2728 * Blocks until any pending asynchronous I/O has completed. Returns
2729 * an error code for any failed I/O operations.
2731 int regmap_async_complete(struct regmap
*map
)
2733 unsigned long flags
;
2736 /* Nothing to do with no async support */
2737 if (!map
->bus
|| !map
->bus
->async_write
)
2740 trace_regmap_async_complete_start(map
);
2742 wait_event(map
->async_waitq
, regmap_async_is_done(map
));
2744 spin_lock_irqsave(&map
->async_lock
, flags
);
2745 ret
= map
->async_ret
;
2747 spin_unlock_irqrestore(&map
->async_lock
, flags
);
2749 trace_regmap_async_complete_done(map
);
2753 EXPORT_SYMBOL_GPL(regmap_async_complete
);
2756 * regmap_register_patch: Register and apply register updates to be applied
2757 * on device initialistion
2759 * @map: Register map to apply updates to.
2760 * @regs: Values to update.
2761 * @num_regs: Number of entries in regs.
2763 * Register a set of register updates to be applied to the device
2764 * whenever the device registers are synchronised with the cache and
2765 * apply them immediately. Typically this is used to apply
2766 * corrections to be applied to the device defaults on startup, such
2767 * as the updates some vendors provide to undocumented registers.
2769 * The caller must ensure that this function cannot be called
2770 * concurrently with either itself or regcache_sync().
2772 int regmap_register_patch(struct regmap
*map
, const struct reg_sequence
*regs
,
2775 struct reg_sequence
*p
;
2779 if (WARN_ONCE(num_regs
<= 0, "invalid registers number (%d)\n",
2783 p
= krealloc(map
->patch
,
2784 sizeof(struct reg_sequence
) * (map
->patch_regs
+ num_regs
),
2787 memcpy(p
+ map
->patch_regs
, regs
, num_regs
* sizeof(*regs
));
2789 map
->patch_regs
+= num_regs
;
2794 map
->lock(map
->lock_arg
);
2796 bypass
= map
->cache_bypass
;
2798 map
->cache_bypass
= true;
2801 ret
= _regmap_multi_reg_write(map
, regs
, num_regs
);
2804 map
->cache_bypass
= bypass
;
2806 map
->unlock(map
->lock_arg
);
2808 regmap_async_complete(map
);
2812 EXPORT_SYMBOL_GPL(regmap_register_patch
);
2815 * regmap_get_val_bytes(): Report the size of a register value
2817 * Report the size of a register value, mainly intended to for use by
2818 * generic infrastructure built on top of regmap.
2820 int regmap_get_val_bytes(struct regmap
*map
)
2822 if (map
->format
.format_write
)
2825 return map
->format
.val_bytes
;
2827 EXPORT_SYMBOL_GPL(regmap_get_val_bytes
);
2830 * regmap_get_max_register(): Report the max register value
2832 * Report the max register value, mainly intended to for use by
2833 * generic infrastructure built on top of regmap.
2835 int regmap_get_max_register(struct regmap
*map
)
2837 return map
->max_register
? map
->max_register
: -EINVAL
;
2839 EXPORT_SYMBOL_GPL(regmap_get_max_register
);
2842 * regmap_get_reg_stride(): Report the register address stride
2844 * Report the register address stride, mainly intended to for use by
2845 * generic infrastructure built on top of regmap.
2847 int regmap_get_reg_stride(struct regmap
*map
)
2849 return map
->reg_stride
;
2851 EXPORT_SYMBOL_GPL(regmap_get_reg_stride
);
2853 int regmap_parse_val(struct regmap
*map
, const void *buf
,
2856 if (!map
->format
.parse_val
)
2859 *val
= map
->format
.parse_val(buf
);
2863 EXPORT_SYMBOL_GPL(regmap_parse_val
);
2865 static int __init
regmap_initcall(void)
2867 regmap_debugfs_initcall();
2871 postcore_initcall(regmap_initcall
);