of: MSI: Simplify irqdomain lookup
[linux/fpc-iii.git] / drivers / clocksource / arm_arch_timer.c
blobc64d543d64bf69576d9d75ffc54839439c70ea9b
1 /*
2 * linux/drivers/clocksource/arm_arch_timer.c
4 * Copyright (C) 2011 ARM Ltd.
5 * All Rights Reserved
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/interrupt.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_address.h>
22 #include <linux/io.h>
23 #include <linux/slab.h>
24 #include <linux/sched_clock.h>
25 #include <linux/acpi.h>
27 #include <asm/arch_timer.h>
28 #include <asm/virt.h>
30 #include <clocksource/arm_arch_timer.h>
32 #define CNTTIDR 0x08
33 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
35 #define CNTVCT_LO 0x08
36 #define CNTVCT_HI 0x0c
37 #define CNTFRQ 0x10
38 #define CNTP_TVAL 0x28
39 #define CNTP_CTL 0x2c
40 #define CNTV_TVAL 0x38
41 #define CNTV_CTL 0x3c
43 #define ARCH_CP15_TIMER BIT(0)
44 #define ARCH_MEM_TIMER BIT(1)
45 static unsigned arch_timers_present __initdata;
47 static void __iomem *arch_counter_base;
49 struct arch_timer {
50 void __iomem *base;
51 struct clock_event_device evt;
54 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
56 static u32 arch_timer_rate;
58 enum ppi_nr {
59 PHYS_SECURE_PPI,
60 PHYS_NONSECURE_PPI,
61 VIRT_PPI,
62 HYP_PPI,
63 MAX_TIMER_PPI
66 static int arch_timer_ppi[MAX_TIMER_PPI];
68 static struct clock_event_device __percpu *arch_timer_evt;
70 static bool arch_timer_use_virtual = true;
71 static bool arch_timer_c3stop;
72 static bool arch_timer_mem_use_virtual;
75 * Architected system timer support.
78 static __always_inline
79 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
80 struct clock_event_device *clk)
82 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
83 struct arch_timer *timer = to_arch_timer(clk);
84 switch (reg) {
85 case ARCH_TIMER_REG_CTRL:
86 writel_relaxed(val, timer->base + CNTP_CTL);
87 break;
88 case ARCH_TIMER_REG_TVAL:
89 writel_relaxed(val, timer->base + CNTP_TVAL);
90 break;
92 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
93 struct arch_timer *timer = to_arch_timer(clk);
94 switch (reg) {
95 case ARCH_TIMER_REG_CTRL:
96 writel_relaxed(val, timer->base + CNTV_CTL);
97 break;
98 case ARCH_TIMER_REG_TVAL:
99 writel_relaxed(val, timer->base + CNTV_TVAL);
100 break;
102 } else {
103 arch_timer_reg_write_cp15(access, reg, val);
107 static __always_inline
108 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
109 struct clock_event_device *clk)
111 u32 val;
113 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
114 struct arch_timer *timer = to_arch_timer(clk);
115 switch (reg) {
116 case ARCH_TIMER_REG_CTRL:
117 val = readl_relaxed(timer->base + CNTP_CTL);
118 break;
119 case ARCH_TIMER_REG_TVAL:
120 val = readl_relaxed(timer->base + CNTP_TVAL);
121 break;
123 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
124 struct arch_timer *timer = to_arch_timer(clk);
125 switch (reg) {
126 case ARCH_TIMER_REG_CTRL:
127 val = readl_relaxed(timer->base + CNTV_CTL);
128 break;
129 case ARCH_TIMER_REG_TVAL:
130 val = readl_relaxed(timer->base + CNTV_TVAL);
131 break;
133 } else {
134 val = arch_timer_reg_read_cp15(access, reg);
137 return val;
140 static __always_inline irqreturn_t timer_handler(const int access,
141 struct clock_event_device *evt)
143 unsigned long ctrl;
145 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
146 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
147 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
148 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
149 evt->event_handler(evt);
150 return IRQ_HANDLED;
153 return IRQ_NONE;
156 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
158 struct clock_event_device *evt = dev_id;
160 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
163 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
165 struct clock_event_device *evt = dev_id;
167 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
170 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
172 struct clock_event_device *evt = dev_id;
174 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
177 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
179 struct clock_event_device *evt = dev_id;
181 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
184 static __always_inline int timer_shutdown(const int access,
185 struct clock_event_device *clk)
187 unsigned long ctrl;
189 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
190 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
191 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
193 return 0;
196 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
198 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
201 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
203 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
206 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
208 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
211 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
213 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
216 static __always_inline void set_next_event(const int access, unsigned long evt,
217 struct clock_event_device *clk)
219 unsigned long ctrl;
220 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
221 ctrl |= ARCH_TIMER_CTRL_ENABLE;
222 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
223 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
224 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
227 static int arch_timer_set_next_event_virt(unsigned long evt,
228 struct clock_event_device *clk)
230 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
231 return 0;
234 static int arch_timer_set_next_event_phys(unsigned long evt,
235 struct clock_event_device *clk)
237 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
238 return 0;
241 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
242 struct clock_event_device *clk)
244 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
245 return 0;
248 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
249 struct clock_event_device *clk)
251 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
252 return 0;
255 static void __arch_timer_setup(unsigned type,
256 struct clock_event_device *clk)
258 clk->features = CLOCK_EVT_FEAT_ONESHOT;
260 if (type == ARCH_CP15_TIMER) {
261 if (arch_timer_c3stop)
262 clk->features |= CLOCK_EVT_FEAT_C3STOP;
263 clk->name = "arch_sys_timer";
264 clk->rating = 450;
265 clk->cpumask = cpumask_of(smp_processor_id());
266 if (arch_timer_use_virtual) {
267 clk->irq = arch_timer_ppi[VIRT_PPI];
268 clk->set_state_shutdown = arch_timer_shutdown_virt;
269 clk->set_next_event = arch_timer_set_next_event_virt;
270 } else {
271 clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
272 clk->set_state_shutdown = arch_timer_shutdown_phys;
273 clk->set_next_event = arch_timer_set_next_event_phys;
275 } else {
276 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
277 clk->name = "arch_mem_timer";
278 clk->rating = 400;
279 clk->cpumask = cpu_all_mask;
280 if (arch_timer_mem_use_virtual) {
281 clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
282 clk->set_next_event =
283 arch_timer_set_next_event_virt_mem;
284 } else {
285 clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
286 clk->set_next_event =
287 arch_timer_set_next_event_phys_mem;
291 clk->set_state_shutdown(clk);
293 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
296 static void arch_timer_evtstrm_enable(int divider)
298 u32 cntkctl = arch_timer_get_cntkctl();
300 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
301 /* Set the divider and enable virtual event stream */
302 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
303 | ARCH_TIMER_VIRT_EVT_EN;
304 arch_timer_set_cntkctl(cntkctl);
305 elf_hwcap |= HWCAP_EVTSTRM;
306 #ifdef CONFIG_COMPAT
307 compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
308 #endif
311 static void arch_timer_configure_evtstream(void)
313 int evt_stream_div, pos;
315 /* Find the closest power of two to the divisor */
316 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
317 pos = fls(evt_stream_div);
318 if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
319 pos--;
320 /* enable event stream */
321 arch_timer_evtstrm_enable(min(pos, 15));
324 static void arch_counter_set_user_access(void)
326 u32 cntkctl = arch_timer_get_cntkctl();
328 /* Disable user access to the timers and the physical counter */
329 /* Also disable virtual event stream */
330 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
331 | ARCH_TIMER_USR_VT_ACCESS_EN
332 | ARCH_TIMER_VIRT_EVT_EN
333 | ARCH_TIMER_USR_PCT_ACCESS_EN);
335 /* Enable user access to the virtual counter */
336 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
338 arch_timer_set_cntkctl(cntkctl);
341 static int arch_timer_setup(struct clock_event_device *clk)
343 __arch_timer_setup(ARCH_CP15_TIMER, clk);
345 if (arch_timer_use_virtual)
346 enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
347 else {
348 enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
349 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
350 enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
353 arch_counter_set_user_access();
354 if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM))
355 arch_timer_configure_evtstream();
357 return 0;
360 static void
361 arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
363 /* Who has more than one independent system counter? */
364 if (arch_timer_rate)
365 return;
368 * Try to determine the frequency from the device tree or CNTFRQ,
369 * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
371 if (!acpi_disabled ||
372 of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
373 if (cntbase)
374 arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
375 else
376 arch_timer_rate = arch_timer_get_cntfrq();
379 /* Check the timer frequency. */
380 if (arch_timer_rate == 0)
381 pr_warn("Architected timer frequency not available\n");
384 static void arch_timer_banner(unsigned type)
386 pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
387 type & ARCH_CP15_TIMER ? "cp15" : "",
388 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? " and " : "",
389 type & ARCH_MEM_TIMER ? "mmio" : "",
390 (unsigned long)arch_timer_rate / 1000000,
391 (unsigned long)(arch_timer_rate / 10000) % 100,
392 type & ARCH_CP15_TIMER ?
393 arch_timer_use_virtual ? "virt" : "phys" :
395 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? "/" : "",
396 type & ARCH_MEM_TIMER ?
397 arch_timer_mem_use_virtual ? "virt" : "phys" :
398 "");
401 u32 arch_timer_get_rate(void)
403 return arch_timer_rate;
406 static u64 arch_counter_get_cntvct_mem(void)
408 u32 vct_lo, vct_hi, tmp_hi;
410 do {
411 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
412 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
413 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
414 } while (vct_hi != tmp_hi);
416 return ((u64) vct_hi << 32) | vct_lo;
420 * Default to cp15 based access because arm64 uses this function for
421 * sched_clock() before DT is probed and the cp15 method is guaranteed
422 * to exist on arm64. arm doesn't use this before DT is probed so even
423 * if we don't have the cp15 accessors we won't have a problem.
425 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
427 static cycle_t arch_counter_read(struct clocksource *cs)
429 return arch_timer_read_counter();
432 static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
434 return arch_timer_read_counter();
437 static struct clocksource clocksource_counter = {
438 .name = "arch_sys_counter",
439 .rating = 400,
440 .read = arch_counter_read,
441 .mask = CLOCKSOURCE_MASK(56),
442 .flags = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP,
445 static struct cyclecounter cyclecounter = {
446 .read = arch_counter_read_cc,
447 .mask = CLOCKSOURCE_MASK(56),
450 static struct timecounter timecounter;
452 struct timecounter *arch_timer_get_timecounter(void)
454 return &timecounter;
457 static void __init arch_counter_register(unsigned type)
459 u64 start_count;
461 /* Register the CP15 based counter if we have one */
462 if (type & ARCH_CP15_TIMER) {
463 if (IS_ENABLED(CONFIG_ARM64) || arch_timer_use_virtual)
464 arch_timer_read_counter = arch_counter_get_cntvct;
465 else
466 arch_timer_read_counter = arch_counter_get_cntpct;
467 } else {
468 arch_timer_read_counter = arch_counter_get_cntvct_mem;
470 /* If the clocksource name is "arch_sys_counter" the
471 * VDSO will attempt to read the CP15-based counter.
472 * Ensure this does not happen when CP15-based
473 * counter is not available.
475 clocksource_counter.name = "arch_mem_counter";
478 start_count = arch_timer_read_counter();
479 clocksource_register_hz(&clocksource_counter, arch_timer_rate);
480 cyclecounter.mult = clocksource_counter.mult;
481 cyclecounter.shift = clocksource_counter.shift;
482 timecounter_init(&timecounter, &cyclecounter, start_count);
484 /* 56 bits minimum, so we assume worst case rollover */
485 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
488 static void arch_timer_stop(struct clock_event_device *clk)
490 pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
491 clk->irq, smp_processor_id());
493 if (arch_timer_use_virtual)
494 disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
495 else {
496 disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
497 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
498 disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
501 clk->set_state_shutdown(clk);
504 static int arch_timer_cpu_notify(struct notifier_block *self,
505 unsigned long action, void *hcpu)
508 * Grab cpu pointer in each case to avoid spurious
509 * preemptible warnings
511 switch (action & ~CPU_TASKS_FROZEN) {
512 case CPU_STARTING:
513 arch_timer_setup(this_cpu_ptr(arch_timer_evt));
514 break;
515 case CPU_DYING:
516 arch_timer_stop(this_cpu_ptr(arch_timer_evt));
517 break;
520 return NOTIFY_OK;
523 static struct notifier_block arch_timer_cpu_nb = {
524 .notifier_call = arch_timer_cpu_notify,
527 #ifdef CONFIG_CPU_PM
528 static unsigned int saved_cntkctl;
529 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
530 unsigned long action, void *hcpu)
532 if (action == CPU_PM_ENTER)
533 saved_cntkctl = arch_timer_get_cntkctl();
534 else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
535 arch_timer_set_cntkctl(saved_cntkctl);
536 return NOTIFY_OK;
539 static struct notifier_block arch_timer_cpu_pm_notifier = {
540 .notifier_call = arch_timer_cpu_pm_notify,
543 static int __init arch_timer_cpu_pm_init(void)
545 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
547 #else
548 static int __init arch_timer_cpu_pm_init(void)
550 return 0;
552 #endif
554 static int __init arch_timer_register(void)
556 int err;
557 int ppi;
559 arch_timer_evt = alloc_percpu(struct clock_event_device);
560 if (!arch_timer_evt) {
561 err = -ENOMEM;
562 goto out;
565 if (arch_timer_use_virtual) {
566 ppi = arch_timer_ppi[VIRT_PPI];
567 err = request_percpu_irq(ppi, arch_timer_handler_virt,
568 "arch_timer", arch_timer_evt);
569 } else {
570 ppi = arch_timer_ppi[PHYS_SECURE_PPI];
571 err = request_percpu_irq(ppi, arch_timer_handler_phys,
572 "arch_timer", arch_timer_evt);
573 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
574 ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
575 err = request_percpu_irq(ppi, arch_timer_handler_phys,
576 "arch_timer", arch_timer_evt);
577 if (err)
578 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
579 arch_timer_evt);
583 if (err) {
584 pr_err("arch_timer: can't register interrupt %d (%d)\n",
585 ppi, err);
586 goto out_free;
589 err = register_cpu_notifier(&arch_timer_cpu_nb);
590 if (err)
591 goto out_free_irq;
593 err = arch_timer_cpu_pm_init();
594 if (err)
595 goto out_unreg_notify;
597 /* Immediately configure the timer on the boot CPU */
598 arch_timer_setup(this_cpu_ptr(arch_timer_evt));
600 return 0;
602 out_unreg_notify:
603 unregister_cpu_notifier(&arch_timer_cpu_nb);
604 out_free_irq:
605 if (arch_timer_use_virtual)
606 free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
607 else {
608 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
609 arch_timer_evt);
610 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
611 free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
612 arch_timer_evt);
615 out_free:
616 free_percpu(arch_timer_evt);
617 out:
618 return err;
621 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
623 int ret;
624 irq_handler_t func;
625 struct arch_timer *t;
627 t = kzalloc(sizeof(*t), GFP_KERNEL);
628 if (!t)
629 return -ENOMEM;
631 t->base = base;
632 t->evt.irq = irq;
633 __arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
635 if (arch_timer_mem_use_virtual)
636 func = arch_timer_handler_virt_mem;
637 else
638 func = arch_timer_handler_phys_mem;
640 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
641 if (ret) {
642 pr_err("arch_timer: Failed to request mem timer irq\n");
643 kfree(t);
646 return ret;
649 static const struct of_device_id arch_timer_of_match[] __initconst = {
650 { .compatible = "arm,armv7-timer", },
651 { .compatible = "arm,armv8-timer", },
655 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
656 { .compatible = "arm,armv7-timer-mem", },
660 static bool __init
661 arch_timer_needs_probing(int type, const struct of_device_id *matches)
663 struct device_node *dn;
664 bool needs_probing = false;
666 dn = of_find_matching_node(NULL, matches);
667 if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
668 needs_probing = true;
669 of_node_put(dn);
671 return needs_probing;
674 static void __init arch_timer_common_init(void)
676 unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
678 /* Wait until both nodes are probed if we have two timers */
679 if ((arch_timers_present & mask) != mask) {
680 if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
681 return;
682 if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
683 return;
686 arch_timer_banner(arch_timers_present);
687 arch_counter_register(arch_timers_present);
688 arch_timer_arch_init();
691 static void __init arch_timer_init(void)
694 * If HYP mode is available, we know that the physical timer
695 * has been configured to be accessible from PL1. Use it, so
696 * that a guest can use the virtual timer instead.
698 * If no interrupt provided for virtual timer, we'll have to
699 * stick to the physical timer. It'd better be accessible...
701 if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
702 arch_timer_use_virtual = false;
704 if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
705 !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
706 pr_warn("arch_timer: No interrupt available, giving up\n");
707 return;
711 arch_timer_register();
712 arch_timer_common_init();
715 static void __init arch_timer_of_init(struct device_node *np)
717 int i;
719 if (arch_timers_present & ARCH_CP15_TIMER) {
720 pr_warn("arch_timer: multiple nodes in dt, skipping\n");
721 return;
724 arch_timers_present |= ARCH_CP15_TIMER;
725 for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
726 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
728 arch_timer_detect_rate(NULL, np);
730 arch_timer_c3stop = !of_property_read_bool(np, "always-on");
733 * If we cannot rely on firmware initializing the timer registers then
734 * we should use the physical timers instead.
736 if (IS_ENABLED(CONFIG_ARM) &&
737 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
738 arch_timer_use_virtual = false;
740 arch_timer_init();
742 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
743 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
745 static void __init arch_timer_mem_init(struct device_node *np)
747 struct device_node *frame, *best_frame = NULL;
748 void __iomem *cntctlbase, *base;
749 unsigned int irq;
750 u32 cnttidr;
752 arch_timers_present |= ARCH_MEM_TIMER;
753 cntctlbase = of_iomap(np, 0);
754 if (!cntctlbase) {
755 pr_err("arch_timer: Can't find CNTCTLBase\n");
756 return;
759 cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
760 iounmap(cntctlbase);
763 * Try to find a virtual capable frame. Otherwise fall back to a
764 * physical capable frame.
766 for_each_available_child_of_node(np, frame) {
767 int n;
769 if (of_property_read_u32(frame, "frame-number", &n)) {
770 pr_err("arch_timer: Missing frame-number\n");
771 of_node_put(best_frame);
772 of_node_put(frame);
773 return;
776 if (cnttidr & CNTTIDR_VIRT(n)) {
777 of_node_put(best_frame);
778 best_frame = frame;
779 arch_timer_mem_use_virtual = true;
780 break;
782 of_node_put(best_frame);
783 best_frame = of_node_get(frame);
786 base = arch_counter_base = of_iomap(best_frame, 0);
787 if (!base) {
788 pr_err("arch_timer: Can't map frame's registers\n");
789 of_node_put(best_frame);
790 return;
793 if (arch_timer_mem_use_virtual)
794 irq = irq_of_parse_and_map(best_frame, 1);
795 else
796 irq = irq_of_parse_and_map(best_frame, 0);
797 of_node_put(best_frame);
798 if (!irq) {
799 pr_err("arch_timer: Frame missing %s irq",
800 arch_timer_mem_use_virtual ? "virt" : "phys");
801 return;
804 arch_timer_detect_rate(base, np);
805 arch_timer_mem_register(base, irq);
806 arch_timer_common_init();
808 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
809 arch_timer_mem_init);
811 #ifdef CONFIG_ACPI
812 static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
814 int trigger, polarity;
816 if (!interrupt)
817 return 0;
819 trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
820 : ACPI_LEVEL_SENSITIVE;
822 polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
823 : ACPI_ACTIVE_HIGH;
825 return acpi_register_gsi(NULL, interrupt, trigger, polarity);
828 /* Initialize per-processor generic timer */
829 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
831 struct acpi_table_gtdt *gtdt;
833 if (arch_timers_present & ARCH_CP15_TIMER) {
834 pr_warn("arch_timer: already initialized, skipping\n");
835 return -EINVAL;
838 gtdt = container_of(table, struct acpi_table_gtdt, header);
840 arch_timers_present |= ARCH_CP15_TIMER;
842 arch_timer_ppi[PHYS_SECURE_PPI] =
843 map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
844 gtdt->secure_el1_flags);
846 arch_timer_ppi[PHYS_NONSECURE_PPI] =
847 map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
848 gtdt->non_secure_el1_flags);
850 arch_timer_ppi[VIRT_PPI] =
851 map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
852 gtdt->virtual_timer_flags);
854 arch_timer_ppi[HYP_PPI] =
855 map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
856 gtdt->non_secure_el2_flags);
858 /* Get the frequency from CNTFRQ */
859 arch_timer_detect_rate(NULL, NULL);
861 /* Always-on capability */
862 arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);
864 arch_timer_init();
865 return 0;
867 CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
868 #endif