of: MSI: Simplify irqdomain lookup
[linux/fpc-iii.git] / drivers / i2c / busses / i2c-at91.c
blob10835d1f559ba99f9b0118b19f55b7187a980dea
1 /*
2 * i2c Support for Atmel's AT91 Two-Wire Interface (TWI)
4 * Copyright (C) 2011 Weinmann Medical GmbH
5 * Author: Nikolaus Voss <n.voss@weinmann.de>
7 * Evolved from original work by:
8 * Copyright (C) 2004 Rick Bronson
9 * Converted to 2.6 by Andrew Victor <andrew@sanpeople.com>
11 * Borrowed heavily from original work by:
12 * Copyright (C) 2000 Philip Edelbrock <phil@stimpy.netroedge.com>
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
20 #include <linux/clk.h>
21 #include <linux/completion.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/err.h>
25 #include <linux/i2c.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/module.h>
29 #include <linux/of.h>
30 #include <linux/of_device.h>
31 #include <linux/platform_device.h>
32 #include <linux/slab.h>
33 #include <linux/platform_data/dma-atmel.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/pinctrl/consumer.h>
37 #define DEFAULT_TWI_CLK_HZ 100000 /* max 400 Kbits/s */
38 #define AT91_I2C_TIMEOUT msecs_to_jiffies(100) /* transfer timeout */
39 #define AT91_I2C_DMA_THRESHOLD 8 /* enable DMA if transfer size is bigger than this threshold */
40 #define AUTOSUSPEND_TIMEOUT 2000
42 /* AT91 TWI register definitions */
43 #define AT91_TWI_CR 0x0000 /* Control Register */
44 #define AT91_TWI_START BIT(0) /* Send a Start Condition */
45 #define AT91_TWI_STOP BIT(1) /* Send a Stop Condition */
46 #define AT91_TWI_MSEN BIT(2) /* Master Transfer Enable */
47 #define AT91_TWI_MSDIS BIT(3) /* Master Transfer Disable */
48 #define AT91_TWI_SVEN BIT(4) /* Slave Transfer Enable */
49 #define AT91_TWI_SVDIS BIT(5) /* Slave Transfer Disable */
50 #define AT91_TWI_QUICK BIT(6) /* SMBus quick command */
51 #define AT91_TWI_SWRST BIT(7) /* Software Reset */
52 #define AT91_TWI_ACMEN BIT(16) /* Alternative Command Mode Enable */
53 #define AT91_TWI_ACMDIS BIT(17) /* Alternative Command Mode Disable */
54 #define AT91_TWI_THRCLR BIT(24) /* Transmit Holding Register Clear */
55 #define AT91_TWI_RHRCLR BIT(25) /* Receive Holding Register Clear */
56 #define AT91_TWI_LOCKCLR BIT(26) /* Lock Clear */
57 #define AT91_TWI_FIFOEN BIT(28) /* FIFO Enable */
58 #define AT91_TWI_FIFODIS BIT(29) /* FIFO Disable */
60 #define AT91_TWI_MMR 0x0004 /* Master Mode Register */
61 #define AT91_TWI_IADRSZ_1 0x0100 /* Internal Device Address Size */
62 #define AT91_TWI_MREAD BIT(12) /* Master Read Direction */
64 #define AT91_TWI_IADR 0x000c /* Internal Address Register */
66 #define AT91_TWI_CWGR 0x0010 /* Clock Waveform Generator Reg */
68 #define AT91_TWI_SR 0x0020 /* Status Register */
69 #define AT91_TWI_TXCOMP BIT(0) /* Transmission Complete */
70 #define AT91_TWI_RXRDY BIT(1) /* Receive Holding Register Ready */
71 #define AT91_TWI_TXRDY BIT(2) /* Transmit Holding Register Ready */
72 #define AT91_TWI_OVRE BIT(6) /* Overrun Error */
73 #define AT91_TWI_UNRE BIT(7) /* Underrun Error */
74 #define AT91_TWI_NACK BIT(8) /* Not Acknowledged */
75 #define AT91_TWI_LOCK BIT(23) /* TWI Lock due to Frame Errors */
77 #define AT91_TWI_INT_MASK \
78 (AT91_TWI_TXCOMP | AT91_TWI_RXRDY | AT91_TWI_TXRDY | AT91_TWI_NACK)
80 #define AT91_TWI_IER 0x0024 /* Interrupt Enable Register */
81 #define AT91_TWI_IDR 0x0028 /* Interrupt Disable Register */
82 #define AT91_TWI_IMR 0x002c /* Interrupt Mask Register */
83 #define AT91_TWI_RHR 0x0030 /* Receive Holding Register */
84 #define AT91_TWI_THR 0x0034 /* Transmit Holding Register */
86 #define AT91_TWI_ACR 0x0040 /* Alternative Command Register */
87 #define AT91_TWI_ACR_DATAL(len) ((len) & 0xff)
88 #define AT91_TWI_ACR_DIR BIT(8)
90 #define AT91_TWI_FMR 0x0050 /* FIFO Mode Register */
91 #define AT91_TWI_FMR_TXRDYM(mode) (((mode) & 0x3) << 0)
92 #define AT91_TWI_FMR_TXRDYM_MASK (0x3 << 0)
93 #define AT91_TWI_FMR_RXRDYM(mode) (((mode) & 0x3) << 4)
94 #define AT91_TWI_FMR_RXRDYM_MASK (0x3 << 4)
95 #define AT91_TWI_ONE_DATA 0x0
96 #define AT91_TWI_TWO_DATA 0x1
97 #define AT91_TWI_FOUR_DATA 0x2
99 #define AT91_TWI_FLR 0x0054 /* FIFO Level Register */
101 #define AT91_TWI_FSR 0x0060 /* FIFO Status Register */
102 #define AT91_TWI_FIER 0x0064 /* FIFO Interrupt Enable Register */
103 #define AT91_TWI_FIDR 0x0068 /* FIFO Interrupt Disable Register */
104 #define AT91_TWI_FIMR 0x006c /* FIFO Interrupt Mask Register */
106 #define AT91_TWI_VER 0x00fc /* Version Register */
108 struct at91_twi_pdata {
109 unsigned clk_max_div;
110 unsigned clk_offset;
111 bool has_unre_flag;
112 bool has_alt_cmd;
113 struct at_dma_slave dma_slave;
116 struct at91_twi_dma {
117 struct dma_chan *chan_rx;
118 struct dma_chan *chan_tx;
119 struct scatterlist sg[2];
120 struct dma_async_tx_descriptor *data_desc;
121 enum dma_data_direction direction;
122 bool buf_mapped;
123 bool xfer_in_progress;
126 struct at91_twi_dev {
127 struct device *dev;
128 void __iomem *base;
129 struct completion cmd_complete;
130 struct clk *clk;
131 u8 *buf;
132 size_t buf_len;
133 struct i2c_msg *msg;
134 int irq;
135 unsigned imr;
136 unsigned transfer_status;
137 struct i2c_adapter adapter;
138 unsigned twi_cwgr_reg;
139 struct at91_twi_pdata *pdata;
140 bool use_dma;
141 bool recv_len_abort;
142 u32 fifo_size;
143 struct at91_twi_dma dma;
146 static unsigned at91_twi_read(struct at91_twi_dev *dev, unsigned reg)
148 return readl_relaxed(dev->base + reg);
151 static void at91_twi_write(struct at91_twi_dev *dev, unsigned reg, unsigned val)
153 writel_relaxed(val, dev->base + reg);
156 static void at91_disable_twi_interrupts(struct at91_twi_dev *dev)
158 at91_twi_write(dev, AT91_TWI_IDR, AT91_TWI_INT_MASK);
161 static void at91_twi_irq_save(struct at91_twi_dev *dev)
163 dev->imr = at91_twi_read(dev, AT91_TWI_IMR) & AT91_TWI_INT_MASK;
164 at91_disable_twi_interrupts(dev);
167 static void at91_twi_irq_restore(struct at91_twi_dev *dev)
169 at91_twi_write(dev, AT91_TWI_IER, dev->imr);
172 static void at91_init_twi_bus(struct at91_twi_dev *dev)
174 at91_disable_twi_interrupts(dev);
175 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_SWRST);
176 /* FIFO should be enabled immediately after the software reset */
177 if (dev->fifo_size)
178 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_FIFOEN);
179 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_MSEN);
180 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_SVDIS);
181 at91_twi_write(dev, AT91_TWI_CWGR, dev->twi_cwgr_reg);
185 * Calculate symmetric clock as stated in datasheet:
186 * twi_clk = F_MAIN / (2 * (cdiv * (1 << ckdiv) + offset))
188 static void at91_calc_twi_clock(struct at91_twi_dev *dev, int twi_clk)
190 int ckdiv, cdiv, div;
191 struct at91_twi_pdata *pdata = dev->pdata;
192 int offset = pdata->clk_offset;
193 int max_ckdiv = pdata->clk_max_div;
195 div = max(0, (int)DIV_ROUND_UP(clk_get_rate(dev->clk),
196 2 * twi_clk) - offset);
197 ckdiv = fls(div >> 8);
198 cdiv = div >> ckdiv;
200 if (ckdiv > max_ckdiv) {
201 dev_warn(dev->dev, "%d exceeds ckdiv max value which is %d.\n",
202 ckdiv, max_ckdiv);
203 ckdiv = max_ckdiv;
204 cdiv = 255;
207 dev->twi_cwgr_reg = (ckdiv << 16) | (cdiv << 8) | cdiv;
208 dev_dbg(dev->dev, "cdiv %d ckdiv %d\n", cdiv, ckdiv);
211 static void at91_twi_dma_cleanup(struct at91_twi_dev *dev)
213 struct at91_twi_dma *dma = &dev->dma;
215 at91_twi_irq_save(dev);
217 if (dma->xfer_in_progress) {
218 if (dma->direction == DMA_FROM_DEVICE)
219 dmaengine_terminate_all(dma->chan_rx);
220 else
221 dmaengine_terminate_all(dma->chan_tx);
222 dma->xfer_in_progress = false;
224 if (dma->buf_mapped) {
225 dma_unmap_single(dev->dev, sg_dma_address(&dma->sg[0]),
226 dev->buf_len, dma->direction);
227 dma->buf_mapped = false;
230 at91_twi_irq_restore(dev);
233 static void at91_twi_write_next_byte(struct at91_twi_dev *dev)
235 if (!dev->buf_len)
236 return;
238 /* 8bit write works with and without FIFO */
239 writeb_relaxed(*dev->buf, dev->base + AT91_TWI_THR);
241 /* send stop when last byte has been written */
242 if (--dev->buf_len == 0)
243 if (!dev->pdata->has_alt_cmd)
244 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
246 dev_dbg(dev->dev, "wrote 0x%x, to go %d\n", *dev->buf, dev->buf_len);
248 ++dev->buf;
251 static void at91_twi_write_data_dma_callback(void *data)
253 struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
255 dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]),
256 dev->buf_len, DMA_TO_DEVICE);
259 * When this callback is called, THR/TX FIFO is likely not to be empty
260 * yet. So we have to wait for TXCOMP or NACK bits to be set into the
261 * Status Register to be sure that the STOP bit has been sent and the
262 * transfer is completed. The NACK interrupt has already been enabled,
263 * we just have to enable TXCOMP one.
265 at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
266 if (!dev->pdata->has_alt_cmd)
267 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
270 static void at91_twi_write_data_dma(struct at91_twi_dev *dev)
272 dma_addr_t dma_addr;
273 struct dma_async_tx_descriptor *txdesc;
274 struct at91_twi_dma *dma = &dev->dma;
275 struct dma_chan *chan_tx = dma->chan_tx;
276 unsigned int sg_len = 1;
278 if (!dev->buf_len)
279 return;
281 dma->direction = DMA_TO_DEVICE;
283 at91_twi_irq_save(dev);
284 dma_addr = dma_map_single(dev->dev, dev->buf, dev->buf_len,
285 DMA_TO_DEVICE);
286 if (dma_mapping_error(dev->dev, dma_addr)) {
287 dev_err(dev->dev, "dma map failed\n");
288 return;
290 dma->buf_mapped = true;
291 at91_twi_irq_restore(dev);
293 if (dev->fifo_size) {
294 size_t part1_len, part2_len;
295 struct scatterlist *sg;
296 unsigned fifo_mr;
298 sg_len = 0;
300 part1_len = dev->buf_len & ~0x3;
301 if (part1_len) {
302 sg = &dma->sg[sg_len++];
303 sg_dma_len(sg) = part1_len;
304 sg_dma_address(sg) = dma_addr;
307 part2_len = dev->buf_len & 0x3;
308 if (part2_len) {
309 sg = &dma->sg[sg_len++];
310 sg_dma_len(sg) = part2_len;
311 sg_dma_address(sg) = dma_addr + part1_len;
315 * DMA controller is triggered when at least 4 data can be
316 * written into the TX FIFO
318 fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
319 fifo_mr &= ~AT91_TWI_FMR_TXRDYM_MASK;
320 fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_FOUR_DATA);
321 at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
322 } else {
323 sg_dma_len(&dma->sg[0]) = dev->buf_len;
324 sg_dma_address(&dma->sg[0]) = dma_addr;
327 txdesc = dmaengine_prep_slave_sg(chan_tx, dma->sg, sg_len,
328 DMA_MEM_TO_DEV,
329 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
330 if (!txdesc) {
331 dev_err(dev->dev, "dma prep slave sg failed\n");
332 goto error;
335 txdesc->callback = at91_twi_write_data_dma_callback;
336 txdesc->callback_param = dev;
338 dma->xfer_in_progress = true;
339 dmaengine_submit(txdesc);
340 dma_async_issue_pending(chan_tx);
342 return;
344 error:
345 at91_twi_dma_cleanup(dev);
348 static void at91_twi_read_next_byte(struct at91_twi_dev *dev)
351 * If we are in this case, it means there is garbage data in RHR, so
352 * delete them.
354 if (!dev->buf_len) {
355 at91_twi_read(dev, AT91_TWI_RHR);
356 return;
359 /* 8bit read works with and without FIFO */
360 *dev->buf = readb_relaxed(dev->base + AT91_TWI_RHR);
361 --dev->buf_len;
363 /* return if aborting, we only needed to read RHR to clear RXRDY*/
364 if (dev->recv_len_abort)
365 return;
367 /* handle I2C_SMBUS_BLOCK_DATA */
368 if (unlikely(dev->msg->flags & I2C_M_RECV_LEN)) {
369 /* ensure length byte is a valid value */
370 if (*dev->buf <= I2C_SMBUS_BLOCK_MAX && *dev->buf > 0) {
371 dev->msg->flags &= ~I2C_M_RECV_LEN;
372 dev->buf_len += *dev->buf;
373 dev->msg->len = dev->buf_len + 1;
374 dev_dbg(dev->dev, "received block length %d\n",
375 dev->buf_len);
376 } else {
377 /* abort and send the stop by reading one more byte */
378 dev->recv_len_abort = true;
379 dev->buf_len = 1;
383 /* send stop if second but last byte has been read */
384 if (!dev->pdata->has_alt_cmd && dev->buf_len == 1)
385 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
387 dev_dbg(dev->dev, "read 0x%x, to go %d\n", *dev->buf, dev->buf_len);
389 ++dev->buf;
392 static void at91_twi_read_data_dma_callback(void *data)
394 struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
395 unsigned ier = AT91_TWI_TXCOMP;
397 dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]),
398 dev->buf_len, DMA_FROM_DEVICE);
400 if (!dev->pdata->has_alt_cmd) {
401 /* The last two bytes have to be read without using dma */
402 dev->buf += dev->buf_len - 2;
403 dev->buf_len = 2;
404 ier |= AT91_TWI_RXRDY;
406 at91_twi_write(dev, AT91_TWI_IER, ier);
409 static void at91_twi_read_data_dma(struct at91_twi_dev *dev)
411 dma_addr_t dma_addr;
412 struct dma_async_tx_descriptor *rxdesc;
413 struct at91_twi_dma *dma = &dev->dma;
414 struct dma_chan *chan_rx = dma->chan_rx;
415 size_t buf_len;
417 buf_len = (dev->pdata->has_alt_cmd) ? dev->buf_len : dev->buf_len - 2;
418 dma->direction = DMA_FROM_DEVICE;
420 /* Keep in mind that we won't use dma to read the last two bytes */
421 at91_twi_irq_save(dev);
422 dma_addr = dma_map_single(dev->dev, dev->buf, buf_len, DMA_FROM_DEVICE);
423 if (dma_mapping_error(dev->dev, dma_addr)) {
424 dev_err(dev->dev, "dma map failed\n");
425 return;
427 dma->buf_mapped = true;
428 at91_twi_irq_restore(dev);
430 if (dev->fifo_size && IS_ALIGNED(buf_len, 4)) {
431 unsigned fifo_mr;
434 * DMA controller is triggered when at least 4 data can be
435 * read from the RX FIFO
437 fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
438 fifo_mr &= ~AT91_TWI_FMR_RXRDYM_MASK;
439 fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_FOUR_DATA);
440 at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
443 sg_dma_len(&dma->sg[0]) = buf_len;
444 sg_dma_address(&dma->sg[0]) = dma_addr;
446 rxdesc = dmaengine_prep_slave_sg(chan_rx, dma->sg, 1, DMA_DEV_TO_MEM,
447 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
448 if (!rxdesc) {
449 dev_err(dev->dev, "dma prep slave sg failed\n");
450 goto error;
453 rxdesc->callback = at91_twi_read_data_dma_callback;
454 rxdesc->callback_param = dev;
456 dma->xfer_in_progress = true;
457 dmaengine_submit(rxdesc);
458 dma_async_issue_pending(dma->chan_rx);
460 return;
462 error:
463 at91_twi_dma_cleanup(dev);
466 static irqreturn_t atmel_twi_interrupt(int irq, void *dev_id)
468 struct at91_twi_dev *dev = dev_id;
469 const unsigned status = at91_twi_read(dev, AT91_TWI_SR);
470 const unsigned irqstatus = status & at91_twi_read(dev, AT91_TWI_IMR);
472 if (!irqstatus)
473 return IRQ_NONE;
475 * In reception, the behavior of the twi device (before sama5d2) is
476 * weird. There is some magic about RXRDY flag! When a data has been
477 * almost received, the reception of a new one is anticipated if there
478 * is no stop command to send. That is the reason why ask for sending
479 * the stop command not on the last data but on the second last one.
481 * Unfortunately, we could still have the RXRDY flag set even if the
482 * transfer is done and we have read the last data. It might happen
483 * when the i2c slave device sends too quickly data after receiving the
484 * ack from the master. The data has been almost received before having
485 * the order to send stop. In this case, sending the stop command could
486 * cause a RXRDY interrupt with a TXCOMP one. It is better to manage
487 * the RXRDY interrupt first in order to not keep garbage data in the
488 * Receive Holding Register for the next transfer.
490 if (irqstatus & AT91_TWI_RXRDY)
491 at91_twi_read_next_byte(dev);
494 * When a NACK condition is detected, the I2C controller sets the NACK,
495 * TXCOMP and TXRDY bits all together in the Status Register (SR).
497 * 1 - Handling NACK errors with CPU write transfer.
499 * In such case, we should not write the next byte into the Transmit
500 * Holding Register (THR) otherwise the I2C controller would start a new
501 * transfer and the I2C slave is likely to reply by another NACK.
503 * 2 - Handling NACK errors with DMA write transfer.
505 * By setting the TXRDY bit in the SR, the I2C controller also triggers
506 * the DMA controller to write the next data into the THR. Then the
507 * result depends on the hardware version of the I2C controller.
509 * 2a - Without support of the Alternative Command mode.
511 * This is the worst case: the DMA controller is triggered to write the
512 * next data into the THR, hence starting a new transfer: the I2C slave
513 * is likely to reply by another NACK.
514 * Concurrently, this interrupt handler is likely to be called to manage
515 * the first NACK before the I2C controller detects the second NACK and
516 * sets once again the NACK bit into the SR.
517 * When handling the first NACK, this interrupt handler disables the I2C
518 * controller interruptions, especially the NACK interrupt.
519 * Hence, the NACK bit is pending into the SR. This is why we should
520 * read the SR to clear all pending interrupts at the beginning of
521 * at91_do_twi_transfer() before actually starting a new transfer.
523 * 2b - With support of the Alternative Command mode.
525 * When a NACK condition is detected, the I2C controller also locks the
526 * THR (and sets the LOCK bit in the SR): even though the DMA controller
527 * is triggered by the TXRDY bit to write the next data into the THR,
528 * this data actually won't go on the I2C bus hence a second NACK is not
529 * generated.
531 if (irqstatus & (AT91_TWI_TXCOMP | AT91_TWI_NACK)) {
532 at91_disable_twi_interrupts(dev);
533 complete(&dev->cmd_complete);
534 } else if (irqstatus & AT91_TWI_TXRDY) {
535 at91_twi_write_next_byte(dev);
538 /* catch error flags */
539 dev->transfer_status |= status;
541 return IRQ_HANDLED;
544 static int at91_do_twi_transfer(struct at91_twi_dev *dev)
546 int ret;
547 unsigned long time_left;
548 bool has_unre_flag = dev->pdata->has_unre_flag;
549 bool has_alt_cmd = dev->pdata->has_alt_cmd;
552 * WARNING: the TXCOMP bit in the Status Register is NOT a clear on
553 * read flag but shows the state of the transmission at the time the
554 * Status Register is read. According to the programmer datasheet,
555 * TXCOMP is set when both holding register and internal shifter are
556 * empty and STOP condition has been sent.
557 * Consequently, we should enable NACK interrupt rather than TXCOMP to
558 * detect transmission failure.
559 * Indeed let's take the case of an i2c write command using DMA.
560 * Whenever the slave doesn't acknowledge a byte, the LOCK, NACK and
561 * TXCOMP bits are set together into the Status Register.
562 * LOCK is a clear on write bit, which is set to prevent the DMA
563 * controller from sending new data on the i2c bus after a NACK
564 * condition has happened. Once locked, this i2c peripheral stops
565 * triggering the DMA controller for new data but it is more than
566 * likely that a new DMA transaction is already in progress, writing
567 * into the Transmit Holding Register. Since the peripheral is locked,
568 * these new data won't be sent to the i2c bus but they will remain
569 * into the Transmit Holding Register, so TXCOMP bit is cleared.
570 * Then when the interrupt handler is called, the Status Register is
571 * read: the TXCOMP bit is clear but NACK bit is still set. The driver
572 * manage the error properly, without waiting for timeout.
573 * This case can be reproduced easyly when writing into an at24 eeprom.
575 * Besides, the TXCOMP bit is already set before the i2c transaction
576 * has been started. For read transactions, this bit is cleared when
577 * writing the START bit into the Control Register. So the
578 * corresponding interrupt can safely be enabled just after.
579 * However for write transactions managed by the CPU, we first write
580 * into THR, so TXCOMP is cleared. Then we can safely enable TXCOMP
581 * interrupt. If TXCOMP interrupt were enabled before writing into THR,
582 * the interrupt handler would be called immediately and the i2c command
583 * would be reported as completed.
584 * Also when a write transaction is managed by the DMA controller,
585 * enabling the TXCOMP interrupt in this function may lead to a race
586 * condition since we don't know whether the TXCOMP interrupt is enabled
587 * before or after the DMA has started to write into THR. So the TXCOMP
588 * interrupt is enabled later by at91_twi_write_data_dma_callback().
589 * Immediately after in that DMA callback, if the alternative command
590 * mode is not used, we still need to send the STOP condition manually
591 * writing the corresponding bit into the Control Register.
594 dev_dbg(dev->dev, "transfer: %s %d bytes.\n",
595 (dev->msg->flags & I2C_M_RD) ? "read" : "write", dev->buf_len);
597 reinit_completion(&dev->cmd_complete);
598 dev->transfer_status = 0;
600 /* Clear pending interrupts, such as NACK. */
601 at91_twi_read(dev, AT91_TWI_SR);
603 if (dev->fifo_size) {
604 unsigned fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
606 /* Reset FIFO mode register */
607 fifo_mr &= ~(AT91_TWI_FMR_TXRDYM_MASK |
608 AT91_TWI_FMR_RXRDYM_MASK);
609 fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_ONE_DATA);
610 fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_ONE_DATA);
611 at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
613 /* Flush FIFOs */
614 at91_twi_write(dev, AT91_TWI_CR,
615 AT91_TWI_THRCLR | AT91_TWI_RHRCLR);
618 if (!dev->buf_len) {
619 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_QUICK);
620 at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
621 } else if (dev->msg->flags & I2C_M_RD) {
622 unsigned start_flags = AT91_TWI_START;
624 /* if only one byte is to be read, immediately stop transfer */
625 if (!has_alt_cmd && dev->buf_len <= 1 &&
626 !(dev->msg->flags & I2C_M_RECV_LEN))
627 start_flags |= AT91_TWI_STOP;
628 at91_twi_write(dev, AT91_TWI_CR, start_flags);
630 * When using dma without alternative command mode, the last
631 * byte has to be read manually in order to not send the stop
632 * command too late and then to receive extra data.
633 * In practice, there are some issues if you use the dma to
634 * read n-1 bytes because of latency.
635 * Reading n-2 bytes with dma and the two last ones manually
636 * seems to be the best solution.
638 if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
639 at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
640 at91_twi_read_data_dma(dev);
641 } else {
642 at91_twi_write(dev, AT91_TWI_IER,
643 AT91_TWI_TXCOMP |
644 AT91_TWI_NACK |
645 AT91_TWI_RXRDY);
647 } else {
648 if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
649 at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
650 at91_twi_write_data_dma(dev);
651 } else {
652 at91_twi_write_next_byte(dev);
653 at91_twi_write(dev, AT91_TWI_IER,
654 AT91_TWI_TXCOMP |
655 AT91_TWI_NACK |
656 AT91_TWI_TXRDY);
660 time_left = wait_for_completion_timeout(&dev->cmd_complete,
661 dev->adapter.timeout);
662 if (time_left == 0) {
663 dev->transfer_status |= at91_twi_read(dev, AT91_TWI_SR);
664 dev_err(dev->dev, "controller timed out\n");
665 at91_init_twi_bus(dev);
666 ret = -ETIMEDOUT;
667 goto error;
669 if (dev->transfer_status & AT91_TWI_NACK) {
670 dev_dbg(dev->dev, "received nack\n");
671 ret = -EREMOTEIO;
672 goto error;
674 if (dev->transfer_status & AT91_TWI_OVRE) {
675 dev_err(dev->dev, "overrun while reading\n");
676 ret = -EIO;
677 goto error;
679 if (has_unre_flag && dev->transfer_status & AT91_TWI_UNRE) {
680 dev_err(dev->dev, "underrun while writing\n");
681 ret = -EIO;
682 goto error;
684 if ((has_alt_cmd || dev->fifo_size) &&
685 (dev->transfer_status & AT91_TWI_LOCK)) {
686 dev_err(dev->dev, "tx locked\n");
687 ret = -EIO;
688 goto error;
690 if (dev->recv_len_abort) {
691 dev_err(dev->dev, "invalid smbus block length recvd\n");
692 ret = -EPROTO;
693 goto error;
696 dev_dbg(dev->dev, "transfer complete\n");
698 return 0;
700 error:
701 /* first stop DMA transfer if still in progress */
702 at91_twi_dma_cleanup(dev);
703 /* then flush THR/FIFO and unlock TX if locked */
704 if ((has_alt_cmd || dev->fifo_size) &&
705 (dev->transfer_status & AT91_TWI_LOCK)) {
706 dev_dbg(dev->dev, "unlock tx\n");
707 at91_twi_write(dev, AT91_TWI_CR,
708 AT91_TWI_THRCLR | AT91_TWI_LOCKCLR);
710 return ret;
713 static int at91_twi_xfer(struct i2c_adapter *adap, struct i2c_msg *msg, int num)
715 struct at91_twi_dev *dev = i2c_get_adapdata(adap);
716 int ret;
717 unsigned int_addr_flag = 0;
718 struct i2c_msg *m_start = msg;
719 bool is_read, use_alt_cmd = false;
721 dev_dbg(&adap->dev, "at91_xfer: processing %d messages:\n", num);
723 ret = pm_runtime_get_sync(dev->dev);
724 if (ret < 0)
725 goto out;
727 if (num == 2) {
728 int internal_address = 0;
729 int i;
731 /* 1st msg is put into the internal address, start with 2nd */
732 m_start = &msg[1];
733 for (i = 0; i < msg->len; ++i) {
734 const unsigned addr = msg->buf[msg->len - 1 - i];
736 internal_address |= addr << (8 * i);
737 int_addr_flag += AT91_TWI_IADRSZ_1;
739 at91_twi_write(dev, AT91_TWI_IADR, internal_address);
742 is_read = (m_start->flags & I2C_M_RD);
743 if (dev->pdata->has_alt_cmd) {
744 if (m_start->len > 0) {
745 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMEN);
746 at91_twi_write(dev, AT91_TWI_ACR,
747 AT91_TWI_ACR_DATAL(m_start->len) |
748 ((is_read) ? AT91_TWI_ACR_DIR : 0));
749 use_alt_cmd = true;
750 } else {
751 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMDIS);
755 at91_twi_write(dev, AT91_TWI_MMR,
756 (m_start->addr << 16) |
757 int_addr_flag |
758 ((!use_alt_cmd && is_read) ? AT91_TWI_MREAD : 0));
760 dev->buf_len = m_start->len;
761 dev->buf = m_start->buf;
762 dev->msg = m_start;
763 dev->recv_len_abort = false;
765 ret = at91_do_twi_transfer(dev);
767 ret = (ret < 0) ? ret : num;
768 out:
769 pm_runtime_mark_last_busy(dev->dev);
770 pm_runtime_put_autosuspend(dev->dev);
772 return ret;
776 * The hardware can handle at most two messages concatenated by a
777 * repeated start via it's internal address feature.
779 static struct i2c_adapter_quirks at91_twi_quirks = {
780 .flags = I2C_AQ_COMB | I2C_AQ_COMB_WRITE_FIRST | I2C_AQ_COMB_SAME_ADDR,
781 .max_comb_1st_msg_len = 3,
784 static u32 at91_twi_func(struct i2c_adapter *adapter)
786 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL
787 | I2C_FUNC_SMBUS_READ_BLOCK_DATA;
790 static struct i2c_algorithm at91_twi_algorithm = {
791 .master_xfer = at91_twi_xfer,
792 .functionality = at91_twi_func,
795 static struct at91_twi_pdata at91rm9200_config = {
796 .clk_max_div = 5,
797 .clk_offset = 3,
798 .has_unre_flag = true,
799 .has_alt_cmd = false,
802 static struct at91_twi_pdata at91sam9261_config = {
803 .clk_max_div = 5,
804 .clk_offset = 4,
805 .has_unre_flag = false,
806 .has_alt_cmd = false,
809 static struct at91_twi_pdata at91sam9260_config = {
810 .clk_max_div = 7,
811 .clk_offset = 4,
812 .has_unre_flag = false,
813 .has_alt_cmd = false,
816 static struct at91_twi_pdata at91sam9g20_config = {
817 .clk_max_div = 7,
818 .clk_offset = 4,
819 .has_unre_flag = false,
820 .has_alt_cmd = false,
823 static struct at91_twi_pdata at91sam9g10_config = {
824 .clk_max_div = 7,
825 .clk_offset = 4,
826 .has_unre_flag = false,
827 .has_alt_cmd = false,
830 static const struct platform_device_id at91_twi_devtypes[] = {
832 .name = "i2c-at91rm9200",
833 .driver_data = (unsigned long) &at91rm9200_config,
834 }, {
835 .name = "i2c-at91sam9261",
836 .driver_data = (unsigned long) &at91sam9261_config,
837 }, {
838 .name = "i2c-at91sam9260",
839 .driver_data = (unsigned long) &at91sam9260_config,
840 }, {
841 .name = "i2c-at91sam9g20",
842 .driver_data = (unsigned long) &at91sam9g20_config,
843 }, {
844 .name = "i2c-at91sam9g10",
845 .driver_data = (unsigned long) &at91sam9g10_config,
846 }, {
847 /* sentinel */
851 #if defined(CONFIG_OF)
852 static struct at91_twi_pdata at91sam9x5_config = {
853 .clk_max_div = 7,
854 .clk_offset = 4,
855 .has_unre_flag = false,
856 .has_alt_cmd = false,
859 static struct at91_twi_pdata sama5d2_config = {
860 .clk_max_div = 7,
861 .clk_offset = 4,
862 .has_unre_flag = true,
863 .has_alt_cmd = true,
866 static const struct of_device_id atmel_twi_dt_ids[] = {
868 .compatible = "atmel,at91rm9200-i2c",
869 .data = &at91rm9200_config,
870 } , {
871 .compatible = "atmel,at91sam9260-i2c",
872 .data = &at91sam9260_config,
873 } , {
874 .compatible = "atmel,at91sam9261-i2c",
875 .data = &at91sam9261_config,
876 } , {
877 .compatible = "atmel,at91sam9g20-i2c",
878 .data = &at91sam9g20_config,
879 } , {
880 .compatible = "atmel,at91sam9g10-i2c",
881 .data = &at91sam9g10_config,
882 }, {
883 .compatible = "atmel,at91sam9x5-i2c",
884 .data = &at91sam9x5_config,
885 }, {
886 .compatible = "atmel,sama5d2-i2c",
887 .data = &sama5d2_config,
888 }, {
889 /* sentinel */
892 MODULE_DEVICE_TABLE(of, atmel_twi_dt_ids);
893 #endif
895 static int at91_twi_configure_dma(struct at91_twi_dev *dev, u32 phy_addr)
897 int ret = 0;
898 struct dma_slave_config slave_config;
899 struct at91_twi_dma *dma = &dev->dma;
900 enum dma_slave_buswidth addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
903 * The actual width of the access will be chosen in
904 * dmaengine_prep_slave_sg():
905 * for each buffer in the scatter-gather list, if its size is aligned
906 * to addr_width then addr_width accesses will be performed to transfer
907 * the buffer. On the other hand, if the buffer size is not aligned to
908 * addr_width then the buffer is transferred using single byte accesses.
909 * Please refer to the Atmel eXtended DMA controller driver.
910 * When FIFOs are used, the TXRDYM threshold can always be set to
911 * trigger the XDMAC when at least 4 data can be written into the TX
912 * FIFO, even if single byte accesses are performed.
913 * However the RXRDYM threshold must be set to fit the access width,
914 * deduced from buffer length, so the XDMAC is triggered properly to
915 * read data from the RX FIFO.
917 if (dev->fifo_size)
918 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
920 memset(&slave_config, 0, sizeof(slave_config));
921 slave_config.src_addr = (dma_addr_t)phy_addr + AT91_TWI_RHR;
922 slave_config.src_addr_width = addr_width;
923 slave_config.src_maxburst = 1;
924 slave_config.dst_addr = (dma_addr_t)phy_addr + AT91_TWI_THR;
925 slave_config.dst_addr_width = addr_width;
926 slave_config.dst_maxburst = 1;
927 slave_config.device_fc = false;
929 dma->chan_tx = dma_request_slave_channel_reason(dev->dev, "tx");
930 if (IS_ERR(dma->chan_tx)) {
931 ret = PTR_ERR(dma->chan_tx);
932 dma->chan_tx = NULL;
933 goto error;
936 dma->chan_rx = dma_request_slave_channel_reason(dev->dev, "rx");
937 if (IS_ERR(dma->chan_rx)) {
938 ret = PTR_ERR(dma->chan_rx);
939 dma->chan_rx = NULL;
940 goto error;
943 slave_config.direction = DMA_MEM_TO_DEV;
944 if (dmaengine_slave_config(dma->chan_tx, &slave_config)) {
945 dev_err(dev->dev, "failed to configure tx channel\n");
946 ret = -EINVAL;
947 goto error;
950 slave_config.direction = DMA_DEV_TO_MEM;
951 if (dmaengine_slave_config(dma->chan_rx, &slave_config)) {
952 dev_err(dev->dev, "failed to configure rx channel\n");
953 ret = -EINVAL;
954 goto error;
957 sg_init_table(dma->sg, 2);
958 dma->buf_mapped = false;
959 dma->xfer_in_progress = false;
960 dev->use_dma = true;
962 dev_info(dev->dev, "using %s (tx) and %s (rx) for DMA transfers\n",
963 dma_chan_name(dma->chan_tx), dma_chan_name(dma->chan_rx));
965 return ret;
967 error:
968 if (ret != -EPROBE_DEFER)
969 dev_info(dev->dev, "can't use DMA, error %d\n", ret);
970 if (dma->chan_rx)
971 dma_release_channel(dma->chan_rx);
972 if (dma->chan_tx)
973 dma_release_channel(dma->chan_tx);
974 return ret;
977 static struct at91_twi_pdata *at91_twi_get_driver_data(
978 struct platform_device *pdev)
980 if (pdev->dev.of_node) {
981 const struct of_device_id *match;
982 match = of_match_node(atmel_twi_dt_ids, pdev->dev.of_node);
983 if (!match)
984 return NULL;
985 return (struct at91_twi_pdata *)match->data;
987 return (struct at91_twi_pdata *) platform_get_device_id(pdev)->driver_data;
990 static int at91_twi_probe(struct platform_device *pdev)
992 struct at91_twi_dev *dev;
993 struct resource *mem;
994 int rc;
995 u32 phy_addr;
996 u32 bus_clk_rate;
998 dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
999 if (!dev)
1000 return -ENOMEM;
1001 init_completion(&dev->cmd_complete);
1002 dev->dev = &pdev->dev;
1004 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1005 if (!mem)
1006 return -ENODEV;
1007 phy_addr = mem->start;
1009 dev->pdata = at91_twi_get_driver_data(pdev);
1010 if (!dev->pdata)
1011 return -ENODEV;
1013 dev->base = devm_ioremap_resource(&pdev->dev, mem);
1014 if (IS_ERR(dev->base))
1015 return PTR_ERR(dev->base);
1017 dev->irq = platform_get_irq(pdev, 0);
1018 if (dev->irq < 0)
1019 return dev->irq;
1021 rc = devm_request_irq(&pdev->dev, dev->irq, atmel_twi_interrupt, 0,
1022 dev_name(dev->dev), dev);
1023 if (rc) {
1024 dev_err(dev->dev, "Cannot get irq %d: %d\n", dev->irq, rc);
1025 return rc;
1028 platform_set_drvdata(pdev, dev);
1030 dev->clk = devm_clk_get(dev->dev, NULL);
1031 if (IS_ERR(dev->clk)) {
1032 dev_err(dev->dev, "no clock defined\n");
1033 return -ENODEV;
1035 clk_prepare_enable(dev->clk);
1037 if (dev->dev->of_node) {
1038 rc = at91_twi_configure_dma(dev, phy_addr);
1039 if (rc == -EPROBE_DEFER)
1040 return rc;
1043 if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1044 &dev->fifo_size)) {
1045 dev_info(dev->dev, "Using FIFO (%u data)\n", dev->fifo_size);
1048 rc = of_property_read_u32(dev->dev->of_node, "clock-frequency",
1049 &bus_clk_rate);
1050 if (rc)
1051 bus_clk_rate = DEFAULT_TWI_CLK_HZ;
1053 at91_calc_twi_clock(dev, bus_clk_rate);
1054 at91_init_twi_bus(dev);
1056 snprintf(dev->adapter.name, sizeof(dev->adapter.name), "AT91");
1057 i2c_set_adapdata(&dev->adapter, dev);
1058 dev->adapter.owner = THIS_MODULE;
1059 dev->adapter.class = I2C_CLASS_DEPRECATED;
1060 dev->adapter.algo = &at91_twi_algorithm;
1061 dev->adapter.quirks = &at91_twi_quirks;
1062 dev->adapter.dev.parent = dev->dev;
1063 dev->adapter.nr = pdev->id;
1064 dev->adapter.timeout = AT91_I2C_TIMEOUT;
1065 dev->adapter.dev.of_node = pdev->dev.of_node;
1067 pm_runtime_set_autosuspend_delay(dev->dev, AUTOSUSPEND_TIMEOUT);
1068 pm_runtime_use_autosuspend(dev->dev);
1069 pm_runtime_set_active(dev->dev);
1070 pm_runtime_enable(dev->dev);
1072 rc = i2c_add_numbered_adapter(&dev->adapter);
1073 if (rc) {
1074 dev_err(dev->dev, "Adapter %s registration failed\n",
1075 dev->adapter.name);
1076 clk_disable_unprepare(dev->clk);
1078 pm_runtime_disable(dev->dev);
1079 pm_runtime_set_suspended(dev->dev);
1081 return rc;
1084 dev_info(dev->dev, "AT91 i2c bus driver (hw version: %#x).\n",
1085 at91_twi_read(dev, AT91_TWI_VER));
1086 return 0;
1089 static int at91_twi_remove(struct platform_device *pdev)
1091 struct at91_twi_dev *dev = platform_get_drvdata(pdev);
1093 i2c_del_adapter(&dev->adapter);
1094 clk_disable_unprepare(dev->clk);
1096 pm_runtime_disable(dev->dev);
1097 pm_runtime_set_suspended(dev->dev);
1099 return 0;
1102 #ifdef CONFIG_PM
1104 static int at91_twi_runtime_suspend(struct device *dev)
1106 struct at91_twi_dev *twi_dev = dev_get_drvdata(dev);
1108 clk_disable_unprepare(twi_dev->clk);
1110 pinctrl_pm_select_sleep_state(dev);
1112 return 0;
1115 static int at91_twi_runtime_resume(struct device *dev)
1117 struct at91_twi_dev *twi_dev = dev_get_drvdata(dev);
1119 pinctrl_pm_select_default_state(dev);
1121 return clk_prepare_enable(twi_dev->clk);
1124 static int at91_twi_suspend_noirq(struct device *dev)
1126 if (!pm_runtime_status_suspended(dev))
1127 at91_twi_runtime_suspend(dev);
1129 return 0;
1132 static int at91_twi_resume_noirq(struct device *dev)
1134 int ret;
1136 if (!pm_runtime_status_suspended(dev)) {
1137 ret = at91_twi_runtime_resume(dev);
1138 if (ret)
1139 return ret;
1142 pm_runtime_mark_last_busy(dev);
1143 pm_request_autosuspend(dev);
1145 return 0;
1148 static const struct dev_pm_ops at91_twi_pm = {
1149 .suspend_noirq = at91_twi_suspend_noirq,
1150 .resume_noirq = at91_twi_resume_noirq,
1151 .runtime_suspend = at91_twi_runtime_suspend,
1152 .runtime_resume = at91_twi_runtime_resume,
1155 #define at91_twi_pm_ops (&at91_twi_pm)
1156 #else
1157 #define at91_twi_pm_ops NULL
1158 #endif
1160 static struct platform_driver at91_twi_driver = {
1161 .probe = at91_twi_probe,
1162 .remove = at91_twi_remove,
1163 .id_table = at91_twi_devtypes,
1164 .driver = {
1165 .name = "at91_i2c",
1166 .of_match_table = of_match_ptr(atmel_twi_dt_ids),
1167 .pm = at91_twi_pm_ops,
1171 static int __init at91_twi_init(void)
1173 return platform_driver_register(&at91_twi_driver);
1176 static void __exit at91_twi_exit(void)
1178 platform_driver_unregister(&at91_twi_driver);
1181 subsys_initcall(at91_twi_init);
1182 module_exit(at91_twi_exit);
1184 MODULE_AUTHOR("Nikolaus Voss <n.voss@weinmann.de>");
1185 MODULE_DESCRIPTION("I2C (TWI) driver for Atmel AT91");
1186 MODULE_LICENSE("GPL");
1187 MODULE_ALIAS("platform:at91_i2c");