2 * Copyright (C) 2010,2015 Broadcom
3 * Copyright (C) 2012 Stephen Warren
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
23 * The clock tree on the 2835 has several levels. There's a root
24 * oscillator running at 19.2Mhz. After the oscillator there are 5
25 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
26 * and "HDMI displays". Those 5 PLLs each can divide their output to
27 * produce up to 4 channels. Finally, there is the level of clocks to
28 * be consumed by other hardware components (like "H264" or "HDMI
29 * state machine"), which divide off of some subset of the PLL
32 * All of the clocks in the tree are exposed in the DT, because the DT
33 * may want to make assignments of the final layer of clocks to the
34 * PLL channels, and some components of the hardware will actually
35 * skip layers of the tree (for example, the pixel clock comes
36 * directly from the PLLH PIX channel without using a CM_*CTL clock
40 #include <linux/clk-provider.h>
41 #include <linux/clkdev.h>
42 #include <linux/clk/bcm2835.h>
43 #include <linux/module.h>
45 #include <linux/platform_device.h>
46 #include <linux/slab.h>
47 #include <dt-bindings/clock/bcm2835.h>
49 #define CM_PASSWORD 0x5a000000
51 #define CM_GNRICCTL 0x000
52 #define CM_GNRICDIV 0x004
53 # define CM_DIV_FRAC_BITS 12
55 #define CM_VPUCTL 0x008
56 #define CM_VPUDIV 0x00c
57 #define CM_SYSCTL 0x010
58 #define CM_SYSDIV 0x014
59 #define CM_PERIACTL 0x018
60 #define CM_PERIADIV 0x01c
61 #define CM_PERIICTL 0x020
62 #define CM_PERIIDIV 0x024
63 #define CM_H264CTL 0x028
64 #define CM_H264DIV 0x02c
65 #define CM_ISPCTL 0x030
66 #define CM_ISPDIV 0x034
67 #define CM_V3DCTL 0x038
68 #define CM_V3DDIV 0x03c
69 #define CM_CAM0CTL 0x040
70 #define CM_CAM0DIV 0x044
71 #define CM_CAM1CTL 0x048
72 #define CM_CAM1DIV 0x04c
73 #define CM_CCP2CTL 0x050
74 #define CM_CCP2DIV 0x054
75 #define CM_DSI0ECTL 0x058
76 #define CM_DSI0EDIV 0x05c
77 #define CM_DSI0PCTL 0x060
78 #define CM_DSI0PDIV 0x064
79 #define CM_DPICTL 0x068
80 #define CM_DPIDIV 0x06c
81 #define CM_GP0CTL 0x070
82 #define CM_GP0DIV 0x074
83 #define CM_GP1CTL 0x078
84 #define CM_GP1DIV 0x07c
85 #define CM_GP2CTL 0x080
86 #define CM_GP2DIV 0x084
87 #define CM_HSMCTL 0x088
88 #define CM_HSMDIV 0x08c
89 #define CM_OTPCTL 0x090
90 #define CM_OTPDIV 0x094
91 #define CM_PWMCTL 0x0a0
92 #define CM_PWMDIV 0x0a4
93 #define CM_SMICTL 0x0b0
94 #define CM_SMIDIV 0x0b4
95 #define CM_TSENSCTL 0x0e0
96 #define CM_TSENSDIV 0x0e4
97 #define CM_TIMERCTL 0x0e8
98 #define CM_TIMERDIV 0x0ec
99 #define CM_UARTCTL 0x0f0
100 #define CM_UARTDIV 0x0f4
101 #define CM_VECCTL 0x0f8
102 #define CM_VECDIV 0x0fc
103 #define CM_PULSECTL 0x190
104 #define CM_PULSEDIV 0x194
105 #define CM_SDCCTL 0x1a8
106 #define CM_SDCDIV 0x1ac
107 #define CM_ARMCTL 0x1b0
108 #define CM_EMMCCTL 0x1c0
109 #define CM_EMMCDIV 0x1c4
111 /* General bits for the CM_*CTL regs */
112 # define CM_ENABLE BIT(4)
113 # define CM_KILL BIT(5)
114 # define CM_GATE_BIT 6
115 # define CM_GATE BIT(CM_GATE_BIT)
116 # define CM_BUSY BIT(7)
117 # define CM_BUSYD BIT(8)
118 # define CM_SRC_SHIFT 0
119 # define CM_SRC_BITS 4
120 # define CM_SRC_MASK 0xf
121 # define CM_SRC_GND 0
122 # define CM_SRC_OSC 1
123 # define CM_SRC_TESTDEBUG0 2
124 # define CM_SRC_TESTDEBUG1 3
125 # define CM_SRC_PLLA_CORE 4
126 # define CM_SRC_PLLA_PER 4
127 # define CM_SRC_PLLC_CORE0 5
128 # define CM_SRC_PLLC_PER 5
129 # define CM_SRC_PLLC_CORE1 8
130 # define CM_SRC_PLLD_CORE 6
131 # define CM_SRC_PLLD_PER 6
132 # define CM_SRC_PLLH_AUX 7
133 # define CM_SRC_PLLC_CORE1 8
134 # define CM_SRC_PLLC_CORE2 9
136 #define CM_OSCCOUNT 0x100
138 #define CM_PLLA 0x104
139 # define CM_PLL_ANARST BIT(8)
140 # define CM_PLLA_HOLDPER BIT(7)
141 # define CM_PLLA_LOADPER BIT(6)
142 # define CM_PLLA_HOLDCORE BIT(5)
143 # define CM_PLLA_LOADCORE BIT(4)
144 # define CM_PLLA_HOLDCCP2 BIT(3)
145 # define CM_PLLA_LOADCCP2 BIT(2)
146 # define CM_PLLA_HOLDDSI0 BIT(1)
147 # define CM_PLLA_LOADDSI0 BIT(0)
149 #define CM_PLLC 0x108
150 # define CM_PLLC_HOLDPER BIT(7)
151 # define CM_PLLC_LOADPER BIT(6)
152 # define CM_PLLC_HOLDCORE2 BIT(5)
153 # define CM_PLLC_LOADCORE2 BIT(4)
154 # define CM_PLLC_HOLDCORE1 BIT(3)
155 # define CM_PLLC_LOADCORE1 BIT(2)
156 # define CM_PLLC_HOLDCORE0 BIT(1)
157 # define CM_PLLC_LOADCORE0 BIT(0)
159 #define CM_PLLD 0x10c
160 # define CM_PLLD_HOLDPER BIT(7)
161 # define CM_PLLD_LOADPER BIT(6)
162 # define CM_PLLD_HOLDCORE BIT(5)
163 # define CM_PLLD_LOADCORE BIT(4)
164 # define CM_PLLD_HOLDDSI1 BIT(3)
165 # define CM_PLLD_LOADDSI1 BIT(2)
166 # define CM_PLLD_HOLDDSI0 BIT(1)
167 # define CM_PLLD_LOADDSI0 BIT(0)
169 #define CM_PLLH 0x110
170 # define CM_PLLH_LOADRCAL BIT(2)
171 # define CM_PLLH_LOADAUX BIT(1)
172 # define CM_PLLH_LOADPIX BIT(0)
174 #define CM_LOCK 0x114
175 # define CM_LOCK_FLOCKH BIT(12)
176 # define CM_LOCK_FLOCKD BIT(11)
177 # define CM_LOCK_FLOCKC BIT(10)
178 # define CM_LOCK_FLOCKB BIT(9)
179 # define CM_LOCK_FLOCKA BIT(8)
181 #define CM_EVENT 0x118
182 #define CM_DSI1ECTL 0x158
183 #define CM_DSI1EDIV 0x15c
184 #define CM_DSI1PCTL 0x160
185 #define CM_DSI1PDIV 0x164
186 #define CM_DFTCTL 0x168
187 #define CM_DFTDIV 0x16c
189 #define CM_PLLB 0x170
190 # define CM_PLLB_HOLDARM BIT(1)
191 # define CM_PLLB_LOADARM BIT(0)
193 #define A2W_PLLA_CTRL 0x1100
194 #define A2W_PLLC_CTRL 0x1120
195 #define A2W_PLLD_CTRL 0x1140
196 #define A2W_PLLH_CTRL 0x1160
197 #define A2W_PLLB_CTRL 0x11e0
198 # define A2W_PLL_CTRL_PRST_DISABLE BIT(17)
199 # define A2W_PLL_CTRL_PWRDN BIT(16)
200 # define A2W_PLL_CTRL_PDIV_MASK 0x000007000
201 # define A2W_PLL_CTRL_PDIV_SHIFT 12
202 # define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff
203 # define A2W_PLL_CTRL_NDIV_SHIFT 0
205 #define A2W_PLLA_ANA0 0x1010
206 #define A2W_PLLC_ANA0 0x1030
207 #define A2W_PLLD_ANA0 0x1050
208 #define A2W_PLLH_ANA0 0x1070
209 #define A2W_PLLB_ANA0 0x10f0
211 #define A2W_PLL_KA_SHIFT 7
212 #define A2W_PLL_KA_MASK GENMASK(9, 7)
213 #define A2W_PLL_KI_SHIFT 19
214 #define A2W_PLL_KI_MASK GENMASK(21, 19)
215 #define A2W_PLL_KP_SHIFT 15
216 #define A2W_PLL_KP_MASK GENMASK(18, 15)
218 #define A2W_PLLH_KA_SHIFT 19
219 #define A2W_PLLH_KA_MASK GENMASK(21, 19)
220 #define A2W_PLLH_KI_LOW_SHIFT 22
221 #define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22)
222 #define A2W_PLLH_KI_HIGH_SHIFT 0
223 #define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0)
224 #define A2W_PLLH_KP_SHIFT 1
225 #define A2W_PLLH_KP_MASK GENMASK(4, 1)
227 #define A2W_XOSC_CTRL 0x1190
228 # define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7)
229 # define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6)
230 # define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5)
231 # define A2W_XOSC_CTRL_DDR_ENABLE BIT(4)
232 # define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3)
233 # define A2W_XOSC_CTRL_USB_ENABLE BIT(2)
234 # define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1)
235 # define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0)
237 #define A2W_PLLA_FRAC 0x1200
238 #define A2W_PLLC_FRAC 0x1220
239 #define A2W_PLLD_FRAC 0x1240
240 #define A2W_PLLH_FRAC 0x1260
241 #define A2W_PLLB_FRAC 0x12e0
242 # define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1)
243 # define A2W_PLL_FRAC_BITS 20
245 #define A2W_PLL_CHANNEL_DISABLE BIT(8)
246 #define A2W_PLL_DIV_BITS 8
247 #define A2W_PLL_DIV_SHIFT 0
249 #define A2W_PLLA_DSI0 0x1300
250 #define A2W_PLLA_CORE 0x1400
251 #define A2W_PLLA_PER 0x1500
252 #define A2W_PLLA_CCP2 0x1600
254 #define A2W_PLLC_CORE2 0x1320
255 #define A2W_PLLC_CORE1 0x1420
256 #define A2W_PLLC_PER 0x1520
257 #define A2W_PLLC_CORE0 0x1620
259 #define A2W_PLLD_DSI0 0x1340
260 #define A2W_PLLD_CORE 0x1440
261 #define A2W_PLLD_PER 0x1540
262 #define A2W_PLLD_DSI1 0x1640
264 #define A2W_PLLH_AUX 0x1360
265 #define A2W_PLLH_RCAL 0x1460
266 #define A2W_PLLH_PIX 0x1560
267 #define A2W_PLLH_STS 0x1660
269 #define A2W_PLLH_CTRLR 0x1960
270 #define A2W_PLLH_FRACR 0x1a60
271 #define A2W_PLLH_AUXR 0x1b60
272 #define A2W_PLLH_RCALR 0x1c60
273 #define A2W_PLLH_PIXR 0x1d60
274 #define A2W_PLLH_STSR 0x1e60
276 #define A2W_PLLB_ARM 0x13e0
277 #define A2W_PLLB_SP0 0x14e0
278 #define A2W_PLLB_SP1 0x15e0
279 #define A2W_PLLB_SP2 0x16e0
281 #define LOCK_TIMEOUT_NS 100000000
282 #define BCM2835_MAX_FB_RATE 1750000000u
284 struct bcm2835_cprman
{
287 spinlock_t regs_lock
;
288 const char *osc_name
;
290 struct clk_onecell_data onecell
;
291 struct clk
*clks
[BCM2835_CLOCK_COUNT
];
294 static inline void cprman_write(struct bcm2835_cprman
*cprman
, u32 reg
, u32 val
)
296 writel(CM_PASSWORD
| val
, cprman
->regs
+ reg
);
299 static inline u32
cprman_read(struct bcm2835_cprman
*cprman
, u32 reg
)
301 return readl(cprman
->regs
+ reg
);
305 * These are fixed clocks. They're probably not all root clocks and it may
306 * be possible to turn them on and off but until this is mapped out better
307 * it's the only way they can be used.
309 void __init
bcm2835_init_clocks(void)
314 clk
= clk_register_fixed_rate(NULL
, "apb_pclk", NULL
, CLK_IS_ROOT
,
317 pr_err("apb_pclk not registered\n");
319 clk
= clk_register_fixed_rate(NULL
, "uart0_pclk", NULL
, CLK_IS_ROOT
,
322 pr_err("uart0_pclk not registered\n");
323 ret
= clk_register_clkdev(clk
, NULL
, "20201000.uart");
325 pr_err("uart0_pclk alias not registered\n");
327 clk
= clk_register_fixed_rate(NULL
, "uart1_pclk", NULL
, CLK_IS_ROOT
,
330 pr_err("uart1_pclk not registered\n");
331 ret
= clk_register_clkdev(clk
, NULL
, "20215000.uart");
333 pr_err("uart1_pclk alias not registered\n");
336 struct bcm2835_pll_data
{
342 u32 reference_enable_mask
;
343 /* Bit in CM_LOCK to indicate when the PLL has locked. */
346 const struct bcm2835_pll_ana_bits
*ana
;
348 unsigned long min_rate
;
349 unsigned long max_rate
;
351 * Highest rate for the VCO before we have to use the
354 unsigned long max_fb_rate
;
357 struct bcm2835_pll_ana_bits
{
367 static const struct bcm2835_pll_ana_bits bcm2835_ana_default
= {
370 .mask1
= ~(A2W_PLL_KI_MASK
| A2W_PLL_KP_MASK
),
371 .set1
= (2 << A2W_PLL_KI_SHIFT
) | (8 << A2W_PLL_KP_SHIFT
),
372 .mask3
= ~A2W_PLL_KA_MASK
,
373 .set3
= (2 << A2W_PLL_KA_SHIFT
),
374 .fb_prediv_mask
= BIT(14),
377 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh
= {
378 .mask0
= ~(A2W_PLLH_KA_MASK
| A2W_PLLH_KI_LOW_MASK
),
379 .set0
= (2 << A2W_PLLH_KA_SHIFT
) | (2 << A2W_PLLH_KI_LOW_SHIFT
),
380 .mask1
= ~(A2W_PLLH_KI_HIGH_MASK
| A2W_PLLH_KP_MASK
),
381 .set1
= (6 << A2W_PLLH_KP_SHIFT
),
384 .fb_prediv_mask
= BIT(11),
388 * PLLA is the auxiliary PLL, used to drive the CCP2 (Compact Camera
389 * Port 2) transmitter clock.
391 * It is in the PX LDO power domain, which is on when the AUDIO domain
394 static const struct bcm2835_pll_data bcm2835_plla_data
= {
396 .cm_ctrl_reg
= CM_PLLA
,
397 .a2w_ctrl_reg
= A2W_PLLA_CTRL
,
398 .frac_reg
= A2W_PLLA_FRAC
,
399 .ana_reg_base
= A2W_PLLA_ANA0
,
400 .reference_enable_mask
= A2W_XOSC_CTRL_PLLA_ENABLE
,
401 .lock_mask
= CM_LOCK_FLOCKA
,
403 .ana
= &bcm2835_ana_default
,
405 .min_rate
= 600000000u,
406 .max_rate
= 2400000000u,
407 .max_fb_rate
= BCM2835_MAX_FB_RATE
,
410 /* PLLB is used for the ARM's clock. */
411 static const struct bcm2835_pll_data bcm2835_pllb_data
= {
413 .cm_ctrl_reg
= CM_PLLB
,
414 .a2w_ctrl_reg
= A2W_PLLB_CTRL
,
415 .frac_reg
= A2W_PLLB_FRAC
,
416 .ana_reg_base
= A2W_PLLB_ANA0
,
417 .reference_enable_mask
= A2W_XOSC_CTRL_PLLB_ENABLE
,
418 .lock_mask
= CM_LOCK_FLOCKB
,
420 .ana
= &bcm2835_ana_default
,
422 .min_rate
= 600000000u,
423 .max_rate
= 3000000000u,
424 .max_fb_rate
= BCM2835_MAX_FB_RATE
,
428 * PLLC is the core PLL, used to drive the core VPU clock.
430 * It is in the PX LDO power domain, which is on when the AUDIO domain
433 static const struct bcm2835_pll_data bcm2835_pllc_data
= {
435 .cm_ctrl_reg
= CM_PLLC
,
436 .a2w_ctrl_reg
= A2W_PLLC_CTRL
,
437 .frac_reg
= A2W_PLLC_FRAC
,
438 .ana_reg_base
= A2W_PLLC_ANA0
,
439 .reference_enable_mask
= A2W_XOSC_CTRL_PLLC_ENABLE
,
440 .lock_mask
= CM_LOCK_FLOCKC
,
442 .ana
= &bcm2835_ana_default
,
444 .min_rate
= 600000000u,
445 .max_rate
= 3000000000u,
446 .max_fb_rate
= BCM2835_MAX_FB_RATE
,
450 * PLLD is the display PLL, used to drive DSI display panels.
452 * It is in the PX LDO power domain, which is on when the AUDIO domain
455 static const struct bcm2835_pll_data bcm2835_plld_data
= {
457 .cm_ctrl_reg
= CM_PLLD
,
458 .a2w_ctrl_reg
= A2W_PLLD_CTRL
,
459 .frac_reg
= A2W_PLLD_FRAC
,
460 .ana_reg_base
= A2W_PLLD_ANA0
,
461 .reference_enable_mask
= A2W_XOSC_CTRL_DDR_ENABLE
,
462 .lock_mask
= CM_LOCK_FLOCKD
,
464 .ana
= &bcm2835_ana_default
,
466 .min_rate
= 600000000u,
467 .max_rate
= 2400000000u,
468 .max_fb_rate
= BCM2835_MAX_FB_RATE
,
472 * PLLH is used to supply the pixel clock or the AUX clock for the TV
475 * It is in the HDMI power domain.
477 static const struct bcm2835_pll_data bcm2835_pllh_data
= {
479 .cm_ctrl_reg
= CM_PLLH
,
480 .a2w_ctrl_reg
= A2W_PLLH_CTRL
,
481 .frac_reg
= A2W_PLLH_FRAC
,
482 .ana_reg_base
= A2W_PLLH_ANA0
,
483 .reference_enable_mask
= A2W_XOSC_CTRL_PLLC_ENABLE
,
484 .lock_mask
= CM_LOCK_FLOCKH
,
486 .ana
= &bcm2835_ana_pllh
,
488 .min_rate
= 600000000u,
489 .max_rate
= 3000000000u,
490 .max_fb_rate
= BCM2835_MAX_FB_RATE
,
493 struct bcm2835_pll_divider_data
{
495 const struct bcm2835_pll_data
*source_pll
;
504 static const struct bcm2835_pll_divider_data bcm2835_plla_core_data
= {
506 .source_pll
= &bcm2835_plla_data
,
508 .a2w_reg
= A2W_PLLA_CORE
,
509 .load_mask
= CM_PLLA_LOADCORE
,
510 .hold_mask
= CM_PLLA_HOLDCORE
,
514 static const struct bcm2835_pll_divider_data bcm2835_plla_per_data
= {
516 .source_pll
= &bcm2835_plla_data
,
518 .a2w_reg
= A2W_PLLA_PER
,
519 .load_mask
= CM_PLLA_LOADPER
,
520 .hold_mask
= CM_PLLA_HOLDPER
,
524 static const struct bcm2835_pll_divider_data bcm2835_pllb_arm_data
= {
526 .source_pll
= &bcm2835_pllb_data
,
528 .a2w_reg
= A2W_PLLB_ARM
,
529 .load_mask
= CM_PLLB_LOADARM
,
530 .hold_mask
= CM_PLLB_HOLDARM
,
534 static const struct bcm2835_pll_divider_data bcm2835_pllc_core0_data
= {
535 .name
= "pllc_core0",
536 .source_pll
= &bcm2835_pllc_data
,
538 .a2w_reg
= A2W_PLLC_CORE0
,
539 .load_mask
= CM_PLLC_LOADCORE0
,
540 .hold_mask
= CM_PLLC_HOLDCORE0
,
544 static const struct bcm2835_pll_divider_data bcm2835_pllc_core1_data
= {
545 .name
= "pllc_core1", .source_pll
= &bcm2835_pllc_data
,
546 .cm_reg
= CM_PLLC
, A2W_PLLC_CORE1
,
547 .load_mask
= CM_PLLC_LOADCORE1
,
548 .hold_mask
= CM_PLLC_HOLDCORE1
,
552 static const struct bcm2835_pll_divider_data bcm2835_pllc_core2_data
= {
553 .name
= "pllc_core2",
554 .source_pll
= &bcm2835_pllc_data
,
556 .a2w_reg
= A2W_PLLC_CORE2
,
557 .load_mask
= CM_PLLC_LOADCORE2
,
558 .hold_mask
= CM_PLLC_HOLDCORE2
,
562 static const struct bcm2835_pll_divider_data bcm2835_pllc_per_data
= {
564 .source_pll
= &bcm2835_pllc_data
,
566 .a2w_reg
= A2W_PLLC_PER
,
567 .load_mask
= CM_PLLC_LOADPER
,
568 .hold_mask
= CM_PLLC_HOLDPER
,
572 static const struct bcm2835_pll_divider_data bcm2835_plld_core_data
= {
574 .source_pll
= &bcm2835_plld_data
,
576 .a2w_reg
= A2W_PLLD_CORE
,
577 .load_mask
= CM_PLLD_LOADCORE
,
578 .hold_mask
= CM_PLLD_HOLDCORE
,
582 static const struct bcm2835_pll_divider_data bcm2835_plld_per_data
= {
584 .source_pll
= &bcm2835_plld_data
,
586 .a2w_reg
= A2W_PLLD_PER
,
587 .load_mask
= CM_PLLD_LOADPER
,
588 .hold_mask
= CM_PLLD_HOLDPER
,
592 static const struct bcm2835_pll_divider_data bcm2835_pllh_rcal_data
= {
594 .source_pll
= &bcm2835_pllh_data
,
596 .a2w_reg
= A2W_PLLH_RCAL
,
597 .load_mask
= CM_PLLH_LOADRCAL
,
602 static const struct bcm2835_pll_divider_data bcm2835_pllh_aux_data
= {
604 .source_pll
= &bcm2835_pllh_data
,
606 .a2w_reg
= A2W_PLLH_AUX
,
607 .load_mask
= CM_PLLH_LOADAUX
,
612 static const struct bcm2835_pll_divider_data bcm2835_pllh_pix_data
= {
614 .source_pll
= &bcm2835_pllh_data
,
616 .a2w_reg
= A2W_PLLH_PIX
,
617 .load_mask
= CM_PLLH_LOADPIX
,
622 struct bcm2835_clock_data
{
625 const char *const *parents
;
631 /* Number of integer bits in the divider */
633 /* Number of fractional bits in the divider */
639 static const char *const bcm2835_clock_per_parents
[] = {
650 static const char *const bcm2835_clock_vpu_parents
[] = {
663 static const char *const bcm2835_clock_osc_parents
[] = {
671 * Used for a 1Mhz clock for the system clocksource, and also used by
672 * the watchdog timer and the camera pulse generator.
674 static const struct bcm2835_clock_data bcm2835_clock_timer_data
= {
676 .num_mux_parents
= ARRAY_SIZE(bcm2835_clock_osc_parents
),
677 .parents
= bcm2835_clock_osc_parents
,
678 .ctl_reg
= CM_TIMERCTL
,
679 .div_reg
= CM_TIMERDIV
,
684 /* One Time Programmable Memory clock. Maximum 10Mhz. */
685 static const struct bcm2835_clock_data bcm2835_clock_otp_data
= {
687 .num_mux_parents
= ARRAY_SIZE(bcm2835_clock_osc_parents
),
688 .parents
= bcm2835_clock_osc_parents
,
689 .ctl_reg
= CM_OTPCTL
,
690 .div_reg
= CM_OTPDIV
,
696 * VPU clock. This doesn't have an enable bit, since it drives the
697 * bus for everything else, and is special so it doesn't need to be
698 * gated for rate changes. It is also known as "clk_audio" in various
699 * hardware documentation.
701 static const struct bcm2835_clock_data bcm2835_clock_vpu_data
= {
703 .num_mux_parents
= ARRAY_SIZE(bcm2835_clock_vpu_parents
),
704 .parents
= bcm2835_clock_vpu_parents
,
705 .ctl_reg
= CM_VPUCTL
,
706 .div_reg
= CM_VPUDIV
,
709 .is_vpu_clock
= true,
712 static const struct bcm2835_clock_data bcm2835_clock_v3d_data
= {
714 .num_mux_parents
= ARRAY_SIZE(bcm2835_clock_vpu_parents
),
715 .parents
= bcm2835_clock_vpu_parents
,
716 .ctl_reg
= CM_V3DCTL
,
717 .div_reg
= CM_V3DDIV
,
722 static const struct bcm2835_clock_data bcm2835_clock_isp_data
= {
724 .num_mux_parents
= ARRAY_SIZE(bcm2835_clock_vpu_parents
),
725 .parents
= bcm2835_clock_vpu_parents
,
726 .ctl_reg
= CM_ISPCTL
,
727 .div_reg
= CM_ISPDIV
,
732 static const struct bcm2835_clock_data bcm2835_clock_h264_data
= {
734 .num_mux_parents
= ARRAY_SIZE(bcm2835_clock_vpu_parents
),
735 .parents
= bcm2835_clock_vpu_parents
,
736 .ctl_reg
= CM_H264CTL
,
737 .div_reg
= CM_H264DIV
,
742 /* TV encoder clock. Only operating frequency is 108Mhz. */
743 static const struct bcm2835_clock_data bcm2835_clock_vec_data
= {
745 .num_mux_parents
= ARRAY_SIZE(bcm2835_clock_per_parents
),
746 .parents
= bcm2835_clock_per_parents
,
747 .ctl_reg
= CM_VECCTL
,
748 .div_reg
= CM_VECDIV
,
753 static const struct bcm2835_clock_data bcm2835_clock_uart_data
= {
755 .num_mux_parents
= ARRAY_SIZE(bcm2835_clock_per_parents
),
756 .parents
= bcm2835_clock_per_parents
,
757 .ctl_reg
= CM_UARTCTL
,
758 .div_reg
= CM_UARTDIV
,
763 /* HDMI state machine */
764 static const struct bcm2835_clock_data bcm2835_clock_hsm_data
= {
766 .num_mux_parents
= ARRAY_SIZE(bcm2835_clock_per_parents
),
767 .parents
= bcm2835_clock_per_parents
,
768 .ctl_reg
= CM_HSMCTL
,
769 .div_reg
= CM_HSMDIV
,
775 * Secondary SDRAM clock. Used for low-voltage modes when the PLL in
776 * the SDRAM controller can't be used.
778 static const struct bcm2835_clock_data bcm2835_clock_sdram_data
= {
780 .num_mux_parents
= ARRAY_SIZE(bcm2835_clock_vpu_parents
),
781 .parents
= bcm2835_clock_vpu_parents
,
782 .ctl_reg
= CM_SDCCTL
,
783 .div_reg
= CM_SDCDIV
,
788 /* Clock for the temperature sensor. Generally run at 2Mhz, max 5Mhz. */
789 static const struct bcm2835_clock_data bcm2835_clock_tsens_data
= {
791 .num_mux_parents
= ARRAY_SIZE(bcm2835_clock_osc_parents
),
792 .parents
= bcm2835_clock_osc_parents
,
793 .ctl_reg
= CM_TSENSCTL
,
794 .div_reg
= CM_TSENSDIV
,
799 /* Arasan EMMC clock */
800 static const struct bcm2835_clock_data bcm2835_clock_emmc_data
= {
802 .num_mux_parents
= ARRAY_SIZE(bcm2835_clock_per_parents
),
803 .parents
= bcm2835_clock_per_parents
,
804 .ctl_reg
= CM_EMMCCTL
,
805 .div_reg
= CM_EMMCDIV
,
812 struct bcm2835_cprman
*cprman
;
813 const struct bcm2835_pll_data
*data
;
816 static int bcm2835_pll_is_on(struct clk_hw
*hw
)
818 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
819 struct bcm2835_cprman
*cprman
= pll
->cprman
;
820 const struct bcm2835_pll_data
*data
= pll
->data
;
822 return cprman_read(cprman
, data
->a2w_ctrl_reg
) &
823 A2W_PLL_CTRL_PRST_DISABLE
;
826 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate
,
827 unsigned long parent_rate
,
828 u32
*ndiv
, u32
*fdiv
)
832 div
= (u64
)rate
<< A2W_PLL_FRAC_BITS
;
833 do_div(div
, parent_rate
);
835 *ndiv
= div
>> A2W_PLL_FRAC_BITS
;
836 *fdiv
= div
& ((1 << A2W_PLL_FRAC_BITS
) - 1);
839 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate
,
840 u32 ndiv
, u32 fdiv
, u32 pdiv
)
847 rate
= (u64
)parent_rate
* ((ndiv
<< A2W_PLL_FRAC_BITS
) + fdiv
);
849 return rate
>> A2W_PLL_FRAC_BITS
;
852 static long bcm2835_pll_round_rate(struct clk_hw
*hw
, unsigned long rate
,
853 unsigned long *parent_rate
)
857 bcm2835_pll_choose_ndiv_and_fdiv(rate
, *parent_rate
, &ndiv
, &fdiv
);
859 return bcm2835_pll_rate_from_divisors(*parent_rate
, ndiv
, fdiv
, 1);
862 static unsigned long bcm2835_pll_get_rate(struct clk_hw
*hw
,
863 unsigned long parent_rate
)
865 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
866 struct bcm2835_cprman
*cprman
= pll
->cprman
;
867 const struct bcm2835_pll_data
*data
= pll
->data
;
868 u32 a2wctrl
= cprman_read(cprman
, data
->a2w_ctrl_reg
);
869 u32 ndiv
, pdiv
, fdiv
;
872 if (parent_rate
== 0)
875 fdiv
= cprman_read(cprman
, data
->frac_reg
) & A2W_PLL_FRAC_MASK
;
876 ndiv
= (a2wctrl
& A2W_PLL_CTRL_NDIV_MASK
) >> A2W_PLL_CTRL_NDIV_SHIFT
;
877 pdiv
= (a2wctrl
& A2W_PLL_CTRL_PDIV_MASK
) >> A2W_PLL_CTRL_PDIV_SHIFT
;
878 using_prediv
= cprman_read(cprman
, data
->ana_reg_base
+ 4) &
879 data
->ana
->fb_prediv_mask
;
884 return bcm2835_pll_rate_from_divisors(parent_rate
, ndiv
, fdiv
, pdiv
);
887 static void bcm2835_pll_off(struct clk_hw
*hw
)
889 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
890 struct bcm2835_cprman
*cprman
= pll
->cprman
;
891 const struct bcm2835_pll_data
*data
= pll
->data
;
893 cprman_write(cprman
, data
->cm_ctrl_reg
, CM_PLL_ANARST
);
894 cprman_write(cprman
, data
->a2w_ctrl_reg
, A2W_PLL_CTRL_PWRDN
);
897 static int bcm2835_pll_on(struct clk_hw
*hw
)
899 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
900 struct bcm2835_cprman
*cprman
= pll
->cprman
;
901 const struct bcm2835_pll_data
*data
= pll
->data
;
904 /* Take the PLL out of reset. */
905 cprman_write(cprman
, data
->cm_ctrl_reg
,
906 cprman_read(cprman
, data
->cm_ctrl_reg
) & ~CM_PLL_ANARST
);
908 /* Wait for the PLL to lock. */
909 timeout
= ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS
);
910 while (!(cprman_read(cprman
, CM_LOCK
) & data
->lock_mask
)) {
911 if (ktime_after(ktime_get(), timeout
)) {
912 dev_err(cprman
->dev
, "%s: couldn't lock PLL\n",
913 clk_hw_get_name(hw
));
924 bcm2835_pll_write_ana(struct bcm2835_cprman
*cprman
, u32 ana_reg_base
, u32
*ana
)
929 * ANA register setup is done as a series of writes to
930 * ANA3-ANA0, in that order. This lets us write all 4
931 * registers as a single cycle of the serdes interface (taking
932 * 100 xosc clocks), whereas if we were to update ana0, 1, and
933 * 3 individually through their partial-write registers, each
934 * would be their own serdes cycle.
936 for (i
= 3; i
>= 0; i
--)
937 cprman_write(cprman
, ana_reg_base
+ i
* 4, ana
[i
]);
940 static int bcm2835_pll_set_rate(struct clk_hw
*hw
,
941 unsigned long rate
, unsigned long parent_rate
)
943 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
944 struct bcm2835_cprman
*cprman
= pll
->cprman
;
945 const struct bcm2835_pll_data
*data
= pll
->data
;
946 bool was_using_prediv
, use_fb_prediv
, do_ana_setup_first
;
947 u32 ndiv
, fdiv
, a2w_ctl
;
951 if (rate
< data
->min_rate
|| rate
> data
->max_rate
) {
952 dev_err(cprman
->dev
, "%s: rate out of spec: %lu vs (%lu, %lu)\n",
953 clk_hw_get_name(hw
), rate
,
954 data
->min_rate
, data
->max_rate
);
958 if (rate
> data
->max_fb_rate
) {
959 use_fb_prediv
= true;
962 use_fb_prediv
= false;
965 bcm2835_pll_choose_ndiv_and_fdiv(rate
, parent_rate
, &ndiv
, &fdiv
);
967 for (i
= 3; i
>= 0; i
--)
968 ana
[i
] = cprman_read(cprman
, data
->ana_reg_base
+ i
* 4);
970 was_using_prediv
= ana
[1] & data
->ana
->fb_prediv_mask
;
972 ana
[0] &= ~data
->ana
->mask0
;
973 ana
[0] |= data
->ana
->set0
;
974 ana
[1] &= ~data
->ana
->mask1
;
975 ana
[1] |= data
->ana
->set1
;
976 ana
[3] &= ~data
->ana
->mask3
;
977 ana
[3] |= data
->ana
->set3
;
979 if (was_using_prediv
&& !use_fb_prediv
) {
980 ana
[1] &= ~data
->ana
->fb_prediv_mask
;
981 do_ana_setup_first
= true;
982 } else if (!was_using_prediv
&& use_fb_prediv
) {
983 ana
[1] |= data
->ana
->fb_prediv_mask
;
984 do_ana_setup_first
= false;
986 do_ana_setup_first
= true;
989 /* Unmask the reference clock from the oscillator. */
990 cprman_write(cprman
, A2W_XOSC_CTRL
,
991 cprman_read(cprman
, A2W_XOSC_CTRL
) |
992 data
->reference_enable_mask
);
994 if (do_ana_setup_first
)
995 bcm2835_pll_write_ana(cprman
, data
->ana_reg_base
, ana
);
997 /* Set the PLL multiplier from the oscillator. */
998 cprman_write(cprman
, data
->frac_reg
, fdiv
);
1000 a2w_ctl
= cprman_read(cprman
, data
->a2w_ctrl_reg
);
1001 a2w_ctl
&= ~A2W_PLL_CTRL_NDIV_MASK
;
1002 a2w_ctl
|= ndiv
<< A2W_PLL_CTRL_NDIV_SHIFT
;
1003 a2w_ctl
&= ~A2W_PLL_CTRL_PDIV_MASK
;
1004 a2w_ctl
|= 1 << A2W_PLL_CTRL_PDIV_SHIFT
;
1005 cprman_write(cprman
, data
->a2w_ctrl_reg
, a2w_ctl
);
1007 if (!do_ana_setup_first
)
1008 bcm2835_pll_write_ana(cprman
, data
->ana_reg_base
, ana
);
1013 static const struct clk_ops bcm2835_pll_clk_ops
= {
1014 .is_prepared
= bcm2835_pll_is_on
,
1015 .prepare
= bcm2835_pll_on
,
1016 .unprepare
= bcm2835_pll_off
,
1017 .recalc_rate
= bcm2835_pll_get_rate
,
1018 .set_rate
= bcm2835_pll_set_rate
,
1019 .round_rate
= bcm2835_pll_round_rate
,
1022 struct bcm2835_pll_divider
{
1023 struct clk_divider div
;
1024 struct bcm2835_cprman
*cprman
;
1025 const struct bcm2835_pll_divider_data
*data
;
1028 static struct bcm2835_pll_divider
*
1029 bcm2835_pll_divider_from_hw(struct clk_hw
*hw
)
1031 return container_of(hw
, struct bcm2835_pll_divider
, div
.hw
);
1034 static int bcm2835_pll_divider_is_on(struct clk_hw
*hw
)
1036 struct bcm2835_pll_divider
*divider
= bcm2835_pll_divider_from_hw(hw
);
1037 struct bcm2835_cprman
*cprman
= divider
->cprman
;
1038 const struct bcm2835_pll_divider_data
*data
= divider
->data
;
1040 return !(cprman_read(cprman
, data
->a2w_reg
) & A2W_PLL_CHANNEL_DISABLE
);
1043 static long bcm2835_pll_divider_round_rate(struct clk_hw
*hw
,
1045 unsigned long *parent_rate
)
1047 return clk_divider_ops
.round_rate(hw
, rate
, parent_rate
);
1050 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw
*hw
,
1051 unsigned long parent_rate
)
1053 struct bcm2835_pll_divider
*divider
= bcm2835_pll_divider_from_hw(hw
);
1054 struct bcm2835_cprman
*cprman
= divider
->cprman
;
1055 const struct bcm2835_pll_divider_data
*data
= divider
->data
;
1056 u32 div
= cprman_read(cprman
, data
->a2w_reg
);
1058 div
&= (1 << A2W_PLL_DIV_BITS
) - 1;
1062 return parent_rate
/ div
;
1065 static void bcm2835_pll_divider_off(struct clk_hw
*hw
)
1067 struct bcm2835_pll_divider
*divider
= bcm2835_pll_divider_from_hw(hw
);
1068 struct bcm2835_cprman
*cprman
= divider
->cprman
;
1069 const struct bcm2835_pll_divider_data
*data
= divider
->data
;
1071 cprman_write(cprman
, data
->cm_reg
,
1072 (cprman_read(cprman
, data
->cm_reg
) &
1073 ~data
->load_mask
) | data
->hold_mask
);
1074 cprman_write(cprman
, data
->a2w_reg
, A2W_PLL_CHANNEL_DISABLE
);
1077 static int bcm2835_pll_divider_on(struct clk_hw
*hw
)
1079 struct bcm2835_pll_divider
*divider
= bcm2835_pll_divider_from_hw(hw
);
1080 struct bcm2835_cprman
*cprman
= divider
->cprman
;
1081 const struct bcm2835_pll_divider_data
*data
= divider
->data
;
1083 cprman_write(cprman
, data
->a2w_reg
,
1084 cprman_read(cprman
, data
->a2w_reg
) &
1085 ~A2W_PLL_CHANNEL_DISABLE
);
1087 cprman_write(cprman
, data
->cm_reg
,
1088 cprman_read(cprman
, data
->cm_reg
) & ~data
->hold_mask
);
1093 static int bcm2835_pll_divider_set_rate(struct clk_hw
*hw
,
1095 unsigned long parent_rate
)
1097 struct bcm2835_pll_divider
*divider
= bcm2835_pll_divider_from_hw(hw
);
1098 struct bcm2835_cprman
*cprman
= divider
->cprman
;
1099 const struct bcm2835_pll_divider_data
*data
= divider
->data
;
1103 ret
= clk_divider_ops
.set_rate(hw
, rate
, parent_rate
);
1107 cm
= cprman_read(cprman
, data
->cm_reg
);
1108 cprman_write(cprman
, data
->cm_reg
, cm
| data
->load_mask
);
1109 cprman_write(cprman
, data
->cm_reg
, cm
& ~data
->load_mask
);
1114 static const struct clk_ops bcm2835_pll_divider_clk_ops
= {
1115 .is_prepared
= bcm2835_pll_divider_is_on
,
1116 .prepare
= bcm2835_pll_divider_on
,
1117 .unprepare
= bcm2835_pll_divider_off
,
1118 .recalc_rate
= bcm2835_pll_divider_get_rate
,
1119 .set_rate
= bcm2835_pll_divider_set_rate
,
1120 .round_rate
= bcm2835_pll_divider_round_rate
,
1124 * The CM dividers do fixed-point division, so we can't use the
1125 * generic integer divider code like the PLL dividers do (and we can't
1126 * fake it by having some fixed shifts preceding it in the clock tree,
1127 * because we'd run out of bits in a 32-bit unsigned long).
1129 struct bcm2835_clock
{
1131 struct bcm2835_cprman
*cprman
;
1132 const struct bcm2835_clock_data
*data
;
1135 static struct bcm2835_clock
*bcm2835_clock_from_hw(struct clk_hw
*hw
)
1137 return container_of(hw
, struct bcm2835_clock
, hw
);
1140 static int bcm2835_clock_is_on(struct clk_hw
*hw
)
1142 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1143 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1144 const struct bcm2835_clock_data
*data
= clock
->data
;
1146 return (cprman_read(cprman
, data
->ctl_reg
) & CM_ENABLE
) != 0;
1149 static u32
bcm2835_clock_choose_div(struct clk_hw
*hw
,
1151 unsigned long parent_rate
)
1153 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1154 const struct bcm2835_clock_data
*data
= clock
->data
;
1155 u32 unused_frac_mask
= GENMASK(CM_DIV_FRAC_BITS
- data
->frac_bits
, 0);
1156 u64 temp
= (u64
)parent_rate
<< CM_DIV_FRAC_BITS
;
1162 /* Round and mask off the unused bits */
1163 if (unused_frac_mask
!= 0) {
1164 div
+= unused_frac_mask
>> 1;
1165 div
&= ~unused_frac_mask
;
1168 /* Clamp to the limits. */
1169 div
= max(div
, unused_frac_mask
+ 1);
1170 div
= min_t(u32
, div
, GENMASK(data
->int_bits
+ CM_DIV_FRAC_BITS
- 1,
1171 CM_DIV_FRAC_BITS
- data
->frac_bits
));
1176 static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock
*clock
,
1177 unsigned long parent_rate
,
1180 const struct bcm2835_clock_data
*data
= clock
->data
;
1184 * The divisor is a 12.12 fixed point field, but only some of
1185 * the bits are populated in any given clock.
1187 div
>>= CM_DIV_FRAC_BITS
- data
->frac_bits
;
1188 div
&= (1 << (data
->int_bits
+ data
->frac_bits
)) - 1;
1193 temp
= (u64
)parent_rate
<< data
->frac_bits
;
1200 static long bcm2835_clock_round_rate(struct clk_hw
*hw
,
1202 unsigned long *parent_rate
)
1204 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1205 u32 div
= bcm2835_clock_choose_div(hw
, rate
, *parent_rate
);
1207 return bcm2835_clock_rate_from_divisor(clock
, *parent_rate
, div
);
1210 static unsigned long bcm2835_clock_get_rate(struct clk_hw
*hw
,
1211 unsigned long parent_rate
)
1213 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1214 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1215 const struct bcm2835_clock_data
*data
= clock
->data
;
1216 u32 div
= cprman_read(cprman
, data
->div_reg
);
1218 return bcm2835_clock_rate_from_divisor(clock
, parent_rate
, div
);
1221 static void bcm2835_clock_wait_busy(struct bcm2835_clock
*clock
)
1223 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1224 const struct bcm2835_clock_data
*data
= clock
->data
;
1225 ktime_t timeout
= ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS
);
1227 while (cprman_read(cprman
, data
->ctl_reg
) & CM_BUSY
) {
1228 if (ktime_after(ktime_get(), timeout
)) {
1229 dev_err(cprman
->dev
, "%s: couldn't lock PLL\n",
1230 clk_hw_get_name(&clock
->hw
));
1237 static void bcm2835_clock_off(struct clk_hw
*hw
)
1239 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1240 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1241 const struct bcm2835_clock_data
*data
= clock
->data
;
1243 spin_lock(&cprman
->regs_lock
);
1244 cprman_write(cprman
, data
->ctl_reg
,
1245 cprman_read(cprman
, data
->ctl_reg
) & ~CM_ENABLE
);
1246 spin_unlock(&cprman
->regs_lock
);
1248 /* BUSY will remain high until the divider completes its cycle. */
1249 bcm2835_clock_wait_busy(clock
);
1252 static int bcm2835_clock_on(struct clk_hw
*hw
)
1254 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1255 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1256 const struct bcm2835_clock_data
*data
= clock
->data
;
1258 spin_lock(&cprman
->regs_lock
);
1259 cprman_write(cprman
, data
->ctl_reg
,
1260 cprman_read(cprman
, data
->ctl_reg
) |
1263 spin_unlock(&cprman
->regs_lock
);
1268 static int bcm2835_clock_set_rate(struct clk_hw
*hw
,
1269 unsigned long rate
, unsigned long parent_rate
)
1271 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1272 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1273 const struct bcm2835_clock_data
*data
= clock
->data
;
1274 u32 div
= bcm2835_clock_choose_div(hw
, rate
, parent_rate
);
1276 cprman_write(cprman
, data
->div_reg
, div
);
1281 static const struct clk_ops bcm2835_clock_clk_ops
= {
1282 .is_prepared
= bcm2835_clock_is_on
,
1283 .prepare
= bcm2835_clock_on
,
1284 .unprepare
= bcm2835_clock_off
,
1285 .recalc_rate
= bcm2835_clock_get_rate
,
1286 .set_rate
= bcm2835_clock_set_rate
,
1287 .round_rate
= bcm2835_clock_round_rate
,
1290 static int bcm2835_vpu_clock_is_on(struct clk_hw
*hw
)
1296 * The VPU clock can never be disabled (it doesn't have an ENABLE
1297 * bit), so it gets its own set of clock ops.
1299 static const struct clk_ops bcm2835_vpu_clock_clk_ops
= {
1300 .is_prepared
= bcm2835_vpu_clock_is_on
,
1301 .recalc_rate
= bcm2835_clock_get_rate
,
1302 .set_rate
= bcm2835_clock_set_rate
,
1303 .round_rate
= bcm2835_clock_round_rate
,
1306 static struct clk
*bcm2835_register_pll(struct bcm2835_cprman
*cprman
,
1307 const struct bcm2835_pll_data
*data
)
1309 struct bcm2835_pll
*pll
;
1310 struct clk_init_data init
;
1312 memset(&init
, 0, sizeof(init
));
1314 /* All of the PLLs derive from the external oscillator. */
1315 init
.parent_names
= &cprman
->osc_name
;
1316 init
.num_parents
= 1;
1317 init
.name
= data
->name
;
1318 init
.ops
= &bcm2835_pll_clk_ops
;
1319 init
.flags
= CLK_IGNORE_UNUSED
;
1321 pll
= kzalloc(sizeof(*pll
), GFP_KERNEL
);
1325 pll
->cprman
= cprman
;
1327 pll
->hw
.init
= &init
;
1329 return devm_clk_register(cprman
->dev
, &pll
->hw
);
1333 bcm2835_register_pll_divider(struct bcm2835_cprman
*cprman
,
1334 const struct bcm2835_pll_divider_data
*data
)
1336 struct bcm2835_pll_divider
*divider
;
1337 struct clk_init_data init
;
1339 const char *divider_name
;
1341 if (data
->fixed_divider
!= 1) {
1342 divider_name
= devm_kasprintf(cprman
->dev
, GFP_KERNEL
,
1343 "%s_prediv", data
->name
);
1347 divider_name
= data
->name
;
1350 memset(&init
, 0, sizeof(init
));
1352 init
.parent_names
= &data
->source_pll
->name
;
1353 init
.num_parents
= 1;
1354 init
.name
= divider_name
;
1355 init
.ops
= &bcm2835_pll_divider_clk_ops
;
1356 init
.flags
= CLK_SET_RATE_PARENT
| CLK_IGNORE_UNUSED
;
1358 divider
= devm_kzalloc(cprman
->dev
, sizeof(*divider
), GFP_KERNEL
);
1362 divider
->div
.reg
= cprman
->regs
+ data
->a2w_reg
;
1363 divider
->div
.shift
= A2W_PLL_DIV_SHIFT
;
1364 divider
->div
.width
= A2W_PLL_DIV_BITS
;
1365 divider
->div
.flags
= 0;
1366 divider
->div
.lock
= &cprman
->regs_lock
;
1367 divider
->div
.hw
.init
= &init
;
1368 divider
->div
.table
= NULL
;
1370 divider
->cprman
= cprman
;
1371 divider
->data
= data
;
1373 clk
= devm_clk_register(cprman
->dev
, ÷r
->div
.hw
);
1378 * PLLH's channels have a fixed divide by 10 afterwards, which
1379 * is what our consumers are actually using.
1381 if (data
->fixed_divider
!= 1) {
1382 return clk_register_fixed_factor(cprman
->dev
, data
->name
,
1384 CLK_SET_RATE_PARENT
,
1386 data
->fixed_divider
);
1392 static struct clk
*bcm2835_register_clock(struct bcm2835_cprman
*cprman
,
1393 const struct bcm2835_clock_data
*data
)
1395 struct bcm2835_clock
*clock
;
1396 struct clk_init_data init
;
1400 * Most of the clock generators have a mux field, so we
1401 * instantiate a generic mux as our parent to handle it.
1403 if (data
->num_mux_parents
) {
1404 const char *parents
[1 << CM_SRC_BITS
];
1407 parent
= devm_kasprintf(cprman
->dev
, GFP_KERNEL
,
1408 "mux_%s", data
->name
);
1413 * Replace our "xosc" references with the oscillator's
1416 for (i
= 0; i
< data
->num_mux_parents
; i
++) {
1417 if (strcmp(data
->parents
[i
], "xosc") == 0)
1418 parents
[i
] = cprman
->osc_name
;
1420 parents
[i
] = data
->parents
[i
];
1423 clk_register_mux(cprman
->dev
, parent
,
1424 parents
, data
->num_mux_parents
,
1425 CLK_SET_RATE_PARENT
,
1426 cprman
->regs
+ data
->ctl_reg
,
1427 CM_SRC_SHIFT
, CM_SRC_BITS
,
1428 0, &cprman
->regs_lock
);
1430 parent
= data
->parents
[0];
1433 memset(&init
, 0, sizeof(init
));
1434 init
.parent_names
= &parent
;
1435 init
.num_parents
= 1;
1436 init
.name
= data
->name
;
1437 init
.flags
= CLK_IGNORE_UNUSED
;
1439 if (data
->is_vpu_clock
) {
1440 init
.ops
= &bcm2835_vpu_clock_clk_ops
;
1442 init
.ops
= &bcm2835_clock_clk_ops
;
1443 init
.flags
|= CLK_SET_RATE_GATE
| CLK_SET_PARENT_GATE
;
1446 clock
= devm_kzalloc(cprman
->dev
, sizeof(*clock
), GFP_KERNEL
);
1450 clock
->cprman
= cprman
;
1452 clock
->hw
.init
= &init
;
1454 return devm_clk_register(cprman
->dev
, &clock
->hw
);
1457 static int bcm2835_clk_probe(struct platform_device
*pdev
)
1459 struct device
*dev
= &pdev
->dev
;
1461 struct bcm2835_cprman
*cprman
;
1462 struct resource
*res
;
1464 cprman
= devm_kzalloc(dev
, sizeof(*cprman
), GFP_KERNEL
);
1468 spin_lock_init(&cprman
->regs_lock
);
1470 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1471 cprman
->regs
= devm_ioremap_resource(dev
, res
);
1472 if (IS_ERR(cprman
->regs
))
1473 return PTR_ERR(cprman
->regs
);
1475 cprman
->osc_name
= of_clk_get_parent_name(dev
->of_node
, 0);
1476 if (!cprman
->osc_name
)
1479 platform_set_drvdata(pdev
, cprman
);
1481 cprman
->onecell
.clk_num
= BCM2835_CLOCK_COUNT
;
1482 cprman
->onecell
.clks
= cprman
->clks
;
1483 clks
= cprman
->clks
;
1485 clks
[BCM2835_PLLA
] = bcm2835_register_pll(cprman
, &bcm2835_plla_data
);
1486 clks
[BCM2835_PLLB
] = bcm2835_register_pll(cprman
, &bcm2835_pllb_data
);
1487 clks
[BCM2835_PLLC
] = bcm2835_register_pll(cprman
, &bcm2835_pllc_data
);
1488 clks
[BCM2835_PLLD
] = bcm2835_register_pll(cprman
, &bcm2835_plld_data
);
1489 clks
[BCM2835_PLLH
] = bcm2835_register_pll(cprman
, &bcm2835_pllh_data
);
1491 clks
[BCM2835_PLLA_CORE
] =
1492 bcm2835_register_pll_divider(cprman
, &bcm2835_plla_core_data
);
1493 clks
[BCM2835_PLLA_PER
] =
1494 bcm2835_register_pll_divider(cprman
, &bcm2835_plla_per_data
);
1495 clks
[BCM2835_PLLC_CORE0
] =
1496 bcm2835_register_pll_divider(cprman
, &bcm2835_pllc_core0_data
);
1497 clks
[BCM2835_PLLC_CORE1
] =
1498 bcm2835_register_pll_divider(cprman
, &bcm2835_pllc_core1_data
);
1499 clks
[BCM2835_PLLC_CORE2
] =
1500 bcm2835_register_pll_divider(cprman
, &bcm2835_pllc_core2_data
);
1501 clks
[BCM2835_PLLC_PER
] =
1502 bcm2835_register_pll_divider(cprman
, &bcm2835_pllc_per_data
);
1503 clks
[BCM2835_PLLD_CORE
] =
1504 bcm2835_register_pll_divider(cprman
, &bcm2835_plld_core_data
);
1505 clks
[BCM2835_PLLD_PER
] =
1506 bcm2835_register_pll_divider(cprman
, &bcm2835_plld_per_data
);
1507 clks
[BCM2835_PLLH_RCAL
] =
1508 bcm2835_register_pll_divider(cprman
, &bcm2835_pllh_rcal_data
);
1509 clks
[BCM2835_PLLH_AUX
] =
1510 bcm2835_register_pll_divider(cprman
, &bcm2835_pllh_aux_data
);
1511 clks
[BCM2835_PLLH_PIX
] =
1512 bcm2835_register_pll_divider(cprman
, &bcm2835_pllh_pix_data
);
1514 clks
[BCM2835_CLOCK_TIMER
] =
1515 bcm2835_register_clock(cprman
, &bcm2835_clock_timer_data
);
1516 clks
[BCM2835_CLOCK_OTP
] =
1517 bcm2835_register_clock(cprman
, &bcm2835_clock_otp_data
);
1518 clks
[BCM2835_CLOCK_TSENS
] =
1519 bcm2835_register_clock(cprman
, &bcm2835_clock_tsens_data
);
1520 clks
[BCM2835_CLOCK_VPU
] =
1521 bcm2835_register_clock(cprman
, &bcm2835_clock_vpu_data
);
1522 clks
[BCM2835_CLOCK_V3D
] =
1523 bcm2835_register_clock(cprman
, &bcm2835_clock_v3d_data
);
1524 clks
[BCM2835_CLOCK_ISP
] =
1525 bcm2835_register_clock(cprman
, &bcm2835_clock_isp_data
);
1526 clks
[BCM2835_CLOCK_H264
] =
1527 bcm2835_register_clock(cprman
, &bcm2835_clock_h264_data
);
1528 clks
[BCM2835_CLOCK_V3D
] =
1529 bcm2835_register_clock(cprman
, &bcm2835_clock_v3d_data
);
1530 clks
[BCM2835_CLOCK_SDRAM
] =
1531 bcm2835_register_clock(cprman
, &bcm2835_clock_sdram_data
);
1532 clks
[BCM2835_CLOCK_UART
] =
1533 bcm2835_register_clock(cprman
, &bcm2835_clock_uart_data
);
1534 clks
[BCM2835_CLOCK_VEC
] =
1535 bcm2835_register_clock(cprman
, &bcm2835_clock_vec_data
);
1536 clks
[BCM2835_CLOCK_HSM
] =
1537 bcm2835_register_clock(cprman
, &bcm2835_clock_hsm_data
);
1538 clks
[BCM2835_CLOCK_EMMC
] =
1539 bcm2835_register_clock(cprman
, &bcm2835_clock_emmc_data
);
1542 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
1543 * you have the debug bit set in the power manager, which we
1544 * don't bother exposing) are individual gates off of the
1545 * non-stop vpu clock.
1547 clks
[BCM2835_CLOCK_PERI_IMAGE
] =
1548 clk_register_gate(dev
, "peri_image", "vpu",
1549 CLK_IGNORE_UNUSED
| CLK_SET_RATE_GATE
,
1550 cprman
->regs
+ CM_PERIICTL
, CM_GATE_BIT
,
1551 0, &cprman
->regs_lock
);
1553 return of_clk_add_provider(dev
->of_node
, of_clk_src_onecell_get
,
1557 static const struct of_device_id bcm2835_clk_of_match
[] = {
1558 { .compatible
= "brcm,bcm2835-cprman", },
1561 MODULE_DEVICE_TABLE(of
, bcm2835_clk_of_match
);
1563 static struct platform_driver bcm2835_clk_driver
= {
1565 .name
= "bcm2835-clk",
1566 .of_match_table
= bcm2835_clk_of_match
,
1568 .probe
= bcm2835_clk_probe
,
1571 builtin_platform_driver(bcm2835_clk_driver
);
1573 MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
1574 MODULE_DESCRIPTION("BCM2835 clock driver");
1575 MODULE_LICENSE("GPL v2");