of: MSI: Simplify irqdomain lookup
[linux/fpc-iii.git] / drivers / infiniband / hw / cxgb4 / mem.c
blobe1629ab58db7873a3d9a6c044ba7bc65eb4512c6
1 /*
2 * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <rdma/ib_umem.h>
36 #include <linux/atomic.h>
38 #include "iw_cxgb4.h"
40 int use_dsgl = 0;
41 module_param(use_dsgl, int, 0644);
42 MODULE_PARM_DESC(use_dsgl, "Use DSGL for PBL/FastReg (default=0)");
44 #define T4_ULPTX_MIN_IO 32
45 #define C4IW_MAX_INLINE_SIZE 96
46 #define T4_ULPTX_MAX_DMA 1024
47 #define C4IW_INLINE_THRESHOLD 128
49 static int inline_threshold = C4IW_INLINE_THRESHOLD;
50 module_param(inline_threshold, int, 0644);
51 MODULE_PARM_DESC(inline_threshold, "inline vs dsgl threshold (default=128)");
53 static int mr_exceeds_hw_limits(struct c4iw_dev *dev, u64 length)
55 return (is_t4(dev->rdev.lldi.adapter_type) ||
56 is_t5(dev->rdev.lldi.adapter_type)) &&
57 length >= 8*1024*1024*1024ULL;
60 static int _c4iw_write_mem_dma_aligned(struct c4iw_rdev *rdev, u32 addr,
61 u32 len, dma_addr_t data, int wait)
63 struct sk_buff *skb;
64 struct ulp_mem_io *req;
65 struct ulptx_sgl *sgl;
66 u8 wr_len;
67 int ret = 0;
68 struct c4iw_wr_wait wr_wait;
70 addr &= 0x7FFFFFF;
72 if (wait)
73 c4iw_init_wr_wait(&wr_wait);
74 wr_len = roundup(sizeof(*req) + sizeof(*sgl), 16);
76 skb = alloc_skb(wr_len, GFP_KERNEL);
77 if (!skb)
78 return -ENOMEM;
79 set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
81 req = (struct ulp_mem_io *)__skb_put(skb, wr_len);
82 memset(req, 0, wr_len);
83 INIT_ULPTX_WR(req, wr_len, 0, 0);
84 req->wr.wr_hi = cpu_to_be32(FW_WR_OP_V(FW_ULPTX_WR) |
85 (wait ? FW_WR_COMPL_F : 0));
86 req->wr.wr_lo = wait ? (__force __be64)(unsigned long) &wr_wait : 0L;
87 req->wr.wr_mid = cpu_to_be32(FW_WR_LEN16_V(DIV_ROUND_UP(wr_len, 16)));
88 req->cmd = cpu_to_be32(ULPTX_CMD_V(ULP_TX_MEM_WRITE));
89 req->cmd |= cpu_to_be32(T5_ULP_MEMIO_ORDER_V(1));
90 req->dlen = cpu_to_be32(ULP_MEMIO_DATA_LEN_V(len>>5));
91 req->len16 = cpu_to_be32(DIV_ROUND_UP(wr_len-sizeof(req->wr), 16));
92 req->lock_addr = cpu_to_be32(ULP_MEMIO_ADDR_V(addr));
94 sgl = (struct ulptx_sgl *)(req + 1);
95 sgl->cmd_nsge = cpu_to_be32(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
96 ULPTX_NSGE_V(1));
97 sgl->len0 = cpu_to_be32(len);
98 sgl->addr0 = cpu_to_be64(data);
100 ret = c4iw_ofld_send(rdev, skb);
101 if (ret)
102 return ret;
103 if (wait)
104 ret = c4iw_wait_for_reply(rdev, &wr_wait, 0, 0, __func__);
105 return ret;
108 static int _c4iw_write_mem_inline(struct c4iw_rdev *rdev, u32 addr, u32 len,
109 void *data)
111 struct sk_buff *skb;
112 struct ulp_mem_io *req;
113 struct ulptx_idata *sc;
114 u8 wr_len, *to_dp, *from_dp;
115 int copy_len, num_wqe, i, ret = 0;
116 struct c4iw_wr_wait wr_wait;
117 __be32 cmd = cpu_to_be32(ULPTX_CMD_V(ULP_TX_MEM_WRITE));
119 if (is_t4(rdev->lldi.adapter_type))
120 cmd |= cpu_to_be32(ULP_MEMIO_ORDER_F);
121 else
122 cmd |= cpu_to_be32(T5_ULP_MEMIO_IMM_F);
124 addr &= 0x7FFFFFF;
125 PDBG("%s addr 0x%x len %u\n", __func__, addr, len);
126 num_wqe = DIV_ROUND_UP(len, C4IW_MAX_INLINE_SIZE);
127 c4iw_init_wr_wait(&wr_wait);
128 for (i = 0; i < num_wqe; i++) {
130 copy_len = len > C4IW_MAX_INLINE_SIZE ? C4IW_MAX_INLINE_SIZE :
131 len;
132 wr_len = roundup(sizeof *req + sizeof *sc +
133 roundup(copy_len, T4_ULPTX_MIN_IO), 16);
135 skb = alloc_skb(wr_len, GFP_KERNEL);
136 if (!skb)
137 return -ENOMEM;
138 set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
140 req = (struct ulp_mem_io *)__skb_put(skb, wr_len);
141 memset(req, 0, wr_len);
142 INIT_ULPTX_WR(req, wr_len, 0, 0);
144 if (i == (num_wqe-1)) {
145 req->wr.wr_hi = cpu_to_be32(FW_WR_OP_V(FW_ULPTX_WR) |
146 FW_WR_COMPL_F);
147 req->wr.wr_lo = (__force __be64)(unsigned long)&wr_wait;
148 } else
149 req->wr.wr_hi = cpu_to_be32(FW_WR_OP_V(FW_ULPTX_WR));
150 req->wr.wr_mid = cpu_to_be32(
151 FW_WR_LEN16_V(DIV_ROUND_UP(wr_len, 16)));
153 req->cmd = cmd;
154 req->dlen = cpu_to_be32(ULP_MEMIO_DATA_LEN_V(
155 DIV_ROUND_UP(copy_len, T4_ULPTX_MIN_IO)));
156 req->len16 = cpu_to_be32(DIV_ROUND_UP(wr_len-sizeof(req->wr),
157 16));
158 req->lock_addr = cpu_to_be32(ULP_MEMIO_ADDR_V(addr + i * 3));
160 sc = (struct ulptx_idata *)(req + 1);
161 sc->cmd_more = cpu_to_be32(ULPTX_CMD_V(ULP_TX_SC_IMM));
162 sc->len = cpu_to_be32(roundup(copy_len, T4_ULPTX_MIN_IO));
164 to_dp = (u8 *)(sc + 1);
165 from_dp = (u8 *)data + i * C4IW_MAX_INLINE_SIZE;
166 if (data)
167 memcpy(to_dp, from_dp, copy_len);
168 else
169 memset(to_dp, 0, copy_len);
170 if (copy_len % T4_ULPTX_MIN_IO)
171 memset(to_dp + copy_len, 0, T4_ULPTX_MIN_IO -
172 (copy_len % T4_ULPTX_MIN_IO));
173 ret = c4iw_ofld_send(rdev, skb);
174 if (ret)
175 return ret;
176 len -= C4IW_MAX_INLINE_SIZE;
179 ret = c4iw_wait_for_reply(rdev, &wr_wait, 0, 0, __func__);
180 return ret;
183 static int _c4iw_write_mem_dma(struct c4iw_rdev *rdev, u32 addr, u32 len, void *data)
185 u32 remain = len;
186 u32 dmalen;
187 int ret = 0;
188 dma_addr_t daddr;
189 dma_addr_t save;
191 daddr = dma_map_single(&rdev->lldi.pdev->dev, data, len, DMA_TO_DEVICE);
192 if (dma_mapping_error(&rdev->lldi.pdev->dev, daddr))
193 return -1;
194 save = daddr;
196 while (remain > inline_threshold) {
197 if (remain < T4_ULPTX_MAX_DMA) {
198 if (remain & ~T4_ULPTX_MIN_IO)
199 dmalen = remain & ~(T4_ULPTX_MIN_IO-1);
200 else
201 dmalen = remain;
202 } else
203 dmalen = T4_ULPTX_MAX_DMA;
204 remain -= dmalen;
205 ret = _c4iw_write_mem_dma_aligned(rdev, addr, dmalen, daddr,
206 !remain);
207 if (ret)
208 goto out;
209 addr += dmalen >> 5;
210 data += dmalen;
211 daddr += dmalen;
213 if (remain)
214 ret = _c4iw_write_mem_inline(rdev, addr, remain, data);
215 out:
216 dma_unmap_single(&rdev->lldi.pdev->dev, save, len, DMA_TO_DEVICE);
217 return ret;
221 * write len bytes of data into addr (32B aligned address)
222 * If data is NULL, clear len byte of memory to zero.
224 static int write_adapter_mem(struct c4iw_rdev *rdev, u32 addr, u32 len,
225 void *data)
227 if (is_t5(rdev->lldi.adapter_type) && use_dsgl) {
228 if (len > inline_threshold) {
229 if (_c4iw_write_mem_dma(rdev, addr, len, data)) {
230 printk_ratelimited(KERN_WARNING
231 "%s: dma map"
232 " failure (non fatal)\n",
233 pci_name(rdev->lldi.pdev));
234 return _c4iw_write_mem_inline(rdev, addr, len,
235 data);
236 } else
237 return 0;
238 } else
239 return _c4iw_write_mem_inline(rdev, addr, len, data);
240 } else
241 return _c4iw_write_mem_inline(rdev, addr, len, data);
245 * Build and write a TPT entry.
246 * IN: stag key, pdid, perm, bind_enabled, zbva, to, len, page_size,
247 * pbl_size and pbl_addr
248 * OUT: stag index
250 static int write_tpt_entry(struct c4iw_rdev *rdev, u32 reset_tpt_entry,
251 u32 *stag, u8 stag_state, u32 pdid,
252 enum fw_ri_stag_type type, enum fw_ri_mem_perms perm,
253 int bind_enabled, u32 zbva, u64 to,
254 u64 len, u8 page_size, u32 pbl_size, u32 pbl_addr)
256 int err;
257 struct fw_ri_tpte tpt;
258 u32 stag_idx;
259 static atomic_t key;
261 if (c4iw_fatal_error(rdev))
262 return -EIO;
264 stag_state = stag_state > 0;
265 stag_idx = (*stag) >> 8;
267 if ((!reset_tpt_entry) && (*stag == T4_STAG_UNSET)) {
268 stag_idx = c4iw_get_resource(&rdev->resource.tpt_table);
269 if (!stag_idx) {
270 mutex_lock(&rdev->stats.lock);
271 rdev->stats.stag.fail++;
272 mutex_unlock(&rdev->stats.lock);
273 return -ENOMEM;
275 mutex_lock(&rdev->stats.lock);
276 rdev->stats.stag.cur += 32;
277 if (rdev->stats.stag.cur > rdev->stats.stag.max)
278 rdev->stats.stag.max = rdev->stats.stag.cur;
279 mutex_unlock(&rdev->stats.lock);
280 *stag = (stag_idx << 8) | (atomic_inc_return(&key) & 0xff);
282 PDBG("%s stag_state 0x%0x type 0x%0x pdid 0x%0x, stag_idx 0x%x\n",
283 __func__, stag_state, type, pdid, stag_idx);
285 /* write TPT entry */
286 if (reset_tpt_entry)
287 memset(&tpt, 0, sizeof(tpt));
288 else {
289 tpt.valid_to_pdid = cpu_to_be32(FW_RI_TPTE_VALID_F |
290 FW_RI_TPTE_STAGKEY_V((*stag & FW_RI_TPTE_STAGKEY_M)) |
291 FW_RI_TPTE_STAGSTATE_V(stag_state) |
292 FW_RI_TPTE_STAGTYPE_V(type) | FW_RI_TPTE_PDID_V(pdid));
293 tpt.locread_to_qpid = cpu_to_be32(FW_RI_TPTE_PERM_V(perm) |
294 (bind_enabled ? FW_RI_TPTE_MWBINDEN_F : 0) |
295 FW_RI_TPTE_ADDRTYPE_V((zbva ? FW_RI_ZERO_BASED_TO :
296 FW_RI_VA_BASED_TO))|
297 FW_RI_TPTE_PS_V(page_size));
298 tpt.nosnoop_pbladdr = !pbl_size ? 0 : cpu_to_be32(
299 FW_RI_TPTE_PBLADDR_V(PBL_OFF(rdev, pbl_addr)>>3));
300 tpt.len_lo = cpu_to_be32((u32)(len & 0xffffffffUL));
301 tpt.va_hi = cpu_to_be32((u32)(to >> 32));
302 tpt.va_lo_fbo = cpu_to_be32((u32)(to & 0xffffffffUL));
303 tpt.dca_mwbcnt_pstag = cpu_to_be32(0);
304 tpt.len_hi = cpu_to_be32((u32)(len >> 32));
306 err = write_adapter_mem(rdev, stag_idx +
307 (rdev->lldi.vr->stag.start >> 5),
308 sizeof(tpt), &tpt);
310 if (reset_tpt_entry) {
311 c4iw_put_resource(&rdev->resource.tpt_table, stag_idx);
312 mutex_lock(&rdev->stats.lock);
313 rdev->stats.stag.cur -= 32;
314 mutex_unlock(&rdev->stats.lock);
316 return err;
319 static int write_pbl(struct c4iw_rdev *rdev, __be64 *pbl,
320 u32 pbl_addr, u32 pbl_size)
322 int err;
324 PDBG("%s *pdb_addr 0x%x, pbl_base 0x%x, pbl_size %d\n",
325 __func__, pbl_addr, rdev->lldi.vr->pbl.start,
326 pbl_size);
328 err = write_adapter_mem(rdev, pbl_addr >> 5, pbl_size << 3, pbl);
329 return err;
332 static int dereg_mem(struct c4iw_rdev *rdev, u32 stag, u32 pbl_size,
333 u32 pbl_addr)
335 return write_tpt_entry(rdev, 1, &stag, 0, 0, 0, 0, 0, 0, 0UL, 0, 0,
336 pbl_size, pbl_addr);
339 static int allocate_window(struct c4iw_rdev *rdev, u32 * stag, u32 pdid)
341 *stag = T4_STAG_UNSET;
342 return write_tpt_entry(rdev, 0, stag, 0, pdid, FW_RI_STAG_MW, 0, 0, 0,
343 0UL, 0, 0, 0, 0);
346 static int deallocate_window(struct c4iw_rdev *rdev, u32 stag)
348 return write_tpt_entry(rdev, 1, &stag, 0, 0, 0, 0, 0, 0, 0UL, 0, 0, 0,
352 static int allocate_stag(struct c4iw_rdev *rdev, u32 *stag, u32 pdid,
353 u32 pbl_size, u32 pbl_addr)
355 *stag = T4_STAG_UNSET;
356 return write_tpt_entry(rdev, 0, stag, 0, pdid, FW_RI_STAG_NSMR, 0, 0, 0,
357 0UL, 0, 0, pbl_size, pbl_addr);
360 static int finish_mem_reg(struct c4iw_mr *mhp, u32 stag)
362 u32 mmid;
364 mhp->attr.state = 1;
365 mhp->attr.stag = stag;
366 mmid = stag >> 8;
367 mhp->ibmr.rkey = mhp->ibmr.lkey = stag;
368 PDBG("%s mmid 0x%x mhp %p\n", __func__, mmid, mhp);
369 return insert_handle(mhp->rhp, &mhp->rhp->mmidr, mhp, mmid);
372 static int register_mem(struct c4iw_dev *rhp, struct c4iw_pd *php,
373 struct c4iw_mr *mhp, int shift)
375 u32 stag = T4_STAG_UNSET;
376 int ret;
378 ret = write_tpt_entry(&rhp->rdev, 0, &stag, 1, mhp->attr.pdid,
379 FW_RI_STAG_NSMR, mhp->attr.len ?
380 mhp->attr.perms : 0,
381 mhp->attr.mw_bind_enable, mhp->attr.zbva,
382 mhp->attr.va_fbo, mhp->attr.len ?
383 mhp->attr.len : -1, shift - 12,
384 mhp->attr.pbl_size, mhp->attr.pbl_addr);
385 if (ret)
386 return ret;
388 ret = finish_mem_reg(mhp, stag);
389 if (ret)
390 dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
391 mhp->attr.pbl_addr);
392 return ret;
395 static int reregister_mem(struct c4iw_dev *rhp, struct c4iw_pd *php,
396 struct c4iw_mr *mhp, int shift, int npages)
398 u32 stag;
399 int ret;
401 if (npages > mhp->attr.pbl_size)
402 return -ENOMEM;
404 stag = mhp->attr.stag;
405 ret = write_tpt_entry(&rhp->rdev, 0, &stag, 1, mhp->attr.pdid,
406 FW_RI_STAG_NSMR, mhp->attr.perms,
407 mhp->attr.mw_bind_enable, mhp->attr.zbva,
408 mhp->attr.va_fbo, mhp->attr.len, shift - 12,
409 mhp->attr.pbl_size, mhp->attr.pbl_addr);
410 if (ret)
411 return ret;
413 ret = finish_mem_reg(mhp, stag);
414 if (ret)
415 dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
416 mhp->attr.pbl_addr);
418 return ret;
421 static int alloc_pbl(struct c4iw_mr *mhp, int npages)
423 mhp->attr.pbl_addr = c4iw_pblpool_alloc(&mhp->rhp->rdev,
424 npages << 3);
426 if (!mhp->attr.pbl_addr)
427 return -ENOMEM;
429 mhp->attr.pbl_size = npages;
431 return 0;
434 static int build_phys_page_list(struct ib_phys_buf *buffer_list,
435 int num_phys_buf, u64 *iova_start,
436 u64 *total_size, int *npages,
437 int *shift, __be64 **page_list)
439 u64 mask;
440 int i, j, n;
442 mask = 0;
443 *total_size = 0;
444 for (i = 0; i < num_phys_buf; ++i) {
445 if (i != 0 && buffer_list[i].addr & ~PAGE_MASK)
446 return -EINVAL;
447 if (i != 0 && i != num_phys_buf - 1 &&
448 (buffer_list[i].size & ~PAGE_MASK))
449 return -EINVAL;
450 *total_size += buffer_list[i].size;
451 if (i > 0)
452 mask |= buffer_list[i].addr;
453 else
454 mask |= buffer_list[i].addr & PAGE_MASK;
455 if (i != num_phys_buf - 1)
456 mask |= buffer_list[i].addr + buffer_list[i].size;
457 else
458 mask |= (buffer_list[i].addr + buffer_list[i].size +
459 PAGE_SIZE - 1) & PAGE_MASK;
462 if (*total_size > 0xFFFFFFFFULL)
463 return -ENOMEM;
465 /* Find largest page shift we can use to cover buffers */
466 for (*shift = PAGE_SHIFT; *shift < 27; ++(*shift))
467 if ((1ULL << *shift) & mask)
468 break;
470 buffer_list[0].size += buffer_list[0].addr & ((1ULL << *shift) - 1);
471 buffer_list[0].addr &= ~0ull << *shift;
473 *npages = 0;
474 for (i = 0; i < num_phys_buf; ++i)
475 *npages += (buffer_list[i].size +
476 (1ULL << *shift) - 1) >> *shift;
478 if (!*npages)
479 return -EINVAL;
481 *page_list = kmalloc(sizeof(u64) * *npages, GFP_KERNEL);
482 if (!*page_list)
483 return -ENOMEM;
485 n = 0;
486 for (i = 0; i < num_phys_buf; ++i)
487 for (j = 0;
488 j < (buffer_list[i].size + (1ULL << *shift) - 1) >> *shift;
489 ++j)
490 (*page_list)[n++] = cpu_to_be64(buffer_list[i].addr +
491 ((u64) j << *shift));
493 PDBG("%s va 0x%llx mask 0x%llx shift %d len %lld pbl_size %d\n",
494 __func__, (unsigned long long)*iova_start,
495 (unsigned long long)mask, *shift, (unsigned long long)*total_size,
496 *npages);
498 return 0;
502 int c4iw_reregister_phys_mem(struct ib_mr *mr, int mr_rereg_mask,
503 struct ib_pd *pd, struct ib_phys_buf *buffer_list,
504 int num_phys_buf, int acc, u64 *iova_start)
507 struct c4iw_mr mh, *mhp;
508 struct c4iw_pd *php;
509 struct c4iw_dev *rhp;
510 __be64 *page_list = NULL;
511 int shift = 0;
512 u64 total_size;
513 int npages;
514 int ret;
516 PDBG("%s ib_mr %p ib_pd %p\n", __func__, mr, pd);
518 /* There can be no memory windows */
519 if (atomic_read(&mr->usecnt))
520 return -EINVAL;
522 mhp = to_c4iw_mr(mr);
523 rhp = mhp->rhp;
524 php = to_c4iw_pd(mr->pd);
526 /* make sure we are on the same adapter */
527 if (rhp != php->rhp)
528 return -EINVAL;
530 memcpy(&mh, mhp, sizeof *mhp);
532 if (mr_rereg_mask & IB_MR_REREG_PD)
533 php = to_c4iw_pd(pd);
534 if (mr_rereg_mask & IB_MR_REREG_ACCESS) {
535 mh.attr.perms = c4iw_ib_to_tpt_access(acc);
536 mh.attr.mw_bind_enable = (acc & IB_ACCESS_MW_BIND) ==
537 IB_ACCESS_MW_BIND;
539 if (mr_rereg_mask & IB_MR_REREG_TRANS) {
540 ret = build_phys_page_list(buffer_list, num_phys_buf,
541 iova_start,
542 &total_size, &npages,
543 &shift, &page_list);
544 if (ret)
545 return ret;
548 if (mr_exceeds_hw_limits(rhp, total_size)) {
549 kfree(page_list);
550 return -EINVAL;
553 ret = reregister_mem(rhp, php, &mh, shift, npages);
554 kfree(page_list);
555 if (ret)
556 return ret;
557 if (mr_rereg_mask & IB_MR_REREG_PD)
558 mhp->attr.pdid = php->pdid;
559 if (mr_rereg_mask & IB_MR_REREG_ACCESS)
560 mhp->attr.perms = c4iw_ib_to_tpt_access(acc);
561 if (mr_rereg_mask & IB_MR_REREG_TRANS) {
562 mhp->attr.zbva = 0;
563 mhp->attr.va_fbo = *iova_start;
564 mhp->attr.page_size = shift - 12;
565 mhp->attr.len = (u32) total_size;
566 mhp->attr.pbl_size = npages;
569 return 0;
572 struct ib_mr *c4iw_register_phys_mem(struct ib_pd *pd,
573 struct ib_phys_buf *buffer_list,
574 int num_phys_buf, int acc, u64 *iova_start)
576 __be64 *page_list;
577 int shift;
578 u64 total_size;
579 int npages;
580 struct c4iw_dev *rhp;
581 struct c4iw_pd *php;
582 struct c4iw_mr *mhp;
583 int ret;
585 PDBG("%s ib_pd %p\n", __func__, pd);
586 php = to_c4iw_pd(pd);
587 rhp = php->rhp;
589 mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
590 if (!mhp)
591 return ERR_PTR(-ENOMEM);
593 mhp->rhp = rhp;
595 /* First check that we have enough alignment */
596 if ((*iova_start & ~PAGE_MASK) != (buffer_list[0].addr & ~PAGE_MASK)) {
597 ret = -EINVAL;
598 goto err;
601 if (num_phys_buf > 1 &&
602 ((buffer_list[0].addr + buffer_list[0].size) & ~PAGE_MASK)) {
603 ret = -EINVAL;
604 goto err;
607 ret = build_phys_page_list(buffer_list, num_phys_buf, iova_start,
608 &total_size, &npages, &shift,
609 &page_list);
610 if (ret)
611 goto err;
613 if (mr_exceeds_hw_limits(rhp, total_size)) {
614 kfree(page_list);
615 ret = -EINVAL;
616 goto err;
619 ret = alloc_pbl(mhp, npages);
620 if (ret) {
621 kfree(page_list);
622 goto err;
625 ret = write_pbl(&mhp->rhp->rdev, page_list, mhp->attr.pbl_addr,
626 npages);
627 kfree(page_list);
628 if (ret)
629 goto err_pbl;
631 mhp->attr.pdid = php->pdid;
632 mhp->attr.zbva = 0;
634 mhp->attr.perms = c4iw_ib_to_tpt_access(acc);
635 mhp->attr.va_fbo = *iova_start;
636 mhp->attr.page_size = shift - 12;
638 mhp->attr.len = (u32) total_size;
639 mhp->attr.pbl_size = npages;
640 ret = register_mem(rhp, php, mhp, shift);
641 if (ret)
642 goto err_pbl;
644 return &mhp->ibmr;
646 err_pbl:
647 c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
648 mhp->attr.pbl_size << 3);
650 err:
651 kfree(mhp);
652 return ERR_PTR(ret);
656 struct ib_mr *c4iw_get_dma_mr(struct ib_pd *pd, int acc)
658 struct c4iw_dev *rhp;
659 struct c4iw_pd *php;
660 struct c4iw_mr *mhp;
661 int ret;
662 u32 stag = T4_STAG_UNSET;
664 PDBG("%s ib_pd %p\n", __func__, pd);
665 php = to_c4iw_pd(pd);
666 rhp = php->rhp;
668 mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
669 if (!mhp)
670 return ERR_PTR(-ENOMEM);
672 mhp->rhp = rhp;
673 mhp->attr.pdid = php->pdid;
674 mhp->attr.perms = c4iw_ib_to_tpt_access(acc);
675 mhp->attr.mw_bind_enable = (acc&IB_ACCESS_MW_BIND) == IB_ACCESS_MW_BIND;
676 mhp->attr.zbva = 0;
677 mhp->attr.va_fbo = 0;
678 mhp->attr.page_size = 0;
679 mhp->attr.len = ~0ULL;
680 mhp->attr.pbl_size = 0;
682 ret = write_tpt_entry(&rhp->rdev, 0, &stag, 1, php->pdid,
683 FW_RI_STAG_NSMR, mhp->attr.perms,
684 mhp->attr.mw_bind_enable, 0, 0, ~0ULL, 0, 0, 0);
685 if (ret)
686 goto err1;
688 ret = finish_mem_reg(mhp, stag);
689 if (ret)
690 goto err2;
691 return &mhp->ibmr;
692 err2:
693 dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
694 mhp->attr.pbl_addr);
695 err1:
696 kfree(mhp);
697 return ERR_PTR(ret);
700 struct ib_mr *c4iw_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
701 u64 virt, int acc, struct ib_udata *udata)
703 __be64 *pages;
704 int shift, n, len;
705 int i, k, entry;
706 int err = 0;
707 struct scatterlist *sg;
708 struct c4iw_dev *rhp;
709 struct c4iw_pd *php;
710 struct c4iw_mr *mhp;
712 PDBG("%s ib_pd %p\n", __func__, pd);
714 if (length == ~0ULL)
715 return ERR_PTR(-EINVAL);
717 if ((length + start) < start)
718 return ERR_PTR(-EINVAL);
720 php = to_c4iw_pd(pd);
721 rhp = php->rhp;
723 if (mr_exceeds_hw_limits(rhp, length))
724 return ERR_PTR(-EINVAL);
726 mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
727 if (!mhp)
728 return ERR_PTR(-ENOMEM);
730 mhp->rhp = rhp;
732 mhp->umem = ib_umem_get(pd->uobject->context, start, length, acc, 0);
733 if (IS_ERR(mhp->umem)) {
734 err = PTR_ERR(mhp->umem);
735 kfree(mhp);
736 return ERR_PTR(err);
739 shift = ffs(mhp->umem->page_size) - 1;
741 n = mhp->umem->nmap;
742 err = alloc_pbl(mhp, n);
743 if (err)
744 goto err;
746 pages = (__be64 *) __get_free_page(GFP_KERNEL);
747 if (!pages) {
748 err = -ENOMEM;
749 goto err_pbl;
752 i = n = 0;
754 for_each_sg(mhp->umem->sg_head.sgl, sg, mhp->umem->nmap, entry) {
755 len = sg_dma_len(sg) >> shift;
756 for (k = 0; k < len; ++k) {
757 pages[i++] = cpu_to_be64(sg_dma_address(sg) +
758 mhp->umem->page_size * k);
759 if (i == PAGE_SIZE / sizeof *pages) {
760 err = write_pbl(&mhp->rhp->rdev,
761 pages,
762 mhp->attr.pbl_addr + (n << 3), i);
763 if (err)
764 goto pbl_done;
765 n += i;
766 i = 0;
771 if (i)
772 err = write_pbl(&mhp->rhp->rdev, pages,
773 mhp->attr.pbl_addr + (n << 3), i);
775 pbl_done:
776 free_page((unsigned long) pages);
777 if (err)
778 goto err_pbl;
780 mhp->attr.pdid = php->pdid;
781 mhp->attr.zbva = 0;
782 mhp->attr.perms = c4iw_ib_to_tpt_access(acc);
783 mhp->attr.va_fbo = virt;
784 mhp->attr.page_size = shift - 12;
785 mhp->attr.len = length;
787 err = register_mem(rhp, php, mhp, shift);
788 if (err)
789 goto err_pbl;
791 return &mhp->ibmr;
793 err_pbl:
794 c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
795 mhp->attr.pbl_size << 3);
797 err:
798 ib_umem_release(mhp->umem);
799 kfree(mhp);
800 return ERR_PTR(err);
803 struct ib_mw *c4iw_alloc_mw(struct ib_pd *pd, enum ib_mw_type type)
805 struct c4iw_dev *rhp;
806 struct c4iw_pd *php;
807 struct c4iw_mw *mhp;
808 u32 mmid;
809 u32 stag = 0;
810 int ret;
812 if (type != IB_MW_TYPE_1)
813 return ERR_PTR(-EINVAL);
815 php = to_c4iw_pd(pd);
816 rhp = php->rhp;
817 mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
818 if (!mhp)
819 return ERR_PTR(-ENOMEM);
820 ret = allocate_window(&rhp->rdev, &stag, php->pdid);
821 if (ret) {
822 kfree(mhp);
823 return ERR_PTR(ret);
825 mhp->rhp = rhp;
826 mhp->attr.pdid = php->pdid;
827 mhp->attr.type = FW_RI_STAG_MW;
828 mhp->attr.stag = stag;
829 mmid = (stag) >> 8;
830 mhp->ibmw.rkey = stag;
831 if (insert_handle(rhp, &rhp->mmidr, mhp, mmid)) {
832 deallocate_window(&rhp->rdev, mhp->attr.stag);
833 kfree(mhp);
834 return ERR_PTR(-ENOMEM);
836 PDBG("%s mmid 0x%x mhp %p stag 0x%x\n", __func__, mmid, mhp, stag);
837 return &(mhp->ibmw);
840 int c4iw_dealloc_mw(struct ib_mw *mw)
842 struct c4iw_dev *rhp;
843 struct c4iw_mw *mhp;
844 u32 mmid;
846 mhp = to_c4iw_mw(mw);
847 rhp = mhp->rhp;
848 mmid = (mw->rkey) >> 8;
849 remove_handle(rhp, &rhp->mmidr, mmid);
850 deallocate_window(&rhp->rdev, mhp->attr.stag);
851 kfree(mhp);
852 PDBG("%s ib_mw %p mmid 0x%x ptr %p\n", __func__, mw, mmid, mhp);
853 return 0;
856 struct ib_mr *c4iw_alloc_mr(struct ib_pd *pd,
857 enum ib_mr_type mr_type,
858 u32 max_num_sg)
860 struct c4iw_dev *rhp;
861 struct c4iw_pd *php;
862 struct c4iw_mr *mhp;
863 u32 mmid;
864 u32 stag = 0;
865 int ret = 0;
866 int length = roundup(max_num_sg * sizeof(u64), 32);
868 if (mr_type != IB_MR_TYPE_MEM_REG ||
869 max_num_sg > t4_max_fr_depth(use_dsgl))
870 return ERR_PTR(-EINVAL);
872 php = to_c4iw_pd(pd);
873 rhp = php->rhp;
874 mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
875 if (!mhp) {
876 ret = -ENOMEM;
877 goto err;
880 mhp->mpl = dma_alloc_coherent(&rhp->rdev.lldi.pdev->dev,
881 length, &mhp->mpl_addr, GFP_KERNEL);
882 if (!mhp->mpl) {
883 ret = -ENOMEM;
884 goto err_mpl;
886 mhp->max_mpl_len = length;
888 mhp->rhp = rhp;
889 ret = alloc_pbl(mhp, max_num_sg);
890 if (ret)
891 goto err1;
892 mhp->attr.pbl_size = max_num_sg;
893 ret = allocate_stag(&rhp->rdev, &stag, php->pdid,
894 mhp->attr.pbl_size, mhp->attr.pbl_addr);
895 if (ret)
896 goto err2;
897 mhp->attr.pdid = php->pdid;
898 mhp->attr.type = FW_RI_STAG_NSMR;
899 mhp->attr.stag = stag;
900 mhp->attr.state = 1;
901 mmid = (stag) >> 8;
902 mhp->ibmr.rkey = mhp->ibmr.lkey = stag;
903 if (insert_handle(rhp, &rhp->mmidr, mhp, mmid)) {
904 ret = -ENOMEM;
905 goto err3;
908 PDBG("%s mmid 0x%x mhp %p stag 0x%x\n", __func__, mmid, mhp, stag);
909 return &(mhp->ibmr);
910 err3:
911 dereg_mem(&rhp->rdev, stag, mhp->attr.pbl_size,
912 mhp->attr.pbl_addr);
913 err2:
914 c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
915 mhp->attr.pbl_size << 3);
916 err1:
917 dma_free_coherent(&mhp->rhp->rdev.lldi.pdev->dev,
918 mhp->max_mpl_len, mhp->mpl, mhp->mpl_addr);
919 err_mpl:
920 kfree(mhp);
921 err:
922 return ERR_PTR(ret);
925 static int c4iw_set_page(struct ib_mr *ibmr, u64 addr)
927 struct c4iw_mr *mhp = to_c4iw_mr(ibmr);
929 if (unlikely(mhp->mpl_len == mhp->max_mpl_len))
930 return -ENOMEM;
932 mhp->mpl[mhp->mpl_len++] = addr;
934 return 0;
937 int c4iw_map_mr_sg(struct ib_mr *ibmr,
938 struct scatterlist *sg,
939 int sg_nents)
941 struct c4iw_mr *mhp = to_c4iw_mr(ibmr);
943 mhp->mpl_len = 0;
945 return ib_sg_to_pages(ibmr, sg, sg_nents, c4iw_set_page);
948 int c4iw_dereg_mr(struct ib_mr *ib_mr)
950 struct c4iw_dev *rhp;
951 struct c4iw_mr *mhp;
952 u32 mmid;
954 PDBG("%s ib_mr %p\n", __func__, ib_mr);
955 /* There can be no memory windows */
956 if (atomic_read(&ib_mr->usecnt))
957 return -EINVAL;
959 mhp = to_c4iw_mr(ib_mr);
960 rhp = mhp->rhp;
961 mmid = mhp->attr.stag >> 8;
962 remove_handle(rhp, &rhp->mmidr, mmid);
963 if (mhp->mpl)
964 dma_free_coherent(&mhp->rhp->rdev.lldi.pdev->dev,
965 mhp->max_mpl_len, mhp->mpl, mhp->mpl_addr);
966 dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
967 mhp->attr.pbl_addr);
968 if (mhp->attr.pbl_size)
969 c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
970 mhp->attr.pbl_size << 3);
971 if (mhp->kva)
972 kfree((void *) (unsigned long) mhp->kva);
973 if (mhp->umem)
974 ib_umem_release(mhp->umem);
975 PDBG("%s mmid 0x%x ptr %p\n", __func__, mmid, mhp);
976 kfree(mhp);
977 return 0;