3 * Bluetooth HCI UART driver for Intel devices
5 * Copyright (C) 2015 Intel Corporation
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/skbuff.h>
27 #include <linux/firmware.h>
28 #include <linux/module.h>
29 #include <linux/wait.h>
30 #include <linux/tty.h>
31 #include <linux/platform_device.h>
32 #include <linux/gpio/consumer.h>
33 #include <linux/acpi.h>
34 #include <linux/interrupt.h>
35 #include <linux/pm_runtime.h>
37 #include <net/bluetooth/bluetooth.h>
38 #include <net/bluetooth/hci_core.h>
43 #define STATE_BOOTLOADER 0
44 #define STATE_DOWNLOADING 1
45 #define STATE_FIRMWARE_LOADED 2
46 #define STATE_FIRMWARE_FAILED 3
47 #define STATE_BOOTING 4
48 #define STATE_LPM_ENABLED 5
49 #define STATE_TX_ACTIVE 6
50 #define STATE_SUSPENDED 7
51 #define STATE_LPM_TRANSACTION 8
53 #define HCI_LPM_WAKE_PKT 0xf0
54 #define HCI_LPM_PKT 0xf1
55 #define HCI_LPM_MAX_SIZE 10
56 #define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE
58 #define LPM_OP_TX_NOTIFY 0x00
59 #define LPM_OP_SUSPEND_ACK 0x02
60 #define LPM_OP_RESUME_ACK 0x03
62 #define LPM_SUSPEND_DELAY_MS 1000
71 struct list_head list
;
72 struct platform_device
*pdev
;
73 struct gpio_desc
*reset
;
79 static LIST_HEAD(intel_device_list
);
80 static DEFINE_MUTEX(intel_device_list_lock
);
83 struct sk_buff
*rx_skb
;
84 struct sk_buff_head txq
;
85 struct work_struct busy_work
;
90 static u8
intel_convert_speed(unsigned int speed
)
122 static int intel_wait_booting(struct hci_uart
*hu
)
124 struct intel_data
*intel
= hu
->priv
;
127 err
= wait_on_bit_timeout(&intel
->flags
, STATE_BOOTING
,
129 msecs_to_jiffies(1000));
132 bt_dev_err(hu
->hdev
, "Device boot interrupted");
137 bt_dev_err(hu
->hdev
, "Device boot timeout");
145 static int intel_wait_lpm_transaction(struct hci_uart
*hu
)
147 struct intel_data
*intel
= hu
->priv
;
150 err
= wait_on_bit_timeout(&intel
->flags
, STATE_LPM_TRANSACTION
,
152 msecs_to_jiffies(1000));
155 bt_dev_err(hu
->hdev
, "LPM transaction interrupted");
160 bt_dev_err(hu
->hdev
, "LPM transaction timeout");
167 static int intel_lpm_suspend(struct hci_uart
*hu
)
169 static const u8 suspend
[] = { 0x01, 0x01, 0x01 };
170 struct intel_data
*intel
= hu
->priv
;
173 if (!test_bit(STATE_LPM_ENABLED
, &intel
->flags
) ||
174 test_bit(STATE_SUSPENDED
, &intel
->flags
))
177 if (test_bit(STATE_TX_ACTIVE
, &intel
->flags
))
180 bt_dev_dbg(hu
->hdev
, "Suspending");
182 skb
= bt_skb_alloc(sizeof(suspend
), GFP_KERNEL
);
184 bt_dev_err(hu
->hdev
, "Failed to alloc memory for LPM packet");
188 memcpy(skb_put(skb
, sizeof(suspend
)), suspend
, sizeof(suspend
));
189 bt_cb(skb
)->pkt_type
= HCI_LPM_PKT
;
191 set_bit(STATE_LPM_TRANSACTION
, &intel
->flags
);
193 /* LPM flow is a priority, enqueue packet at list head */
194 skb_queue_head(&intel
->txq
, skb
);
195 hci_uart_tx_wakeup(hu
);
197 intel_wait_lpm_transaction(hu
);
198 /* Even in case of failure, continue and test the suspended flag */
200 clear_bit(STATE_LPM_TRANSACTION
, &intel
->flags
);
202 if (!test_bit(STATE_SUSPENDED
, &intel
->flags
)) {
203 bt_dev_err(hu
->hdev
, "Device suspend error");
207 bt_dev_dbg(hu
->hdev
, "Suspended");
209 hci_uart_set_flow_control(hu
, true);
214 static int intel_lpm_resume(struct hci_uart
*hu
)
216 struct intel_data
*intel
= hu
->priv
;
219 if (!test_bit(STATE_LPM_ENABLED
, &intel
->flags
) ||
220 !test_bit(STATE_SUSPENDED
, &intel
->flags
))
223 bt_dev_dbg(hu
->hdev
, "Resuming");
225 hci_uart_set_flow_control(hu
, false);
227 skb
= bt_skb_alloc(0, GFP_KERNEL
);
229 bt_dev_err(hu
->hdev
, "Failed to alloc memory for LPM packet");
233 bt_cb(skb
)->pkt_type
= HCI_LPM_WAKE_PKT
;
235 set_bit(STATE_LPM_TRANSACTION
, &intel
->flags
);
237 /* LPM flow is a priority, enqueue packet at list head */
238 skb_queue_head(&intel
->txq
, skb
);
239 hci_uart_tx_wakeup(hu
);
241 intel_wait_lpm_transaction(hu
);
242 /* Even in case of failure, continue and test the suspended flag */
244 clear_bit(STATE_LPM_TRANSACTION
, &intel
->flags
);
246 if (test_bit(STATE_SUSPENDED
, &intel
->flags
)) {
247 bt_dev_err(hu
->hdev
, "Device resume error");
251 bt_dev_dbg(hu
->hdev
, "Resumed");
255 #endif /* CONFIG_PM */
257 static int intel_lpm_host_wake(struct hci_uart
*hu
)
259 static const u8 lpm_resume_ack
[] = { LPM_OP_RESUME_ACK
, 0x00 };
260 struct intel_data
*intel
= hu
->priv
;
263 hci_uart_set_flow_control(hu
, false);
265 clear_bit(STATE_SUSPENDED
, &intel
->flags
);
267 skb
= bt_skb_alloc(sizeof(lpm_resume_ack
), GFP_KERNEL
);
269 bt_dev_err(hu
->hdev
, "Failed to alloc memory for LPM packet");
273 memcpy(skb_put(skb
, sizeof(lpm_resume_ack
)), lpm_resume_ack
,
274 sizeof(lpm_resume_ack
));
275 bt_cb(skb
)->pkt_type
= HCI_LPM_PKT
;
277 /* LPM flow is a priority, enqueue packet at list head */
278 skb_queue_head(&intel
->txq
, skb
);
279 hci_uart_tx_wakeup(hu
);
281 bt_dev_dbg(hu
->hdev
, "Resumed by controller");
286 static irqreturn_t
intel_irq(int irq
, void *dev_id
)
288 struct intel_device
*idev
= dev_id
;
290 dev_info(&idev
->pdev
->dev
, "hci_intel irq\n");
292 mutex_lock(&idev
->hu_lock
);
294 intel_lpm_host_wake(idev
->hu
);
295 mutex_unlock(&idev
->hu_lock
);
297 /* Host/Controller are now LPM resumed, trigger a new delayed suspend */
298 pm_runtime_get(&idev
->pdev
->dev
);
299 pm_runtime_mark_last_busy(&idev
->pdev
->dev
);
300 pm_runtime_put_autosuspend(&idev
->pdev
->dev
);
305 static int intel_set_power(struct hci_uart
*hu
, bool powered
)
310 mutex_lock(&intel_device_list_lock
);
312 list_for_each(p
, &intel_device_list
) {
313 struct intel_device
*idev
= list_entry(p
, struct intel_device
,
316 /* tty device and pdev device should share the same parent
317 * which is the UART port.
319 if (hu
->tty
->dev
->parent
!= idev
->pdev
->dev
.parent
)
327 BT_INFO("hu %p, Switching compatible pm device (%s) to %u",
328 hu
, dev_name(&idev
->pdev
->dev
), powered
);
330 gpiod_set_value(idev
->reset
, powered
);
332 /* Provide to idev a hu reference which is used to run LPM
333 * transactions (lpm suspend/resume) from PM callbacks.
334 * hu needs to be protected against concurrent removing during
337 mutex_lock(&idev
->hu_lock
);
338 idev
->hu
= powered
? hu
: NULL
;
339 mutex_unlock(&idev
->hu_lock
);
344 if (powered
&& device_can_wakeup(&idev
->pdev
->dev
)) {
345 err
= devm_request_threaded_irq(&idev
->pdev
->dev
,
349 "bt-host-wake", idev
);
351 BT_ERR("hu %p, unable to allocate irq-%d",
356 device_wakeup_enable(&idev
->pdev
->dev
);
358 pm_runtime_set_active(&idev
->pdev
->dev
);
359 pm_runtime_use_autosuspend(&idev
->pdev
->dev
);
360 pm_runtime_set_autosuspend_delay(&idev
->pdev
->dev
,
361 LPM_SUSPEND_DELAY_MS
);
362 pm_runtime_enable(&idev
->pdev
->dev
);
363 } else if (!powered
&& device_may_wakeup(&idev
->pdev
->dev
)) {
364 devm_free_irq(&idev
->pdev
->dev
, idev
->irq
, idev
);
365 device_wakeup_disable(&idev
->pdev
->dev
);
367 pm_runtime_disable(&idev
->pdev
->dev
);
371 mutex_unlock(&intel_device_list_lock
);
376 static void intel_busy_work(struct work_struct
*work
)
379 struct intel_data
*intel
= container_of(work
, struct intel_data
,
382 /* Link is busy, delay the suspend */
383 mutex_lock(&intel_device_list_lock
);
384 list_for_each(p
, &intel_device_list
) {
385 struct intel_device
*idev
= list_entry(p
, struct intel_device
,
388 if (intel
->hu
->tty
->dev
->parent
== idev
->pdev
->dev
.parent
) {
389 pm_runtime_get(&idev
->pdev
->dev
);
390 pm_runtime_mark_last_busy(&idev
->pdev
->dev
);
391 pm_runtime_put_autosuspend(&idev
->pdev
->dev
);
395 mutex_unlock(&intel_device_list_lock
);
398 static int intel_open(struct hci_uart
*hu
)
400 struct intel_data
*intel
;
404 intel
= kzalloc(sizeof(*intel
), GFP_KERNEL
);
408 skb_queue_head_init(&intel
->txq
);
409 INIT_WORK(&intel
->busy_work
, intel_busy_work
);
415 if (!intel_set_power(hu
, true))
416 set_bit(STATE_BOOTING
, &intel
->flags
);
421 static int intel_close(struct hci_uart
*hu
)
423 struct intel_data
*intel
= hu
->priv
;
427 cancel_work_sync(&intel
->busy_work
);
429 intel_set_power(hu
, false);
431 skb_queue_purge(&intel
->txq
);
432 kfree_skb(intel
->rx_skb
);
439 static int intel_flush(struct hci_uart
*hu
)
441 struct intel_data
*intel
= hu
->priv
;
445 skb_queue_purge(&intel
->txq
);
450 static int inject_cmd_complete(struct hci_dev
*hdev
, __u16 opcode
)
453 struct hci_event_hdr
*hdr
;
454 struct hci_ev_cmd_complete
*evt
;
456 skb
= bt_skb_alloc(sizeof(*hdr
) + sizeof(*evt
) + 1, GFP_ATOMIC
);
460 hdr
= (struct hci_event_hdr
*)skb_put(skb
, sizeof(*hdr
));
461 hdr
->evt
= HCI_EV_CMD_COMPLETE
;
462 hdr
->plen
= sizeof(*evt
) + 1;
464 evt
= (struct hci_ev_cmd_complete
*)skb_put(skb
, sizeof(*evt
));
466 evt
->opcode
= cpu_to_le16(opcode
);
468 *skb_put(skb
, 1) = 0x00;
470 bt_cb(skb
)->pkt_type
= HCI_EVENT_PKT
;
472 return hci_recv_frame(hdev
, skb
);
475 static int intel_set_baudrate(struct hci_uart
*hu
, unsigned int speed
)
477 struct intel_data
*intel
= hu
->priv
;
478 struct hci_dev
*hdev
= hu
->hdev
;
479 u8 speed_cmd
[] = { 0x06, 0xfc, 0x01, 0x00 };
483 /* This can be the first command sent to the chip, check
484 * that the controller is ready.
486 err
= intel_wait_booting(hu
);
488 clear_bit(STATE_BOOTING
, &intel
->flags
);
490 /* In case of timeout, try to continue anyway */
491 if (err
&& err
!= ETIMEDOUT
)
494 bt_dev_info(hdev
, "Change controller speed to %d", speed
);
496 speed_cmd
[3] = intel_convert_speed(speed
);
497 if (speed_cmd
[3] == 0xff) {
498 bt_dev_err(hdev
, "Unsupported speed");
502 /* Device will not accept speed change if Intel version has not been
503 * previously requested.
505 skb
= __hci_cmd_sync(hdev
, 0xfc05, 0, NULL
, HCI_INIT_TIMEOUT
);
507 bt_dev_err(hdev
, "Reading Intel version information failed (%ld)",
513 skb
= bt_skb_alloc(sizeof(speed_cmd
), GFP_KERNEL
);
515 bt_dev_err(hdev
, "Failed to alloc memory for baudrate packet");
519 memcpy(skb_put(skb
, sizeof(speed_cmd
)), speed_cmd
, sizeof(speed_cmd
));
520 bt_cb(skb
)->pkt_type
= HCI_COMMAND_PKT
;
522 hci_uart_set_flow_control(hu
, true);
524 skb_queue_tail(&intel
->txq
, skb
);
525 hci_uart_tx_wakeup(hu
);
527 /* wait 100ms to change baudrate on controller side */
530 hci_uart_set_baudrate(hu
, speed
);
531 hci_uart_set_flow_control(hu
, false);
536 static int intel_setup(struct hci_uart
*hu
)
538 static const u8 reset_param
[] = { 0x00, 0x01, 0x00, 0x01,
539 0x00, 0x08, 0x04, 0x00 };
540 static const u8 lpm_param
[] = { 0x03, 0x07, 0x01, 0x0b };
541 struct intel_data
*intel
= hu
->priv
;
542 struct intel_device
*idev
= NULL
;
543 struct hci_dev
*hdev
= hu
->hdev
;
545 struct intel_version
*ver
;
546 struct intel_boot_params
*params
;
548 const struct firmware
*fw
;
552 ktime_t calltime
, delta
, rettime
;
553 unsigned long long duration
;
554 unsigned int init_speed
, oper_speed
;
555 int speed_change
= 0;
558 bt_dev_dbg(hdev
, "start intel_setup");
560 hu
->hdev
->set_diag
= btintel_set_diag
;
561 hu
->hdev
->set_bdaddr
= btintel_set_bdaddr
;
563 calltime
= ktime_get();
566 init_speed
= hu
->init_speed
;
568 init_speed
= hu
->proto
->init_speed
;
571 oper_speed
= hu
->oper_speed
;
573 oper_speed
= hu
->proto
->oper_speed
;
575 if (oper_speed
&& init_speed
&& oper_speed
!= init_speed
)
578 /* Check that the controller is ready */
579 err
= intel_wait_booting(hu
);
581 clear_bit(STATE_BOOTING
, &intel
->flags
);
583 /* In case of timeout, try to continue anyway */
584 if (err
&& err
!= ETIMEDOUT
)
587 set_bit(STATE_BOOTLOADER
, &intel
->flags
);
589 /* Read the Intel version information to determine if the device
590 * is in bootloader mode or if it already has operational firmware
593 skb
= __hci_cmd_sync(hdev
, 0xfc05, 0, NULL
, HCI_INIT_TIMEOUT
);
595 bt_dev_err(hdev
, "Reading Intel version information failed (%ld)",
600 if (skb
->len
!= sizeof(*ver
)) {
601 bt_dev_err(hdev
, "Intel version event size mismatch");
606 ver
= (struct intel_version
*)skb
->data
;
608 bt_dev_err(hdev
, "Intel version command failure (%02x)",
610 err
= -bt_to_errno(ver
->status
);
615 /* The hardware platform number has a fixed value of 0x37 and
616 * for now only accept this single value.
618 if (ver
->hw_platform
!= 0x37) {
619 bt_dev_err(hdev
, "Unsupported Intel hardware platform (%u)",
625 /* At the moment only the hardware variant iBT 3.0 (LnP/SfP) is
626 * supported by this firmware loading method. This check has been
627 * put in place to ensure correct forward compatibility options
628 * when newer hardware variants come along.
630 if (ver
->hw_variant
!= 0x0b) {
631 bt_dev_err(hdev
, "Unsupported Intel hardware variant (%u)",
637 btintel_version_info(hdev
, ver
);
639 /* The firmware variant determines if the device is in bootloader
640 * mode or is running operational firmware. The value 0x06 identifies
641 * the bootloader and the value 0x23 identifies the operational
644 * When the operational firmware is already present, then only
645 * the check for valid Bluetooth device address is needed. This
646 * determines if the device will be added as configured or
647 * unconfigured controller.
649 * It is not possible to use the Secure Boot Parameters in this
650 * case since that command is only available in bootloader mode.
652 if (ver
->fw_variant
== 0x23) {
654 clear_bit(STATE_BOOTLOADER
, &intel
->flags
);
655 btintel_check_bdaddr(hdev
);
659 /* If the device is not in bootloader mode, then the only possible
660 * choice is to return an error and abort the device initialization.
662 if (ver
->fw_variant
!= 0x06) {
663 bt_dev_err(hdev
, "Unsupported Intel firmware variant (%u)",
671 /* Read the secure boot parameters to identify the operating
672 * details of the bootloader.
674 skb
= __hci_cmd_sync(hdev
, 0xfc0d, 0, NULL
, HCI_INIT_TIMEOUT
);
676 bt_dev_err(hdev
, "Reading Intel boot parameters failed (%ld)",
681 if (skb
->len
!= sizeof(*params
)) {
682 bt_dev_err(hdev
, "Intel boot parameters size mismatch");
687 params
= (struct intel_boot_params
*)skb
->data
;
688 if (params
->status
) {
689 bt_dev_err(hdev
, "Intel boot parameters command failure (%02x)",
691 err
= -bt_to_errno(params
->status
);
696 bt_dev_info(hdev
, "Device revision is %u",
697 le16_to_cpu(params
->dev_revid
));
699 bt_dev_info(hdev
, "Secure boot is %s",
700 params
->secure_boot
? "enabled" : "disabled");
702 bt_dev_info(hdev
, "Minimum firmware build %u week %u %u",
703 params
->min_fw_build_nn
, params
->min_fw_build_cw
,
704 2000 + params
->min_fw_build_yy
);
706 /* It is required that every single firmware fragment is acknowledged
707 * with a command complete event. If the boot parameters indicate
708 * that this bootloader does not send them, then abort the setup.
710 if (params
->limited_cce
!= 0x00) {
711 bt_dev_err(hdev
, "Unsupported Intel firmware loading method (%u)",
712 params
->limited_cce
);
717 /* If the OTP has no valid Bluetooth device address, then there will
718 * also be no valid address for the operational firmware.
720 if (!bacmp(¶ms
->otp_bdaddr
, BDADDR_ANY
)) {
721 bt_dev_info(hdev
, "No device address configured");
722 set_bit(HCI_QUIRK_INVALID_BDADDR
, &hdev
->quirks
);
725 /* With this Intel bootloader only the hardware variant and device
726 * revision information are used to select the right firmware.
728 * Currently this bootloader support is limited to hardware variant
729 * iBT 3.0 (LnP/SfP) which is identified by the value 11 (0x0b).
731 snprintf(fwname
, sizeof(fwname
), "intel/ibt-11-%u.sfi",
732 le16_to_cpu(params
->dev_revid
));
734 err
= request_firmware(&fw
, fwname
, &hdev
->dev
);
736 bt_dev_err(hdev
, "Failed to load Intel firmware file (%d)",
742 bt_dev_info(hdev
, "Found device firmware: %s", fwname
);
744 /* Save the DDC file name for later */
745 snprintf(fwname
, sizeof(fwname
), "intel/ibt-11-%u.ddc",
746 le16_to_cpu(params
->dev_revid
));
750 if (fw
->size
< 644) {
751 bt_dev_err(hdev
, "Invalid size of firmware file (%zu)",
757 set_bit(STATE_DOWNLOADING
, &intel
->flags
);
759 /* Start the firmware download transaction with the Init fragment
760 * represented by the 128 bytes of CSS header.
762 err
= btintel_secure_send(hdev
, 0x00, 128, fw
->data
);
764 bt_dev_err(hdev
, "Failed to send firmware header (%d)", err
);
768 /* Send the 256 bytes of public key information from the firmware
769 * as the PKey fragment.
771 err
= btintel_secure_send(hdev
, 0x03, 256, fw
->data
+ 128);
773 bt_dev_err(hdev
, "Failed to send firmware public key (%d)",
778 /* Send the 256 bytes of signature information from the firmware
779 * as the Sign fragment.
781 err
= btintel_secure_send(hdev
, 0x02, 256, fw
->data
+ 388);
783 bt_dev_err(hdev
, "Failed to send firmware signature (%d)",
788 fw_ptr
= fw
->data
+ 644;
791 while (fw_ptr
- fw
->data
< fw
->size
) {
792 struct hci_command_hdr
*cmd
= (void *)(fw_ptr
+ frag_len
);
794 frag_len
+= sizeof(*cmd
) + cmd
->plen
;
796 bt_dev_dbg(hdev
, "Patching %td/%zu", (fw_ptr
- fw
->data
),
799 /* The parameter length of the secure send command requires
800 * a 4 byte alignment. It happens so that the firmware file
801 * contains proper Intel_NOP commands to align the fragments
804 * Send set of commands with 4 byte alignment from the
805 * firmware data buffer as a single Data fragement.
810 /* Send each command from the firmware data buffer as
811 * a single Data fragment.
813 err
= btintel_secure_send(hdev
, 0x01, frag_len
, fw_ptr
);
815 bt_dev_err(hdev
, "Failed to send firmware data (%d)",
824 set_bit(STATE_FIRMWARE_LOADED
, &intel
->flags
);
826 bt_dev_info(hdev
, "Waiting for firmware download to complete");
828 /* Before switching the device into operational mode and with that
829 * booting the loaded firmware, wait for the bootloader notification
830 * that all fragments have been successfully received.
832 * When the event processing receives the notification, then the
833 * STATE_DOWNLOADING flag will be cleared.
835 * The firmware loading should not take longer than 5 seconds
836 * and thus just timeout if that happens and fail the setup
839 err
= wait_on_bit_timeout(&intel
->flags
, STATE_DOWNLOADING
,
841 msecs_to_jiffies(5000));
843 bt_dev_err(hdev
, "Firmware loading interrupted");
849 bt_dev_err(hdev
, "Firmware loading timeout");
854 if (test_bit(STATE_FIRMWARE_FAILED
, &intel
->flags
)) {
855 bt_dev_err(hdev
, "Firmware loading failed");
860 rettime
= ktime_get();
861 delta
= ktime_sub(rettime
, calltime
);
862 duration
= (unsigned long long) ktime_to_ns(delta
) >> 10;
864 bt_dev_info(hdev
, "Firmware loaded in %llu usecs", duration
);
867 release_firmware(fw
);
872 /* We need to restore the default speed before Intel reset */
874 err
= intel_set_baudrate(hu
, init_speed
);
879 calltime
= ktime_get();
881 set_bit(STATE_BOOTING
, &intel
->flags
);
883 skb
= __hci_cmd_sync(hdev
, 0xfc01, sizeof(reset_param
), reset_param
,
890 /* The bootloader will not indicate when the device is ready. This
891 * is done by the operational firmware sending bootup notification.
893 * Booting into operational firmware should not take longer than
894 * 1 second. However if that happens, then just fail the setup
895 * since something went wrong.
897 bt_dev_info(hdev
, "Waiting for device to boot");
899 err
= intel_wait_booting(hu
);
903 clear_bit(STATE_BOOTING
, &intel
->flags
);
905 rettime
= ktime_get();
906 delta
= ktime_sub(rettime
, calltime
);
907 duration
= (unsigned long long) ktime_to_ns(delta
) >> 10;
909 bt_dev_info(hdev
, "Device booted in %llu usecs", duration
);
911 /* Enable LPM if matching pdev with wakeup enabled */
912 mutex_lock(&intel_device_list_lock
);
913 list_for_each(p
, &intel_device_list
) {
914 struct intel_device
*dev
= list_entry(p
, struct intel_device
,
916 if (hu
->tty
->dev
->parent
== dev
->pdev
->dev
.parent
) {
917 if (device_may_wakeup(&dev
->pdev
->dev
))
922 mutex_unlock(&intel_device_list_lock
);
927 bt_dev_info(hdev
, "Enabling LPM");
929 skb
= __hci_cmd_sync(hdev
, 0xfc8b, sizeof(lpm_param
), lpm_param
,
932 bt_dev_err(hdev
, "Failed to enable LPM");
937 set_bit(STATE_LPM_ENABLED
, &intel
->flags
);
940 /* Ignore errors, device can work without DDC parameters */
941 btintel_load_ddc_config(hdev
, fwname
);
943 skb
= __hci_cmd_sync(hdev
, HCI_OP_RESET
, 0, NULL
, HCI_CMD_TIMEOUT
);
949 err
= intel_set_baudrate(hu
, oper_speed
);
954 bt_dev_info(hdev
, "Setup complete");
956 clear_bit(STATE_BOOTLOADER
, &intel
->flags
);
961 static int intel_recv_event(struct hci_dev
*hdev
, struct sk_buff
*skb
)
963 struct hci_uart
*hu
= hci_get_drvdata(hdev
);
964 struct intel_data
*intel
= hu
->priv
;
965 struct hci_event_hdr
*hdr
;
967 if (!test_bit(STATE_BOOTLOADER
, &intel
->flags
) &&
968 !test_bit(STATE_BOOTING
, &intel
->flags
))
971 hdr
= (void *)skb
->data
;
973 /* When the firmware loading completes the device sends
974 * out a vendor specific event indicating the result of
975 * the firmware loading.
977 if (skb
->len
== 7 && hdr
->evt
== 0xff && hdr
->plen
== 0x05 &&
978 skb
->data
[2] == 0x06) {
979 if (skb
->data
[3] != 0x00)
980 set_bit(STATE_FIRMWARE_FAILED
, &intel
->flags
);
982 if (test_and_clear_bit(STATE_DOWNLOADING
, &intel
->flags
) &&
983 test_bit(STATE_FIRMWARE_LOADED
, &intel
->flags
)) {
984 smp_mb__after_atomic();
985 wake_up_bit(&intel
->flags
, STATE_DOWNLOADING
);
988 /* When switching to the operational firmware the device
989 * sends a vendor specific event indicating that the bootup
992 } else if (skb
->len
== 9 && hdr
->evt
== 0xff && hdr
->plen
== 0x07 &&
993 skb
->data
[2] == 0x02) {
994 if (test_and_clear_bit(STATE_BOOTING
, &intel
->flags
)) {
995 smp_mb__after_atomic();
996 wake_up_bit(&intel
->flags
, STATE_BOOTING
);
1000 return hci_recv_frame(hdev
, skb
);
1003 static void intel_recv_lpm_notify(struct hci_dev
*hdev
, int value
)
1005 struct hci_uart
*hu
= hci_get_drvdata(hdev
);
1006 struct intel_data
*intel
= hu
->priv
;
1008 bt_dev_dbg(hdev
, "TX idle notification (%d)", value
);
1011 set_bit(STATE_TX_ACTIVE
, &intel
->flags
);
1012 schedule_work(&intel
->busy_work
);
1014 clear_bit(STATE_TX_ACTIVE
, &intel
->flags
);
1018 static int intel_recv_lpm(struct hci_dev
*hdev
, struct sk_buff
*skb
)
1020 struct hci_lpm_pkt
*lpm
= (void *)skb
->data
;
1021 struct hci_uart
*hu
= hci_get_drvdata(hdev
);
1022 struct intel_data
*intel
= hu
->priv
;
1024 switch (lpm
->opcode
) {
1025 case LPM_OP_TX_NOTIFY
:
1026 if (lpm
->dlen
< 1) {
1027 bt_dev_err(hu
->hdev
, "Invalid LPM notification packet");
1030 intel_recv_lpm_notify(hdev
, lpm
->data
[0]);
1032 case LPM_OP_SUSPEND_ACK
:
1033 set_bit(STATE_SUSPENDED
, &intel
->flags
);
1034 if (test_and_clear_bit(STATE_LPM_TRANSACTION
, &intel
->flags
)) {
1035 smp_mb__after_atomic();
1036 wake_up_bit(&intel
->flags
, STATE_LPM_TRANSACTION
);
1039 case LPM_OP_RESUME_ACK
:
1040 clear_bit(STATE_SUSPENDED
, &intel
->flags
);
1041 if (test_and_clear_bit(STATE_LPM_TRANSACTION
, &intel
->flags
)) {
1042 smp_mb__after_atomic();
1043 wake_up_bit(&intel
->flags
, STATE_LPM_TRANSACTION
);
1047 bt_dev_err(hdev
, "Unknown LPM opcode (%02x)", lpm
->opcode
);
1056 #define INTEL_RECV_LPM \
1057 .type = HCI_LPM_PKT, \
1058 .hlen = HCI_LPM_HDR_SIZE, \
1061 .maxlen = HCI_LPM_MAX_SIZE
1063 static const struct h4_recv_pkt intel_recv_pkts
[] = {
1064 { H4_RECV_ACL
, .recv
= hci_recv_frame
},
1065 { H4_RECV_SCO
, .recv
= hci_recv_frame
},
1066 { H4_RECV_EVENT
, .recv
= intel_recv_event
},
1067 { INTEL_RECV_LPM
, .recv
= intel_recv_lpm
},
1070 static int intel_recv(struct hci_uart
*hu
, const void *data
, int count
)
1072 struct intel_data
*intel
= hu
->priv
;
1074 if (!test_bit(HCI_UART_REGISTERED
, &hu
->flags
))
1077 intel
->rx_skb
= h4_recv_buf(hu
->hdev
, intel
->rx_skb
, data
, count
,
1079 ARRAY_SIZE(intel_recv_pkts
));
1080 if (IS_ERR(intel
->rx_skb
)) {
1081 int err
= PTR_ERR(intel
->rx_skb
);
1082 bt_dev_err(hu
->hdev
, "Frame reassembly failed (%d)", err
);
1083 intel
->rx_skb
= NULL
;
1090 static int intel_enqueue(struct hci_uart
*hu
, struct sk_buff
*skb
)
1092 struct intel_data
*intel
= hu
->priv
;
1093 struct list_head
*p
;
1095 BT_DBG("hu %p skb %p", hu
, skb
);
1097 /* Be sure our controller is resumed and potential LPM transaction
1098 * completed before enqueuing any packet.
1100 mutex_lock(&intel_device_list_lock
);
1101 list_for_each(p
, &intel_device_list
) {
1102 struct intel_device
*idev
= list_entry(p
, struct intel_device
,
1105 if (hu
->tty
->dev
->parent
== idev
->pdev
->dev
.parent
) {
1106 pm_runtime_get_sync(&idev
->pdev
->dev
);
1107 pm_runtime_mark_last_busy(&idev
->pdev
->dev
);
1108 pm_runtime_put_autosuspend(&idev
->pdev
->dev
);
1112 mutex_unlock(&intel_device_list_lock
);
1114 skb_queue_tail(&intel
->txq
, skb
);
1119 static struct sk_buff
*intel_dequeue(struct hci_uart
*hu
)
1121 struct intel_data
*intel
= hu
->priv
;
1122 struct sk_buff
*skb
;
1124 skb
= skb_dequeue(&intel
->txq
);
1128 if (test_bit(STATE_BOOTLOADER
, &intel
->flags
) &&
1129 (bt_cb(skb
)->pkt_type
== HCI_COMMAND_PKT
)) {
1130 struct hci_command_hdr
*cmd
= (void *)skb
->data
;
1131 __u16 opcode
= le16_to_cpu(cmd
->opcode
);
1133 /* When the 0xfc01 command is issued to boot into
1134 * the operational firmware, it will actually not
1135 * send a command complete event. To keep the flow
1136 * control working inject that event here.
1138 if (opcode
== 0xfc01)
1139 inject_cmd_complete(hu
->hdev
, opcode
);
1142 /* Prepend skb with frame type */
1143 memcpy(skb_push(skb
, 1), &bt_cb(skb
)->pkt_type
, 1);
1148 static const struct hci_uart_proto intel_proto
= {
1149 .id
= HCI_UART_INTEL
,
1152 .init_speed
= 115200,
1153 .oper_speed
= 3000000,
1155 .close
= intel_close
,
1156 .flush
= intel_flush
,
1157 .setup
= intel_setup
,
1158 .set_baudrate
= intel_set_baudrate
,
1160 .enqueue
= intel_enqueue
,
1161 .dequeue
= intel_dequeue
,
1165 static const struct acpi_device_id intel_acpi_match
[] = {
1169 MODULE_DEVICE_TABLE(acpi
, intel_acpi_match
);
1173 static int intel_suspend_device(struct device
*dev
)
1175 struct intel_device
*idev
= dev_get_drvdata(dev
);
1177 mutex_lock(&idev
->hu_lock
);
1179 intel_lpm_suspend(idev
->hu
);
1180 mutex_unlock(&idev
->hu_lock
);
1185 static int intel_resume_device(struct device
*dev
)
1187 struct intel_device
*idev
= dev_get_drvdata(dev
);
1189 mutex_lock(&idev
->hu_lock
);
1191 intel_lpm_resume(idev
->hu
);
1192 mutex_unlock(&idev
->hu_lock
);
1198 #ifdef CONFIG_PM_SLEEP
1199 static int intel_suspend(struct device
*dev
)
1201 struct intel_device
*idev
= dev_get_drvdata(dev
);
1203 if (device_may_wakeup(dev
))
1204 enable_irq_wake(idev
->irq
);
1206 return intel_suspend_device(dev
);
1209 static int intel_resume(struct device
*dev
)
1211 struct intel_device
*idev
= dev_get_drvdata(dev
);
1213 if (device_may_wakeup(dev
))
1214 disable_irq_wake(idev
->irq
);
1216 return intel_resume_device(dev
);
1220 static const struct dev_pm_ops intel_pm_ops
= {
1221 SET_SYSTEM_SLEEP_PM_OPS(intel_suspend
, intel_resume
)
1222 SET_RUNTIME_PM_OPS(intel_suspend_device
, intel_resume_device
, NULL
)
1225 static int intel_probe(struct platform_device
*pdev
)
1227 struct intel_device
*idev
;
1229 idev
= devm_kzalloc(&pdev
->dev
, sizeof(*idev
), GFP_KERNEL
);
1233 mutex_init(&idev
->hu_lock
);
1237 idev
->reset
= devm_gpiod_get_optional(&pdev
->dev
, "reset",
1239 if (IS_ERR(idev
->reset
)) {
1240 dev_err(&pdev
->dev
, "Unable to retrieve gpio\n");
1241 return PTR_ERR(idev
->reset
);
1244 idev
->irq
= platform_get_irq(pdev
, 0);
1245 if (idev
->irq
< 0) {
1246 struct gpio_desc
*host_wake
;
1248 dev_err(&pdev
->dev
, "No IRQ, falling back to gpio-irq\n");
1250 host_wake
= devm_gpiod_get_optional(&pdev
->dev
, "host-wake",
1252 if (IS_ERR(host_wake
)) {
1253 dev_err(&pdev
->dev
, "Unable to retrieve IRQ\n");
1257 idev
->irq
= gpiod_to_irq(host_wake
);
1258 if (idev
->irq
< 0) {
1259 dev_err(&pdev
->dev
, "No corresponding irq for gpio\n");
1264 /* Only enable wake-up/irq when controller is powered */
1265 device_set_wakeup_capable(&pdev
->dev
, true);
1266 device_wakeup_disable(&pdev
->dev
);
1269 platform_set_drvdata(pdev
, idev
);
1271 /* Place this instance on the device list */
1272 mutex_lock(&intel_device_list_lock
);
1273 list_add_tail(&idev
->list
, &intel_device_list
);
1274 mutex_unlock(&intel_device_list_lock
);
1276 dev_info(&pdev
->dev
, "registered, gpio(%d)/irq(%d).\n",
1277 desc_to_gpio(idev
->reset
), idev
->irq
);
1282 static int intel_remove(struct platform_device
*pdev
)
1284 struct intel_device
*idev
= platform_get_drvdata(pdev
);
1286 device_wakeup_disable(&pdev
->dev
);
1288 mutex_lock(&intel_device_list_lock
);
1289 list_del(&idev
->list
);
1290 mutex_unlock(&intel_device_list_lock
);
1292 dev_info(&pdev
->dev
, "unregistered.\n");
1297 static struct platform_driver intel_driver
= {
1298 .probe
= intel_probe
,
1299 .remove
= intel_remove
,
1301 .name
= "hci_intel",
1302 .acpi_match_table
= ACPI_PTR(intel_acpi_match
),
1303 .pm
= &intel_pm_ops
,
1307 int __init
intel_init(void)
1309 platform_driver_register(&intel_driver
);
1311 return hci_uart_register_proto(&intel_proto
);
1314 int __exit
intel_deinit(void)
1316 platform_driver_unregister(&intel_driver
);
1318 return hci_uart_unregister_proto(&intel_proto
);