1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
3 * This driver supports the memory controllers found on the Intel
4 * processor family Sandy Bridge.
6 * This file may be distributed under the terms of the
7 * GNU General Public License version 2 only.
9 * Copyright (c) 2011 by:
10 * Mauro Carvalho Chehab
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <asm/processor.h>
27 #include "edac_core.h"
30 static LIST_HEAD(sbridge_edac_list
);
31 static DEFINE_MUTEX(sbridge_edac_lock
);
35 * Alter this version for the module when modifications are made
37 #define SBRIDGE_REVISION " Ver: 1.1.1 "
38 #define EDAC_MOD_STR "sbridge_edac"
43 #define sbridge_printk(level, fmt, arg...) \
44 edac_printk(level, "sbridge", fmt, ##arg)
46 #define sbridge_mc_printk(mci, level, fmt, arg...) \
47 edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
50 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
52 #define GET_BITFIELD(v, lo, hi) \
53 (((v) & GENMASK_ULL(hi, lo)) >> (lo))
55 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
56 static const u32 sbridge_dram_rule
[] = {
57 0x80, 0x88, 0x90, 0x98, 0xa0,
58 0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
61 static const u32 ibridge_dram_rule
[] = {
62 0x60, 0x68, 0x70, 0x78, 0x80,
63 0x88, 0x90, 0x98, 0xa0, 0xa8,
64 0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
65 0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
68 #define SAD_LIMIT(reg) ((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
69 #define DRAM_ATTR(reg) GET_BITFIELD(reg, 2, 3)
70 #define INTERLEAVE_MODE(reg) GET_BITFIELD(reg, 1, 1)
71 #define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
72 #define A7MODE(reg) GET_BITFIELD(reg, 26, 26)
74 static char *get_dram_attr(u32 reg
)
76 switch(DRAM_ATTR(reg
)) {
88 static const u32 sbridge_interleave_list
[] = {
89 0x84, 0x8c, 0x94, 0x9c, 0xa4,
90 0xac, 0xb4, 0xbc, 0xc4, 0xcc,
93 static const u32 ibridge_interleave_list
[] = {
94 0x64, 0x6c, 0x74, 0x7c, 0x84,
95 0x8c, 0x94, 0x9c, 0xa4, 0xac,
96 0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
97 0xdc, 0xe4, 0xec, 0xf4, 0xfc,
100 struct interleave_pkg
{
105 static const struct interleave_pkg sbridge_interleave_pkg
[] = {
116 static const struct interleave_pkg ibridge_interleave_pkg
[] = {
127 static inline int sad_pkg(const struct interleave_pkg
*table
, u32 reg
,
130 return GET_BITFIELD(reg
, table
[interleave
].start
,
131 table
[interleave
].end
);
134 /* Devices 12 Function 7 */
138 #define HASWELL_TOLM 0xd0
139 #define HASWELL_TOHM_0 0xd4
140 #define HASWELL_TOHM_1 0xd8
142 #define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff)
143 #define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
145 /* Device 13 Function 6 */
147 #define SAD_TARGET 0xf0
149 #define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11)
151 #define SAD_CONTROL 0xf4
153 /* Device 14 function 0 */
155 static const u32 tad_dram_rule
[] = {
156 0x40, 0x44, 0x48, 0x4c,
157 0x50, 0x54, 0x58, 0x5c,
158 0x60, 0x64, 0x68, 0x6c,
160 #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
162 #define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
163 #define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11)
164 #define TAD_CH(reg) GET_BITFIELD(reg, 8, 9)
165 #define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7)
166 #define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5)
167 #define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3)
168 #define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1)
170 /* Device 15, function 0 */
174 #define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2)
175 #define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1)
176 #define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0)
178 /* Device 15, function 1 */
180 #define RASENABLES 0xac
181 #define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0)
183 /* Device 15, functions 2-5 */
185 static const int mtr_regs
[] = {
189 #define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19)
190 #define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14)
191 #define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13)
192 #define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4)
193 #define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1)
195 static const u32 tad_ch_nilv_offset
[] = {
196 0x90, 0x94, 0x98, 0x9c,
197 0xa0, 0xa4, 0xa8, 0xac,
198 0xb0, 0xb4, 0xb8, 0xbc,
200 #define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29)
201 #define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26)
203 static const u32 rir_way_limit
[] = {
204 0x108, 0x10c, 0x110, 0x114, 0x118,
206 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
208 #define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31)
209 #define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29)
211 #define MAX_RIR_WAY 8
213 static const u32 rir_offset
[MAX_RIR_RANGES
][MAX_RIR_WAY
] = {
214 { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
215 { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
216 { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
217 { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
218 { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
221 #define RIR_RNK_TGT(reg) GET_BITFIELD(reg, 16, 19)
222 #define RIR_OFFSET(reg) GET_BITFIELD(reg, 2, 14)
224 /* Device 16, functions 2-7 */
227 * FIXME: Implement the error count reads directly
230 static const u32 correrrcnt
[] = {
231 0x104, 0x108, 0x10c, 0x110,
234 #define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31)
235 #define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30)
236 #define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15)
237 #define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14)
239 static const u32 correrrthrsld
[] = {
240 0x11c, 0x120, 0x124, 0x128,
243 #define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30)
244 #define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14)
247 /* Device 17, function 0 */
249 #define SB_RANK_CFG_A 0x0328
251 #define IB_RANK_CFG_A 0x0320
257 #define NUM_CHANNELS 8 /* 2MC per socket, four chan per MC */
258 #define MAX_DIMMS 3 /* Max DIMMS per channel */
259 #define CHANNEL_UNSPECIFIED 0xf /* Intel IA32 SDM 15-14 */
269 struct sbridge_info
{
273 u64 (*get_tolm
)(struct sbridge_pvt
*pvt
);
274 u64 (*get_tohm
)(struct sbridge_pvt
*pvt
);
275 u64 (*rir_limit
)(u32 reg
);
276 const u32
*dram_rule
;
277 const u32
*interleave_list
;
278 const struct interleave_pkg
*interleave_pkg
;
281 u8 (*get_node_id
)(struct sbridge_pvt
*pvt
);
282 enum mem_type (*get_memory_type
)(struct sbridge_pvt
*pvt
);
283 enum dev_type (*get_width
)(struct sbridge_pvt
*pvt
, u32 mtr
);
284 struct pci_dev
*pci_vtd
;
287 struct sbridge_channel
{
292 struct pci_id_descr
{
297 struct pci_id_table
{
298 const struct pci_id_descr
*descr
;
303 struct list_head list
;
305 u8 node_id
, source_id
;
306 struct pci_dev
**pdev
;
308 struct mem_ctl_info
*mci
;
312 struct pci_dev
*pci_ta
, *pci_ddrio
, *pci_ras
;
313 struct pci_dev
*pci_sad0
, *pci_sad1
;
314 struct pci_dev
*pci_ha0
, *pci_ha1
;
315 struct pci_dev
*pci_br0
, *pci_br1
;
316 struct pci_dev
*pci_ha1_ta
;
317 struct pci_dev
*pci_tad
[NUM_CHANNELS
];
319 struct sbridge_dev
*sbridge_dev
;
321 struct sbridge_info info
;
322 struct sbridge_channel channel
[NUM_CHANNELS
];
324 /* Memory type detection */
325 bool is_mirrored
, is_lockstep
, is_close_pg
;
327 /* Fifo double buffers */
328 struct mce mce_entry
[MCE_LOG_LEN
];
329 struct mce mce_outentry
[MCE_LOG_LEN
];
331 /* Fifo in/out counters */
332 unsigned mce_in
, mce_out
;
334 /* Count indicator to show errors not got */
335 unsigned mce_overrun
;
337 /* Memory description */
341 #define PCI_DESCR(device_id, opt) \
342 .dev_id = (device_id), \
345 static const struct pci_id_descr pci_dev_descr_sbridge
[] = {
346 /* Processor Home Agent */
347 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0
, 0) },
349 /* Memory controller */
350 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA
, 0) },
351 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS
, 0) },
352 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0
, 0) },
353 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1
, 0) },
354 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2
, 0) },
355 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3
, 0) },
356 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO
, 1) },
358 /* System Address Decoder */
359 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0
, 0) },
360 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1
, 0) },
362 /* Broadcast Registers */
363 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR
, 0) },
366 #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
367 static const struct pci_id_table pci_dev_descr_sbridge_table
[] = {
368 PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge
),
369 {0,} /* 0 terminated list. */
372 /* This changes depending if 1HA or 2HA:
374 * 0x0eb8 (17.0) is DDRIO0
376 * 0x0ebc (17.4) is DDRIO0
378 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0 0x0eb8
379 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0 0x0ebc
382 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0 0x0ea0
383 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA 0x0ea8
384 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS 0x0e71
385 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0 0x0eaa
386 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1 0x0eab
387 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2 0x0eac
388 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3 0x0ead
389 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD 0x0ec8
390 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0 0x0ec9
391 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1 0x0eca
392 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1 0x0e60
393 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA 0x0e68
394 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS 0x0e79
395 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 0x0e6a
396 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1 0x0e6b
397 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2 0x0e6c
398 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3 0x0e6d
400 static const struct pci_id_descr pci_dev_descr_ibridge
[] = {
401 /* Processor Home Agent */
402 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0
, 0) },
404 /* Memory controller */
405 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA
, 0) },
406 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS
, 0) },
407 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0
, 0) },
408 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1
, 0) },
409 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2
, 0) },
410 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3
, 0) },
412 /* System Address Decoder */
413 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD
, 0) },
415 /* Broadcast Registers */
416 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0
, 1) },
417 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1
, 0) },
419 /* Optional, mode 2HA */
420 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1
, 1) },
422 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA
, 1) },
423 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS
, 1) },
425 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0
, 1) },
426 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1
, 1) },
427 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2
, 1) },
428 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3
, 1) },
430 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0
, 1) },
431 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0
, 1) },
434 static const struct pci_id_table pci_dev_descr_ibridge_table
[] = {
435 PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge
),
436 {0,} /* 0 terminated list. */
439 /* Haswell support */
442 * - 3 DDR3 channels, 2 DPC per channel
445 * - 4 DDR4 channels, 3 DPC per channel
448 * - 4 DDR4 channels, 3 DPC per channel
451 * - each IMC interfaces with a SMI 2 channel
452 * - each SMI channel interfaces with a scalable memory buffer
453 * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
455 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
456 #define HASWELL_HASYSDEFEATURE2 0x84
457 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
458 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0 0x2fa0
459 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1 0x2f60
460 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA 0x2fa8
461 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL 0x2f71
462 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA 0x2f68
463 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL 0x2f79
464 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
465 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
466 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
467 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
468 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
469 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
470 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
471 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
472 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
473 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
474 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
475 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
476 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
477 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
478 static const struct pci_id_descr pci_dev_descr_haswell
[] = {
479 /* first item must be the HA */
480 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0
, 0) },
482 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0
, 0) },
483 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1
, 0) },
485 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1
, 1) },
487 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA
, 0) },
488 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL
, 0) },
489 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0
, 0) },
490 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1
, 0) },
491 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2
, 1) },
492 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3
, 1) },
494 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0
, 1) },
495 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1
, 1) },
496 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2
, 1) },
497 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3
, 1) },
499 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA
, 1) },
500 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL
, 1) },
501 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0
, 1) },
502 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1
, 1) },
503 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2
, 1) },
504 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3
, 1) },
507 static const struct pci_id_table pci_dev_descr_haswell_table
[] = {
508 PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell
),
509 {0,} /* 0 terminated list. */
517 * - 2 DDR3 channels, 2 DPC per channel
520 * - 4 DDR4 channels, 3 DPC per channel
523 * - 4 DDR4 channels, 3 DPC per channel
526 * - each IMC interfaces with a SMI 2 channel
527 * - each SMI channel interfaces with a scalable memory buffer
528 * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
530 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
531 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0 0x6fa0
532 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1 0x6f60
533 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA 0x6fa8
534 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL 0x6f71
535 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA 0x6f68
536 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL 0x6f79
537 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
538 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
539 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
540 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
541 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
542 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
543 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
544 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
545 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
546 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
547 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
549 static const struct pci_id_descr pci_dev_descr_broadwell
[] = {
550 /* first item must be the HA */
551 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0
, 0) },
553 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0
, 0) },
554 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1
, 0) },
556 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1
, 1) },
558 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA
, 0) },
559 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL
, 0) },
560 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0
, 0) },
561 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1
, 0) },
562 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2
, 1) },
563 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3
, 1) },
565 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0
, 1) },
567 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA
, 1) },
568 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL
, 1) },
569 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0
, 1) },
570 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1
, 1) },
571 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2
, 1) },
572 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3
, 1) },
575 static const struct pci_id_table pci_dev_descr_broadwell_table
[] = {
576 PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell
),
577 {0,} /* 0 terminated list. */
581 * pci_device_id table for which devices we are looking for
583 static const struct pci_device_id sbridge_pci_tbl
[] = {
584 {PCI_DEVICE(PCI_VENDOR_ID_INTEL
, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0
)},
585 {PCI_DEVICE(PCI_VENDOR_ID_INTEL
, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA
)},
586 {PCI_DEVICE(PCI_VENDOR_ID_INTEL
, PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0
)},
587 {PCI_DEVICE(PCI_VENDOR_ID_INTEL
, PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0
)},
588 {0,} /* 0 terminated list. */
592 /****************************************************************************
593 Ancillary status routines
594 ****************************************************************************/
596 static inline int numrank(enum type type
, u32 mtr
)
598 int ranks
= (1 << RANK_CNT_BITS(mtr
));
601 if (type
== HASWELL
|| type
== BROADWELL
)
605 edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
606 ranks
, max
, (unsigned int)RANK_CNT_BITS(mtr
), mtr
);
613 static inline int numrow(u32 mtr
)
615 int rows
= (RANK_WIDTH_BITS(mtr
) + 12);
617 if (rows
< 13 || rows
> 18) {
618 edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
619 rows
, (unsigned int)RANK_WIDTH_BITS(mtr
), mtr
);
626 static inline int numcol(u32 mtr
)
628 int cols
= (COL_WIDTH_BITS(mtr
) + 10);
631 edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
632 cols
, (unsigned int)COL_WIDTH_BITS(mtr
), mtr
);
639 static struct sbridge_dev
*get_sbridge_dev(u8 bus
)
641 struct sbridge_dev
*sbridge_dev
;
643 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
) {
644 if (sbridge_dev
->bus
== bus
)
651 static struct sbridge_dev
*alloc_sbridge_dev(u8 bus
,
652 const struct pci_id_table
*table
)
654 struct sbridge_dev
*sbridge_dev
;
656 sbridge_dev
= kzalloc(sizeof(*sbridge_dev
), GFP_KERNEL
);
660 sbridge_dev
->pdev
= kzalloc(sizeof(*sbridge_dev
->pdev
) * table
->n_devs
,
662 if (!sbridge_dev
->pdev
) {
667 sbridge_dev
->bus
= bus
;
668 sbridge_dev
->n_devs
= table
->n_devs
;
669 list_add_tail(&sbridge_dev
->list
, &sbridge_edac_list
);
674 static void free_sbridge_dev(struct sbridge_dev
*sbridge_dev
)
676 list_del(&sbridge_dev
->list
);
677 kfree(sbridge_dev
->pdev
);
681 static u64
sbridge_get_tolm(struct sbridge_pvt
*pvt
)
685 /* Address range is 32:28 */
686 pci_read_config_dword(pvt
->pci_sad1
, TOLM
, ®
);
687 return GET_TOLM(reg
);
690 static u64
sbridge_get_tohm(struct sbridge_pvt
*pvt
)
694 pci_read_config_dword(pvt
->pci_sad1
, TOHM
, ®
);
695 return GET_TOHM(reg
);
698 static u64
ibridge_get_tolm(struct sbridge_pvt
*pvt
)
702 pci_read_config_dword(pvt
->pci_br1
, TOLM
, ®
);
704 return GET_TOLM(reg
);
707 static u64
ibridge_get_tohm(struct sbridge_pvt
*pvt
)
711 pci_read_config_dword(pvt
->pci_br1
, TOHM
, ®
);
713 return GET_TOHM(reg
);
716 static u64
rir_limit(u32 reg
)
718 return ((u64
)GET_BITFIELD(reg
, 1, 10) << 29) | 0x1fffffff;
721 static enum mem_type
get_memory_type(struct sbridge_pvt
*pvt
)
726 if (pvt
->pci_ddrio
) {
727 pci_read_config_dword(pvt
->pci_ddrio
, pvt
->info
.rankcfgr
,
729 if (GET_BITFIELD(reg
, 11, 11))
730 /* FIXME: Can also be LRDIMM */
740 static enum mem_type
haswell_get_memory_type(struct sbridge_pvt
*pvt
)
743 bool registered
= false;
744 enum mem_type mtype
= MEM_UNKNOWN
;
749 pci_read_config_dword(pvt
->pci_ddrio
,
750 HASWELL_DDRCRCLKCONTROLS
, ®
);
752 if (GET_BITFIELD(reg
, 16, 16))
755 pci_read_config_dword(pvt
->pci_ta
, MCMTR
, ®
);
756 if (GET_BITFIELD(reg
, 14, 14)) {
772 static enum dev_type
sbridge_get_width(struct sbridge_pvt
*pvt
, u32 mtr
)
774 /* there's no way to figure out */
778 static enum dev_type
__ibridge_get_width(u32 mtr
)
800 static enum dev_type
ibridge_get_width(struct sbridge_pvt
*pvt
, u32 mtr
)
803 * ddr3_width on the documentation but also valid for DDR4 on
806 return __ibridge_get_width(GET_BITFIELD(mtr
, 7, 8));
809 static enum dev_type
broadwell_get_width(struct sbridge_pvt
*pvt
, u32 mtr
)
811 /* ddr3_width on the documentation but also valid for DDR4 */
812 return __ibridge_get_width(GET_BITFIELD(mtr
, 8, 9));
815 static u8
get_node_id(struct sbridge_pvt
*pvt
)
818 pci_read_config_dword(pvt
->pci_br0
, SAD_CONTROL
, ®
);
819 return GET_BITFIELD(reg
, 0, 2);
822 static u8
haswell_get_node_id(struct sbridge_pvt
*pvt
)
826 pci_read_config_dword(pvt
->pci_sad1
, SAD_CONTROL
, ®
);
827 return GET_BITFIELD(reg
, 0, 3);
830 static u64
haswell_get_tolm(struct sbridge_pvt
*pvt
)
834 pci_read_config_dword(pvt
->info
.pci_vtd
, HASWELL_TOLM
, ®
);
835 return (GET_BITFIELD(reg
, 26, 31) << 26) | 0x3ffffff;
838 static u64
haswell_get_tohm(struct sbridge_pvt
*pvt
)
843 pci_read_config_dword(pvt
->info
.pci_vtd
, HASWELL_TOHM_0
, ®
);
844 rc
= GET_BITFIELD(reg
, 26, 31);
845 pci_read_config_dword(pvt
->info
.pci_vtd
, HASWELL_TOHM_1
, ®
);
846 rc
= ((reg
<< 6) | rc
) << 26;
848 return rc
| 0x1ffffff;
851 static u64
haswell_rir_limit(u32 reg
)
853 return (((u64
)GET_BITFIELD(reg
, 1, 11) + 1) << 29) - 1;
856 static inline u8
sad_pkg_socket(u8 pkg
)
858 /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
859 return ((pkg
>> 3) << 2) | (pkg
& 0x3);
862 static inline u8
sad_pkg_ha(u8 pkg
)
864 return (pkg
>> 2) & 0x1;
867 /****************************************************************************
868 Memory check routines
869 ****************************************************************************/
870 static struct pci_dev
*get_pdev_same_bus(u8 bus
, u32 id
)
872 struct pci_dev
*pdev
= NULL
;
875 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
, id
, pdev
);
876 if (pdev
&& pdev
->bus
->number
== bus
)
884 * check_if_ecc_is_active() - Checks if ECC is active
886 * @type: Memory controller type
887 * returns: 0 in case ECC is active, -ENODEV if it can't be determined or
890 static int check_if_ecc_is_active(const u8 bus
, enum type type
)
892 struct pci_dev
*pdev
= NULL
;
897 id
= PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA
;
900 id
= PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA
;
903 id
= PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA
;
906 id
= PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA
;
912 pdev
= get_pdev_same_bus(bus
, id
);
914 sbridge_printk(KERN_ERR
, "Couldn't find PCI device "
915 "%04x:%04x! on bus %02d\n",
916 PCI_VENDOR_ID_INTEL
, id
, bus
);
920 pci_read_config_dword(pdev
, MCMTR
, &mcmtr
);
921 if (!IS_ECC_ENABLED(mcmtr
)) {
922 sbridge_printk(KERN_ERR
, "ECC is disabled. Aborting\n");
928 static int get_dimm_config(struct mem_ctl_info
*mci
)
930 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
931 struct dimm_info
*dimm
;
932 unsigned i
, j
, banks
, ranks
, rows
, cols
, npages
;
938 if (pvt
->info
.type
== HASWELL
|| pvt
->info
.type
== BROADWELL
)
939 pci_read_config_dword(pvt
->pci_sad1
, SAD_TARGET
, ®
);
941 pci_read_config_dword(pvt
->pci_br0
, SAD_TARGET
, ®
);
943 pvt
->sbridge_dev
->source_id
= SOURCE_ID(reg
);
945 pvt
->sbridge_dev
->node_id
= pvt
->info
.get_node_id(pvt
);
946 edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
947 pvt
->sbridge_dev
->mc
,
948 pvt
->sbridge_dev
->node_id
,
949 pvt
->sbridge_dev
->source_id
);
951 pci_read_config_dword(pvt
->pci_ras
, RASENABLES
, ®
);
952 if (IS_MIRROR_ENABLED(reg
)) {
953 edac_dbg(0, "Memory mirror is enabled\n");
954 pvt
->is_mirrored
= true;
956 edac_dbg(0, "Memory mirror is disabled\n");
957 pvt
->is_mirrored
= false;
960 pci_read_config_dword(pvt
->pci_ta
, MCMTR
, &pvt
->info
.mcmtr
);
961 if (IS_LOCKSTEP_ENABLED(pvt
->info
.mcmtr
)) {
962 edac_dbg(0, "Lockstep is enabled\n");
963 mode
= EDAC_S8ECD8ED
;
964 pvt
->is_lockstep
= true;
966 edac_dbg(0, "Lockstep is disabled\n");
967 mode
= EDAC_S4ECD4ED
;
968 pvt
->is_lockstep
= false;
970 if (IS_CLOSE_PG(pvt
->info
.mcmtr
)) {
971 edac_dbg(0, "address map is on closed page mode\n");
972 pvt
->is_close_pg
= true;
974 edac_dbg(0, "address map is on open page mode\n");
975 pvt
->is_close_pg
= false;
978 mtype
= pvt
->info
.get_memory_type(pvt
);
979 if (mtype
== MEM_RDDR3
|| mtype
== MEM_RDDR4
)
980 edac_dbg(0, "Memory is registered\n");
981 else if (mtype
== MEM_UNKNOWN
)
982 edac_dbg(0, "Cannot determine memory type\n");
984 edac_dbg(0, "Memory is unregistered\n");
986 if (mtype
== MEM_DDR4
|| mtype
== MEM_RDDR4
)
991 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
994 if (!pvt
->pci_tad
[i
])
996 for (j
= 0; j
< ARRAY_SIZE(mtr_regs
); j
++) {
997 dimm
= EDAC_DIMM_PTR(mci
->layers
, mci
->dimms
, mci
->n_layers
,
999 pci_read_config_dword(pvt
->pci_tad
[i
],
1001 edac_dbg(4, "Channel #%d MTR%d = %x\n", i
, j
, mtr
);
1002 if (IS_DIMM_PRESENT(mtr
)) {
1003 pvt
->channel
[i
].dimms
++;
1005 ranks
= numrank(pvt
->info
.type
, mtr
);
1009 size
= ((u64
)rows
* cols
* banks
* ranks
) >> (20 - 3);
1010 npages
= MiB_TO_PAGES(size
);
1012 edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1013 pvt
->sbridge_dev
->mc
, i
/4, i
%4, j
,
1015 banks
, ranks
, rows
, cols
);
1017 dimm
->nr_pages
= npages
;
1019 dimm
->dtype
= pvt
->info
.get_width(pvt
, mtr
);
1020 dimm
->mtype
= mtype
;
1021 dimm
->edac_mode
= mode
;
1022 snprintf(dimm
->label
, sizeof(dimm
->label
),
1023 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1024 pvt
->sbridge_dev
->source_id
, i
/4, i
%4, j
);
1032 static void get_memory_layout(const struct mem_ctl_info
*mci
)
1034 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1035 int i
, j
, k
, n_sads
, n_tads
, sad_interl
;
1043 * Step 1) Get TOLM/TOHM ranges
1046 pvt
->tolm
= pvt
->info
.get_tolm(pvt
);
1047 tmp_mb
= (1 + pvt
->tolm
) >> 20;
1049 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1050 edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1051 gb
, (mb
*1000)/1024, (u64
)pvt
->tolm
);
1053 /* Address range is already 45:25 */
1054 pvt
->tohm
= pvt
->info
.get_tohm(pvt
);
1055 tmp_mb
= (1 + pvt
->tohm
) >> 20;
1057 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1058 edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1059 gb
, (mb
*1000)/1024, (u64
)pvt
->tohm
);
1062 * Step 2) Get SAD range and SAD Interleave list
1063 * TAD registers contain the interleave wayness. However, it
1064 * seems simpler to just discover it indirectly, with the
1068 for (n_sads
= 0; n_sads
< pvt
->info
.max_sad
; n_sads
++) {
1069 /* SAD_LIMIT Address range is 45:26 */
1070 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.dram_rule
[n_sads
],
1072 limit
= SAD_LIMIT(reg
);
1074 if (!DRAM_RULE_ENABLE(reg
))
1080 tmp_mb
= (limit
+ 1) >> 20;
1081 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1082 edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1086 ((u64
)tmp_mb
) << 20L,
1087 INTERLEAVE_MODE(reg
) ? "8:6" : "[8:6]XOR[18:16]",
1091 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.interleave_list
[n_sads
],
1093 sad_interl
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, 0);
1094 for (j
= 0; j
< 8; j
++) {
1095 u32 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, j
);
1096 if (j
> 0 && sad_interl
== pkg
)
1099 edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1105 * Step 3) Get TAD range
1108 for (n_tads
= 0; n_tads
< MAX_TAD
; n_tads
++) {
1109 pci_read_config_dword(pvt
->pci_ha0
, tad_dram_rule
[n_tads
],
1111 limit
= TAD_LIMIT(reg
);
1114 tmp_mb
= (limit
+ 1) >> 20;
1116 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1117 edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1118 n_tads
, gb
, (mb
*1000)/1024,
1119 ((u64
)tmp_mb
) << 20L,
1131 * Step 4) Get TAD offsets, per each channel
1133 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
1134 if (!pvt
->channel
[i
].dimms
)
1136 for (j
= 0; j
< n_tads
; j
++) {
1137 pci_read_config_dword(pvt
->pci_tad
[i
],
1138 tad_ch_nilv_offset
[j
],
1140 tmp_mb
= TAD_OFFSET(reg
) >> 20;
1141 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1142 edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1145 ((u64
)tmp_mb
) << 20L,
1151 * Step 6) Get RIR Wayness/Limit, per each channel
1153 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
1154 if (!pvt
->channel
[i
].dimms
)
1156 for (j
= 0; j
< MAX_RIR_RANGES
; j
++) {
1157 pci_read_config_dword(pvt
->pci_tad
[i
],
1161 if (!IS_RIR_VALID(reg
))
1164 tmp_mb
= pvt
->info
.rir_limit(reg
) >> 20;
1165 rir_way
= 1 << RIR_WAY(reg
);
1166 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1167 edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1170 ((u64
)tmp_mb
) << 20L,
1174 for (k
= 0; k
< rir_way
; k
++) {
1175 pci_read_config_dword(pvt
->pci_tad
[i
],
1178 tmp_mb
= RIR_OFFSET(reg
) << 6;
1180 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1181 edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1184 ((u64
)tmp_mb
) << 20L,
1185 (u32
)RIR_RNK_TGT(reg
),
1192 static struct mem_ctl_info
*get_mci_for_node_id(u8 node_id
)
1194 struct sbridge_dev
*sbridge_dev
;
1196 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
) {
1197 if (sbridge_dev
->node_id
== node_id
)
1198 return sbridge_dev
->mci
;
1203 static int get_memory_error_data(struct mem_ctl_info
*mci
,
1208 char **area_type
, char *msg
)
1210 struct mem_ctl_info
*new_mci
;
1211 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1212 struct pci_dev
*pci_ha
;
1213 int n_rir
, n_sads
, n_tads
, sad_way
, sck_xch
;
1214 int sad_interl
, idx
, base_ch
;
1215 int interleave_mode
, shiftup
= 0;
1216 unsigned sad_interleave
[pvt
->info
.max_interleave
];
1218 u8 ch_way
, sck_way
, pkg
, sad_ha
= 0, ch_add
= 0;
1222 u64 ch_addr
, offset
, limit
= 0, prv
= 0;
1226 * Step 0) Check if the address is at special memory ranges
1227 * The check bellow is probably enough to fill all cases where
1228 * the error is not inside a memory, except for the legacy
1229 * range (e. g. VGA addresses). It is unlikely, however, that the
1230 * memory controller would generate an error on that range.
1232 if ((addr
> (u64
) pvt
->tolm
) && (addr
< (1LL << 32))) {
1233 sprintf(msg
, "Error at TOLM area, on addr 0x%08Lx", addr
);
1236 if (addr
>= (u64
)pvt
->tohm
) {
1237 sprintf(msg
, "Error at MMIOH area, on addr 0x%016Lx", addr
);
1242 * Step 1) Get socket
1244 for (n_sads
= 0; n_sads
< pvt
->info
.max_sad
; n_sads
++) {
1245 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.dram_rule
[n_sads
],
1248 if (!DRAM_RULE_ENABLE(reg
))
1251 limit
= SAD_LIMIT(reg
);
1253 sprintf(msg
, "Can't discover the memory socket");
1260 if (n_sads
== pvt
->info
.max_sad
) {
1261 sprintf(msg
, "Can't discover the memory socket");
1265 *area_type
= get_dram_attr(dram_rule
);
1266 interleave_mode
= INTERLEAVE_MODE(dram_rule
);
1268 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.interleave_list
[n_sads
],
1271 if (pvt
->info
.type
== SANDY_BRIDGE
) {
1272 sad_interl
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, 0);
1273 for (sad_way
= 0; sad_way
< 8; sad_way
++) {
1274 u32 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, sad_way
);
1275 if (sad_way
> 0 && sad_interl
== pkg
)
1277 sad_interleave
[sad_way
] = pkg
;
1278 edac_dbg(0, "SAD interleave #%d: %d\n",
1279 sad_way
, sad_interleave
[sad_way
]);
1281 edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
1282 pvt
->sbridge_dev
->mc
,
1287 !interleave_mode
? "" : "XOR[18:16]");
1288 if (interleave_mode
)
1289 idx
= ((addr
>> 6) ^ (addr
>> 16)) & 7;
1291 idx
= (addr
>> 6) & 7;
1305 sprintf(msg
, "Can't discover socket interleave");
1308 *socket
= sad_interleave
[idx
];
1309 edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
1310 idx
, sad_way
, *socket
);
1311 } else if (pvt
->info
.type
== HASWELL
|| pvt
->info
.type
== BROADWELL
) {
1312 int bits
, a7mode
= A7MODE(dram_rule
);
1315 /* A7 mode swaps P9 with P6 */
1316 bits
= GET_BITFIELD(addr
, 7, 8) << 1;
1317 bits
|= GET_BITFIELD(addr
, 9, 9);
1319 bits
= GET_BITFIELD(addr
, 6, 8);
1321 if (interleave_mode
== 0) {
1322 /* interleave mode will XOR {8,7,6} with {18,17,16} */
1323 idx
= GET_BITFIELD(addr
, 16, 18);
1328 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, idx
);
1329 *socket
= sad_pkg_socket(pkg
);
1330 sad_ha
= sad_pkg_ha(pkg
);
1335 /* MCChanShiftUpEnable */
1336 pci_read_config_dword(pvt
->pci_ha0
,
1337 HASWELL_HASYSDEFEATURE2
, ®
);
1338 shiftup
= GET_BITFIELD(reg
, 22, 22);
1341 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
1342 idx
, *socket
, sad_ha
, shiftup
);
1344 /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
1345 idx
= (addr
>> 6) & 7;
1346 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, idx
);
1347 *socket
= sad_pkg_socket(pkg
);
1348 sad_ha
= sad_pkg_ha(pkg
);
1351 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
1352 idx
, *socket
, sad_ha
);
1358 * Move to the proper node structure, in order to access the
1359 * right PCI registers
1361 new_mci
= get_mci_for_node_id(*socket
);
1363 sprintf(msg
, "Struct for socket #%u wasn't initialized",
1368 pvt
= mci
->pvt_info
;
1371 * Step 2) Get memory channel
1374 if (pvt
->info
.type
== SANDY_BRIDGE
)
1375 pci_ha
= pvt
->pci_ha0
;
1378 pci_ha
= pvt
->pci_ha1
;
1380 pci_ha
= pvt
->pci_ha0
;
1382 for (n_tads
= 0; n_tads
< MAX_TAD
; n_tads
++) {
1383 pci_read_config_dword(pci_ha
, tad_dram_rule
[n_tads
], ®
);
1384 limit
= TAD_LIMIT(reg
);
1386 sprintf(msg
, "Can't discover the memory channel");
1393 if (n_tads
== MAX_TAD
) {
1394 sprintf(msg
, "Can't discover the memory channel");
1398 ch_way
= TAD_CH(reg
) + 1;
1399 sck_way
= TAD_SOCK(reg
) + 1;
1404 idx
= (addr
>> (6 + sck_way
+ shiftup
)) & 0x3;
1408 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
1412 base_ch
= TAD_TGT0(reg
);
1415 base_ch
= TAD_TGT1(reg
);
1418 base_ch
= TAD_TGT2(reg
);
1421 base_ch
= TAD_TGT3(reg
);
1424 sprintf(msg
, "Can't discover the TAD target");
1427 *channel_mask
= 1 << base_ch
;
1429 pci_read_config_dword(pvt
->pci_tad
[ch_add
+ base_ch
],
1430 tad_ch_nilv_offset
[n_tads
],
1433 if (pvt
->is_mirrored
) {
1434 *channel_mask
|= 1 << ((base_ch
+ 2) % 4);
1438 sck_xch
= 1 << sck_way
* (ch_way
>> 1);
1441 sprintf(msg
, "Invalid mirror set. Can't decode addr");
1445 sck_xch
= (1 << sck_way
) * ch_way
;
1447 if (pvt
->is_lockstep
)
1448 *channel_mask
|= 1 << ((base_ch
+ 1) % 4);
1450 offset
= TAD_OFFSET(tad_offset
);
1452 edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
1463 /* Calculate channel address */
1464 /* Remove the TAD offset */
1466 if (offset
> addr
) {
1467 sprintf(msg
, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
1472 /* Store the low bits [0:6] of the addr */
1473 ch_addr
= addr
& 0x7f;
1474 /* Remove socket wayness and remove 6 bits */
1476 addr
= div_u64(addr
, sck_xch
);
1478 /* Divide by channel way */
1479 addr
= addr
/ ch_way
;
1481 /* Recover the last 6 bits */
1482 ch_addr
|= addr
<< 6;
1485 * Step 3) Decode rank
1487 for (n_rir
= 0; n_rir
< MAX_RIR_RANGES
; n_rir
++) {
1488 pci_read_config_dword(pvt
->pci_tad
[ch_add
+ base_ch
],
1489 rir_way_limit
[n_rir
],
1492 if (!IS_RIR_VALID(reg
))
1495 limit
= pvt
->info
.rir_limit(reg
);
1496 gb
= div_u64_rem(limit
>> 20, 1024, &mb
);
1497 edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
1502 if (ch_addr
<= limit
)
1505 if (n_rir
== MAX_RIR_RANGES
) {
1506 sprintf(msg
, "Can't discover the memory rank for ch addr 0x%08Lx",
1510 rir_way
= RIR_WAY(reg
);
1512 if (pvt
->is_close_pg
)
1513 idx
= (ch_addr
>> 6);
1515 idx
= (ch_addr
>> 13); /* FIXME: Datasheet says to shift by 15 */
1516 idx
%= 1 << rir_way
;
1518 pci_read_config_dword(pvt
->pci_tad
[ch_add
+ base_ch
],
1519 rir_offset
[n_rir
][idx
],
1521 *rank
= RIR_RNK_TGT(reg
);
1523 edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
1533 /****************************************************************************
1534 Device initialization routines: put/get, init/exit
1535 ****************************************************************************/
1538 * sbridge_put_all_devices 'put' all the devices that we have
1539 * reserved via 'get'
1541 static void sbridge_put_devices(struct sbridge_dev
*sbridge_dev
)
1546 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
1547 struct pci_dev
*pdev
= sbridge_dev
->pdev
[i
];
1550 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
1552 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
));
1557 static void sbridge_put_all_devices(void)
1559 struct sbridge_dev
*sbridge_dev
, *tmp
;
1561 list_for_each_entry_safe(sbridge_dev
, tmp
, &sbridge_edac_list
, list
) {
1562 sbridge_put_devices(sbridge_dev
);
1563 free_sbridge_dev(sbridge_dev
);
1567 static int sbridge_get_onedevice(struct pci_dev
**prev
,
1569 const struct pci_id_table
*table
,
1570 const unsigned devno
)
1572 struct sbridge_dev
*sbridge_dev
;
1573 const struct pci_id_descr
*dev_descr
= &table
->descr
[devno
];
1574 struct pci_dev
*pdev
= NULL
;
1577 sbridge_printk(KERN_DEBUG
,
1578 "Seeking for: PCI ID %04x:%04x\n",
1579 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
1581 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
,
1582 dev_descr
->dev_id
, *prev
);
1590 if (dev_descr
->optional
)
1593 /* if the HA wasn't found */
1597 sbridge_printk(KERN_INFO
,
1598 "Device not found: %04x:%04x\n",
1599 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
1601 /* End of list, leave */
1604 bus
= pdev
->bus
->number
;
1606 sbridge_dev
= get_sbridge_dev(bus
);
1608 sbridge_dev
= alloc_sbridge_dev(bus
, table
);
1616 if (sbridge_dev
->pdev
[devno
]) {
1617 sbridge_printk(KERN_ERR
,
1618 "Duplicated device for %04x:%04x\n",
1619 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
1624 sbridge_dev
->pdev
[devno
] = pdev
;
1626 /* Be sure that the device is enabled */
1627 if (unlikely(pci_enable_device(pdev
) < 0)) {
1628 sbridge_printk(KERN_ERR
,
1629 "Couldn't enable %04x:%04x\n",
1630 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
1634 edac_dbg(0, "Detected %04x:%04x\n",
1635 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
1638 * As stated on drivers/pci/search.c, the reference count for
1639 * @from is always decremented if it is not %NULL. So, as we need
1640 * to get all devices up to null, we need to do a get for the device
1650 * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
1651 * devices we want to reference for this driver.
1652 * @num_mc: pointer to the memory controllers count, to be incremented in case
1654 * @table: model specific table
1656 * returns 0 in case of success or error code
1658 static int sbridge_get_all_devices(u8
*num_mc
,
1659 const struct pci_id_table
*table
)
1662 struct pci_dev
*pdev
= NULL
;
1664 while (table
&& table
->descr
) {
1665 for (i
= 0; i
< table
->n_devs
; i
++) {
1668 rc
= sbridge_get_onedevice(&pdev
, num_mc
,
1675 sbridge_put_all_devices();
1686 static int sbridge_mci_bind_devs(struct mem_ctl_info
*mci
,
1687 struct sbridge_dev
*sbridge_dev
)
1689 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1690 struct pci_dev
*pdev
;
1691 u8 saw_chan_mask
= 0;
1694 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
1695 pdev
= sbridge_dev
->pdev
[i
];
1699 switch (pdev
->device
) {
1700 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0
:
1701 pvt
->pci_sad0
= pdev
;
1703 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1
:
1704 pvt
->pci_sad1
= pdev
;
1706 case PCI_DEVICE_ID_INTEL_SBRIDGE_BR
:
1707 pvt
->pci_br0
= pdev
;
1709 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0
:
1710 pvt
->pci_ha0
= pdev
;
1712 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA
:
1715 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS
:
1716 pvt
->pci_ras
= pdev
;
1718 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0
:
1719 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1
:
1720 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2
:
1721 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3
:
1723 int id
= pdev
->device
- PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0
;
1724 pvt
->pci_tad
[id
] = pdev
;
1725 saw_chan_mask
|= 1 << id
;
1728 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO
:
1729 pvt
->pci_ddrio
= pdev
;
1735 edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
1736 pdev
->vendor
, pdev
->device
,
1741 /* Check if everything were registered */
1742 if (!pvt
->pci_sad0
|| !pvt
->pci_sad1
|| !pvt
->pci_ha0
||
1743 !pvt
-> pci_tad
|| !pvt
->pci_ras
|| !pvt
->pci_ta
)
1746 if (saw_chan_mask
!= 0x0f)
1751 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
1755 sbridge_printk(KERN_ERR
, "Unexpected device %02x:%02x\n",
1756 PCI_VENDOR_ID_INTEL
, pdev
->device
);
1760 static int ibridge_mci_bind_devs(struct mem_ctl_info
*mci
,
1761 struct sbridge_dev
*sbridge_dev
)
1763 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1764 struct pci_dev
*pdev
;
1765 u8 saw_chan_mask
= 0;
1768 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
1769 pdev
= sbridge_dev
->pdev
[i
];
1773 switch (pdev
->device
) {
1774 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0
:
1775 pvt
->pci_ha0
= pdev
;
1777 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA
:
1779 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS
:
1780 pvt
->pci_ras
= pdev
;
1782 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0
:
1783 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1
:
1784 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2
:
1785 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3
:
1787 int id
= pdev
->device
- PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0
;
1788 pvt
->pci_tad
[id
] = pdev
;
1789 saw_chan_mask
|= 1 << id
;
1792 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0
:
1793 pvt
->pci_ddrio
= pdev
;
1795 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0
:
1796 pvt
->pci_ddrio
= pdev
;
1798 case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD
:
1799 pvt
->pci_sad0
= pdev
;
1801 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0
:
1802 pvt
->pci_br0
= pdev
;
1804 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1
:
1805 pvt
->pci_br1
= pdev
;
1807 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1
:
1808 pvt
->pci_ha1
= pdev
;
1810 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0
:
1811 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1
:
1812 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2
:
1813 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3
:
1815 int id
= pdev
->device
- PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0
+ 4;
1816 pvt
->pci_tad
[id
] = pdev
;
1817 saw_chan_mask
|= 1 << id
;
1824 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
1826 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
),
1830 /* Check if everything were registered */
1831 if (!pvt
->pci_sad0
|| !pvt
->pci_ha0
|| !pvt
->pci_br0
||
1832 !pvt
->pci_br1
|| !pvt
->pci_tad
|| !pvt
->pci_ras
||
1836 if (saw_chan_mask
!= 0x0f && /* -EN */
1837 saw_chan_mask
!= 0x33 && /* -EP */
1838 saw_chan_mask
!= 0xff) /* -EX */
1843 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
1847 sbridge_printk(KERN_ERR
,
1848 "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL
,
1853 static int haswell_mci_bind_devs(struct mem_ctl_info
*mci
,
1854 struct sbridge_dev
*sbridge_dev
)
1856 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1857 struct pci_dev
*pdev
;
1858 u8 saw_chan_mask
= 0;
1861 /* there's only one device per system; not tied to any bus */
1862 if (pvt
->info
.pci_vtd
== NULL
)
1863 /* result will be checked later */
1864 pvt
->info
.pci_vtd
= pci_get_device(PCI_VENDOR_ID_INTEL
,
1865 PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC
,
1868 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
1869 pdev
= sbridge_dev
->pdev
[i
];
1873 switch (pdev
->device
) {
1874 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0
:
1875 pvt
->pci_sad0
= pdev
;
1877 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1
:
1878 pvt
->pci_sad1
= pdev
;
1880 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0
:
1881 pvt
->pci_ha0
= pdev
;
1883 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA
:
1886 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL
:
1887 pvt
->pci_ras
= pdev
;
1889 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0
:
1890 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1
:
1891 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2
:
1892 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3
:
1894 int id
= pdev
->device
- PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0
;
1896 pvt
->pci_tad
[id
] = pdev
;
1897 saw_chan_mask
|= 1 << id
;
1900 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0
:
1901 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1
:
1902 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2
:
1903 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3
:
1905 int id
= pdev
->device
- PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0
+ 4;
1907 pvt
->pci_tad
[id
] = pdev
;
1908 saw_chan_mask
|= 1 << id
;
1911 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0
:
1912 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1
:
1913 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2
:
1914 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3
:
1915 if (!pvt
->pci_ddrio
)
1916 pvt
->pci_ddrio
= pdev
;
1918 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1
:
1919 pvt
->pci_ha1
= pdev
;
1921 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA
:
1922 pvt
->pci_ha1_ta
= pdev
;
1928 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
1930 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
),
1934 /* Check if everything were registered */
1935 if (!pvt
->pci_sad0
|| !pvt
->pci_ha0
|| !pvt
->pci_sad1
||
1936 !pvt
->pci_ras
|| !pvt
->pci_ta
|| !pvt
->info
.pci_vtd
)
1939 if (saw_chan_mask
!= 0x0f && /* -EN */
1940 saw_chan_mask
!= 0x33 && /* -EP */
1941 saw_chan_mask
!= 0xff) /* -EX */
1946 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
1950 static int broadwell_mci_bind_devs(struct mem_ctl_info
*mci
,
1951 struct sbridge_dev
*sbridge_dev
)
1953 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1954 struct pci_dev
*pdev
;
1955 u8 saw_chan_mask
= 0;
1958 /* there's only one device per system; not tied to any bus */
1959 if (pvt
->info
.pci_vtd
== NULL
)
1960 /* result will be checked later */
1961 pvt
->info
.pci_vtd
= pci_get_device(PCI_VENDOR_ID_INTEL
,
1962 PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC
,
1965 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
1966 pdev
= sbridge_dev
->pdev
[i
];
1970 switch (pdev
->device
) {
1971 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0
:
1972 pvt
->pci_sad0
= pdev
;
1974 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1
:
1975 pvt
->pci_sad1
= pdev
;
1977 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0
:
1978 pvt
->pci_ha0
= pdev
;
1980 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA
:
1983 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL
:
1984 pvt
->pci_ras
= pdev
;
1986 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0
:
1987 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1
:
1988 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2
:
1989 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3
:
1991 int id
= pdev
->device
- PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0
;
1992 pvt
->pci_tad
[id
] = pdev
;
1993 saw_chan_mask
|= 1 << id
;
1996 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0
:
1997 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1
:
1998 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2
:
1999 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3
:
2001 int id
= pdev
->device
- PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0
+ 4;
2002 pvt
->pci_tad
[id
] = pdev
;
2003 saw_chan_mask
|= 1 << id
;
2006 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0
:
2007 pvt
->pci_ddrio
= pdev
;
2009 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1
:
2010 pvt
->pci_ha1
= pdev
;
2012 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA
:
2013 pvt
->pci_ha1_ta
= pdev
;
2019 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2021 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
),
2025 /* Check if everything were registered */
2026 if (!pvt
->pci_sad0
|| !pvt
->pci_ha0
|| !pvt
->pci_sad1
||
2027 !pvt
->pci_ras
|| !pvt
->pci_ta
|| !pvt
->info
.pci_vtd
)
2030 if (saw_chan_mask
!= 0x0f && /* -EN */
2031 saw_chan_mask
!= 0x33 && /* -EP */
2032 saw_chan_mask
!= 0xff) /* -EX */
2037 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2041 /****************************************************************************
2042 Error check routines
2043 ****************************************************************************/
2046 * While Sandy Bridge has error count registers, SMI BIOS read values from
2047 * and resets the counters. So, they are not reliable for the OS to read
2048 * from them. So, we have no option but to just trust on whatever MCE is
2049 * telling us about the errors.
2051 static void sbridge_mce_output_error(struct mem_ctl_info
*mci
,
2052 const struct mce
*m
)
2054 struct mem_ctl_info
*new_mci
;
2055 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2056 enum hw_event_mc_err_type tp_event
;
2057 char *type
, *optype
, msg
[256];
2058 bool ripv
= GET_BITFIELD(m
->mcgstatus
, 0, 0);
2059 bool overflow
= GET_BITFIELD(m
->status
, 62, 62);
2060 bool uncorrected_error
= GET_BITFIELD(m
->status
, 61, 61);
2062 u32 core_err_cnt
= GET_BITFIELD(m
->status
, 38, 52);
2063 u32 mscod
= GET_BITFIELD(m
->status
, 16, 31);
2064 u32 errcode
= GET_BITFIELD(m
->status
, 0, 15);
2065 u32 channel
= GET_BITFIELD(m
->status
, 0, 3);
2066 u32 optypenum
= GET_BITFIELD(m
->status
, 4, 6);
2067 long channel_mask
, first_channel
;
2068 u8 rank
, socket
, ha
;
2070 char *area_type
= NULL
;
2072 if (pvt
->info
.type
!= SANDY_BRIDGE
)
2075 recoverable
= GET_BITFIELD(m
->status
, 56, 56);
2077 if (uncorrected_error
) {
2080 tp_event
= HW_EVENT_ERR_FATAL
;
2083 tp_event
= HW_EVENT_ERR_UNCORRECTED
;
2087 tp_event
= HW_EVENT_ERR_CORRECTED
;
2091 * According with Table 15-9 of the Intel Architecture spec vol 3A,
2092 * memory errors should fit in this mask:
2093 * 000f 0000 1mmm cccc (binary)
2095 * f = Correction Report Filtering Bit. If 1, subsequent errors
2099 * If the mask doesn't match, report an error to the parsing logic
2101 if (! ((errcode
& 0xef80) == 0x80)) {
2102 optype
= "Can't parse: it is not a mem";
2104 switch (optypenum
) {
2106 optype
= "generic undef request error";
2109 optype
= "memory read error";
2112 optype
= "memory write error";
2115 optype
= "addr/cmd error";
2118 optype
= "memory scrubbing error";
2121 optype
= "reserved";
2126 /* Only decode errors with an valid address (ADDRV) */
2127 if (!GET_BITFIELD(m
->status
, 58, 58))
2130 rc
= get_memory_error_data(mci
, m
->addr
, &socket
, &ha
,
2131 &channel_mask
, &rank
, &area_type
, msg
);
2134 new_mci
= get_mci_for_node_id(socket
);
2136 strcpy(msg
, "Error: socket got corrupted!");
2140 pvt
= mci
->pvt_info
;
2142 first_channel
= find_first_bit(&channel_mask
, NUM_CHANNELS
);
2153 * FIXME: On some memory configurations (mirror, lockstep), the
2154 * Memory Controller can't point the error to a single DIMM. The
2155 * EDAC core should be handling the channel mask, in order to point
2156 * to the group of dimm's where the error may be happening.
2158 if (!pvt
->is_lockstep
&& !pvt
->is_mirrored
&& !pvt
->is_close_pg
)
2159 channel
= first_channel
;
2161 snprintf(msg
, sizeof(msg
),
2162 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
2163 overflow
? " OVERFLOW" : "",
2164 (uncorrected_error
&& recoverable
) ? " recoverable" : "",
2171 edac_dbg(0, "%s\n", msg
);
2173 /* FIXME: need support for channel mask */
2175 if (channel
== CHANNEL_UNSPECIFIED
)
2178 /* Call the helper to output message */
2179 edac_mc_handle_error(tp_event
, mci
, core_err_cnt
,
2180 m
->addr
>> PAGE_SHIFT
, m
->addr
& ~PAGE_MASK
, 0,
2181 4*ha
+channel
, dimm
, -1,
2185 edac_mc_handle_error(tp_event
, mci
, core_err_cnt
, 0, 0, 0,
2192 * sbridge_check_error Retrieve and process errors reported by the
2193 * hardware. Called by the Core module.
2195 static void sbridge_check_error(struct mem_ctl_info
*mci
)
2197 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2203 * MCE first step: Copy all mce errors into a temporary buffer
2204 * We use a double buffering here, to reduce the risk of
2208 count
= (pvt
->mce_out
+ MCE_LOG_LEN
- pvt
->mce_in
)
2213 m
= pvt
->mce_outentry
;
2214 if (pvt
->mce_in
+ count
> MCE_LOG_LEN
) {
2215 unsigned l
= MCE_LOG_LEN
- pvt
->mce_in
;
2217 memcpy(m
, &pvt
->mce_entry
[pvt
->mce_in
], sizeof(*m
) * l
);
2223 memcpy(m
, &pvt
->mce_entry
[pvt
->mce_in
], sizeof(*m
) * count
);
2225 pvt
->mce_in
+= count
;
2228 if (pvt
->mce_overrun
) {
2229 sbridge_printk(KERN_ERR
, "Lost %d memory errors\n",
2232 pvt
->mce_overrun
= 0;
2236 * MCE second step: parse errors and display
2238 for (i
= 0; i
< count
; i
++)
2239 sbridge_mce_output_error(mci
, &pvt
->mce_outentry
[i
]);
2243 * sbridge_mce_check_error Replicates mcelog routine to get errors
2244 * This routine simply queues mcelog errors, and
2245 * return. The error itself should be handled later
2246 * by sbridge_check_error.
2247 * WARNING: As this routine should be called at NMI time, extra care should
2248 * be taken to avoid deadlocks, and to be as fast as possible.
2250 static int sbridge_mce_check_error(struct notifier_block
*nb
, unsigned long val
,
2253 struct mce
*mce
= (struct mce
*)data
;
2254 struct mem_ctl_info
*mci
;
2255 struct sbridge_pvt
*pvt
;
2258 if (get_edac_report_status() == EDAC_REPORTING_DISABLED
)
2261 mci
= get_mci_for_node_id(mce
->socketid
);
2264 pvt
= mci
->pvt_info
;
2267 * Just let mcelog handle it if the error is
2268 * outside the memory controller. A memory error
2269 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
2270 * bit 12 has an special meaning.
2272 if ((mce
->status
& 0xefff) >> 7 != 1)
2275 if (mce
->mcgstatus
& MCG_STATUS_MCIP
)
2280 sbridge_mc_printk(mci
, KERN_DEBUG
, "HANDLING MCE MEMORY ERROR\n");
2282 sbridge_mc_printk(mci
, KERN_DEBUG
, "CPU %d: Machine Check %s: %Lx "
2283 "Bank %d: %016Lx\n", mce
->extcpu
, type
,
2284 mce
->mcgstatus
, mce
->bank
, mce
->status
);
2285 sbridge_mc_printk(mci
, KERN_DEBUG
, "TSC %llx ", mce
->tsc
);
2286 sbridge_mc_printk(mci
, KERN_DEBUG
, "ADDR %llx ", mce
->addr
);
2287 sbridge_mc_printk(mci
, KERN_DEBUG
, "MISC %llx ", mce
->misc
);
2289 sbridge_mc_printk(mci
, KERN_DEBUG
, "PROCESSOR %u:%x TIME %llu SOCKET "
2290 "%u APIC %x\n", mce
->cpuvendor
, mce
->cpuid
,
2291 mce
->time
, mce
->socketid
, mce
->apicid
);
2294 if ((pvt
->mce_out
+ 1) % MCE_LOG_LEN
== pvt
->mce_in
) {
2300 /* Copy memory error at the ringbuffer */
2301 memcpy(&pvt
->mce_entry
[pvt
->mce_out
], mce
, sizeof(*mce
));
2303 pvt
->mce_out
= (pvt
->mce_out
+ 1) % MCE_LOG_LEN
;
2305 /* Handle fatal errors immediately */
2306 if (mce
->mcgstatus
& 1)
2307 sbridge_check_error(mci
);
2309 /* Advice mcelog that the error were handled */
2313 static struct notifier_block sbridge_mce_dec
= {
2314 .notifier_call
= sbridge_mce_check_error
,
2317 /****************************************************************************
2318 EDAC register/unregister logic
2319 ****************************************************************************/
2321 static void sbridge_unregister_mci(struct sbridge_dev
*sbridge_dev
)
2323 struct mem_ctl_info
*mci
= sbridge_dev
->mci
;
2324 struct sbridge_pvt
*pvt
;
2326 if (unlikely(!mci
|| !mci
->pvt_info
)) {
2327 edac_dbg(0, "MC: dev = %p\n", &sbridge_dev
->pdev
[0]->dev
);
2329 sbridge_printk(KERN_ERR
, "Couldn't find mci handler\n");
2333 pvt
= mci
->pvt_info
;
2335 edac_dbg(0, "MC: mci = %p, dev = %p\n",
2336 mci
, &sbridge_dev
->pdev
[0]->dev
);
2338 /* Remove MC sysfs nodes */
2339 edac_mc_del_mc(mci
->pdev
);
2341 edac_dbg(1, "%s: free mci struct\n", mci
->ctl_name
);
2342 kfree(mci
->ctl_name
);
2344 sbridge_dev
->mci
= NULL
;
2347 static int sbridge_register_mci(struct sbridge_dev
*sbridge_dev
, enum type type
)
2349 struct mem_ctl_info
*mci
;
2350 struct edac_mc_layer layers
[2];
2351 struct sbridge_pvt
*pvt
;
2352 struct pci_dev
*pdev
= sbridge_dev
->pdev
[0];
2355 /* Check the number of active and not disabled channels */
2356 rc
= check_if_ecc_is_active(sbridge_dev
->bus
, type
);
2357 if (unlikely(rc
< 0))
2360 /* allocate a new MC control structure */
2361 layers
[0].type
= EDAC_MC_LAYER_CHANNEL
;
2362 layers
[0].size
= NUM_CHANNELS
;
2363 layers
[0].is_virt_csrow
= false;
2364 layers
[1].type
= EDAC_MC_LAYER_SLOT
;
2365 layers
[1].size
= MAX_DIMMS
;
2366 layers
[1].is_virt_csrow
= true;
2367 mci
= edac_mc_alloc(sbridge_dev
->mc
, ARRAY_SIZE(layers
), layers
,
2373 edac_dbg(0, "MC: mci = %p, dev = %p\n",
2376 pvt
= mci
->pvt_info
;
2377 memset(pvt
, 0, sizeof(*pvt
));
2379 /* Associate sbridge_dev and mci for future usage */
2380 pvt
->sbridge_dev
= sbridge_dev
;
2381 sbridge_dev
->mci
= mci
;
2383 mci
->mtype_cap
= MEM_FLAG_DDR3
;
2384 mci
->edac_ctl_cap
= EDAC_FLAG_NONE
;
2385 mci
->edac_cap
= EDAC_FLAG_NONE
;
2386 mci
->mod_name
= "sbridge_edac.c";
2387 mci
->mod_ver
= SBRIDGE_REVISION
;
2388 mci
->dev_name
= pci_name(pdev
);
2389 mci
->ctl_page_to_phys
= NULL
;
2391 /* Set the function pointer to an actual operation function */
2392 mci
->edac_check
= sbridge_check_error
;
2394 pvt
->info
.type
= type
;
2397 pvt
->info
.rankcfgr
= IB_RANK_CFG_A
;
2398 pvt
->info
.get_tolm
= ibridge_get_tolm
;
2399 pvt
->info
.get_tohm
= ibridge_get_tohm
;
2400 pvt
->info
.dram_rule
= ibridge_dram_rule
;
2401 pvt
->info
.get_memory_type
= get_memory_type
;
2402 pvt
->info
.get_node_id
= get_node_id
;
2403 pvt
->info
.rir_limit
= rir_limit
;
2404 pvt
->info
.max_sad
= ARRAY_SIZE(ibridge_dram_rule
);
2405 pvt
->info
.interleave_list
= ibridge_interleave_list
;
2406 pvt
->info
.max_interleave
= ARRAY_SIZE(ibridge_interleave_list
);
2407 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
2408 pvt
->info
.get_width
= ibridge_get_width
;
2409 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Ivy Bridge Socket#%d", mci
->mc_idx
);
2411 /* Store pci devices at mci for faster access */
2412 rc
= ibridge_mci_bind_devs(mci
, sbridge_dev
);
2413 if (unlikely(rc
< 0))
2417 pvt
->info
.rankcfgr
= SB_RANK_CFG_A
;
2418 pvt
->info
.get_tolm
= sbridge_get_tolm
;
2419 pvt
->info
.get_tohm
= sbridge_get_tohm
;
2420 pvt
->info
.dram_rule
= sbridge_dram_rule
;
2421 pvt
->info
.get_memory_type
= get_memory_type
;
2422 pvt
->info
.get_node_id
= get_node_id
;
2423 pvt
->info
.rir_limit
= rir_limit
;
2424 pvt
->info
.max_sad
= ARRAY_SIZE(sbridge_dram_rule
);
2425 pvt
->info
.interleave_list
= sbridge_interleave_list
;
2426 pvt
->info
.max_interleave
= ARRAY_SIZE(sbridge_interleave_list
);
2427 pvt
->info
.interleave_pkg
= sbridge_interleave_pkg
;
2428 pvt
->info
.get_width
= sbridge_get_width
;
2429 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Sandy Bridge Socket#%d", mci
->mc_idx
);
2431 /* Store pci devices at mci for faster access */
2432 rc
= sbridge_mci_bind_devs(mci
, sbridge_dev
);
2433 if (unlikely(rc
< 0))
2437 /* rankcfgr isn't used */
2438 pvt
->info
.get_tolm
= haswell_get_tolm
;
2439 pvt
->info
.get_tohm
= haswell_get_tohm
;
2440 pvt
->info
.dram_rule
= ibridge_dram_rule
;
2441 pvt
->info
.get_memory_type
= haswell_get_memory_type
;
2442 pvt
->info
.get_node_id
= haswell_get_node_id
;
2443 pvt
->info
.rir_limit
= haswell_rir_limit
;
2444 pvt
->info
.max_sad
= ARRAY_SIZE(ibridge_dram_rule
);
2445 pvt
->info
.interleave_list
= ibridge_interleave_list
;
2446 pvt
->info
.max_interleave
= ARRAY_SIZE(ibridge_interleave_list
);
2447 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
2448 pvt
->info
.get_width
= ibridge_get_width
;
2449 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Haswell Socket#%d", mci
->mc_idx
);
2451 /* Store pci devices at mci for faster access */
2452 rc
= haswell_mci_bind_devs(mci
, sbridge_dev
);
2453 if (unlikely(rc
< 0))
2457 /* rankcfgr isn't used */
2458 pvt
->info
.get_tolm
= haswell_get_tolm
;
2459 pvt
->info
.get_tohm
= haswell_get_tohm
;
2460 pvt
->info
.dram_rule
= ibridge_dram_rule
;
2461 pvt
->info
.get_memory_type
= haswell_get_memory_type
;
2462 pvt
->info
.get_node_id
= haswell_get_node_id
;
2463 pvt
->info
.rir_limit
= haswell_rir_limit
;
2464 pvt
->info
.max_sad
= ARRAY_SIZE(ibridge_dram_rule
);
2465 pvt
->info
.interleave_list
= ibridge_interleave_list
;
2466 pvt
->info
.max_interleave
= ARRAY_SIZE(ibridge_interleave_list
);
2467 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
2468 pvt
->info
.get_width
= broadwell_get_width
;
2469 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Broadwell Socket#%d", mci
->mc_idx
);
2471 /* Store pci devices at mci for faster access */
2472 rc
= broadwell_mci_bind_devs(mci
, sbridge_dev
);
2473 if (unlikely(rc
< 0))
2478 /* Get dimm basic config and the memory layout */
2479 get_dimm_config(mci
);
2480 get_memory_layout(mci
);
2482 /* record ptr to the generic device */
2483 mci
->pdev
= &pdev
->dev
;
2485 /* add this new MC control structure to EDAC's list of MCs */
2486 if (unlikely(edac_mc_add_mc(mci
))) {
2487 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
2495 kfree(mci
->ctl_name
);
2497 sbridge_dev
->mci
= NULL
;
2502 * sbridge_probe Probe for ONE instance of device to see if it is
2505 * 0 for FOUND a device
2506 * < 0 for error code
2509 static int sbridge_probe(struct pci_dev
*pdev
, const struct pci_device_id
*id
)
2513 struct sbridge_dev
*sbridge_dev
;
2514 enum type type
= SANDY_BRIDGE
;
2516 /* get the pci devices we want to reserve for our use */
2517 mutex_lock(&sbridge_edac_lock
);
2520 * All memory controllers are allocated at the first pass.
2522 if (unlikely(probed
>= 1)) {
2523 mutex_unlock(&sbridge_edac_lock
);
2528 switch (pdev
->device
) {
2529 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA
:
2530 rc
= sbridge_get_all_devices(&num_mc
, pci_dev_descr_ibridge_table
);
2533 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0
:
2534 rc
= sbridge_get_all_devices(&num_mc
, pci_dev_descr_sbridge_table
);
2535 type
= SANDY_BRIDGE
;
2537 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0
:
2538 rc
= sbridge_get_all_devices(&num_mc
, pci_dev_descr_haswell_table
);
2541 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0
:
2542 rc
= sbridge_get_all_devices(&num_mc
, pci_dev_descr_broadwell_table
);
2546 if (unlikely(rc
< 0)) {
2547 edac_dbg(0, "couldn't get all devices for 0x%x\n", pdev
->device
);
2553 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
) {
2554 edac_dbg(0, "Registering MC#%d (%d of %d)\n",
2555 mc
, mc
+ 1, num_mc
);
2557 sbridge_dev
->mc
= mc
++;
2558 rc
= sbridge_register_mci(sbridge_dev
, type
);
2559 if (unlikely(rc
< 0))
2563 sbridge_printk(KERN_INFO
, "%s\n", SBRIDGE_REVISION
);
2565 mutex_unlock(&sbridge_edac_lock
);
2569 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
)
2570 sbridge_unregister_mci(sbridge_dev
);
2572 sbridge_put_all_devices();
2574 mutex_unlock(&sbridge_edac_lock
);
2579 * sbridge_remove destructor for one instance of device
2582 static void sbridge_remove(struct pci_dev
*pdev
)
2584 struct sbridge_dev
*sbridge_dev
;
2589 * we have a trouble here: pdev value for removal will be wrong, since
2590 * it will point to the X58 register used to detect that the machine
2591 * is a Nehalem or upper design. However, due to the way several PCI
2592 * devices are grouped together to provide MC functionality, we need
2593 * to use a different method for releasing the devices
2596 mutex_lock(&sbridge_edac_lock
);
2598 if (unlikely(!probed
)) {
2599 mutex_unlock(&sbridge_edac_lock
);
2603 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
)
2604 sbridge_unregister_mci(sbridge_dev
);
2606 /* Release PCI resources */
2607 sbridge_put_all_devices();
2611 mutex_unlock(&sbridge_edac_lock
);
2614 MODULE_DEVICE_TABLE(pci
, sbridge_pci_tbl
);
2617 * sbridge_driver pci_driver structure for this module
2620 static struct pci_driver sbridge_driver
= {
2621 .name
= "sbridge_edac",
2622 .probe
= sbridge_probe
,
2623 .remove
= sbridge_remove
,
2624 .id_table
= sbridge_pci_tbl
,
2628 * sbridge_init Module entry function
2629 * Try to initialize this module for its devices
2631 static int __init
sbridge_init(void)
2637 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
2640 pci_rc
= pci_register_driver(&sbridge_driver
);
2642 mce_register_decode_chain(&sbridge_mce_dec
);
2643 if (get_edac_report_status() == EDAC_REPORTING_DISABLED
)
2644 sbridge_printk(KERN_WARNING
, "Loading driver, error reporting disabled.\n");
2648 sbridge_printk(KERN_ERR
, "Failed to register device with error %d.\n",
2655 * sbridge_exit() Module exit function
2656 * Unregister the driver
2658 static void __exit
sbridge_exit(void)
2661 pci_unregister_driver(&sbridge_driver
);
2662 mce_unregister_decode_chain(&sbridge_mce_dec
);
2665 module_init(sbridge_init
);
2666 module_exit(sbridge_exit
);
2668 module_param(edac_op_state
, int, 0444);
2669 MODULE_PARM_DESC(edac_op_state
, "EDAC Error Reporting state: 0=Poll,1=NMI");
2671 MODULE_LICENSE("GPL");
2672 MODULE_AUTHOR("Mauro Carvalho Chehab");
2673 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
2674 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "