of: MSI: Simplify irqdomain lookup
[linux/fpc-iii.git] / drivers / clocksource / qcom-timer.c
blobf8e09f9236512ac8328fd992569cca171e4e16e5
1 /*
3 * Copyright (C) 2007 Google, Inc.
4 * Copyright (c) 2009-2012,2014, The Linux Foundation. All rights reserved.
6 * This software is licensed under the terms of the GNU General Public
7 * License version 2, as published by the Free Software Foundation, and
8 * may be copied, distributed, and modified under those terms.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
17 #include <linux/clocksource.h>
18 #include <linux/clockchips.h>
19 #include <linux/cpu.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/sched_clock.h>
29 #include <asm/delay.h>
31 #define TIMER_MATCH_VAL 0x0000
32 #define TIMER_COUNT_VAL 0x0004
33 #define TIMER_ENABLE 0x0008
34 #define TIMER_ENABLE_CLR_ON_MATCH_EN BIT(1)
35 #define TIMER_ENABLE_EN BIT(0)
36 #define TIMER_CLEAR 0x000C
37 #define DGT_CLK_CTL 0x10
38 #define DGT_CLK_CTL_DIV_4 0x3
39 #define TIMER_STS_GPT0_CLR_PEND BIT(10)
41 #define GPT_HZ 32768
43 static void __iomem *event_base;
44 static void __iomem *sts_base;
46 static irqreturn_t msm_timer_interrupt(int irq, void *dev_id)
48 struct clock_event_device *evt = dev_id;
49 /* Stop the timer tick */
50 if (clockevent_state_oneshot(evt)) {
51 u32 ctrl = readl_relaxed(event_base + TIMER_ENABLE);
52 ctrl &= ~TIMER_ENABLE_EN;
53 writel_relaxed(ctrl, event_base + TIMER_ENABLE);
55 evt->event_handler(evt);
56 return IRQ_HANDLED;
59 static int msm_timer_set_next_event(unsigned long cycles,
60 struct clock_event_device *evt)
62 u32 ctrl = readl_relaxed(event_base + TIMER_ENABLE);
64 ctrl &= ~TIMER_ENABLE_EN;
65 writel_relaxed(ctrl, event_base + TIMER_ENABLE);
67 writel_relaxed(ctrl, event_base + TIMER_CLEAR);
68 writel_relaxed(cycles, event_base + TIMER_MATCH_VAL);
70 if (sts_base)
71 while (readl_relaxed(sts_base) & TIMER_STS_GPT0_CLR_PEND)
72 cpu_relax();
74 writel_relaxed(ctrl | TIMER_ENABLE_EN, event_base + TIMER_ENABLE);
75 return 0;
78 static int msm_timer_shutdown(struct clock_event_device *evt)
80 u32 ctrl;
82 ctrl = readl_relaxed(event_base + TIMER_ENABLE);
83 ctrl &= ~(TIMER_ENABLE_EN | TIMER_ENABLE_CLR_ON_MATCH_EN);
84 writel_relaxed(ctrl, event_base + TIMER_ENABLE);
85 return 0;
88 static struct clock_event_device __percpu *msm_evt;
90 static void __iomem *source_base;
92 static notrace cycle_t msm_read_timer_count(struct clocksource *cs)
94 return readl_relaxed(source_base + TIMER_COUNT_VAL);
97 static struct clocksource msm_clocksource = {
98 .name = "dg_timer",
99 .rating = 300,
100 .read = msm_read_timer_count,
101 .mask = CLOCKSOURCE_MASK(32),
102 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
105 static int msm_timer_irq;
106 static int msm_timer_has_ppi;
108 static int msm_local_timer_setup(struct clock_event_device *evt)
110 int cpu = smp_processor_id();
111 int err;
113 evt->irq = msm_timer_irq;
114 evt->name = "msm_timer";
115 evt->features = CLOCK_EVT_FEAT_ONESHOT;
116 evt->rating = 200;
117 evt->set_state_shutdown = msm_timer_shutdown;
118 evt->set_state_oneshot = msm_timer_shutdown;
119 evt->tick_resume = msm_timer_shutdown;
120 evt->set_next_event = msm_timer_set_next_event;
121 evt->cpumask = cpumask_of(cpu);
123 clockevents_config_and_register(evt, GPT_HZ, 4, 0xffffffff);
125 if (msm_timer_has_ppi) {
126 enable_percpu_irq(evt->irq, IRQ_TYPE_EDGE_RISING);
127 } else {
128 err = request_irq(evt->irq, msm_timer_interrupt,
129 IRQF_TIMER | IRQF_NOBALANCING |
130 IRQF_TRIGGER_RISING, "gp_timer", evt);
131 if (err)
132 pr_err("request_irq failed\n");
135 return 0;
138 static void msm_local_timer_stop(struct clock_event_device *evt)
140 evt->set_state_shutdown(evt);
141 disable_percpu_irq(evt->irq);
144 static int msm_timer_cpu_notify(struct notifier_block *self,
145 unsigned long action, void *hcpu)
148 * Grab cpu pointer in each case to avoid spurious
149 * preemptible warnings
151 switch (action & ~CPU_TASKS_FROZEN) {
152 case CPU_STARTING:
153 msm_local_timer_setup(this_cpu_ptr(msm_evt));
154 break;
155 case CPU_DYING:
156 msm_local_timer_stop(this_cpu_ptr(msm_evt));
157 break;
160 return NOTIFY_OK;
163 static struct notifier_block msm_timer_cpu_nb = {
164 .notifier_call = msm_timer_cpu_notify,
167 static u64 notrace msm_sched_clock_read(void)
169 return msm_clocksource.read(&msm_clocksource);
172 static unsigned long msm_read_current_timer(void)
174 return msm_clocksource.read(&msm_clocksource);
177 static struct delay_timer msm_delay_timer = {
178 .read_current_timer = msm_read_current_timer,
181 static void __init msm_timer_init(u32 dgt_hz, int sched_bits, int irq,
182 bool percpu)
184 struct clocksource *cs = &msm_clocksource;
185 int res = 0;
187 msm_timer_irq = irq;
188 msm_timer_has_ppi = percpu;
190 msm_evt = alloc_percpu(struct clock_event_device);
191 if (!msm_evt) {
192 pr_err("memory allocation failed for clockevents\n");
193 goto err;
196 if (percpu)
197 res = request_percpu_irq(irq, msm_timer_interrupt,
198 "gp_timer", msm_evt);
200 if (res) {
201 pr_err("request_percpu_irq failed\n");
202 } else {
203 res = register_cpu_notifier(&msm_timer_cpu_nb);
204 if (res) {
205 free_percpu_irq(irq, msm_evt);
206 goto err;
209 /* Immediately configure the timer on the boot CPU */
210 msm_local_timer_setup(raw_cpu_ptr(msm_evt));
213 err:
214 writel_relaxed(TIMER_ENABLE_EN, source_base + TIMER_ENABLE);
215 res = clocksource_register_hz(cs, dgt_hz);
216 if (res)
217 pr_err("clocksource_register failed\n");
218 sched_clock_register(msm_sched_clock_read, sched_bits, dgt_hz);
219 msm_delay_timer.freq = dgt_hz;
220 register_current_timer_delay(&msm_delay_timer);
223 static void __init msm_dt_timer_init(struct device_node *np)
225 u32 freq;
226 int irq;
227 struct resource res;
228 u32 percpu_offset;
229 void __iomem *base;
230 void __iomem *cpu0_base;
232 base = of_iomap(np, 0);
233 if (!base) {
234 pr_err("Failed to map event base\n");
235 return;
238 /* We use GPT0 for the clockevent */
239 irq = irq_of_parse_and_map(np, 1);
240 if (irq <= 0) {
241 pr_err("Can't get irq\n");
242 return;
245 /* We use CPU0's DGT for the clocksource */
246 if (of_property_read_u32(np, "cpu-offset", &percpu_offset))
247 percpu_offset = 0;
249 if (of_address_to_resource(np, 0, &res)) {
250 pr_err("Failed to parse DGT resource\n");
251 return;
254 cpu0_base = ioremap(res.start + percpu_offset, resource_size(&res));
255 if (!cpu0_base) {
256 pr_err("Failed to map source base\n");
257 return;
260 if (of_property_read_u32(np, "clock-frequency", &freq)) {
261 pr_err("Unknown frequency\n");
262 return;
265 event_base = base + 0x4;
266 sts_base = base + 0x88;
267 source_base = cpu0_base + 0x24;
268 freq /= 4;
269 writel_relaxed(DGT_CLK_CTL_DIV_4, source_base + DGT_CLK_CTL);
271 msm_timer_init(freq, 32, irq, !!percpu_offset);
273 CLOCKSOURCE_OF_DECLARE(kpss_timer, "qcom,kpss-timer", msm_dt_timer_init);
274 CLOCKSOURCE_OF_DECLARE(scss_timer, "qcom,scss-timer", msm_dt_timer_init);