of: MSI: Simplify irqdomain lookup
[linux/fpc-iii.git] / drivers / dma / tegra20-apb-dma.c
blobc8f79dcaaee8089c1a031c2e76fbbda2c4465488
1 /*
2 * DMA driver for Nvidia's Tegra20 APB DMA controller.
4 * Copyright (c) 2012-2013, NVIDIA CORPORATION. All rights reserved.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 #include <linux/bitops.h>
20 #include <linux/clk.h>
21 #include <linux/delay.h>
22 #include <linux/dmaengine.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/err.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/of.h>
31 #include <linux/of_device.h>
32 #include <linux/of_dma.h>
33 #include <linux/platform_device.h>
34 #include <linux/pm.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/reset.h>
37 #include <linux/slab.h>
39 #include "dmaengine.h"
41 #define TEGRA_APBDMA_GENERAL 0x0
42 #define TEGRA_APBDMA_GENERAL_ENABLE BIT(31)
44 #define TEGRA_APBDMA_CONTROL 0x010
45 #define TEGRA_APBDMA_IRQ_MASK 0x01c
46 #define TEGRA_APBDMA_IRQ_MASK_SET 0x020
48 /* CSR register */
49 #define TEGRA_APBDMA_CHAN_CSR 0x00
50 #define TEGRA_APBDMA_CSR_ENB BIT(31)
51 #define TEGRA_APBDMA_CSR_IE_EOC BIT(30)
52 #define TEGRA_APBDMA_CSR_HOLD BIT(29)
53 #define TEGRA_APBDMA_CSR_DIR BIT(28)
54 #define TEGRA_APBDMA_CSR_ONCE BIT(27)
55 #define TEGRA_APBDMA_CSR_FLOW BIT(21)
56 #define TEGRA_APBDMA_CSR_REQ_SEL_SHIFT 16
57 #define TEGRA_APBDMA_CSR_WCOUNT_MASK 0xFFFC
59 /* STATUS register */
60 #define TEGRA_APBDMA_CHAN_STATUS 0x004
61 #define TEGRA_APBDMA_STATUS_BUSY BIT(31)
62 #define TEGRA_APBDMA_STATUS_ISE_EOC BIT(30)
63 #define TEGRA_APBDMA_STATUS_HALT BIT(29)
64 #define TEGRA_APBDMA_STATUS_PING_PONG BIT(28)
65 #define TEGRA_APBDMA_STATUS_COUNT_SHIFT 2
66 #define TEGRA_APBDMA_STATUS_COUNT_MASK 0xFFFC
68 #define TEGRA_APBDMA_CHAN_CSRE 0x00C
69 #define TEGRA_APBDMA_CHAN_CSRE_PAUSE (1 << 31)
71 /* AHB memory address */
72 #define TEGRA_APBDMA_CHAN_AHBPTR 0x010
74 /* AHB sequence register */
75 #define TEGRA_APBDMA_CHAN_AHBSEQ 0x14
76 #define TEGRA_APBDMA_AHBSEQ_INTR_ENB BIT(31)
77 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_8 (0 << 28)
78 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_16 (1 << 28)
79 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32 (2 << 28)
80 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_64 (3 << 28)
81 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_128 (4 << 28)
82 #define TEGRA_APBDMA_AHBSEQ_DATA_SWAP BIT(27)
83 #define TEGRA_APBDMA_AHBSEQ_BURST_1 (4 << 24)
84 #define TEGRA_APBDMA_AHBSEQ_BURST_4 (5 << 24)
85 #define TEGRA_APBDMA_AHBSEQ_BURST_8 (6 << 24)
86 #define TEGRA_APBDMA_AHBSEQ_DBL_BUF BIT(19)
87 #define TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT 16
88 #define TEGRA_APBDMA_AHBSEQ_WRAP_NONE 0
90 /* APB address */
91 #define TEGRA_APBDMA_CHAN_APBPTR 0x018
93 /* APB sequence register */
94 #define TEGRA_APBDMA_CHAN_APBSEQ 0x01c
95 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8 (0 << 28)
96 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16 (1 << 28)
97 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32 (2 << 28)
98 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64 (3 << 28)
99 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_128 (4 << 28)
100 #define TEGRA_APBDMA_APBSEQ_DATA_SWAP BIT(27)
101 #define TEGRA_APBDMA_APBSEQ_WRAP_WORD_1 (1 << 16)
103 /* Tegra148 specific registers */
104 #define TEGRA_APBDMA_CHAN_WCOUNT 0x20
106 #define TEGRA_APBDMA_CHAN_WORD_TRANSFER 0x24
109 * If any burst is in flight and DMA paused then this is the time to complete
110 * on-flight burst and update DMA status register.
112 #define TEGRA_APBDMA_BURST_COMPLETE_TIME 20
114 /* Channel base address offset from APBDMA base address */
115 #define TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET 0x1000
117 struct tegra_dma;
120 * tegra_dma_chip_data Tegra chip specific DMA data
121 * @nr_channels: Number of channels available in the controller.
122 * @channel_reg_size: Channel register size/stride.
123 * @max_dma_count: Maximum DMA transfer count supported by DMA controller.
124 * @support_channel_pause: Support channel wise pause of dma.
125 * @support_separate_wcount_reg: Support separate word count register.
127 struct tegra_dma_chip_data {
128 int nr_channels;
129 int channel_reg_size;
130 int max_dma_count;
131 bool support_channel_pause;
132 bool support_separate_wcount_reg;
135 /* DMA channel registers */
136 struct tegra_dma_channel_regs {
137 unsigned long csr;
138 unsigned long ahb_ptr;
139 unsigned long apb_ptr;
140 unsigned long ahb_seq;
141 unsigned long apb_seq;
142 unsigned long wcount;
146 * tegra_dma_sg_req: Dma request details to configure hardware. This
147 * contains the details for one transfer to configure DMA hw.
148 * The client's request for data transfer can be broken into multiple
149 * sub-transfer as per requester details and hw support.
150 * This sub transfer get added in the list of transfer and point to Tegra
151 * DMA descriptor which manages the transfer details.
153 struct tegra_dma_sg_req {
154 struct tegra_dma_channel_regs ch_regs;
155 int req_len;
156 bool configured;
157 bool last_sg;
158 struct list_head node;
159 struct tegra_dma_desc *dma_desc;
163 * tegra_dma_desc: Tegra DMA descriptors which manages the client requests.
164 * This descriptor keep track of transfer status, callbacks and request
165 * counts etc.
167 struct tegra_dma_desc {
168 struct dma_async_tx_descriptor txd;
169 int bytes_requested;
170 int bytes_transferred;
171 enum dma_status dma_status;
172 struct list_head node;
173 struct list_head tx_list;
174 struct list_head cb_node;
175 int cb_count;
178 struct tegra_dma_channel;
180 typedef void (*dma_isr_handler)(struct tegra_dma_channel *tdc,
181 bool to_terminate);
183 /* tegra_dma_channel: Channel specific information */
184 struct tegra_dma_channel {
185 struct dma_chan dma_chan;
186 char name[30];
187 bool config_init;
188 int id;
189 int irq;
190 void __iomem *chan_addr;
191 spinlock_t lock;
192 bool busy;
193 struct tegra_dma *tdma;
194 bool cyclic;
196 /* Different lists for managing the requests */
197 struct list_head free_sg_req;
198 struct list_head pending_sg_req;
199 struct list_head free_dma_desc;
200 struct list_head cb_desc;
202 /* ISR handler and tasklet for bottom half of isr handling */
203 dma_isr_handler isr_handler;
204 struct tasklet_struct tasklet;
206 /* Channel-slave specific configuration */
207 unsigned int slave_id;
208 struct dma_slave_config dma_sconfig;
209 struct tegra_dma_channel_regs channel_reg;
212 /* tegra_dma: Tegra DMA specific information */
213 struct tegra_dma {
214 struct dma_device dma_dev;
215 struct device *dev;
216 struct clk *dma_clk;
217 struct reset_control *rst;
218 spinlock_t global_lock;
219 void __iomem *base_addr;
220 const struct tegra_dma_chip_data *chip_data;
223 * Counter for managing global pausing of the DMA controller.
224 * Only applicable for devices that don't support individual
225 * channel pausing.
227 u32 global_pause_count;
229 /* Some register need to be cache before suspend */
230 u32 reg_gen;
232 /* Last member of the structure */
233 struct tegra_dma_channel channels[0];
236 static inline void tdma_write(struct tegra_dma *tdma, u32 reg, u32 val)
238 writel(val, tdma->base_addr + reg);
241 static inline u32 tdma_read(struct tegra_dma *tdma, u32 reg)
243 return readl(tdma->base_addr + reg);
246 static inline void tdc_write(struct tegra_dma_channel *tdc,
247 u32 reg, u32 val)
249 writel(val, tdc->chan_addr + reg);
252 static inline u32 tdc_read(struct tegra_dma_channel *tdc, u32 reg)
254 return readl(tdc->chan_addr + reg);
257 static inline struct tegra_dma_channel *to_tegra_dma_chan(struct dma_chan *dc)
259 return container_of(dc, struct tegra_dma_channel, dma_chan);
262 static inline struct tegra_dma_desc *txd_to_tegra_dma_desc(
263 struct dma_async_tx_descriptor *td)
265 return container_of(td, struct tegra_dma_desc, txd);
268 static inline struct device *tdc2dev(struct tegra_dma_channel *tdc)
270 return &tdc->dma_chan.dev->device;
273 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *tx);
274 static int tegra_dma_runtime_suspend(struct device *dev);
275 static int tegra_dma_runtime_resume(struct device *dev);
277 /* Get DMA desc from free list, if not there then allocate it. */
278 static struct tegra_dma_desc *tegra_dma_desc_get(
279 struct tegra_dma_channel *tdc)
281 struct tegra_dma_desc *dma_desc;
282 unsigned long flags;
284 spin_lock_irqsave(&tdc->lock, flags);
286 /* Do not allocate if desc are waiting for ack */
287 list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
288 if (async_tx_test_ack(&dma_desc->txd)) {
289 list_del(&dma_desc->node);
290 spin_unlock_irqrestore(&tdc->lock, flags);
291 dma_desc->txd.flags = 0;
292 return dma_desc;
296 spin_unlock_irqrestore(&tdc->lock, flags);
298 /* Allocate DMA desc */
299 dma_desc = kzalloc(sizeof(*dma_desc), GFP_ATOMIC);
300 if (!dma_desc) {
301 dev_err(tdc2dev(tdc), "dma_desc alloc failed\n");
302 return NULL;
305 dma_async_tx_descriptor_init(&dma_desc->txd, &tdc->dma_chan);
306 dma_desc->txd.tx_submit = tegra_dma_tx_submit;
307 dma_desc->txd.flags = 0;
308 return dma_desc;
311 static void tegra_dma_desc_put(struct tegra_dma_channel *tdc,
312 struct tegra_dma_desc *dma_desc)
314 unsigned long flags;
316 spin_lock_irqsave(&tdc->lock, flags);
317 if (!list_empty(&dma_desc->tx_list))
318 list_splice_init(&dma_desc->tx_list, &tdc->free_sg_req);
319 list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
320 spin_unlock_irqrestore(&tdc->lock, flags);
323 static struct tegra_dma_sg_req *tegra_dma_sg_req_get(
324 struct tegra_dma_channel *tdc)
326 struct tegra_dma_sg_req *sg_req = NULL;
327 unsigned long flags;
329 spin_lock_irqsave(&tdc->lock, flags);
330 if (!list_empty(&tdc->free_sg_req)) {
331 sg_req = list_first_entry(&tdc->free_sg_req,
332 typeof(*sg_req), node);
333 list_del(&sg_req->node);
334 spin_unlock_irqrestore(&tdc->lock, flags);
335 return sg_req;
337 spin_unlock_irqrestore(&tdc->lock, flags);
339 sg_req = kzalloc(sizeof(struct tegra_dma_sg_req), GFP_ATOMIC);
340 if (!sg_req)
341 dev_err(tdc2dev(tdc), "sg_req alloc failed\n");
342 return sg_req;
345 static int tegra_dma_slave_config(struct dma_chan *dc,
346 struct dma_slave_config *sconfig)
348 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
350 if (!list_empty(&tdc->pending_sg_req)) {
351 dev_err(tdc2dev(tdc), "Configuration not allowed\n");
352 return -EBUSY;
355 memcpy(&tdc->dma_sconfig, sconfig, sizeof(*sconfig));
356 if (!tdc->slave_id)
357 tdc->slave_id = sconfig->slave_id;
358 tdc->config_init = true;
359 return 0;
362 static void tegra_dma_global_pause(struct tegra_dma_channel *tdc,
363 bool wait_for_burst_complete)
365 struct tegra_dma *tdma = tdc->tdma;
367 spin_lock(&tdma->global_lock);
369 if (tdc->tdma->global_pause_count == 0) {
370 tdma_write(tdma, TEGRA_APBDMA_GENERAL, 0);
371 if (wait_for_burst_complete)
372 udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
375 tdc->tdma->global_pause_count++;
377 spin_unlock(&tdma->global_lock);
380 static void tegra_dma_global_resume(struct tegra_dma_channel *tdc)
382 struct tegra_dma *tdma = tdc->tdma;
384 spin_lock(&tdma->global_lock);
386 if (WARN_ON(tdc->tdma->global_pause_count == 0))
387 goto out;
389 if (--tdc->tdma->global_pause_count == 0)
390 tdma_write(tdma, TEGRA_APBDMA_GENERAL,
391 TEGRA_APBDMA_GENERAL_ENABLE);
393 out:
394 spin_unlock(&tdma->global_lock);
397 static void tegra_dma_pause(struct tegra_dma_channel *tdc,
398 bool wait_for_burst_complete)
400 struct tegra_dma *tdma = tdc->tdma;
402 if (tdma->chip_data->support_channel_pause) {
403 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE,
404 TEGRA_APBDMA_CHAN_CSRE_PAUSE);
405 if (wait_for_burst_complete)
406 udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
407 } else {
408 tegra_dma_global_pause(tdc, wait_for_burst_complete);
412 static void tegra_dma_resume(struct tegra_dma_channel *tdc)
414 struct tegra_dma *tdma = tdc->tdma;
416 if (tdma->chip_data->support_channel_pause) {
417 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE, 0);
418 } else {
419 tegra_dma_global_resume(tdc);
423 static void tegra_dma_stop(struct tegra_dma_channel *tdc)
425 u32 csr;
426 u32 status;
428 /* Disable interrupts */
429 csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR);
430 csr &= ~TEGRA_APBDMA_CSR_IE_EOC;
431 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
433 /* Disable DMA */
434 csr &= ~TEGRA_APBDMA_CSR_ENB;
435 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
437 /* Clear interrupt status if it is there */
438 status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
439 if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
440 dev_dbg(tdc2dev(tdc), "%s():clearing interrupt\n", __func__);
441 tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
443 tdc->busy = false;
446 static void tegra_dma_start(struct tegra_dma_channel *tdc,
447 struct tegra_dma_sg_req *sg_req)
449 struct tegra_dma_channel_regs *ch_regs = &sg_req->ch_regs;
451 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, ch_regs->csr);
452 tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_regs->apb_seq);
453 tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_regs->apb_ptr);
454 tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_regs->ahb_seq);
455 tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_regs->ahb_ptr);
456 if (tdc->tdma->chip_data->support_separate_wcount_reg)
457 tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT, ch_regs->wcount);
459 /* Start DMA */
460 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
461 ch_regs->csr | TEGRA_APBDMA_CSR_ENB);
464 static void tegra_dma_configure_for_next(struct tegra_dma_channel *tdc,
465 struct tegra_dma_sg_req *nsg_req)
467 unsigned long status;
470 * The DMA controller reloads the new configuration for next transfer
471 * after last burst of current transfer completes.
472 * If there is no IEC status then this makes sure that last burst
473 * has not be completed. There may be case that last burst is on
474 * flight and so it can complete but because DMA is paused, it
475 * will not generates interrupt as well as not reload the new
476 * configuration.
477 * If there is already IEC status then interrupt handler need to
478 * load new configuration.
480 tegra_dma_pause(tdc, false);
481 status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
484 * If interrupt is pending then do nothing as the ISR will handle
485 * the programing for new request.
487 if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
488 dev_err(tdc2dev(tdc),
489 "Skipping new configuration as interrupt is pending\n");
490 tegra_dma_resume(tdc);
491 return;
494 /* Safe to program new configuration */
495 tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, nsg_req->ch_regs.apb_ptr);
496 tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, nsg_req->ch_regs.ahb_ptr);
497 if (tdc->tdma->chip_data->support_separate_wcount_reg)
498 tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT,
499 nsg_req->ch_regs.wcount);
500 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
501 nsg_req->ch_regs.csr | TEGRA_APBDMA_CSR_ENB);
502 nsg_req->configured = true;
504 tegra_dma_resume(tdc);
507 static void tdc_start_head_req(struct tegra_dma_channel *tdc)
509 struct tegra_dma_sg_req *sg_req;
511 if (list_empty(&tdc->pending_sg_req))
512 return;
514 sg_req = list_first_entry(&tdc->pending_sg_req,
515 typeof(*sg_req), node);
516 tegra_dma_start(tdc, sg_req);
517 sg_req->configured = true;
518 tdc->busy = true;
521 static void tdc_configure_next_head_desc(struct tegra_dma_channel *tdc)
523 struct tegra_dma_sg_req *hsgreq;
524 struct tegra_dma_sg_req *hnsgreq;
526 if (list_empty(&tdc->pending_sg_req))
527 return;
529 hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
530 if (!list_is_last(&hsgreq->node, &tdc->pending_sg_req)) {
531 hnsgreq = list_first_entry(&hsgreq->node,
532 typeof(*hnsgreq), node);
533 tegra_dma_configure_for_next(tdc, hnsgreq);
537 static inline int get_current_xferred_count(struct tegra_dma_channel *tdc,
538 struct tegra_dma_sg_req *sg_req, unsigned long status)
540 return sg_req->req_len - (status & TEGRA_APBDMA_STATUS_COUNT_MASK) - 4;
543 static void tegra_dma_abort_all(struct tegra_dma_channel *tdc)
545 struct tegra_dma_sg_req *sgreq;
546 struct tegra_dma_desc *dma_desc;
548 while (!list_empty(&tdc->pending_sg_req)) {
549 sgreq = list_first_entry(&tdc->pending_sg_req,
550 typeof(*sgreq), node);
551 list_move_tail(&sgreq->node, &tdc->free_sg_req);
552 if (sgreq->last_sg) {
553 dma_desc = sgreq->dma_desc;
554 dma_desc->dma_status = DMA_ERROR;
555 list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
557 /* Add in cb list if it is not there. */
558 if (!dma_desc->cb_count)
559 list_add_tail(&dma_desc->cb_node,
560 &tdc->cb_desc);
561 dma_desc->cb_count++;
564 tdc->isr_handler = NULL;
567 static bool handle_continuous_head_request(struct tegra_dma_channel *tdc,
568 struct tegra_dma_sg_req *last_sg_req, bool to_terminate)
570 struct tegra_dma_sg_req *hsgreq = NULL;
572 if (list_empty(&tdc->pending_sg_req)) {
573 dev_err(tdc2dev(tdc), "Dma is running without req\n");
574 tegra_dma_stop(tdc);
575 return false;
579 * Check that head req on list should be in flight.
580 * If it is not in flight then abort transfer as
581 * looping of transfer can not continue.
583 hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
584 if (!hsgreq->configured) {
585 tegra_dma_stop(tdc);
586 dev_err(tdc2dev(tdc), "Error in dma transfer, aborting dma\n");
587 tegra_dma_abort_all(tdc);
588 return false;
591 /* Configure next request */
592 if (!to_terminate)
593 tdc_configure_next_head_desc(tdc);
594 return true;
597 static void handle_once_dma_done(struct tegra_dma_channel *tdc,
598 bool to_terminate)
600 struct tegra_dma_sg_req *sgreq;
601 struct tegra_dma_desc *dma_desc;
603 tdc->busy = false;
604 sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
605 dma_desc = sgreq->dma_desc;
606 dma_desc->bytes_transferred += sgreq->req_len;
608 list_del(&sgreq->node);
609 if (sgreq->last_sg) {
610 dma_desc->dma_status = DMA_COMPLETE;
611 dma_cookie_complete(&dma_desc->txd);
612 if (!dma_desc->cb_count)
613 list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
614 dma_desc->cb_count++;
615 list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
617 list_add_tail(&sgreq->node, &tdc->free_sg_req);
619 /* Do not start DMA if it is going to be terminate */
620 if (to_terminate || list_empty(&tdc->pending_sg_req))
621 return;
623 tdc_start_head_req(tdc);
626 static void handle_cont_sngl_cycle_dma_done(struct tegra_dma_channel *tdc,
627 bool to_terminate)
629 struct tegra_dma_sg_req *sgreq;
630 struct tegra_dma_desc *dma_desc;
631 bool st;
633 sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
634 dma_desc = sgreq->dma_desc;
635 dma_desc->bytes_transferred += sgreq->req_len;
637 /* Callback need to be call */
638 if (!dma_desc->cb_count)
639 list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
640 dma_desc->cb_count++;
642 /* If not last req then put at end of pending list */
643 if (!list_is_last(&sgreq->node, &tdc->pending_sg_req)) {
644 list_move_tail(&sgreq->node, &tdc->pending_sg_req);
645 sgreq->configured = false;
646 st = handle_continuous_head_request(tdc, sgreq, to_terminate);
647 if (!st)
648 dma_desc->dma_status = DMA_ERROR;
652 static void tegra_dma_tasklet(unsigned long data)
654 struct tegra_dma_channel *tdc = (struct tegra_dma_channel *)data;
655 dma_async_tx_callback callback = NULL;
656 void *callback_param = NULL;
657 struct tegra_dma_desc *dma_desc;
658 unsigned long flags;
659 int cb_count;
661 spin_lock_irqsave(&tdc->lock, flags);
662 while (!list_empty(&tdc->cb_desc)) {
663 dma_desc = list_first_entry(&tdc->cb_desc,
664 typeof(*dma_desc), cb_node);
665 list_del(&dma_desc->cb_node);
666 callback = dma_desc->txd.callback;
667 callback_param = dma_desc->txd.callback_param;
668 cb_count = dma_desc->cb_count;
669 dma_desc->cb_count = 0;
670 spin_unlock_irqrestore(&tdc->lock, flags);
671 while (cb_count-- && callback)
672 callback(callback_param);
673 spin_lock_irqsave(&tdc->lock, flags);
675 spin_unlock_irqrestore(&tdc->lock, flags);
678 static irqreturn_t tegra_dma_isr(int irq, void *dev_id)
680 struct tegra_dma_channel *tdc = dev_id;
681 unsigned long status;
682 unsigned long flags;
684 spin_lock_irqsave(&tdc->lock, flags);
686 status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
687 if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
688 tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
689 tdc->isr_handler(tdc, false);
690 tasklet_schedule(&tdc->tasklet);
691 spin_unlock_irqrestore(&tdc->lock, flags);
692 return IRQ_HANDLED;
695 spin_unlock_irqrestore(&tdc->lock, flags);
696 dev_info(tdc2dev(tdc),
697 "Interrupt already served status 0x%08lx\n", status);
698 return IRQ_NONE;
701 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *txd)
703 struct tegra_dma_desc *dma_desc = txd_to_tegra_dma_desc(txd);
704 struct tegra_dma_channel *tdc = to_tegra_dma_chan(txd->chan);
705 unsigned long flags;
706 dma_cookie_t cookie;
708 spin_lock_irqsave(&tdc->lock, flags);
709 dma_desc->dma_status = DMA_IN_PROGRESS;
710 cookie = dma_cookie_assign(&dma_desc->txd);
711 list_splice_tail_init(&dma_desc->tx_list, &tdc->pending_sg_req);
712 spin_unlock_irqrestore(&tdc->lock, flags);
713 return cookie;
716 static void tegra_dma_issue_pending(struct dma_chan *dc)
718 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
719 unsigned long flags;
721 spin_lock_irqsave(&tdc->lock, flags);
722 if (list_empty(&tdc->pending_sg_req)) {
723 dev_err(tdc2dev(tdc), "No DMA request\n");
724 goto end;
726 if (!tdc->busy) {
727 tdc_start_head_req(tdc);
729 /* Continuous single mode: Configure next req */
730 if (tdc->cyclic) {
732 * Wait for 1 burst time for configure DMA for
733 * next transfer.
735 udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
736 tdc_configure_next_head_desc(tdc);
739 end:
740 spin_unlock_irqrestore(&tdc->lock, flags);
743 static int tegra_dma_terminate_all(struct dma_chan *dc)
745 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
746 struct tegra_dma_sg_req *sgreq;
747 struct tegra_dma_desc *dma_desc;
748 unsigned long flags;
749 unsigned long status;
750 unsigned long wcount;
751 bool was_busy;
753 spin_lock_irqsave(&tdc->lock, flags);
754 if (list_empty(&tdc->pending_sg_req)) {
755 spin_unlock_irqrestore(&tdc->lock, flags);
756 return 0;
759 if (!tdc->busy)
760 goto skip_dma_stop;
762 /* Pause DMA before checking the queue status */
763 tegra_dma_pause(tdc, true);
765 status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
766 if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
767 dev_dbg(tdc2dev(tdc), "%s():handling isr\n", __func__);
768 tdc->isr_handler(tdc, true);
769 status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
771 if (tdc->tdma->chip_data->support_separate_wcount_reg)
772 wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER);
773 else
774 wcount = status;
776 was_busy = tdc->busy;
777 tegra_dma_stop(tdc);
779 if (!list_empty(&tdc->pending_sg_req) && was_busy) {
780 sgreq = list_first_entry(&tdc->pending_sg_req,
781 typeof(*sgreq), node);
782 sgreq->dma_desc->bytes_transferred +=
783 get_current_xferred_count(tdc, sgreq, wcount);
785 tegra_dma_resume(tdc);
787 skip_dma_stop:
788 tegra_dma_abort_all(tdc);
790 while (!list_empty(&tdc->cb_desc)) {
791 dma_desc = list_first_entry(&tdc->cb_desc,
792 typeof(*dma_desc), cb_node);
793 list_del(&dma_desc->cb_node);
794 dma_desc->cb_count = 0;
796 spin_unlock_irqrestore(&tdc->lock, flags);
797 return 0;
800 static enum dma_status tegra_dma_tx_status(struct dma_chan *dc,
801 dma_cookie_t cookie, struct dma_tx_state *txstate)
803 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
804 struct tegra_dma_desc *dma_desc;
805 struct tegra_dma_sg_req *sg_req;
806 enum dma_status ret;
807 unsigned long flags;
808 unsigned int residual;
810 ret = dma_cookie_status(dc, cookie, txstate);
811 if (ret == DMA_COMPLETE)
812 return ret;
814 spin_lock_irqsave(&tdc->lock, flags);
816 /* Check on wait_ack desc status */
817 list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
818 if (dma_desc->txd.cookie == cookie) {
819 residual = dma_desc->bytes_requested -
820 (dma_desc->bytes_transferred %
821 dma_desc->bytes_requested);
822 dma_set_residue(txstate, residual);
823 ret = dma_desc->dma_status;
824 spin_unlock_irqrestore(&tdc->lock, flags);
825 return ret;
829 /* Check in pending list */
830 list_for_each_entry(sg_req, &tdc->pending_sg_req, node) {
831 dma_desc = sg_req->dma_desc;
832 if (dma_desc->txd.cookie == cookie) {
833 residual = dma_desc->bytes_requested -
834 (dma_desc->bytes_transferred %
835 dma_desc->bytes_requested);
836 dma_set_residue(txstate, residual);
837 ret = dma_desc->dma_status;
838 spin_unlock_irqrestore(&tdc->lock, flags);
839 return ret;
843 dev_dbg(tdc2dev(tdc), "cookie %d does not found\n", cookie);
844 spin_unlock_irqrestore(&tdc->lock, flags);
845 return ret;
848 static inline int get_bus_width(struct tegra_dma_channel *tdc,
849 enum dma_slave_buswidth slave_bw)
851 switch (slave_bw) {
852 case DMA_SLAVE_BUSWIDTH_1_BYTE:
853 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8;
854 case DMA_SLAVE_BUSWIDTH_2_BYTES:
855 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16;
856 case DMA_SLAVE_BUSWIDTH_4_BYTES:
857 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
858 case DMA_SLAVE_BUSWIDTH_8_BYTES:
859 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64;
860 default:
861 dev_warn(tdc2dev(tdc),
862 "slave bw is not supported, using 32bits\n");
863 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
867 static inline int get_burst_size(struct tegra_dma_channel *tdc,
868 u32 burst_size, enum dma_slave_buswidth slave_bw, int len)
870 int burst_byte;
871 int burst_ahb_width;
874 * burst_size from client is in terms of the bus_width.
875 * convert them into AHB memory width which is 4 byte.
877 burst_byte = burst_size * slave_bw;
878 burst_ahb_width = burst_byte / 4;
880 /* If burst size is 0 then calculate the burst size based on length */
881 if (!burst_ahb_width) {
882 if (len & 0xF)
883 return TEGRA_APBDMA_AHBSEQ_BURST_1;
884 else if ((len >> 4) & 0x1)
885 return TEGRA_APBDMA_AHBSEQ_BURST_4;
886 else
887 return TEGRA_APBDMA_AHBSEQ_BURST_8;
889 if (burst_ahb_width < 4)
890 return TEGRA_APBDMA_AHBSEQ_BURST_1;
891 else if (burst_ahb_width < 8)
892 return TEGRA_APBDMA_AHBSEQ_BURST_4;
893 else
894 return TEGRA_APBDMA_AHBSEQ_BURST_8;
897 static int get_transfer_param(struct tegra_dma_channel *tdc,
898 enum dma_transfer_direction direction, unsigned long *apb_addr,
899 unsigned long *apb_seq, unsigned long *csr, unsigned int *burst_size,
900 enum dma_slave_buswidth *slave_bw)
903 switch (direction) {
904 case DMA_MEM_TO_DEV:
905 *apb_addr = tdc->dma_sconfig.dst_addr;
906 *apb_seq = get_bus_width(tdc, tdc->dma_sconfig.dst_addr_width);
907 *burst_size = tdc->dma_sconfig.dst_maxburst;
908 *slave_bw = tdc->dma_sconfig.dst_addr_width;
909 *csr = TEGRA_APBDMA_CSR_DIR;
910 return 0;
912 case DMA_DEV_TO_MEM:
913 *apb_addr = tdc->dma_sconfig.src_addr;
914 *apb_seq = get_bus_width(tdc, tdc->dma_sconfig.src_addr_width);
915 *burst_size = tdc->dma_sconfig.src_maxburst;
916 *slave_bw = tdc->dma_sconfig.src_addr_width;
917 *csr = 0;
918 return 0;
920 default:
921 dev_err(tdc2dev(tdc), "Dma direction is not supported\n");
922 return -EINVAL;
924 return -EINVAL;
927 static void tegra_dma_prep_wcount(struct tegra_dma_channel *tdc,
928 struct tegra_dma_channel_regs *ch_regs, u32 len)
930 u32 len_field = (len - 4) & 0xFFFC;
932 if (tdc->tdma->chip_data->support_separate_wcount_reg)
933 ch_regs->wcount = len_field;
934 else
935 ch_regs->csr |= len_field;
938 static struct dma_async_tx_descriptor *tegra_dma_prep_slave_sg(
939 struct dma_chan *dc, struct scatterlist *sgl, unsigned int sg_len,
940 enum dma_transfer_direction direction, unsigned long flags,
941 void *context)
943 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
944 struct tegra_dma_desc *dma_desc;
945 unsigned int i;
946 struct scatterlist *sg;
947 unsigned long csr, ahb_seq, apb_ptr, apb_seq;
948 struct list_head req_list;
949 struct tegra_dma_sg_req *sg_req = NULL;
950 u32 burst_size;
951 enum dma_slave_buswidth slave_bw;
953 if (!tdc->config_init) {
954 dev_err(tdc2dev(tdc), "dma channel is not configured\n");
955 return NULL;
957 if (sg_len < 1) {
958 dev_err(tdc2dev(tdc), "Invalid segment length %d\n", sg_len);
959 return NULL;
962 if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
963 &burst_size, &slave_bw) < 0)
964 return NULL;
966 INIT_LIST_HEAD(&req_list);
968 ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
969 ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
970 TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
971 ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
973 csr |= TEGRA_APBDMA_CSR_ONCE | TEGRA_APBDMA_CSR_FLOW;
974 csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
975 if (flags & DMA_PREP_INTERRUPT)
976 csr |= TEGRA_APBDMA_CSR_IE_EOC;
978 apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
980 dma_desc = tegra_dma_desc_get(tdc);
981 if (!dma_desc) {
982 dev_err(tdc2dev(tdc), "Dma descriptors not available\n");
983 return NULL;
985 INIT_LIST_HEAD(&dma_desc->tx_list);
986 INIT_LIST_HEAD(&dma_desc->cb_node);
987 dma_desc->cb_count = 0;
988 dma_desc->bytes_requested = 0;
989 dma_desc->bytes_transferred = 0;
990 dma_desc->dma_status = DMA_IN_PROGRESS;
992 /* Make transfer requests */
993 for_each_sg(sgl, sg, sg_len, i) {
994 u32 len, mem;
996 mem = sg_dma_address(sg);
997 len = sg_dma_len(sg);
999 if ((len & 3) || (mem & 3) ||
1000 (len > tdc->tdma->chip_data->max_dma_count)) {
1001 dev_err(tdc2dev(tdc),
1002 "Dma length/memory address is not supported\n");
1003 tegra_dma_desc_put(tdc, dma_desc);
1004 return NULL;
1007 sg_req = tegra_dma_sg_req_get(tdc);
1008 if (!sg_req) {
1009 dev_err(tdc2dev(tdc), "Dma sg-req not available\n");
1010 tegra_dma_desc_put(tdc, dma_desc);
1011 return NULL;
1014 ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1015 dma_desc->bytes_requested += len;
1017 sg_req->ch_regs.apb_ptr = apb_ptr;
1018 sg_req->ch_regs.ahb_ptr = mem;
1019 sg_req->ch_regs.csr = csr;
1020 tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1021 sg_req->ch_regs.apb_seq = apb_seq;
1022 sg_req->ch_regs.ahb_seq = ahb_seq;
1023 sg_req->configured = false;
1024 sg_req->last_sg = false;
1025 sg_req->dma_desc = dma_desc;
1026 sg_req->req_len = len;
1028 list_add_tail(&sg_req->node, &dma_desc->tx_list);
1030 sg_req->last_sg = true;
1031 if (flags & DMA_CTRL_ACK)
1032 dma_desc->txd.flags = DMA_CTRL_ACK;
1035 * Make sure that mode should not be conflicting with currently
1036 * configured mode.
1038 if (!tdc->isr_handler) {
1039 tdc->isr_handler = handle_once_dma_done;
1040 tdc->cyclic = false;
1041 } else {
1042 if (tdc->cyclic) {
1043 dev_err(tdc2dev(tdc), "DMA configured in cyclic mode\n");
1044 tegra_dma_desc_put(tdc, dma_desc);
1045 return NULL;
1049 return &dma_desc->txd;
1052 static struct dma_async_tx_descriptor *tegra_dma_prep_dma_cyclic(
1053 struct dma_chan *dc, dma_addr_t buf_addr, size_t buf_len,
1054 size_t period_len, enum dma_transfer_direction direction,
1055 unsigned long flags)
1057 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1058 struct tegra_dma_desc *dma_desc = NULL;
1059 struct tegra_dma_sg_req *sg_req = NULL;
1060 unsigned long csr, ahb_seq, apb_ptr, apb_seq;
1061 int len;
1062 size_t remain_len;
1063 dma_addr_t mem = buf_addr;
1064 u32 burst_size;
1065 enum dma_slave_buswidth slave_bw;
1067 if (!buf_len || !period_len) {
1068 dev_err(tdc2dev(tdc), "Invalid buffer/period len\n");
1069 return NULL;
1072 if (!tdc->config_init) {
1073 dev_err(tdc2dev(tdc), "DMA slave is not configured\n");
1074 return NULL;
1078 * We allow to take more number of requests till DMA is
1079 * not started. The driver will loop over all requests.
1080 * Once DMA is started then new requests can be queued only after
1081 * terminating the DMA.
1083 if (tdc->busy) {
1084 dev_err(tdc2dev(tdc), "Request not allowed when dma running\n");
1085 return NULL;
1089 * We only support cycle transfer when buf_len is multiple of
1090 * period_len.
1092 if (buf_len % period_len) {
1093 dev_err(tdc2dev(tdc), "buf_len is not multiple of period_len\n");
1094 return NULL;
1097 len = period_len;
1098 if ((len & 3) || (buf_addr & 3) ||
1099 (len > tdc->tdma->chip_data->max_dma_count)) {
1100 dev_err(tdc2dev(tdc), "Req len/mem address is not correct\n");
1101 return NULL;
1104 if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1105 &burst_size, &slave_bw) < 0)
1106 return NULL;
1108 ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1109 ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1110 TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1111 ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1113 csr |= TEGRA_APBDMA_CSR_FLOW;
1114 if (flags & DMA_PREP_INTERRUPT)
1115 csr |= TEGRA_APBDMA_CSR_IE_EOC;
1116 csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1118 apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1120 dma_desc = tegra_dma_desc_get(tdc);
1121 if (!dma_desc) {
1122 dev_err(tdc2dev(tdc), "not enough descriptors available\n");
1123 return NULL;
1126 INIT_LIST_HEAD(&dma_desc->tx_list);
1127 INIT_LIST_HEAD(&dma_desc->cb_node);
1128 dma_desc->cb_count = 0;
1130 dma_desc->bytes_transferred = 0;
1131 dma_desc->bytes_requested = buf_len;
1132 remain_len = buf_len;
1134 /* Split transfer equal to period size */
1135 while (remain_len) {
1136 sg_req = tegra_dma_sg_req_get(tdc);
1137 if (!sg_req) {
1138 dev_err(tdc2dev(tdc), "Dma sg-req not available\n");
1139 tegra_dma_desc_put(tdc, dma_desc);
1140 return NULL;
1143 ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1144 sg_req->ch_regs.apb_ptr = apb_ptr;
1145 sg_req->ch_regs.ahb_ptr = mem;
1146 sg_req->ch_regs.csr = csr;
1147 tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1148 sg_req->ch_regs.apb_seq = apb_seq;
1149 sg_req->ch_regs.ahb_seq = ahb_seq;
1150 sg_req->configured = false;
1151 sg_req->last_sg = false;
1152 sg_req->dma_desc = dma_desc;
1153 sg_req->req_len = len;
1155 list_add_tail(&sg_req->node, &dma_desc->tx_list);
1156 remain_len -= len;
1157 mem += len;
1159 sg_req->last_sg = true;
1160 if (flags & DMA_CTRL_ACK)
1161 dma_desc->txd.flags = DMA_CTRL_ACK;
1164 * Make sure that mode should not be conflicting with currently
1165 * configured mode.
1167 if (!tdc->isr_handler) {
1168 tdc->isr_handler = handle_cont_sngl_cycle_dma_done;
1169 tdc->cyclic = true;
1170 } else {
1171 if (!tdc->cyclic) {
1172 dev_err(tdc2dev(tdc), "DMA configuration conflict\n");
1173 tegra_dma_desc_put(tdc, dma_desc);
1174 return NULL;
1178 return &dma_desc->txd;
1181 static int tegra_dma_alloc_chan_resources(struct dma_chan *dc)
1183 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1184 struct tegra_dma *tdma = tdc->tdma;
1185 int ret;
1187 dma_cookie_init(&tdc->dma_chan);
1188 tdc->config_init = false;
1189 ret = clk_prepare_enable(tdma->dma_clk);
1190 if (ret < 0)
1191 dev_err(tdc2dev(tdc), "clk_prepare_enable failed: %d\n", ret);
1192 return ret;
1195 static void tegra_dma_free_chan_resources(struct dma_chan *dc)
1197 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1198 struct tegra_dma *tdma = tdc->tdma;
1200 struct tegra_dma_desc *dma_desc;
1201 struct tegra_dma_sg_req *sg_req;
1202 struct list_head dma_desc_list;
1203 struct list_head sg_req_list;
1204 unsigned long flags;
1206 INIT_LIST_HEAD(&dma_desc_list);
1207 INIT_LIST_HEAD(&sg_req_list);
1209 dev_dbg(tdc2dev(tdc), "Freeing channel %d\n", tdc->id);
1211 if (tdc->busy)
1212 tegra_dma_terminate_all(dc);
1214 spin_lock_irqsave(&tdc->lock, flags);
1215 list_splice_init(&tdc->pending_sg_req, &sg_req_list);
1216 list_splice_init(&tdc->free_sg_req, &sg_req_list);
1217 list_splice_init(&tdc->free_dma_desc, &dma_desc_list);
1218 INIT_LIST_HEAD(&tdc->cb_desc);
1219 tdc->config_init = false;
1220 tdc->isr_handler = NULL;
1221 spin_unlock_irqrestore(&tdc->lock, flags);
1223 while (!list_empty(&dma_desc_list)) {
1224 dma_desc = list_first_entry(&dma_desc_list,
1225 typeof(*dma_desc), node);
1226 list_del(&dma_desc->node);
1227 kfree(dma_desc);
1230 while (!list_empty(&sg_req_list)) {
1231 sg_req = list_first_entry(&sg_req_list, typeof(*sg_req), node);
1232 list_del(&sg_req->node);
1233 kfree(sg_req);
1235 clk_disable_unprepare(tdma->dma_clk);
1237 tdc->slave_id = 0;
1240 static struct dma_chan *tegra_dma_of_xlate(struct of_phandle_args *dma_spec,
1241 struct of_dma *ofdma)
1243 struct tegra_dma *tdma = ofdma->of_dma_data;
1244 struct dma_chan *chan;
1245 struct tegra_dma_channel *tdc;
1247 chan = dma_get_any_slave_channel(&tdma->dma_dev);
1248 if (!chan)
1249 return NULL;
1251 tdc = to_tegra_dma_chan(chan);
1252 tdc->slave_id = dma_spec->args[0];
1254 return chan;
1257 /* Tegra20 specific DMA controller information */
1258 static const struct tegra_dma_chip_data tegra20_dma_chip_data = {
1259 .nr_channels = 16,
1260 .channel_reg_size = 0x20,
1261 .max_dma_count = 1024UL * 64,
1262 .support_channel_pause = false,
1263 .support_separate_wcount_reg = false,
1266 /* Tegra30 specific DMA controller information */
1267 static const struct tegra_dma_chip_data tegra30_dma_chip_data = {
1268 .nr_channels = 32,
1269 .channel_reg_size = 0x20,
1270 .max_dma_count = 1024UL * 64,
1271 .support_channel_pause = false,
1272 .support_separate_wcount_reg = false,
1275 /* Tegra114 specific DMA controller information */
1276 static const struct tegra_dma_chip_data tegra114_dma_chip_data = {
1277 .nr_channels = 32,
1278 .channel_reg_size = 0x20,
1279 .max_dma_count = 1024UL * 64,
1280 .support_channel_pause = true,
1281 .support_separate_wcount_reg = false,
1284 /* Tegra148 specific DMA controller information */
1285 static const struct tegra_dma_chip_data tegra148_dma_chip_data = {
1286 .nr_channels = 32,
1287 .channel_reg_size = 0x40,
1288 .max_dma_count = 1024UL * 64,
1289 .support_channel_pause = true,
1290 .support_separate_wcount_reg = true,
1294 static const struct of_device_id tegra_dma_of_match[] = {
1296 .compatible = "nvidia,tegra148-apbdma",
1297 .data = &tegra148_dma_chip_data,
1298 }, {
1299 .compatible = "nvidia,tegra114-apbdma",
1300 .data = &tegra114_dma_chip_data,
1301 }, {
1302 .compatible = "nvidia,tegra30-apbdma",
1303 .data = &tegra30_dma_chip_data,
1304 }, {
1305 .compatible = "nvidia,tegra20-apbdma",
1306 .data = &tegra20_dma_chip_data,
1307 }, {
1310 MODULE_DEVICE_TABLE(of, tegra_dma_of_match);
1312 static int tegra_dma_probe(struct platform_device *pdev)
1314 struct resource *res;
1315 struct tegra_dma *tdma;
1316 int ret;
1317 int i;
1318 const struct tegra_dma_chip_data *cdata = NULL;
1319 const struct of_device_id *match;
1321 match = of_match_device(tegra_dma_of_match, &pdev->dev);
1322 if (!match) {
1323 dev_err(&pdev->dev, "Error: No device match found\n");
1324 return -ENODEV;
1326 cdata = match->data;
1328 tdma = devm_kzalloc(&pdev->dev, sizeof(*tdma) + cdata->nr_channels *
1329 sizeof(struct tegra_dma_channel), GFP_KERNEL);
1330 if (!tdma) {
1331 dev_err(&pdev->dev, "Error: memory allocation failed\n");
1332 return -ENOMEM;
1335 tdma->dev = &pdev->dev;
1336 tdma->chip_data = cdata;
1337 platform_set_drvdata(pdev, tdma);
1339 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1340 tdma->base_addr = devm_ioremap_resource(&pdev->dev, res);
1341 if (IS_ERR(tdma->base_addr))
1342 return PTR_ERR(tdma->base_addr);
1344 tdma->dma_clk = devm_clk_get(&pdev->dev, NULL);
1345 if (IS_ERR(tdma->dma_clk)) {
1346 dev_err(&pdev->dev, "Error: Missing controller clock\n");
1347 return PTR_ERR(tdma->dma_clk);
1350 tdma->rst = devm_reset_control_get(&pdev->dev, "dma");
1351 if (IS_ERR(tdma->rst)) {
1352 dev_err(&pdev->dev, "Error: Missing reset\n");
1353 return PTR_ERR(tdma->rst);
1356 spin_lock_init(&tdma->global_lock);
1358 pm_runtime_enable(&pdev->dev);
1359 if (!pm_runtime_enabled(&pdev->dev)) {
1360 ret = tegra_dma_runtime_resume(&pdev->dev);
1361 if (ret) {
1362 dev_err(&pdev->dev, "dma_runtime_resume failed %d\n",
1363 ret);
1364 goto err_pm_disable;
1368 /* Enable clock before accessing registers */
1369 ret = clk_prepare_enable(tdma->dma_clk);
1370 if (ret < 0) {
1371 dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n", ret);
1372 goto err_pm_disable;
1375 /* Reset DMA controller */
1376 reset_control_assert(tdma->rst);
1377 udelay(2);
1378 reset_control_deassert(tdma->rst);
1380 /* Enable global DMA registers */
1381 tdma_write(tdma, TEGRA_APBDMA_GENERAL, TEGRA_APBDMA_GENERAL_ENABLE);
1382 tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0);
1383 tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFFul);
1385 clk_disable_unprepare(tdma->dma_clk);
1387 INIT_LIST_HEAD(&tdma->dma_dev.channels);
1388 for (i = 0; i < cdata->nr_channels; i++) {
1389 struct tegra_dma_channel *tdc = &tdma->channels[i];
1391 tdc->chan_addr = tdma->base_addr +
1392 TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET +
1393 (i * cdata->channel_reg_size);
1395 res = platform_get_resource(pdev, IORESOURCE_IRQ, i);
1396 if (!res) {
1397 ret = -EINVAL;
1398 dev_err(&pdev->dev, "No irq resource for chan %d\n", i);
1399 goto err_irq;
1401 tdc->irq = res->start;
1402 snprintf(tdc->name, sizeof(tdc->name), "apbdma.%d", i);
1403 ret = devm_request_irq(&pdev->dev, tdc->irq,
1404 tegra_dma_isr, 0, tdc->name, tdc);
1405 if (ret) {
1406 dev_err(&pdev->dev,
1407 "request_irq failed with err %d channel %d\n",
1408 ret, i);
1409 goto err_irq;
1412 tdc->dma_chan.device = &tdma->dma_dev;
1413 dma_cookie_init(&tdc->dma_chan);
1414 list_add_tail(&tdc->dma_chan.device_node,
1415 &tdma->dma_dev.channels);
1416 tdc->tdma = tdma;
1417 tdc->id = i;
1419 tasklet_init(&tdc->tasklet, tegra_dma_tasklet,
1420 (unsigned long)tdc);
1421 spin_lock_init(&tdc->lock);
1423 INIT_LIST_HEAD(&tdc->pending_sg_req);
1424 INIT_LIST_HEAD(&tdc->free_sg_req);
1425 INIT_LIST_HEAD(&tdc->free_dma_desc);
1426 INIT_LIST_HEAD(&tdc->cb_desc);
1429 dma_cap_set(DMA_SLAVE, tdma->dma_dev.cap_mask);
1430 dma_cap_set(DMA_PRIVATE, tdma->dma_dev.cap_mask);
1431 dma_cap_set(DMA_CYCLIC, tdma->dma_dev.cap_mask);
1433 tdma->global_pause_count = 0;
1434 tdma->dma_dev.dev = &pdev->dev;
1435 tdma->dma_dev.device_alloc_chan_resources =
1436 tegra_dma_alloc_chan_resources;
1437 tdma->dma_dev.device_free_chan_resources =
1438 tegra_dma_free_chan_resources;
1439 tdma->dma_dev.device_prep_slave_sg = tegra_dma_prep_slave_sg;
1440 tdma->dma_dev.device_prep_dma_cyclic = tegra_dma_prep_dma_cyclic;
1441 tdma->dma_dev.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1442 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1443 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1444 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1445 tdma->dma_dev.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1446 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1447 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1448 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1449 tdma->dma_dev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1451 * XXX The hardware appears to support
1452 * DMA_RESIDUE_GRANULARITY_BURST-level reporting, but it's
1453 * only used by this driver during tegra_dma_terminate_all()
1455 tdma->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
1456 tdma->dma_dev.device_config = tegra_dma_slave_config;
1457 tdma->dma_dev.device_terminate_all = tegra_dma_terminate_all;
1458 tdma->dma_dev.device_tx_status = tegra_dma_tx_status;
1459 tdma->dma_dev.device_issue_pending = tegra_dma_issue_pending;
1461 ret = dma_async_device_register(&tdma->dma_dev);
1462 if (ret < 0) {
1463 dev_err(&pdev->dev,
1464 "Tegra20 APB DMA driver registration failed %d\n", ret);
1465 goto err_irq;
1468 ret = of_dma_controller_register(pdev->dev.of_node,
1469 tegra_dma_of_xlate, tdma);
1470 if (ret < 0) {
1471 dev_err(&pdev->dev,
1472 "Tegra20 APB DMA OF registration failed %d\n", ret);
1473 goto err_unregister_dma_dev;
1476 dev_info(&pdev->dev, "Tegra20 APB DMA driver register %d channels\n",
1477 cdata->nr_channels);
1478 return 0;
1480 err_unregister_dma_dev:
1481 dma_async_device_unregister(&tdma->dma_dev);
1482 err_irq:
1483 while (--i >= 0) {
1484 struct tegra_dma_channel *tdc = &tdma->channels[i];
1485 tasklet_kill(&tdc->tasklet);
1488 err_pm_disable:
1489 pm_runtime_disable(&pdev->dev);
1490 if (!pm_runtime_status_suspended(&pdev->dev))
1491 tegra_dma_runtime_suspend(&pdev->dev);
1492 return ret;
1495 static int tegra_dma_remove(struct platform_device *pdev)
1497 struct tegra_dma *tdma = platform_get_drvdata(pdev);
1498 int i;
1499 struct tegra_dma_channel *tdc;
1501 dma_async_device_unregister(&tdma->dma_dev);
1503 for (i = 0; i < tdma->chip_data->nr_channels; ++i) {
1504 tdc = &tdma->channels[i];
1505 tasklet_kill(&tdc->tasklet);
1508 pm_runtime_disable(&pdev->dev);
1509 if (!pm_runtime_status_suspended(&pdev->dev))
1510 tegra_dma_runtime_suspend(&pdev->dev);
1512 return 0;
1515 static int tegra_dma_runtime_suspend(struct device *dev)
1517 struct platform_device *pdev = to_platform_device(dev);
1518 struct tegra_dma *tdma = platform_get_drvdata(pdev);
1520 clk_disable_unprepare(tdma->dma_clk);
1521 return 0;
1524 static int tegra_dma_runtime_resume(struct device *dev)
1526 struct platform_device *pdev = to_platform_device(dev);
1527 struct tegra_dma *tdma = platform_get_drvdata(pdev);
1528 int ret;
1530 ret = clk_prepare_enable(tdma->dma_clk);
1531 if (ret < 0) {
1532 dev_err(dev, "clk_enable failed: %d\n", ret);
1533 return ret;
1535 return 0;
1538 #ifdef CONFIG_PM_SLEEP
1539 static int tegra_dma_pm_suspend(struct device *dev)
1541 struct tegra_dma *tdma = dev_get_drvdata(dev);
1542 int i;
1543 int ret;
1545 /* Enable clock before accessing register */
1546 ret = tegra_dma_runtime_resume(dev);
1547 if (ret < 0)
1548 return ret;
1550 tdma->reg_gen = tdma_read(tdma, TEGRA_APBDMA_GENERAL);
1551 for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1552 struct tegra_dma_channel *tdc = &tdma->channels[i];
1553 struct tegra_dma_channel_regs *ch_reg = &tdc->channel_reg;
1555 ch_reg->csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR);
1556 ch_reg->ahb_ptr = tdc_read(tdc, TEGRA_APBDMA_CHAN_AHBPTR);
1557 ch_reg->apb_ptr = tdc_read(tdc, TEGRA_APBDMA_CHAN_APBPTR);
1558 ch_reg->ahb_seq = tdc_read(tdc, TEGRA_APBDMA_CHAN_AHBSEQ);
1559 ch_reg->apb_seq = tdc_read(tdc, TEGRA_APBDMA_CHAN_APBSEQ);
1562 /* Disable clock */
1563 tegra_dma_runtime_suspend(dev);
1564 return 0;
1567 static int tegra_dma_pm_resume(struct device *dev)
1569 struct tegra_dma *tdma = dev_get_drvdata(dev);
1570 int i;
1571 int ret;
1573 /* Enable clock before accessing register */
1574 ret = tegra_dma_runtime_resume(dev);
1575 if (ret < 0)
1576 return ret;
1578 tdma_write(tdma, TEGRA_APBDMA_GENERAL, tdma->reg_gen);
1579 tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0);
1580 tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFFul);
1582 for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1583 struct tegra_dma_channel *tdc = &tdma->channels[i];
1584 struct tegra_dma_channel_regs *ch_reg = &tdc->channel_reg;
1586 tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_reg->apb_seq);
1587 tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_reg->apb_ptr);
1588 tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_reg->ahb_seq);
1589 tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_reg->ahb_ptr);
1590 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
1591 (ch_reg->csr & ~TEGRA_APBDMA_CSR_ENB));
1594 /* Disable clock */
1595 tegra_dma_runtime_suspend(dev);
1596 return 0;
1598 #endif
1600 static const struct dev_pm_ops tegra_dma_dev_pm_ops = {
1601 #ifdef CONFIG_PM
1602 .runtime_suspend = tegra_dma_runtime_suspend,
1603 .runtime_resume = tegra_dma_runtime_resume,
1604 #endif
1605 SET_SYSTEM_SLEEP_PM_OPS(tegra_dma_pm_suspend, tegra_dma_pm_resume)
1608 static struct platform_driver tegra_dmac_driver = {
1609 .driver = {
1610 .name = "tegra-apbdma",
1611 .pm = &tegra_dma_dev_pm_ops,
1612 .of_match_table = tegra_dma_of_match,
1614 .probe = tegra_dma_probe,
1615 .remove = tegra_dma_remove,
1618 module_platform_driver(tegra_dmac_driver);
1620 MODULE_ALIAS("platform:tegra20-apbdma");
1621 MODULE_DESCRIPTION("NVIDIA Tegra APB DMA Controller driver");
1622 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1623 MODULE_LICENSE("GPL v2");