of: MSI: Simplify irqdomain lookup
[linux/fpc-iii.git] / drivers / base / regmap / regmap.c
blob4ac63c0e50c7e6a446847b7a29567834d4a5b073
1 /*
2 * Register map access API
4 * Copyright 2011 Wolfson Microelectronics plc
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/of.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21 #include <linux/delay.h>
23 #define CREATE_TRACE_POINTS
24 #include "trace.h"
26 #include "internal.h"
29 * Sometimes for failures during very early init the trace
30 * infrastructure isn't available early enough to be used. For this
31 * sort of problem defining LOG_DEVICE will add printks for basic
32 * register I/O on a specific device.
34 #undef LOG_DEVICE
36 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
37 unsigned int mask, unsigned int val,
38 bool *change, bool force_write);
40 static int _regmap_bus_reg_read(void *context, unsigned int reg,
41 unsigned int *val);
42 static int _regmap_bus_read(void *context, unsigned int reg,
43 unsigned int *val);
44 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
45 unsigned int val);
46 static int _regmap_bus_reg_write(void *context, unsigned int reg,
47 unsigned int val);
48 static int _regmap_bus_raw_write(void *context, unsigned int reg,
49 unsigned int val);
51 bool regmap_reg_in_ranges(unsigned int reg,
52 const struct regmap_range *ranges,
53 unsigned int nranges)
55 const struct regmap_range *r;
56 int i;
58 for (i = 0, r = ranges; i < nranges; i++, r++)
59 if (regmap_reg_in_range(reg, r))
60 return true;
61 return false;
63 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
65 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
66 const struct regmap_access_table *table)
68 /* Check "no ranges" first */
69 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
70 return false;
72 /* In case zero "yes ranges" are supplied, any reg is OK */
73 if (!table->n_yes_ranges)
74 return true;
76 return regmap_reg_in_ranges(reg, table->yes_ranges,
77 table->n_yes_ranges);
79 EXPORT_SYMBOL_GPL(regmap_check_range_table);
81 bool regmap_writeable(struct regmap *map, unsigned int reg)
83 if (map->max_register && reg > map->max_register)
84 return false;
86 if (map->writeable_reg)
87 return map->writeable_reg(map->dev, reg);
89 if (map->wr_table)
90 return regmap_check_range_table(map, reg, map->wr_table);
92 return true;
95 bool regmap_readable(struct regmap *map, unsigned int reg)
97 if (!map->reg_read)
98 return false;
100 if (map->max_register && reg > map->max_register)
101 return false;
103 if (map->format.format_write)
104 return false;
106 if (map->readable_reg)
107 return map->readable_reg(map->dev, reg);
109 if (map->rd_table)
110 return regmap_check_range_table(map, reg, map->rd_table);
112 return true;
115 bool regmap_volatile(struct regmap *map, unsigned int reg)
117 if (!map->format.format_write && !regmap_readable(map, reg))
118 return false;
120 if (map->volatile_reg)
121 return map->volatile_reg(map->dev, reg);
123 if (map->volatile_table)
124 return regmap_check_range_table(map, reg, map->volatile_table);
126 if (map->cache_ops)
127 return false;
128 else
129 return true;
132 bool regmap_precious(struct regmap *map, unsigned int reg)
134 if (!regmap_readable(map, reg))
135 return false;
137 if (map->precious_reg)
138 return map->precious_reg(map->dev, reg);
140 if (map->precious_table)
141 return regmap_check_range_table(map, reg, map->precious_table);
143 return false;
146 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
147 size_t num)
149 unsigned int i;
151 for (i = 0; i < num; i++)
152 if (!regmap_volatile(map, reg + i))
153 return false;
155 return true;
158 static void regmap_format_2_6_write(struct regmap *map,
159 unsigned int reg, unsigned int val)
161 u8 *out = map->work_buf;
163 *out = (reg << 6) | val;
166 static void regmap_format_4_12_write(struct regmap *map,
167 unsigned int reg, unsigned int val)
169 __be16 *out = map->work_buf;
170 *out = cpu_to_be16((reg << 12) | val);
173 static void regmap_format_7_9_write(struct regmap *map,
174 unsigned int reg, unsigned int val)
176 __be16 *out = map->work_buf;
177 *out = cpu_to_be16((reg << 9) | val);
180 static void regmap_format_10_14_write(struct regmap *map,
181 unsigned int reg, unsigned int val)
183 u8 *out = map->work_buf;
185 out[2] = val;
186 out[1] = (val >> 8) | (reg << 6);
187 out[0] = reg >> 2;
190 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
192 u8 *b = buf;
194 b[0] = val << shift;
197 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
199 __be16 *b = buf;
201 b[0] = cpu_to_be16(val << shift);
204 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
206 __le16 *b = buf;
208 b[0] = cpu_to_le16(val << shift);
211 static void regmap_format_16_native(void *buf, unsigned int val,
212 unsigned int shift)
214 *(u16 *)buf = val << shift;
217 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
219 u8 *b = buf;
221 val <<= shift;
223 b[0] = val >> 16;
224 b[1] = val >> 8;
225 b[2] = val;
228 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
230 __be32 *b = buf;
232 b[0] = cpu_to_be32(val << shift);
235 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
237 __le32 *b = buf;
239 b[0] = cpu_to_le32(val << shift);
242 static void regmap_format_32_native(void *buf, unsigned int val,
243 unsigned int shift)
245 *(u32 *)buf = val << shift;
248 static void regmap_parse_inplace_noop(void *buf)
252 static unsigned int regmap_parse_8(const void *buf)
254 const u8 *b = buf;
256 return b[0];
259 static unsigned int regmap_parse_16_be(const void *buf)
261 const __be16 *b = buf;
263 return be16_to_cpu(b[0]);
266 static unsigned int regmap_parse_16_le(const void *buf)
268 const __le16 *b = buf;
270 return le16_to_cpu(b[0]);
273 static void regmap_parse_16_be_inplace(void *buf)
275 __be16 *b = buf;
277 b[0] = be16_to_cpu(b[0]);
280 static void regmap_parse_16_le_inplace(void *buf)
282 __le16 *b = buf;
284 b[0] = le16_to_cpu(b[0]);
287 static unsigned int regmap_parse_16_native(const void *buf)
289 return *(u16 *)buf;
292 static unsigned int regmap_parse_24(const void *buf)
294 const u8 *b = buf;
295 unsigned int ret = b[2];
296 ret |= ((unsigned int)b[1]) << 8;
297 ret |= ((unsigned int)b[0]) << 16;
299 return ret;
302 static unsigned int regmap_parse_32_be(const void *buf)
304 const __be32 *b = buf;
306 return be32_to_cpu(b[0]);
309 static unsigned int regmap_parse_32_le(const void *buf)
311 const __le32 *b = buf;
313 return le32_to_cpu(b[0]);
316 static void regmap_parse_32_be_inplace(void *buf)
318 __be32 *b = buf;
320 b[0] = be32_to_cpu(b[0]);
323 static void regmap_parse_32_le_inplace(void *buf)
325 __le32 *b = buf;
327 b[0] = le32_to_cpu(b[0]);
330 static unsigned int regmap_parse_32_native(const void *buf)
332 return *(u32 *)buf;
335 static void regmap_lock_mutex(void *__map)
337 struct regmap *map = __map;
338 mutex_lock(&map->mutex);
341 static void regmap_unlock_mutex(void *__map)
343 struct regmap *map = __map;
344 mutex_unlock(&map->mutex);
347 static void regmap_lock_spinlock(void *__map)
348 __acquires(&map->spinlock)
350 struct regmap *map = __map;
351 unsigned long flags;
353 spin_lock_irqsave(&map->spinlock, flags);
354 map->spinlock_flags = flags;
357 static void regmap_unlock_spinlock(void *__map)
358 __releases(&map->spinlock)
360 struct regmap *map = __map;
361 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
364 static void dev_get_regmap_release(struct device *dev, void *res)
367 * We don't actually have anything to do here; the goal here
368 * is not to manage the regmap but to provide a simple way to
369 * get the regmap back given a struct device.
373 static bool _regmap_range_add(struct regmap *map,
374 struct regmap_range_node *data)
376 struct rb_root *root = &map->range_tree;
377 struct rb_node **new = &(root->rb_node), *parent = NULL;
379 while (*new) {
380 struct regmap_range_node *this =
381 container_of(*new, struct regmap_range_node, node);
383 parent = *new;
384 if (data->range_max < this->range_min)
385 new = &((*new)->rb_left);
386 else if (data->range_min > this->range_max)
387 new = &((*new)->rb_right);
388 else
389 return false;
392 rb_link_node(&data->node, parent, new);
393 rb_insert_color(&data->node, root);
395 return true;
398 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
399 unsigned int reg)
401 struct rb_node *node = map->range_tree.rb_node;
403 while (node) {
404 struct regmap_range_node *this =
405 container_of(node, struct regmap_range_node, node);
407 if (reg < this->range_min)
408 node = node->rb_left;
409 else if (reg > this->range_max)
410 node = node->rb_right;
411 else
412 return this;
415 return NULL;
418 static void regmap_range_exit(struct regmap *map)
420 struct rb_node *next;
421 struct regmap_range_node *range_node;
423 next = rb_first(&map->range_tree);
424 while (next) {
425 range_node = rb_entry(next, struct regmap_range_node, node);
426 next = rb_next(&range_node->node);
427 rb_erase(&range_node->node, &map->range_tree);
428 kfree(range_node);
431 kfree(map->selector_work_buf);
434 int regmap_attach_dev(struct device *dev, struct regmap *map,
435 const struct regmap_config *config)
437 struct regmap **m;
439 map->dev = dev;
441 regmap_debugfs_init(map, config->name);
443 /* Add a devres resource for dev_get_regmap() */
444 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
445 if (!m) {
446 regmap_debugfs_exit(map);
447 return -ENOMEM;
449 *m = map;
450 devres_add(dev, m);
452 return 0;
454 EXPORT_SYMBOL_GPL(regmap_attach_dev);
456 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
457 const struct regmap_config *config)
459 enum regmap_endian endian;
461 /* Retrieve the endianness specification from the regmap config */
462 endian = config->reg_format_endian;
464 /* If the regmap config specified a non-default value, use that */
465 if (endian != REGMAP_ENDIAN_DEFAULT)
466 return endian;
468 /* Retrieve the endianness specification from the bus config */
469 if (bus && bus->reg_format_endian_default)
470 endian = bus->reg_format_endian_default;
472 /* If the bus specified a non-default value, use that */
473 if (endian != REGMAP_ENDIAN_DEFAULT)
474 return endian;
476 /* Use this if no other value was found */
477 return REGMAP_ENDIAN_BIG;
480 enum regmap_endian regmap_get_val_endian(struct device *dev,
481 const struct regmap_bus *bus,
482 const struct regmap_config *config)
484 struct device_node *np;
485 enum regmap_endian endian;
487 /* Retrieve the endianness specification from the regmap config */
488 endian = config->val_format_endian;
490 /* If the regmap config specified a non-default value, use that */
491 if (endian != REGMAP_ENDIAN_DEFAULT)
492 return endian;
494 /* If the dev and dev->of_node exist try to get endianness from DT */
495 if (dev && dev->of_node) {
496 np = dev->of_node;
498 /* Parse the device's DT node for an endianness specification */
499 if (of_property_read_bool(np, "big-endian"))
500 endian = REGMAP_ENDIAN_BIG;
501 else if (of_property_read_bool(np, "little-endian"))
502 endian = REGMAP_ENDIAN_LITTLE;
504 /* If the endianness was specified in DT, use that */
505 if (endian != REGMAP_ENDIAN_DEFAULT)
506 return endian;
509 /* Retrieve the endianness specification from the bus config */
510 if (bus && bus->val_format_endian_default)
511 endian = bus->val_format_endian_default;
513 /* If the bus specified a non-default value, use that */
514 if (endian != REGMAP_ENDIAN_DEFAULT)
515 return endian;
517 /* Use this if no other value was found */
518 return REGMAP_ENDIAN_BIG;
520 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
522 struct regmap *__regmap_init(struct device *dev,
523 const struct regmap_bus *bus,
524 void *bus_context,
525 const struct regmap_config *config,
526 struct lock_class_key *lock_key,
527 const char *lock_name)
529 struct regmap *map;
530 int ret = -EINVAL;
531 enum regmap_endian reg_endian, val_endian;
532 int i, j;
534 if (!config)
535 goto err;
537 map = kzalloc(sizeof(*map), GFP_KERNEL);
538 if (map == NULL) {
539 ret = -ENOMEM;
540 goto err;
543 if (config->lock && config->unlock) {
544 map->lock = config->lock;
545 map->unlock = config->unlock;
546 map->lock_arg = config->lock_arg;
547 } else {
548 if ((bus && bus->fast_io) ||
549 config->fast_io) {
550 spin_lock_init(&map->spinlock);
551 map->lock = regmap_lock_spinlock;
552 map->unlock = regmap_unlock_spinlock;
553 lockdep_set_class_and_name(&map->spinlock,
554 lock_key, lock_name);
555 } else {
556 mutex_init(&map->mutex);
557 map->lock = regmap_lock_mutex;
558 map->unlock = regmap_unlock_mutex;
559 lockdep_set_class_and_name(&map->mutex,
560 lock_key, lock_name);
562 map->lock_arg = map;
566 * When we write in fast-paths with regmap_bulk_write() don't allocate
567 * scratch buffers with sleeping allocations.
569 if ((bus && bus->fast_io) || config->fast_io)
570 map->alloc_flags = GFP_ATOMIC;
571 else
572 map->alloc_flags = GFP_KERNEL;
574 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
575 map->format.pad_bytes = config->pad_bits / 8;
576 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
577 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
578 config->val_bits + config->pad_bits, 8);
579 map->reg_shift = config->pad_bits % 8;
580 if (config->reg_stride)
581 map->reg_stride = config->reg_stride;
582 else
583 map->reg_stride = 1;
584 map->use_single_read = config->use_single_rw || !bus || !bus->read;
585 map->use_single_write = config->use_single_rw || !bus || !bus->write;
586 map->can_multi_write = config->can_multi_write && bus && bus->write;
587 if (bus) {
588 map->max_raw_read = bus->max_raw_read;
589 map->max_raw_write = bus->max_raw_write;
591 map->dev = dev;
592 map->bus = bus;
593 map->bus_context = bus_context;
594 map->max_register = config->max_register;
595 map->wr_table = config->wr_table;
596 map->rd_table = config->rd_table;
597 map->volatile_table = config->volatile_table;
598 map->precious_table = config->precious_table;
599 map->writeable_reg = config->writeable_reg;
600 map->readable_reg = config->readable_reg;
601 map->volatile_reg = config->volatile_reg;
602 map->precious_reg = config->precious_reg;
603 map->cache_type = config->cache_type;
604 map->name = config->name;
606 spin_lock_init(&map->async_lock);
607 INIT_LIST_HEAD(&map->async_list);
608 INIT_LIST_HEAD(&map->async_free);
609 init_waitqueue_head(&map->async_waitq);
611 if (config->read_flag_mask || config->write_flag_mask) {
612 map->read_flag_mask = config->read_flag_mask;
613 map->write_flag_mask = config->write_flag_mask;
614 } else if (bus) {
615 map->read_flag_mask = bus->read_flag_mask;
618 if (!bus) {
619 map->reg_read = config->reg_read;
620 map->reg_write = config->reg_write;
622 map->defer_caching = false;
623 goto skip_format_initialization;
624 } else if (!bus->read || !bus->write) {
625 map->reg_read = _regmap_bus_reg_read;
626 map->reg_write = _regmap_bus_reg_write;
628 map->defer_caching = false;
629 goto skip_format_initialization;
630 } else {
631 map->reg_read = _regmap_bus_read;
632 map->reg_update_bits = bus->reg_update_bits;
635 reg_endian = regmap_get_reg_endian(bus, config);
636 val_endian = regmap_get_val_endian(dev, bus, config);
638 switch (config->reg_bits + map->reg_shift) {
639 case 2:
640 switch (config->val_bits) {
641 case 6:
642 map->format.format_write = regmap_format_2_6_write;
643 break;
644 default:
645 goto err_map;
647 break;
649 case 4:
650 switch (config->val_bits) {
651 case 12:
652 map->format.format_write = regmap_format_4_12_write;
653 break;
654 default:
655 goto err_map;
657 break;
659 case 7:
660 switch (config->val_bits) {
661 case 9:
662 map->format.format_write = regmap_format_7_9_write;
663 break;
664 default:
665 goto err_map;
667 break;
669 case 10:
670 switch (config->val_bits) {
671 case 14:
672 map->format.format_write = regmap_format_10_14_write;
673 break;
674 default:
675 goto err_map;
677 break;
679 case 8:
680 map->format.format_reg = regmap_format_8;
681 break;
683 case 16:
684 switch (reg_endian) {
685 case REGMAP_ENDIAN_BIG:
686 map->format.format_reg = regmap_format_16_be;
687 break;
688 case REGMAP_ENDIAN_NATIVE:
689 map->format.format_reg = regmap_format_16_native;
690 break;
691 default:
692 goto err_map;
694 break;
696 case 24:
697 if (reg_endian != REGMAP_ENDIAN_BIG)
698 goto err_map;
699 map->format.format_reg = regmap_format_24;
700 break;
702 case 32:
703 switch (reg_endian) {
704 case REGMAP_ENDIAN_BIG:
705 map->format.format_reg = regmap_format_32_be;
706 break;
707 case REGMAP_ENDIAN_NATIVE:
708 map->format.format_reg = regmap_format_32_native;
709 break;
710 default:
711 goto err_map;
713 break;
715 default:
716 goto err_map;
719 if (val_endian == REGMAP_ENDIAN_NATIVE)
720 map->format.parse_inplace = regmap_parse_inplace_noop;
722 switch (config->val_bits) {
723 case 8:
724 map->format.format_val = regmap_format_8;
725 map->format.parse_val = regmap_parse_8;
726 map->format.parse_inplace = regmap_parse_inplace_noop;
727 break;
728 case 16:
729 switch (val_endian) {
730 case REGMAP_ENDIAN_BIG:
731 map->format.format_val = regmap_format_16_be;
732 map->format.parse_val = regmap_parse_16_be;
733 map->format.parse_inplace = regmap_parse_16_be_inplace;
734 break;
735 case REGMAP_ENDIAN_LITTLE:
736 map->format.format_val = regmap_format_16_le;
737 map->format.parse_val = regmap_parse_16_le;
738 map->format.parse_inplace = regmap_parse_16_le_inplace;
739 break;
740 case REGMAP_ENDIAN_NATIVE:
741 map->format.format_val = regmap_format_16_native;
742 map->format.parse_val = regmap_parse_16_native;
743 break;
744 default:
745 goto err_map;
747 break;
748 case 24:
749 if (val_endian != REGMAP_ENDIAN_BIG)
750 goto err_map;
751 map->format.format_val = regmap_format_24;
752 map->format.parse_val = regmap_parse_24;
753 break;
754 case 32:
755 switch (val_endian) {
756 case REGMAP_ENDIAN_BIG:
757 map->format.format_val = regmap_format_32_be;
758 map->format.parse_val = regmap_parse_32_be;
759 map->format.parse_inplace = regmap_parse_32_be_inplace;
760 break;
761 case REGMAP_ENDIAN_LITTLE:
762 map->format.format_val = regmap_format_32_le;
763 map->format.parse_val = regmap_parse_32_le;
764 map->format.parse_inplace = regmap_parse_32_le_inplace;
765 break;
766 case REGMAP_ENDIAN_NATIVE:
767 map->format.format_val = regmap_format_32_native;
768 map->format.parse_val = regmap_parse_32_native;
769 break;
770 default:
771 goto err_map;
773 break;
776 if (map->format.format_write) {
777 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
778 (val_endian != REGMAP_ENDIAN_BIG))
779 goto err_map;
780 map->use_single_write = true;
783 if (!map->format.format_write &&
784 !(map->format.format_reg && map->format.format_val))
785 goto err_map;
787 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
788 if (map->work_buf == NULL) {
789 ret = -ENOMEM;
790 goto err_map;
793 if (map->format.format_write) {
794 map->defer_caching = false;
795 map->reg_write = _regmap_bus_formatted_write;
796 } else if (map->format.format_val) {
797 map->defer_caching = true;
798 map->reg_write = _regmap_bus_raw_write;
801 skip_format_initialization:
803 map->range_tree = RB_ROOT;
804 for (i = 0; i < config->num_ranges; i++) {
805 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
806 struct regmap_range_node *new;
808 /* Sanity check */
809 if (range_cfg->range_max < range_cfg->range_min) {
810 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
811 range_cfg->range_max, range_cfg->range_min);
812 goto err_range;
815 if (range_cfg->range_max > map->max_register) {
816 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
817 range_cfg->range_max, map->max_register);
818 goto err_range;
821 if (range_cfg->selector_reg > map->max_register) {
822 dev_err(map->dev,
823 "Invalid range %d: selector out of map\n", i);
824 goto err_range;
827 if (range_cfg->window_len == 0) {
828 dev_err(map->dev, "Invalid range %d: window_len 0\n",
830 goto err_range;
833 /* Make sure, that this register range has no selector
834 or data window within its boundary */
835 for (j = 0; j < config->num_ranges; j++) {
836 unsigned sel_reg = config->ranges[j].selector_reg;
837 unsigned win_min = config->ranges[j].window_start;
838 unsigned win_max = win_min +
839 config->ranges[j].window_len - 1;
841 /* Allow data window inside its own virtual range */
842 if (j == i)
843 continue;
845 if (range_cfg->range_min <= sel_reg &&
846 sel_reg <= range_cfg->range_max) {
847 dev_err(map->dev,
848 "Range %d: selector for %d in window\n",
849 i, j);
850 goto err_range;
853 if (!(win_max < range_cfg->range_min ||
854 win_min > range_cfg->range_max)) {
855 dev_err(map->dev,
856 "Range %d: window for %d in window\n",
857 i, j);
858 goto err_range;
862 new = kzalloc(sizeof(*new), GFP_KERNEL);
863 if (new == NULL) {
864 ret = -ENOMEM;
865 goto err_range;
868 new->map = map;
869 new->name = range_cfg->name;
870 new->range_min = range_cfg->range_min;
871 new->range_max = range_cfg->range_max;
872 new->selector_reg = range_cfg->selector_reg;
873 new->selector_mask = range_cfg->selector_mask;
874 new->selector_shift = range_cfg->selector_shift;
875 new->window_start = range_cfg->window_start;
876 new->window_len = range_cfg->window_len;
878 if (!_regmap_range_add(map, new)) {
879 dev_err(map->dev, "Failed to add range %d\n", i);
880 kfree(new);
881 goto err_range;
884 if (map->selector_work_buf == NULL) {
885 map->selector_work_buf =
886 kzalloc(map->format.buf_size, GFP_KERNEL);
887 if (map->selector_work_buf == NULL) {
888 ret = -ENOMEM;
889 goto err_range;
894 ret = regcache_init(map, config);
895 if (ret != 0)
896 goto err_range;
898 if (dev) {
899 ret = regmap_attach_dev(dev, map, config);
900 if (ret != 0)
901 goto err_regcache;
904 return map;
906 err_regcache:
907 regcache_exit(map);
908 err_range:
909 regmap_range_exit(map);
910 kfree(map->work_buf);
911 err_map:
912 kfree(map);
913 err:
914 return ERR_PTR(ret);
916 EXPORT_SYMBOL_GPL(__regmap_init);
918 static void devm_regmap_release(struct device *dev, void *res)
920 regmap_exit(*(struct regmap **)res);
923 struct regmap *__devm_regmap_init(struct device *dev,
924 const struct regmap_bus *bus,
925 void *bus_context,
926 const struct regmap_config *config,
927 struct lock_class_key *lock_key,
928 const char *lock_name)
930 struct regmap **ptr, *regmap;
932 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
933 if (!ptr)
934 return ERR_PTR(-ENOMEM);
936 regmap = __regmap_init(dev, bus, bus_context, config,
937 lock_key, lock_name);
938 if (!IS_ERR(regmap)) {
939 *ptr = regmap;
940 devres_add(dev, ptr);
941 } else {
942 devres_free(ptr);
945 return regmap;
947 EXPORT_SYMBOL_GPL(__devm_regmap_init);
949 static void regmap_field_init(struct regmap_field *rm_field,
950 struct regmap *regmap, struct reg_field reg_field)
952 rm_field->regmap = regmap;
953 rm_field->reg = reg_field.reg;
954 rm_field->shift = reg_field.lsb;
955 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
956 rm_field->id_size = reg_field.id_size;
957 rm_field->id_offset = reg_field.id_offset;
961 * devm_regmap_field_alloc(): Allocate and initialise a register field
962 * in a register map.
964 * @dev: Device that will be interacted with
965 * @regmap: regmap bank in which this register field is located.
966 * @reg_field: Register field with in the bank.
968 * The return value will be an ERR_PTR() on error or a valid pointer
969 * to a struct regmap_field. The regmap_field will be automatically freed
970 * by the device management code.
972 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
973 struct regmap *regmap, struct reg_field reg_field)
975 struct regmap_field *rm_field = devm_kzalloc(dev,
976 sizeof(*rm_field), GFP_KERNEL);
977 if (!rm_field)
978 return ERR_PTR(-ENOMEM);
980 regmap_field_init(rm_field, regmap, reg_field);
982 return rm_field;
985 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
988 * devm_regmap_field_free(): Free register field allocated using
989 * devm_regmap_field_alloc. Usally drivers need not call this function,
990 * as the memory allocated via devm will be freed as per device-driver
991 * life-cyle.
993 * @dev: Device that will be interacted with
994 * @field: regmap field which should be freed.
996 void devm_regmap_field_free(struct device *dev,
997 struct regmap_field *field)
999 devm_kfree(dev, field);
1001 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1004 * regmap_field_alloc(): Allocate and initialise a register field
1005 * in a register map.
1007 * @regmap: regmap bank in which this register field is located.
1008 * @reg_field: Register field with in the bank.
1010 * The return value will be an ERR_PTR() on error or a valid pointer
1011 * to a struct regmap_field. The regmap_field should be freed by the
1012 * user once its finished working with it using regmap_field_free().
1014 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1015 struct reg_field reg_field)
1017 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1019 if (!rm_field)
1020 return ERR_PTR(-ENOMEM);
1022 regmap_field_init(rm_field, regmap, reg_field);
1024 return rm_field;
1026 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1029 * regmap_field_free(): Free register field allocated using regmap_field_alloc
1031 * @field: regmap field which should be freed.
1033 void regmap_field_free(struct regmap_field *field)
1035 kfree(field);
1037 EXPORT_SYMBOL_GPL(regmap_field_free);
1040 * regmap_reinit_cache(): Reinitialise the current register cache
1042 * @map: Register map to operate on.
1043 * @config: New configuration. Only the cache data will be used.
1045 * Discard any existing register cache for the map and initialize a
1046 * new cache. This can be used to restore the cache to defaults or to
1047 * update the cache configuration to reflect runtime discovery of the
1048 * hardware.
1050 * No explicit locking is done here, the user needs to ensure that
1051 * this function will not race with other calls to regmap.
1053 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1055 regcache_exit(map);
1056 regmap_debugfs_exit(map);
1058 map->max_register = config->max_register;
1059 map->writeable_reg = config->writeable_reg;
1060 map->readable_reg = config->readable_reg;
1061 map->volatile_reg = config->volatile_reg;
1062 map->precious_reg = config->precious_reg;
1063 map->cache_type = config->cache_type;
1065 regmap_debugfs_init(map, config->name);
1067 map->cache_bypass = false;
1068 map->cache_only = false;
1070 return regcache_init(map, config);
1072 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1075 * regmap_exit(): Free a previously allocated register map
1077 void regmap_exit(struct regmap *map)
1079 struct regmap_async *async;
1081 regcache_exit(map);
1082 regmap_debugfs_exit(map);
1083 regmap_range_exit(map);
1084 if (map->bus && map->bus->free_context)
1085 map->bus->free_context(map->bus_context);
1086 kfree(map->work_buf);
1087 while (!list_empty(&map->async_free)) {
1088 async = list_first_entry_or_null(&map->async_free,
1089 struct regmap_async,
1090 list);
1091 list_del(&async->list);
1092 kfree(async->work_buf);
1093 kfree(async);
1095 kfree(map);
1097 EXPORT_SYMBOL_GPL(regmap_exit);
1099 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1101 struct regmap **r = res;
1102 if (!r || !*r) {
1103 WARN_ON(!r || !*r);
1104 return 0;
1107 /* If the user didn't specify a name match any */
1108 if (data)
1109 return (*r)->name == data;
1110 else
1111 return 1;
1115 * dev_get_regmap(): Obtain the regmap (if any) for a device
1117 * @dev: Device to retrieve the map for
1118 * @name: Optional name for the register map, usually NULL.
1120 * Returns the regmap for the device if one is present, or NULL. If
1121 * name is specified then it must match the name specified when
1122 * registering the device, if it is NULL then the first regmap found
1123 * will be used. Devices with multiple register maps are very rare,
1124 * generic code should normally not need to specify a name.
1126 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1128 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1129 dev_get_regmap_match, (void *)name);
1131 if (!r)
1132 return NULL;
1133 return *r;
1135 EXPORT_SYMBOL_GPL(dev_get_regmap);
1138 * regmap_get_device(): Obtain the device from a regmap
1140 * @map: Register map to operate on.
1142 * Returns the underlying device that the regmap has been created for.
1144 struct device *regmap_get_device(struct regmap *map)
1146 return map->dev;
1148 EXPORT_SYMBOL_GPL(regmap_get_device);
1150 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1151 struct regmap_range_node *range,
1152 unsigned int val_num)
1154 void *orig_work_buf;
1155 unsigned int win_offset;
1156 unsigned int win_page;
1157 bool page_chg;
1158 int ret;
1160 win_offset = (*reg - range->range_min) % range->window_len;
1161 win_page = (*reg - range->range_min) / range->window_len;
1163 if (val_num > 1) {
1164 /* Bulk write shouldn't cross range boundary */
1165 if (*reg + val_num - 1 > range->range_max)
1166 return -EINVAL;
1168 /* ... or single page boundary */
1169 if (val_num > range->window_len - win_offset)
1170 return -EINVAL;
1173 /* It is possible to have selector register inside data window.
1174 In that case, selector register is located on every page and
1175 it needs no page switching, when accessed alone. */
1176 if (val_num > 1 ||
1177 range->window_start + win_offset != range->selector_reg) {
1178 /* Use separate work_buf during page switching */
1179 orig_work_buf = map->work_buf;
1180 map->work_buf = map->selector_work_buf;
1182 ret = _regmap_update_bits(map, range->selector_reg,
1183 range->selector_mask,
1184 win_page << range->selector_shift,
1185 &page_chg, false);
1187 map->work_buf = orig_work_buf;
1189 if (ret != 0)
1190 return ret;
1193 *reg = range->window_start + win_offset;
1195 return 0;
1198 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1199 const void *val, size_t val_len)
1201 struct regmap_range_node *range;
1202 unsigned long flags;
1203 u8 *u8 = map->work_buf;
1204 void *work_val = map->work_buf + map->format.reg_bytes +
1205 map->format.pad_bytes;
1206 void *buf;
1207 int ret = -ENOTSUPP;
1208 size_t len;
1209 int i;
1211 WARN_ON(!map->bus);
1213 /* Check for unwritable registers before we start */
1214 if (map->writeable_reg)
1215 for (i = 0; i < val_len / map->format.val_bytes; i++)
1216 if (!map->writeable_reg(map->dev,
1217 reg + (i * map->reg_stride)))
1218 return -EINVAL;
1220 if (!map->cache_bypass && map->format.parse_val) {
1221 unsigned int ival;
1222 int val_bytes = map->format.val_bytes;
1223 for (i = 0; i < val_len / val_bytes; i++) {
1224 ival = map->format.parse_val(val + (i * val_bytes));
1225 ret = regcache_write(map, reg + (i * map->reg_stride),
1226 ival);
1227 if (ret) {
1228 dev_err(map->dev,
1229 "Error in caching of register: %x ret: %d\n",
1230 reg + i, ret);
1231 return ret;
1234 if (map->cache_only) {
1235 map->cache_dirty = true;
1236 return 0;
1240 range = _regmap_range_lookup(map, reg);
1241 if (range) {
1242 int val_num = val_len / map->format.val_bytes;
1243 int win_offset = (reg - range->range_min) % range->window_len;
1244 int win_residue = range->window_len - win_offset;
1246 /* If the write goes beyond the end of the window split it */
1247 while (val_num > win_residue) {
1248 dev_dbg(map->dev, "Writing window %d/%zu\n",
1249 win_residue, val_len / map->format.val_bytes);
1250 ret = _regmap_raw_write(map, reg, val, win_residue *
1251 map->format.val_bytes);
1252 if (ret != 0)
1253 return ret;
1255 reg += win_residue;
1256 val_num -= win_residue;
1257 val += win_residue * map->format.val_bytes;
1258 val_len -= win_residue * map->format.val_bytes;
1260 win_offset = (reg - range->range_min) %
1261 range->window_len;
1262 win_residue = range->window_len - win_offset;
1265 ret = _regmap_select_page(map, &reg, range, val_num);
1266 if (ret != 0)
1267 return ret;
1270 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1272 u8[0] |= map->write_flag_mask;
1275 * Essentially all I/O mechanisms will be faster with a single
1276 * buffer to write. Since register syncs often generate raw
1277 * writes of single registers optimise that case.
1279 if (val != work_val && val_len == map->format.val_bytes) {
1280 memcpy(work_val, val, map->format.val_bytes);
1281 val = work_val;
1284 if (map->async && map->bus->async_write) {
1285 struct regmap_async *async;
1287 trace_regmap_async_write_start(map, reg, val_len);
1289 spin_lock_irqsave(&map->async_lock, flags);
1290 async = list_first_entry_or_null(&map->async_free,
1291 struct regmap_async,
1292 list);
1293 if (async)
1294 list_del(&async->list);
1295 spin_unlock_irqrestore(&map->async_lock, flags);
1297 if (!async) {
1298 async = map->bus->async_alloc();
1299 if (!async)
1300 return -ENOMEM;
1302 async->work_buf = kzalloc(map->format.buf_size,
1303 GFP_KERNEL | GFP_DMA);
1304 if (!async->work_buf) {
1305 kfree(async);
1306 return -ENOMEM;
1310 async->map = map;
1312 /* If the caller supplied the value we can use it safely. */
1313 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1314 map->format.reg_bytes + map->format.val_bytes);
1316 spin_lock_irqsave(&map->async_lock, flags);
1317 list_add_tail(&async->list, &map->async_list);
1318 spin_unlock_irqrestore(&map->async_lock, flags);
1320 if (val != work_val)
1321 ret = map->bus->async_write(map->bus_context,
1322 async->work_buf,
1323 map->format.reg_bytes +
1324 map->format.pad_bytes,
1325 val, val_len, async);
1326 else
1327 ret = map->bus->async_write(map->bus_context,
1328 async->work_buf,
1329 map->format.reg_bytes +
1330 map->format.pad_bytes +
1331 val_len, NULL, 0, async);
1333 if (ret != 0) {
1334 dev_err(map->dev, "Failed to schedule write: %d\n",
1335 ret);
1337 spin_lock_irqsave(&map->async_lock, flags);
1338 list_move(&async->list, &map->async_free);
1339 spin_unlock_irqrestore(&map->async_lock, flags);
1342 return ret;
1345 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1347 /* If we're doing a single register write we can probably just
1348 * send the work_buf directly, otherwise try to do a gather
1349 * write.
1351 if (val == work_val)
1352 ret = map->bus->write(map->bus_context, map->work_buf,
1353 map->format.reg_bytes +
1354 map->format.pad_bytes +
1355 val_len);
1356 else if (map->bus->gather_write)
1357 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1358 map->format.reg_bytes +
1359 map->format.pad_bytes,
1360 val, val_len);
1362 /* If that didn't work fall back on linearising by hand. */
1363 if (ret == -ENOTSUPP) {
1364 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1365 buf = kzalloc(len, GFP_KERNEL);
1366 if (!buf)
1367 return -ENOMEM;
1369 memcpy(buf, map->work_buf, map->format.reg_bytes);
1370 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1371 val, val_len);
1372 ret = map->bus->write(map->bus_context, buf, len);
1374 kfree(buf);
1377 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1379 return ret;
1383 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1385 * @map: Map to check.
1387 bool regmap_can_raw_write(struct regmap *map)
1389 return map->bus && map->bus->write && map->format.format_val &&
1390 map->format.format_reg;
1392 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1395 * regmap_get_raw_read_max - Get the maximum size we can read
1397 * @map: Map to check.
1399 size_t regmap_get_raw_read_max(struct regmap *map)
1401 return map->max_raw_read;
1403 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1406 * regmap_get_raw_write_max - Get the maximum size we can read
1408 * @map: Map to check.
1410 size_t regmap_get_raw_write_max(struct regmap *map)
1412 return map->max_raw_write;
1414 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1416 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1417 unsigned int val)
1419 int ret;
1420 struct regmap_range_node *range;
1421 struct regmap *map = context;
1423 WARN_ON(!map->bus || !map->format.format_write);
1425 range = _regmap_range_lookup(map, reg);
1426 if (range) {
1427 ret = _regmap_select_page(map, &reg, range, 1);
1428 if (ret != 0)
1429 return ret;
1432 map->format.format_write(map, reg, val);
1434 trace_regmap_hw_write_start(map, reg, 1);
1436 ret = map->bus->write(map->bus_context, map->work_buf,
1437 map->format.buf_size);
1439 trace_regmap_hw_write_done(map, reg, 1);
1441 return ret;
1444 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1445 unsigned int val)
1447 struct regmap *map = context;
1449 return map->bus->reg_write(map->bus_context, reg, val);
1452 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1453 unsigned int val)
1455 struct regmap *map = context;
1457 WARN_ON(!map->bus || !map->format.format_val);
1459 map->format.format_val(map->work_buf + map->format.reg_bytes
1460 + map->format.pad_bytes, val, 0);
1461 return _regmap_raw_write(map, reg,
1462 map->work_buf +
1463 map->format.reg_bytes +
1464 map->format.pad_bytes,
1465 map->format.val_bytes);
1468 static inline void *_regmap_map_get_context(struct regmap *map)
1470 return (map->bus) ? map : map->bus_context;
1473 int _regmap_write(struct regmap *map, unsigned int reg,
1474 unsigned int val)
1476 int ret;
1477 void *context = _regmap_map_get_context(map);
1479 if (!regmap_writeable(map, reg))
1480 return -EIO;
1482 if (!map->cache_bypass && !map->defer_caching) {
1483 ret = regcache_write(map, reg, val);
1484 if (ret != 0)
1485 return ret;
1486 if (map->cache_only) {
1487 map->cache_dirty = true;
1488 return 0;
1492 #ifdef LOG_DEVICE
1493 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1494 dev_info(map->dev, "%x <= %x\n", reg, val);
1495 #endif
1497 trace_regmap_reg_write(map, reg, val);
1499 return map->reg_write(context, reg, val);
1503 * regmap_write(): Write a value to a single register
1505 * @map: Register map to write to
1506 * @reg: Register to write to
1507 * @val: Value to be written
1509 * A value of zero will be returned on success, a negative errno will
1510 * be returned in error cases.
1512 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1514 int ret;
1516 if (reg % map->reg_stride)
1517 return -EINVAL;
1519 map->lock(map->lock_arg);
1521 ret = _regmap_write(map, reg, val);
1523 map->unlock(map->lock_arg);
1525 return ret;
1527 EXPORT_SYMBOL_GPL(regmap_write);
1530 * regmap_write_async(): Write a value to a single register asynchronously
1532 * @map: Register map to write to
1533 * @reg: Register to write to
1534 * @val: Value to be written
1536 * A value of zero will be returned on success, a negative errno will
1537 * be returned in error cases.
1539 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1541 int ret;
1543 if (reg % map->reg_stride)
1544 return -EINVAL;
1546 map->lock(map->lock_arg);
1548 map->async = true;
1550 ret = _regmap_write(map, reg, val);
1552 map->async = false;
1554 map->unlock(map->lock_arg);
1556 return ret;
1558 EXPORT_SYMBOL_GPL(regmap_write_async);
1561 * regmap_raw_write(): Write raw values to one or more registers
1563 * @map: Register map to write to
1564 * @reg: Initial register to write to
1565 * @val: Block of data to be written, laid out for direct transmission to the
1566 * device
1567 * @val_len: Length of data pointed to by val.
1569 * This function is intended to be used for things like firmware
1570 * download where a large block of data needs to be transferred to the
1571 * device. No formatting will be done on the data provided.
1573 * A value of zero will be returned on success, a negative errno will
1574 * be returned in error cases.
1576 int regmap_raw_write(struct regmap *map, unsigned int reg,
1577 const void *val, size_t val_len)
1579 int ret;
1581 if (!regmap_can_raw_write(map))
1582 return -EINVAL;
1583 if (val_len % map->format.val_bytes)
1584 return -EINVAL;
1585 if (map->max_raw_write && map->max_raw_write > val_len)
1586 return -E2BIG;
1588 map->lock(map->lock_arg);
1590 ret = _regmap_raw_write(map, reg, val, val_len);
1592 map->unlock(map->lock_arg);
1594 return ret;
1596 EXPORT_SYMBOL_GPL(regmap_raw_write);
1599 * regmap_field_write(): Write a value to a single register field
1601 * @field: Register field to write to
1602 * @val: Value to be written
1604 * A value of zero will be returned on success, a negative errno will
1605 * be returned in error cases.
1607 int regmap_field_write(struct regmap_field *field, unsigned int val)
1609 return regmap_update_bits(field->regmap, field->reg,
1610 field->mask, val << field->shift);
1612 EXPORT_SYMBOL_GPL(regmap_field_write);
1615 * regmap_field_update_bits(): Perform a read/modify/write cycle
1616 * on the register field
1618 * @field: Register field to write to
1619 * @mask: Bitmask to change
1620 * @val: Value to be written
1622 * A value of zero will be returned on success, a negative errno will
1623 * be returned in error cases.
1625 int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
1627 mask = (mask << field->shift) & field->mask;
1629 return regmap_update_bits(field->regmap, field->reg,
1630 mask, val << field->shift);
1632 EXPORT_SYMBOL_GPL(regmap_field_update_bits);
1635 * regmap_fields_write(): Write a value to a single register field with port ID
1637 * @field: Register field to write to
1638 * @id: port ID
1639 * @val: Value to be written
1641 * A value of zero will be returned on success, a negative errno will
1642 * be returned in error cases.
1644 int regmap_fields_write(struct regmap_field *field, unsigned int id,
1645 unsigned int val)
1647 if (id >= field->id_size)
1648 return -EINVAL;
1650 return regmap_update_bits(field->regmap,
1651 field->reg + (field->id_offset * id),
1652 field->mask, val << field->shift);
1654 EXPORT_SYMBOL_GPL(regmap_fields_write);
1656 int regmap_fields_force_write(struct regmap_field *field, unsigned int id,
1657 unsigned int val)
1659 if (id >= field->id_size)
1660 return -EINVAL;
1662 return regmap_write_bits(field->regmap,
1663 field->reg + (field->id_offset * id),
1664 field->mask, val << field->shift);
1666 EXPORT_SYMBOL_GPL(regmap_fields_force_write);
1669 * regmap_fields_update_bits(): Perform a read/modify/write cycle
1670 * on the register field
1672 * @field: Register field to write to
1673 * @id: port ID
1674 * @mask: Bitmask to change
1675 * @val: Value to be written
1677 * A value of zero will be returned on success, a negative errno will
1678 * be returned in error cases.
1680 int regmap_fields_update_bits(struct regmap_field *field, unsigned int id,
1681 unsigned int mask, unsigned int val)
1683 if (id >= field->id_size)
1684 return -EINVAL;
1686 mask = (mask << field->shift) & field->mask;
1688 return regmap_update_bits(field->regmap,
1689 field->reg + (field->id_offset * id),
1690 mask, val << field->shift);
1692 EXPORT_SYMBOL_GPL(regmap_fields_update_bits);
1695 * regmap_bulk_write(): Write multiple registers to the device
1697 * @map: Register map to write to
1698 * @reg: First register to be write from
1699 * @val: Block of data to be written, in native register size for device
1700 * @val_count: Number of registers to write
1702 * This function is intended to be used for writing a large block of
1703 * data to the device either in single transfer or multiple transfer.
1705 * A value of zero will be returned on success, a negative errno will
1706 * be returned in error cases.
1708 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1709 size_t val_count)
1711 int ret = 0, i;
1712 size_t val_bytes = map->format.val_bytes;
1713 size_t total_size = val_bytes * val_count;
1715 if (map->bus && !map->format.parse_inplace)
1716 return -EINVAL;
1717 if (reg % map->reg_stride)
1718 return -EINVAL;
1721 * Some devices don't support bulk write, for
1722 * them we have a series of single write operations in the first two if
1723 * blocks.
1725 * The first if block is used for memory mapped io. It does not allow
1726 * val_bytes of 3 for example.
1727 * The second one is used for busses which do not have this limitation
1728 * and can write arbitrary value lengths.
1730 if (!map->bus) {
1731 map->lock(map->lock_arg);
1732 for (i = 0; i < val_count; i++) {
1733 unsigned int ival;
1735 switch (val_bytes) {
1736 case 1:
1737 ival = *(u8 *)(val + (i * val_bytes));
1738 break;
1739 case 2:
1740 ival = *(u16 *)(val + (i * val_bytes));
1741 break;
1742 case 4:
1743 ival = *(u32 *)(val + (i * val_bytes));
1744 break;
1745 #ifdef CONFIG_64BIT
1746 case 8:
1747 ival = *(u64 *)(val + (i * val_bytes));
1748 break;
1749 #endif
1750 default:
1751 ret = -EINVAL;
1752 goto out;
1755 ret = _regmap_write(map, reg + (i * map->reg_stride),
1756 ival);
1757 if (ret != 0)
1758 goto out;
1760 out:
1761 map->unlock(map->lock_arg);
1762 } else if (map->use_single_write ||
1763 (map->max_raw_write && map->max_raw_write < total_size)) {
1764 int chunk_stride = map->reg_stride;
1765 size_t chunk_size = val_bytes;
1766 size_t chunk_count = val_count;
1768 if (!map->use_single_write) {
1769 chunk_size = map->max_raw_write;
1770 if (chunk_size % val_bytes)
1771 chunk_size -= chunk_size % val_bytes;
1772 chunk_count = total_size / chunk_size;
1773 chunk_stride *= chunk_size / val_bytes;
1776 map->lock(map->lock_arg);
1777 /* Write as many bytes as possible with chunk_size */
1778 for (i = 0; i < chunk_count; i++) {
1779 ret = _regmap_raw_write(map,
1780 reg + (i * chunk_stride),
1781 val + (i * chunk_size),
1782 chunk_size);
1783 if (ret)
1784 break;
1787 /* Write remaining bytes */
1788 if (!ret && chunk_size * i < total_size) {
1789 ret = _regmap_raw_write(map, reg + (i * chunk_stride),
1790 val + (i * chunk_size),
1791 total_size - i * chunk_size);
1793 map->unlock(map->lock_arg);
1794 } else {
1795 void *wval;
1797 if (!val_count)
1798 return -EINVAL;
1800 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
1801 if (!wval) {
1802 dev_err(map->dev, "Error in memory allocation\n");
1803 return -ENOMEM;
1805 for (i = 0; i < val_count * val_bytes; i += val_bytes)
1806 map->format.parse_inplace(wval + i);
1808 map->lock(map->lock_arg);
1809 ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1810 map->unlock(map->lock_arg);
1812 kfree(wval);
1814 return ret;
1816 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1819 * _regmap_raw_multi_reg_write()
1821 * the (register,newvalue) pairs in regs have not been formatted, but
1822 * they are all in the same page and have been changed to being page
1823 * relative. The page register has been written if that was necessary.
1825 static int _regmap_raw_multi_reg_write(struct regmap *map,
1826 const struct reg_sequence *regs,
1827 size_t num_regs)
1829 int ret;
1830 void *buf;
1831 int i;
1832 u8 *u8;
1833 size_t val_bytes = map->format.val_bytes;
1834 size_t reg_bytes = map->format.reg_bytes;
1835 size_t pad_bytes = map->format.pad_bytes;
1836 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1837 size_t len = pair_size * num_regs;
1839 if (!len)
1840 return -EINVAL;
1842 buf = kzalloc(len, GFP_KERNEL);
1843 if (!buf)
1844 return -ENOMEM;
1846 /* We have to linearise by hand. */
1848 u8 = buf;
1850 for (i = 0; i < num_regs; i++) {
1851 unsigned int reg = regs[i].reg;
1852 unsigned int val = regs[i].def;
1853 trace_regmap_hw_write_start(map, reg, 1);
1854 map->format.format_reg(u8, reg, map->reg_shift);
1855 u8 += reg_bytes + pad_bytes;
1856 map->format.format_val(u8, val, 0);
1857 u8 += val_bytes;
1859 u8 = buf;
1860 *u8 |= map->write_flag_mask;
1862 ret = map->bus->write(map->bus_context, buf, len);
1864 kfree(buf);
1866 for (i = 0; i < num_regs; i++) {
1867 int reg = regs[i].reg;
1868 trace_regmap_hw_write_done(map, reg, 1);
1870 return ret;
1873 static unsigned int _regmap_register_page(struct regmap *map,
1874 unsigned int reg,
1875 struct regmap_range_node *range)
1877 unsigned int win_page = (reg - range->range_min) / range->window_len;
1879 return win_page;
1882 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1883 struct reg_sequence *regs,
1884 size_t num_regs)
1886 int ret;
1887 int i, n;
1888 struct reg_sequence *base;
1889 unsigned int this_page = 0;
1890 unsigned int page_change = 0;
1892 * the set of registers are not neccessarily in order, but
1893 * since the order of write must be preserved this algorithm
1894 * chops the set each time the page changes. This also applies
1895 * if there is a delay required at any point in the sequence.
1897 base = regs;
1898 for (i = 0, n = 0; i < num_regs; i++, n++) {
1899 unsigned int reg = regs[i].reg;
1900 struct regmap_range_node *range;
1902 range = _regmap_range_lookup(map, reg);
1903 if (range) {
1904 unsigned int win_page = _regmap_register_page(map, reg,
1905 range);
1907 if (i == 0)
1908 this_page = win_page;
1909 if (win_page != this_page) {
1910 this_page = win_page;
1911 page_change = 1;
1915 /* If we have both a page change and a delay make sure to
1916 * write the regs and apply the delay before we change the
1917 * page.
1920 if (page_change || regs[i].delay_us) {
1922 /* For situations where the first write requires
1923 * a delay we need to make sure we don't call
1924 * raw_multi_reg_write with n=0
1925 * This can't occur with page breaks as we
1926 * never write on the first iteration
1928 if (regs[i].delay_us && i == 0)
1929 n = 1;
1931 ret = _regmap_raw_multi_reg_write(map, base, n);
1932 if (ret != 0)
1933 return ret;
1935 if (regs[i].delay_us)
1936 udelay(regs[i].delay_us);
1938 base += n;
1939 n = 0;
1941 if (page_change) {
1942 ret = _regmap_select_page(map,
1943 &base[n].reg,
1944 range, 1);
1945 if (ret != 0)
1946 return ret;
1948 page_change = 0;
1954 if (n > 0)
1955 return _regmap_raw_multi_reg_write(map, base, n);
1956 return 0;
1959 static int _regmap_multi_reg_write(struct regmap *map,
1960 const struct reg_sequence *regs,
1961 size_t num_regs)
1963 int i;
1964 int ret;
1966 if (!map->can_multi_write) {
1967 for (i = 0; i < num_regs; i++) {
1968 ret = _regmap_write(map, regs[i].reg, regs[i].def);
1969 if (ret != 0)
1970 return ret;
1972 if (regs[i].delay_us)
1973 udelay(regs[i].delay_us);
1975 return 0;
1978 if (!map->format.parse_inplace)
1979 return -EINVAL;
1981 if (map->writeable_reg)
1982 for (i = 0; i < num_regs; i++) {
1983 int reg = regs[i].reg;
1984 if (!map->writeable_reg(map->dev, reg))
1985 return -EINVAL;
1986 if (reg % map->reg_stride)
1987 return -EINVAL;
1990 if (!map->cache_bypass) {
1991 for (i = 0; i < num_regs; i++) {
1992 unsigned int val = regs[i].def;
1993 unsigned int reg = regs[i].reg;
1994 ret = regcache_write(map, reg, val);
1995 if (ret) {
1996 dev_err(map->dev,
1997 "Error in caching of register: %x ret: %d\n",
1998 reg, ret);
1999 return ret;
2002 if (map->cache_only) {
2003 map->cache_dirty = true;
2004 return 0;
2008 WARN_ON(!map->bus);
2010 for (i = 0; i < num_regs; i++) {
2011 unsigned int reg = regs[i].reg;
2012 struct regmap_range_node *range;
2014 /* Coalesce all the writes between a page break or a delay
2015 * in a sequence
2017 range = _regmap_range_lookup(map, reg);
2018 if (range || regs[i].delay_us) {
2019 size_t len = sizeof(struct reg_sequence)*num_regs;
2020 struct reg_sequence *base = kmemdup(regs, len,
2021 GFP_KERNEL);
2022 if (!base)
2023 return -ENOMEM;
2024 ret = _regmap_range_multi_paged_reg_write(map, base,
2025 num_regs);
2026 kfree(base);
2028 return ret;
2031 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2035 * regmap_multi_reg_write(): Write multiple registers to the device
2037 * where the set of register,value pairs are supplied in any order,
2038 * possibly not all in a single range.
2040 * @map: Register map to write to
2041 * @regs: Array of structures containing register,value to be written
2042 * @num_regs: Number of registers to write
2044 * The 'normal' block write mode will send ultimately send data on the
2045 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
2046 * addressed. However, this alternative block multi write mode will send
2047 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2048 * must of course support the mode.
2050 * A value of zero will be returned on success, a negative errno will be
2051 * returned in error cases.
2053 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2054 int num_regs)
2056 int ret;
2058 map->lock(map->lock_arg);
2060 ret = _regmap_multi_reg_write(map, regs, num_regs);
2062 map->unlock(map->lock_arg);
2064 return ret;
2066 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2069 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
2070 * device but not the cache
2072 * where the set of register are supplied in any order
2074 * @map: Register map to write to
2075 * @regs: Array of structures containing register,value to be written
2076 * @num_regs: Number of registers to write
2078 * This function is intended to be used for writing a large block of data
2079 * atomically to the device in single transfer for those I2C client devices
2080 * that implement this alternative block write mode.
2082 * A value of zero will be returned on success, a negative errno will
2083 * be returned in error cases.
2085 int regmap_multi_reg_write_bypassed(struct regmap *map,
2086 const struct reg_sequence *regs,
2087 int num_regs)
2089 int ret;
2090 bool bypass;
2092 map->lock(map->lock_arg);
2094 bypass = map->cache_bypass;
2095 map->cache_bypass = true;
2097 ret = _regmap_multi_reg_write(map, regs, num_regs);
2099 map->cache_bypass = bypass;
2101 map->unlock(map->lock_arg);
2103 return ret;
2105 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2108 * regmap_raw_write_async(): Write raw values to one or more registers
2109 * asynchronously
2111 * @map: Register map to write to
2112 * @reg: Initial register to write to
2113 * @val: Block of data to be written, laid out for direct transmission to the
2114 * device. Must be valid until regmap_async_complete() is called.
2115 * @val_len: Length of data pointed to by val.
2117 * This function is intended to be used for things like firmware
2118 * download where a large block of data needs to be transferred to the
2119 * device. No formatting will be done on the data provided.
2121 * If supported by the underlying bus the write will be scheduled
2122 * asynchronously, helping maximise I/O speed on higher speed buses
2123 * like SPI. regmap_async_complete() can be called to ensure that all
2124 * asynchrnous writes have been completed.
2126 * A value of zero will be returned on success, a negative errno will
2127 * be returned in error cases.
2129 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2130 const void *val, size_t val_len)
2132 int ret;
2134 if (val_len % map->format.val_bytes)
2135 return -EINVAL;
2136 if (reg % map->reg_stride)
2137 return -EINVAL;
2139 map->lock(map->lock_arg);
2141 map->async = true;
2143 ret = _regmap_raw_write(map, reg, val, val_len);
2145 map->async = false;
2147 map->unlock(map->lock_arg);
2149 return ret;
2151 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2153 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2154 unsigned int val_len)
2156 struct regmap_range_node *range;
2157 u8 *u8 = map->work_buf;
2158 int ret;
2160 WARN_ON(!map->bus);
2162 range = _regmap_range_lookup(map, reg);
2163 if (range) {
2164 ret = _regmap_select_page(map, &reg, range,
2165 val_len / map->format.val_bytes);
2166 if (ret != 0)
2167 return ret;
2170 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2173 * Some buses or devices flag reads by setting the high bits in the
2174 * register address; since it's always the high bits for all
2175 * current formats we can do this here rather than in
2176 * formatting. This may break if we get interesting formats.
2178 u8[0] |= map->read_flag_mask;
2180 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2182 ret = map->bus->read(map->bus_context, map->work_buf,
2183 map->format.reg_bytes + map->format.pad_bytes,
2184 val, val_len);
2186 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2188 return ret;
2191 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2192 unsigned int *val)
2194 struct regmap *map = context;
2196 return map->bus->reg_read(map->bus_context, reg, val);
2199 static int _regmap_bus_read(void *context, unsigned int reg,
2200 unsigned int *val)
2202 int ret;
2203 struct regmap *map = context;
2205 if (!map->format.parse_val)
2206 return -EINVAL;
2208 ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2209 if (ret == 0)
2210 *val = map->format.parse_val(map->work_buf);
2212 return ret;
2215 static int _regmap_read(struct regmap *map, unsigned int reg,
2216 unsigned int *val)
2218 int ret;
2219 void *context = _regmap_map_get_context(map);
2221 if (!map->cache_bypass) {
2222 ret = regcache_read(map, reg, val);
2223 if (ret == 0)
2224 return 0;
2227 if (map->cache_only)
2228 return -EBUSY;
2230 if (!regmap_readable(map, reg))
2231 return -EIO;
2233 ret = map->reg_read(context, reg, val);
2234 if (ret == 0) {
2235 #ifdef LOG_DEVICE
2236 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2237 dev_info(map->dev, "%x => %x\n", reg, *val);
2238 #endif
2240 trace_regmap_reg_read(map, reg, *val);
2242 if (!map->cache_bypass)
2243 regcache_write(map, reg, *val);
2246 return ret;
2250 * regmap_read(): Read a value from a single register
2252 * @map: Register map to read from
2253 * @reg: Register to be read from
2254 * @val: Pointer to store read value
2256 * A value of zero will be returned on success, a negative errno will
2257 * be returned in error cases.
2259 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2261 int ret;
2263 if (reg % map->reg_stride)
2264 return -EINVAL;
2266 map->lock(map->lock_arg);
2268 ret = _regmap_read(map, reg, val);
2270 map->unlock(map->lock_arg);
2272 return ret;
2274 EXPORT_SYMBOL_GPL(regmap_read);
2277 * regmap_raw_read(): Read raw data from the device
2279 * @map: Register map to read from
2280 * @reg: First register to be read from
2281 * @val: Pointer to store read value
2282 * @val_len: Size of data to read
2284 * A value of zero will be returned on success, a negative errno will
2285 * be returned in error cases.
2287 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2288 size_t val_len)
2290 size_t val_bytes = map->format.val_bytes;
2291 size_t val_count = val_len / val_bytes;
2292 unsigned int v;
2293 int ret, i;
2295 if (!map->bus)
2296 return -EINVAL;
2297 if (val_len % map->format.val_bytes)
2298 return -EINVAL;
2299 if (reg % map->reg_stride)
2300 return -EINVAL;
2301 if (val_count == 0)
2302 return -EINVAL;
2304 map->lock(map->lock_arg);
2306 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2307 map->cache_type == REGCACHE_NONE) {
2308 if (!map->bus->read) {
2309 ret = -ENOTSUPP;
2310 goto out;
2312 if (map->max_raw_read && map->max_raw_read < val_len) {
2313 ret = -E2BIG;
2314 goto out;
2317 /* Physical block read if there's no cache involved */
2318 ret = _regmap_raw_read(map, reg, val, val_len);
2320 } else {
2321 /* Otherwise go word by word for the cache; should be low
2322 * cost as we expect to hit the cache.
2324 for (i = 0; i < val_count; i++) {
2325 ret = _regmap_read(map, reg + (i * map->reg_stride),
2326 &v);
2327 if (ret != 0)
2328 goto out;
2330 map->format.format_val(val + (i * val_bytes), v, 0);
2334 out:
2335 map->unlock(map->lock_arg);
2337 return ret;
2339 EXPORT_SYMBOL_GPL(regmap_raw_read);
2342 * regmap_field_read(): Read a value to a single register field
2344 * @field: Register field to read from
2345 * @val: Pointer to store read value
2347 * A value of zero will be returned on success, a negative errno will
2348 * be returned in error cases.
2350 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2352 int ret;
2353 unsigned int reg_val;
2354 ret = regmap_read(field->regmap, field->reg, &reg_val);
2355 if (ret != 0)
2356 return ret;
2358 reg_val &= field->mask;
2359 reg_val >>= field->shift;
2360 *val = reg_val;
2362 return ret;
2364 EXPORT_SYMBOL_GPL(regmap_field_read);
2367 * regmap_fields_read(): Read a value to a single register field with port ID
2369 * @field: Register field to read from
2370 * @id: port ID
2371 * @val: Pointer to store read value
2373 * A value of zero will be returned on success, a negative errno will
2374 * be returned in error cases.
2376 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2377 unsigned int *val)
2379 int ret;
2380 unsigned int reg_val;
2382 if (id >= field->id_size)
2383 return -EINVAL;
2385 ret = regmap_read(field->regmap,
2386 field->reg + (field->id_offset * id),
2387 &reg_val);
2388 if (ret != 0)
2389 return ret;
2391 reg_val &= field->mask;
2392 reg_val >>= field->shift;
2393 *val = reg_val;
2395 return ret;
2397 EXPORT_SYMBOL_GPL(regmap_fields_read);
2400 * regmap_bulk_read(): Read multiple registers from the device
2402 * @map: Register map to read from
2403 * @reg: First register to be read from
2404 * @val: Pointer to store read value, in native register size for device
2405 * @val_count: Number of registers to read
2407 * A value of zero will be returned on success, a negative errno will
2408 * be returned in error cases.
2410 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2411 size_t val_count)
2413 int ret, i;
2414 size_t val_bytes = map->format.val_bytes;
2415 bool vol = regmap_volatile_range(map, reg, val_count);
2417 if (reg % map->reg_stride)
2418 return -EINVAL;
2420 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2422 * Some devices does not support bulk read, for
2423 * them we have a series of single read operations.
2425 size_t total_size = val_bytes * val_count;
2427 if (!map->use_single_read &&
2428 (!map->max_raw_read || map->max_raw_read > total_size)) {
2429 ret = regmap_raw_read(map, reg, val,
2430 val_bytes * val_count);
2431 if (ret != 0)
2432 return ret;
2433 } else {
2435 * Some devices do not support bulk read or do not
2436 * support large bulk reads, for them we have a series
2437 * of read operations.
2439 int chunk_stride = map->reg_stride;
2440 size_t chunk_size = val_bytes;
2441 size_t chunk_count = val_count;
2443 if (!map->use_single_read) {
2444 chunk_size = map->max_raw_read;
2445 if (chunk_size % val_bytes)
2446 chunk_size -= chunk_size % val_bytes;
2447 chunk_count = total_size / chunk_size;
2448 chunk_stride *= chunk_size / val_bytes;
2451 /* Read bytes that fit into a multiple of chunk_size */
2452 for (i = 0; i < chunk_count; i++) {
2453 ret = regmap_raw_read(map,
2454 reg + (i * chunk_stride),
2455 val + (i * chunk_size),
2456 chunk_size);
2457 if (ret != 0)
2458 return ret;
2461 /* Read remaining bytes */
2462 if (chunk_size * i < total_size) {
2463 ret = regmap_raw_read(map,
2464 reg + (i * chunk_stride),
2465 val + (i * chunk_size),
2466 total_size - i * chunk_size);
2467 if (ret != 0)
2468 return ret;
2472 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2473 map->format.parse_inplace(val + i);
2474 } else {
2475 for (i = 0; i < val_count; i++) {
2476 unsigned int ival;
2477 ret = regmap_read(map, reg + (i * map->reg_stride),
2478 &ival);
2479 if (ret != 0)
2480 return ret;
2482 if (map->format.format_val) {
2483 map->format.format_val(val + (i * val_bytes), ival, 0);
2484 } else {
2485 /* Devices providing read and write
2486 * operations can use the bulk I/O
2487 * functions if they define a val_bytes,
2488 * we assume that the values are native
2489 * endian.
2491 u32 *u32 = val;
2492 u16 *u16 = val;
2493 u8 *u8 = val;
2495 switch (map->format.val_bytes) {
2496 case 4:
2497 u32[i] = ival;
2498 break;
2499 case 2:
2500 u16[i] = ival;
2501 break;
2502 case 1:
2503 u8[i] = ival;
2504 break;
2505 default:
2506 return -EINVAL;
2512 return 0;
2514 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2516 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2517 unsigned int mask, unsigned int val,
2518 bool *change, bool force_write)
2520 int ret;
2521 unsigned int tmp, orig;
2523 if (change)
2524 *change = false;
2526 if (regmap_volatile(map, reg) && map->reg_update_bits) {
2527 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2528 if (ret == 0 && change)
2529 *change = true;
2530 } else {
2531 ret = _regmap_read(map, reg, &orig);
2532 if (ret != 0)
2533 return ret;
2535 tmp = orig & ~mask;
2536 tmp |= val & mask;
2538 if (force_write || (tmp != orig)) {
2539 ret = _regmap_write(map, reg, tmp);
2540 if (ret == 0 && change)
2541 *change = true;
2545 return ret;
2549 * regmap_update_bits: Perform a read/modify/write cycle on the register map
2551 * @map: Register map to update
2552 * @reg: Register to update
2553 * @mask: Bitmask to change
2554 * @val: New value for bitmask
2556 * Returns zero for success, a negative number on error.
2558 int regmap_update_bits(struct regmap *map, unsigned int reg,
2559 unsigned int mask, unsigned int val)
2561 int ret;
2563 map->lock(map->lock_arg);
2564 ret = _regmap_update_bits(map, reg, mask, val, NULL, false);
2565 map->unlock(map->lock_arg);
2567 return ret;
2569 EXPORT_SYMBOL_GPL(regmap_update_bits);
2572 * regmap_write_bits: Perform a read/modify/write cycle on the register map
2574 * @map: Register map to update
2575 * @reg: Register to update
2576 * @mask: Bitmask to change
2577 * @val: New value for bitmask
2579 * Returns zero for success, a negative number on error.
2581 int regmap_write_bits(struct regmap *map, unsigned int reg,
2582 unsigned int mask, unsigned int val)
2584 int ret;
2586 map->lock(map->lock_arg);
2587 ret = _regmap_update_bits(map, reg, mask, val, NULL, true);
2588 map->unlock(map->lock_arg);
2590 return ret;
2592 EXPORT_SYMBOL_GPL(regmap_write_bits);
2595 * regmap_update_bits_async: Perform a read/modify/write cycle on the register
2596 * map asynchronously
2598 * @map: Register map to update
2599 * @reg: Register to update
2600 * @mask: Bitmask to change
2601 * @val: New value for bitmask
2603 * With most buses the read must be done synchronously so this is most
2604 * useful for devices with a cache which do not need to interact with
2605 * the hardware to determine the current register value.
2607 * Returns zero for success, a negative number on error.
2609 int regmap_update_bits_async(struct regmap *map, unsigned int reg,
2610 unsigned int mask, unsigned int val)
2612 int ret;
2614 map->lock(map->lock_arg);
2616 map->async = true;
2618 ret = _regmap_update_bits(map, reg, mask, val, NULL, false);
2620 map->async = false;
2622 map->unlock(map->lock_arg);
2624 return ret;
2626 EXPORT_SYMBOL_GPL(regmap_update_bits_async);
2629 * regmap_update_bits_check: Perform a read/modify/write cycle on the
2630 * register map and report if updated
2632 * @map: Register map to update
2633 * @reg: Register to update
2634 * @mask: Bitmask to change
2635 * @val: New value for bitmask
2636 * @change: Boolean indicating if a write was done
2638 * Returns zero for success, a negative number on error.
2640 int regmap_update_bits_check(struct regmap *map, unsigned int reg,
2641 unsigned int mask, unsigned int val,
2642 bool *change)
2644 int ret;
2646 map->lock(map->lock_arg);
2647 ret = _regmap_update_bits(map, reg, mask, val, change, false);
2648 map->unlock(map->lock_arg);
2649 return ret;
2651 EXPORT_SYMBOL_GPL(regmap_update_bits_check);
2654 * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
2655 * register map asynchronously and report if
2656 * updated
2658 * @map: Register map to update
2659 * @reg: Register to update
2660 * @mask: Bitmask to change
2661 * @val: New value for bitmask
2662 * @change: Boolean indicating if a write was done
2664 * With most buses the read must be done synchronously so this is most
2665 * useful for devices with a cache which do not need to interact with
2666 * the hardware to determine the current register value.
2668 * Returns zero for success, a negative number on error.
2670 int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
2671 unsigned int mask, unsigned int val,
2672 bool *change)
2674 int ret;
2676 map->lock(map->lock_arg);
2678 map->async = true;
2680 ret = _regmap_update_bits(map, reg, mask, val, change, false);
2682 map->async = false;
2684 map->unlock(map->lock_arg);
2686 return ret;
2688 EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);
2690 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2692 struct regmap *map = async->map;
2693 bool wake;
2695 trace_regmap_async_io_complete(map);
2697 spin_lock(&map->async_lock);
2698 list_move(&async->list, &map->async_free);
2699 wake = list_empty(&map->async_list);
2701 if (ret != 0)
2702 map->async_ret = ret;
2704 spin_unlock(&map->async_lock);
2706 if (wake)
2707 wake_up(&map->async_waitq);
2709 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2711 static int regmap_async_is_done(struct regmap *map)
2713 unsigned long flags;
2714 int ret;
2716 spin_lock_irqsave(&map->async_lock, flags);
2717 ret = list_empty(&map->async_list);
2718 spin_unlock_irqrestore(&map->async_lock, flags);
2720 return ret;
2724 * regmap_async_complete: Ensure all asynchronous I/O has completed.
2726 * @map: Map to operate on.
2728 * Blocks until any pending asynchronous I/O has completed. Returns
2729 * an error code for any failed I/O operations.
2731 int regmap_async_complete(struct regmap *map)
2733 unsigned long flags;
2734 int ret;
2736 /* Nothing to do with no async support */
2737 if (!map->bus || !map->bus->async_write)
2738 return 0;
2740 trace_regmap_async_complete_start(map);
2742 wait_event(map->async_waitq, regmap_async_is_done(map));
2744 spin_lock_irqsave(&map->async_lock, flags);
2745 ret = map->async_ret;
2746 map->async_ret = 0;
2747 spin_unlock_irqrestore(&map->async_lock, flags);
2749 trace_regmap_async_complete_done(map);
2751 return ret;
2753 EXPORT_SYMBOL_GPL(regmap_async_complete);
2756 * regmap_register_patch: Register and apply register updates to be applied
2757 * on device initialistion
2759 * @map: Register map to apply updates to.
2760 * @regs: Values to update.
2761 * @num_regs: Number of entries in regs.
2763 * Register a set of register updates to be applied to the device
2764 * whenever the device registers are synchronised with the cache and
2765 * apply them immediately. Typically this is used to apply
2766 * corrections to be applied to the device defaults on startup, such
2767 * as the updates some vendors provide to undocumented registers.
2769 * The caller must ensure that this function cannot be called
2770 * concurrently with either itself or regcache_sync().
2772 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2773 int num_regs)
2775 struct reg_sequence *p;
2776 int ret;
2777 bool bypass;
2779 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2780 num_regs))
2781 return 0;
2783 p = krealloc(map->patch,
2784 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2785 GFP_KERNEL);
2786 if (p) {
2787 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2788 map->patch = p;
2789 map->patch_regs += num_regs;
2790 } else {
2791 return -ENOMEM;
2794 map->lock(map->lock_arg);
2796 bypass = map->cache_bypass;
2798 map->cache_bypass = true;
2799 map->async = true;
2801 ret = _regmap_multi_reg_write(map, regs, num_regs);
2803 map->async = false;
2804 map->cache_bypass = bypass;
2806 map->unlock(map->lock_arg);
2808 regmap_async_complete(map);
2810 return ret;
2812 EXPORT_SYMBOL_GPL(regmap_register_patch);
2815 * regmap_get_val_bytes(): Report the size of a register value
2817 * Report the size of a register value, mainly intended to for use by
2818 * generic infrastructure built on top of regmap.
2820 int regmap_get_val_bytes(struct regmap *map)
2822 if (map->format.format_write)
2823 return -EINVAL;
2825 return map->format.val_bytes;
2827 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2830 * regmap_get_max_register(): Report the max register value
2832 * Report the max register value, mainly intended to for use by
2833 * generic infrastructure built on top of regmap.
2835 int regmap_get_max_register(struct regmap *map)
2837 return map->max_register ? map->max_register : -EINVAL;
2839 EXPORT_SYMBOL_GPL(regmap_get_max_register);
2842 * regmap_get_reg_stride(): Report the register address stride
2844 * Report the register address stride, mainly intended to for use by
2845 * generic infrastructure built on top of regmap.
2847 int regmap_get_reg_stride(struct regmap *map)
2849 return map->reg_stride;
2851 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
2853 int regmap_parse_val(struct regmap *map, const void *buf,
2854 unsigned int *val)
2856 if (!map->format.parse_val)
2857 return -EINVAL;
2859 *val = map->format.parse_val(buf);
2861 return 0;
2863 EXPORT_SYMBOL_GPL(regmap_parse_val);
2865 static int __init regmap_initcall(void)
2867 regmap_debugfs_initcall();
2869 return 0;
2871 postcore_initcall(regmap_initcall);