2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved.
3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/ctype.h>
40 #include <linux/kthread.h>
41 #include <linux/string.h>
42 #include <linux/delay.h>
43 #include <linux/atomic.h>
44 #include <scsi/scsi_proto.h>
45 #include <scsi/scsi_tcq.h>
46 #include <target/target_core_base.h>
47 #include <target/target_core_fabric.h>
50 /* Name of this kernel module. */
51 #define DRV_NAME "ib_srpt"
52 #define DRV_VERSION "2.0.0"
53 #define DRV_RELDATE "2011-02-14"
55 #define SRPT_ID_STRING "Linux SRP target"
58 #define pr_fmt(fmt) DRV_NAME " " fmt
60 MODULE_AUTHOR("Vu Pham and Bart Van Assche");
61 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
62 "v" DRV_VERSION
" (" DRV_RELDATE
")");
63 MODULE_LICENSE("Dual BSD/GPL");
69 static u64 srpt_service_guid
;
70 static DEFINE_SPINLOCK(srpt_dev_lock
); /* Protects srpt_dev_list. */
71 static LIST_HEAD(srpt_dev_list
); /* List of srpt_device structures. */
73 static unsigned srp_max_req_size
= DEFAULT_MAX_REQ_SIZE
;
74 module_param(srp_max_req_size
, int, 0444);
75 MODULE_PARM_DESC(srp_max_req_size
,
76 "Maximum size of SRP request messages in bytes.");
78 static int srpt_srq_size
= DEFAULT_SRPT_SRQ_SIZE
;
79 module_param(srpt_srq_size
, int, 0444);
80 MODULE_PARM_DESC(srpt_srq_size
,
81 "Shared receive queue (SRQ) size.");
83 static int srpt_get_u64_x(char *buffer
, struct kernel_param
*kp
)
85 return sprintf(buffer
, "0x%016llx", *(u64
*)kp
->arg
);
87 module_param_call(srpt_service_guid
, NULL
, srpt_get_u64_x
, &srpt_service_guid
,
89 MODULE_PARM_DESC(srpt_service_guid
,
90 "Using this value for ioc_guid, id_ext, and cm_listen_id"
91 " instead of using the node_guid of the first HCA.");
93 static struct ib_client srpt_client
;
94 static void srpt_release_channel(struct srpt_rdma_ch
*ch
);
95 static int srpt_queue_status(struct se_cmd
*cmd
);
98 * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE.
101 enum dma_data_direction
opposite_dma_dir(enum dma_data_direction dir
)
104 case DMA_TO_DEVICE
: return DMA_FROM_DEVICE
;
105 case DMA_FROM_DEVICE
: return DMA_TO_DEVICE
;
111 * srpt_sdev_name() - Return the name associated with the HCA.
113 * Examples are ib0, ib1, ...
115 static inline const char *srpt_sdev_name(struct srpt_device
*sdev
)
117 return sdev
->device
->name
;
120 static enum rdma_ch_state
srpt_get_ch_state(struct srpt_rdma_ch
*ch
)
123 enum rdma_ch_state state
;
125 spin_lock_irqsave(&ch
->spinlock
, flags
);
127 spin_unlock_irqrestore(&ch
->spinlock
, flags
);
131 static enum rdma_ch_state
132 srpt_set_ch_state(struct srpt_rdma_ch
*ch
, enum rdma_ch_state new_state
)
135 enum rdma_ch_state prev
;
137 spin_lock_irqsave(&ch
->spinlock
, flags
);
139 ch
->state
= new_state
;
140 spin_unlock_irqrestore(&ch
->spinlock
, flags
);
145 * srpt_test_and_set_ch_state() - Test and set the channel state.
147 * Returns true if and only if the channel state has been set to the new state.
150 srpt_test_and_set_ch_state(struct srpt_rdma_ch
*ch
, enum rdma_ch_state old
,
151 enum rdma_ch_state
new)
154 enum rdma_ch_state prev
;
156 spin_lock_irqsave(&ch
->spinlock
, flags
);
160 spin_unlock_irqrestore(&ch
->spinlock
, flags
);
165 * srpt_event_handler() - Asynchronous IB event callback function.
167 * Callback function called by the InfiniBand core when an asynchronous IB
168 * event occurs. This callback may occur in interrupt context. See also
169 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
170 * Architecture Specification.
172 static void srpt_event_handler(struct ib_event_handler
*handler
,
173 struct ib_event
*event
)
175 struct srpt_device
*sdev
;
176 struct srpt_port
*sport
;
178 sdev
= ib_get_client_data(event
->device
, &srpt_client
);
179 if (!sdev
|| sdev
->device
!= event
->device
)
182 pr_debug("ASYNC event= %d on device= %s\n", event
->event
,
183 srpt_sdev_name(sdev
));
185 switch (event
->event
) {
186 case IB_EVENT_PORT_ERR
:
187 if (event
->element
.port_num
<= sdev
->device
->phys_port_cnt
) {
188 sport
= &sdev
->port
[event
->element
.port_num
- 1];
193 case IB_EVENT_PORT_ACTIVE
:
194 case IB_EVENT_LID_CHANGE
:
195 case IB_EVENT_PKEY_CHANGE
:
196 case IB_EVENT_SM_CHANGE
:
197 case IB_EVENT_CLIENT_REREGISTER
:
198 case IB_EVENT_GID_CHANGE
:
199 /* Refresh port data asynchronously. */
200 if (event
->element
.port_num
<= sdev
->device
->phys_port_cnt
) {
201 sport
= &sdev
->port
[event
->element
.port_num
- 1];
202 if (!sport
->lid
&& !sport
->sm_lid
)
203 schedule_work(&sport
->work
);
207 pr_err("received unrecognized IB event %d\n",
214 * srpt_srq_event() - SRQ event callback function.
216 static void srpt_srq_event(struct ib_event
*event
, void *ctx
)
218 pr_info("SRQ event %d\n", event
->event
);
222 * srpt_qp_event() - QP event callback function.
224 static void srpt_qp_event(struct ib_event
*event
, struct srpt_rdma_ch
*ch
)
226 pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
227 event
->event
, ch
->cm_id
, ch
->sess_name
, srpt_get_ch_state(ch
));
229 switch (event
->event
) {
230 case IB_EVENT_COMM_EST
:
231 ib_cm_notify(ch
->cm_id
, event
->event
);
233 case IB_EVENT_QP_LAST_WQE_REACHED
:
234 if (srpt_test_and_set_ch_state(ch
, CH_DRAINING
,
236 srpt_release_channel(ch
);
238 pr_debug("%s: state %d - ignored LAST_WQE.\n",
239 ch
->sess_name
, srpt_get_ch_state(ch
));
242 pr_err("received unrecognized IB QP event %d\n", event
->event
);
248 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure.
250 * @slot: one-based slot number.
251 * @value: four-bit value.
253 * Copies the lowest four bits of value in element slot of the array of four
254 * bit elements called c_list (controller list). The index slot is one-based.
256 static void srpt_set_ioc(u8
*c_list
, u32 slot
, u8 value
)
263 tmp
= c_list
[id
] & 0xf;
264 c_list
[id
] = (value
<< 4) | tmp
;
266 tmp
= c_list
[id
] & 0xf0;
267 c_list
[id
] = (value
& 0xf) | tmp
;
272 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram.
274 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
277 static void srpt_get_class_port_info(struct ib_dm_mad
*mad
)
279 struct ib_class_port_info
*cif
;
281 cif
= (struct ib_class_port_info
*)mad
->data
;
282 memset(cif
, 0, sizeof *cif
);
283 cif
->base_version
= 1;
284 cif
->class_version
= 1;
285 cif
->resp_time_value
= 20;
287 mad
->mad_hdr
.status
= 0;
291 * srpt_get_iou() - Write IOUnitInfo to a management datagram.
293 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
294 * Specification. See also section B.7, table B.6 in the SRP r16a document.
296 static void srpt_get_iou(struct ib_dm_mad
*mad
)
298 struct ib_dm_iou_info
*ioui
;
302 ioui
= (struct ib_dm_iou_info
*)mad
->data
;
303 ioui
->change_id
= cpu_to_be16(1);
304 ioui
->max_controllers
= 16;
306 /* set present for slot 1 and empty for the rest */
307 srpt_set_ioc(ioui
->controller_list
, 1, 1);
308 for (i
= 1, slot
= 2; i
< 16; i
++, slot
++)
309 srpt_set_ioc(ioui
->controller_list
, slot
, 0);
311 mad
->mad_hdr
.status
= 0;
315 * srpt_get_ioc() - Write IOControllerprofile to a management datagram.
317 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
318 * Architecture Specification. See also section B.7, table B.7 in the SRP
321 static void srpt_get_ioc(struct srpt_port
*sport
, u32 slot
,
322 struct ib_dm_mad
*mad
)
324 struct srpt_device
*sdev
= sport
->sdev
;
325 struct ib_dm_ioc_profile
*iocp
;
327 iocp
= (struct ib_dm_ioc_profile
*)mad
->data
;
329 if (!slot
|| slot
> 16) {
331 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD
);
337 = cpu_to_be16(DM_MAD_STATUS_NO_IOC
);
341 memset(iocp
, 0, sizeof *iocp
);
342 strcpy(iocp
->id_string
, SRPT_ID_STRING
);
343 iocp
->guid
= cpu_to_be64(srpt_service_guid
);
344 iocp
->vendor_id
= cpu_to_be32(sdev
->dev_attr
.vendor_id
);
345 iocp
->device_id
= cpu_to_be32(sdev
->dev_attr
.vendor_part_id
);
346 iocp
->device_version
= cpu_to_be16(sdev
->dev_attr
.hw_ver
);
347 iocp
->subsys_vendor_id
= cpu_to_be32(sdev
->dev_attr
.vendor_id
);
348 iocp
->subsys_device_id
= 0x0;
349 iocp
->io_class
= cpu_to_be16(SRP_REV16A_IB_IO_CLASS
);
350 iocp
->io_subclass
= cpu_to_be16(SRP_IO_SUBCLASS
);
351 iocp
->protocol
= cpu_to_be16(SRP_PROTOCOL
);
352 iocp
->protocol_version
= cpu_to_be16(SRP_PROTOCOL_VERSION
);
353 iocp
->send_queue_depth
= cpu_to_be16(sdev
->srq_size
);
354 iocp
->rdma_read_depth
= 4;
355 iocp
->send_size
= cpu_to_be32(srp_max_req_size
);
356 iocp
->rdma_size
= cpu_to_be32(min(sport
->port_attrib
.srp_max_rdma_size
,
358 iocp
->num_svc_entries
= 1;
359 iocp
->op_cap_mask
= SRP_SEND_TO_IOC
| SRP_SEND_FROM_IOC
|
360 SRP_RDMA_READ_FROM_IOC
| SRP_RDMA_WRITE_FROM_IOC
;
362 mad
->mad_hdr
.status
= 0;
366 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram.
368 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
369 * Specification. See also section B.7, table B.8 in the SRP r16a document.
371 static void srpt_get_svc_entries(u64 ioc_guid
,
372 u16 slot
, u8 hi
, u8 lo
, struct ib_dm_mad
*mad
)
374 struct ib_dm_svc_entries
*svc_entries
;
378 if (!slot
|| slot
> 16) {
380 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD
);
384 if (slot
> 2 || lo
> hi
|| hi
> 1) {
386 = cpu_to_be16(DM_MAD_STATUS_NO_IOC
);
390 svc_entries
= (struct ib_dm_svc_entries
*)mad
->data
;
391 memset(svc_entries
, 0, sizeof *svc_entries
);
392 svc_entries
->service_entries
[0].id
= cpu_to_be64(ioc_guid
);
393 snprintf(svc_entries
->service_entries
[0].name
,
394 sizeof(svc_entries
->service_entries
[0].name
),
396 SRP_SERVICE_NAME_PREFIX
,
399 mad
->mad_hdr
.status
= 0;
403 * srpt_mgmt_method_get() - Process a received management datagram.
404 * @sp: source port through which the MAD has been received.
405 * @rq_mad: received MAD.
406 * @rsp_mad: response MAD.
408 static void srpt_mgmt_method_get(struct srpt_port
*sp
, struct ib_mad
*rq_mad
,
409 struct ib_dm_mad
*rsp_mad
)
415 attr_id
= be16_to_cpu(rq_mad
->mad_hdr
.attr_id
);
417 case DM_ATTR_CLASS_PORT_INFO
:
418 srpt_get_class_port_info(rsp_mad
);
420 case DM_ATTR_IOU_INFO
:
421 srpt_get_iou(rsp_mad
);
423 case DM_ATTR_IOC_PROFILE
:
424 slot
= be32_to_cpu(rq_mad
->mad_hdr
.attr_mod
);
425 srpt_get_ioc(sp
, slot
, rsp_mad
);
427 case DM_ATTR_SVC_ENTRIES
:
428 slot
= be32_to_cpu(rq_mad
->mad_hdr
.attr_mod
);
429 hi
= (u8
) ((slot
>> 8) & 0xff);
430 lo
= (u8
) (slot
& 0xff);
431 slot
= (u16
) ((slot
>> 16) & 0xffff);
432 srpt_get_svc_entries(srpt_service_guid
,
433 slot
, hi
, lo
, rsp_mad
);
436 rsp_mad
->mad_hdr
.status
=
437 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR
);
443 * srpt_mad_send_handler() - Post MAD-send callback function.
445 static void srpt_mad_send_handler(struct ib_mad_agent
*mad_agent
,
446 struct ib_mad_send_wc
*mad_wc
)
448 ib_destroy_ah(mad_wc
->send_buf
->ah
);
449 ib_free_send_mad(mad_wc
->send_buf
);
453 * srpt_mad_recv_handler() - MAD reception callback function.
455 static void srpt_mad_recv_handler(struct ib_mad_agent
*mad_agent
,
456 struct ib_mad_recv_wc
*mad_wc
)
458 struct srpt_port
*sport
= (struct srpt_port
*)mad_agent
->context
;
460 struct ib_mad_send_buf
*rsp
;
461 struct ib_dm_mad
*dm_mad
;
463 if (!mad_wc
|| !mad_wc
->recv_buf
.mad
)
466 ah
= ib_create_ah_from_wc(mad_agent
->qp
->pd
, mad_wc
->wc
,
467 mad_wc
->recv_buf
.grh
, mad_agent
->port_num
);
471 BUILD_BUG_ON(offsetof(struct ib_dm_mad
, data
) != IB_MGMT_DEVICE_HDR
);
473 rsp
= ib_create_send_mad(mad_agent
, mad_wc
->wc
->src_qp
,
474 mad_wc
->wc
->pkey_index
, 0,
475 IB_MGMT_DEVICE_HDR
, IB_MGMT_DEVICE_DATA
,
477 IB_MGMT_BASE_VERSION
);
484 memcpy(dm_mad
, mad_wc
->recv_buf
.mad
, sizeof *dm_mad
);
485 dm_mad
->mad_hdr
.method
= IB_MGMT_METHOD_GET_RESP
;
486 dm_mad
->mad_hdr
.status
= 0;
488 switch (mad_wc
->recv_buf
.mad
->mad_hdr
.method
) {
489 case IB_MGMT_METHOD_GET
:
490 srpt_mgmt_method_get(sport
, mad_wc
->recv_buf
.mad
, dm_mad
);
492 case IB_MGMT_METHOD_SET
:
493 dm_mad
->mad_hdr
.status
=
494 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR
);
497 dm_mad
->mad_hdr
.status
=
498 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD
);
502 if (!ib_post_send_mad(rsp
, NULL
)) {
503 ib_free_recv_mad(mad_wc
);
504 /* will destroy_ah & free_send_mad in send completion */
508 ib_free_send_mad(rsp
);
513 ib_free_recv_mad(mad_wc
);
517 * srpt_refresh_port() - Configure a HCA port.
519 * Enable InfiniBand management datagram processing, update the cached sm_lid,
520 * lid and gid values, and register a callback function for processing MADs
521 * on the specified port.
523 * Note: It is safe to call this function more than once for the same port.
525 static int srpt_refresh_port(struct srpt_port
*sport
)
527 struct ib_mad_reg_req reg_req
;
528 struct ib_port_modify port_modify
;
529 struct ib_port_attr port_attr
;
532 memset(&port_modify
, 0, sizeof port_modify
);
533 port_modify
.set_port_cap_mask
= IB_PORT_DEVICE_MGMT_SUP
;
534 port_modify
.clr_port_cap_mask
= 0;
536 ret
= ib_modify_port(sport
->sdev
->device
, sport
->port
, 0, &port_modify
);
540 ret
= ib_query_port(sport
->sdev
->device
, sport
->port
, &port_attr
);
544 sport
->sm_lid
= port_attr
.sm_lid
;
545 sport
->lid
= port_attr
.lid
;
547 ret
= ib_query_gid(sport
->sdev
->device
, sport
->port
, 0, &sport
->gid
,
552 if (!sport
->mad_agent
) {
553 memset(®_req
, 0, sizeof reg_req
);
554 reg_req
.mgmt_class
= IB_MGMT_CLASS_DEVICE_MGMT
;
555 reg_req
.mgmt_class_version
= IB_MGMT_BASE_VERSION
;
556 set_bit(IB_MGMT_METHOD_GET
, reg_req
.method_mask
);
557 set_bit(IB_MGMT_METHOD_SET
, reg_req
.method_mask
);
559 sport
->mad_agent
= ib_register_mad_agent(sport
->sdev
->device
,
563 srpt_mad_send_handler
,
564 srpt_mad_recv_handler
,
566 if (IS_ERR(sport
->mad_agent
)) {
567 ret
= PTR_ERR(sport
->mad_agent
);
568 sport
->mad_agent
= NULL
;
577 port_modify
.set_port_cap_mask
= 0;
578 port_modify
.clr_port_cap_mask
= IB_PORT_DEVICE_MGMT_SUP
;
579 ib_modify_port(sport
->sdev
->device
, sport
->port
, 0, &port_modify
);
587 * srpt_unregister_mad_agent() - Unregister MAD callback functions.
589 * Note: It is safe to call this function more than once for the same device.
591 static void srpt_unregister_mad_agent(struct srpt_device
*sdev
)
593 struct ib_port_modify port_modify
= {
594 .clr_port_cap_mask
= IB_PORT_DEVICE_MGMT_SUP
,
596 struct srpt_port
*sport
;
599 for (i
= 1; i
<= sdev
->device
->phys_port_cnt
; i
++) {
600 sport
= &sdev
->port
[i
- 1];
601 WARN_ON(sport
->port
!= i
);
602 if (ib_modify_port(sdev
->device
, i
, 0, &port_modify
) < 0)
603 pr_err("disabling MAD processing failed.\n");
604 if (sport
->mad_agent
) {
605 ib_unregister_mad_agent(sport
->mad_agent
);
606 sport
->mad_agent
= NULL
;
612 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure.
614 static struct srpt_ioctx
*srpt_alloc_ioctx(struct srpt_device
*sdev
,
615 int ioctx_size
, int dma_size
,
616 enum dma_data_direction dir
)
618 struct srpt_ioctx
*ioctx
;
620 ioctx
= kmalloc(ioctx_size
, GFP_KERNEL
);
624 ioctx
->buf
= kmalloc(dma_size
, GFP_KERNEL
);
628 ioctx
->dma
= ib_dma_map_single(sdev
->device
, ioctx
->buf
, dma_size
, dir
);
629 if (ib_dma_mapping_error(sdev
->device
, ioctx
->dma
))
643 * srpt_free_ioctx() - Free an SRPT I/O context structure.
645 static void srpt_free_ioctx(struct srpt_device
*sdev
, struct srpt_ioctx
*ioctx
,
646 int dma_size
, enum dma_data_direction dir
)
651 ib_dma_unmap_single(sdev
->device
, ioctx
->dma
, dma_size
, dir
);
657 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures.
658 * @sdev: Device to allocate the I/O context ring for.
659 * @ring_size: Number of elements in the I/O context ring.
660 * @ioctx_size: I/O context size.
661 * @dma_size: DMA buffer size.
662 * @dir: DMA data direction.
664 static struct srpt_ioctx
**srpt_alloc_ioctx_ring(struct srpt_device
*sdev
,
665 int ring_size
, int ioctx_size
,
666 int dma_size
, enum dma_data_direction dir
)
668 struct srpt_ioctx
**ring
;
671 WARN_ON(ioctx_size
!= sizeof(struct srpt_recv_ioctx
)
672 && ioctx_size
!= sizeof(struct srpt_send_ioctx
));
674 ring
= kmalloc(ring_size
* sizeof(ring
[0]), GFP_KERNEL
);
677 for (i
= 0; i
< ring_size
; ++i
) {
678 ring
[i
] = srpt_alloc_ioctx(sdev
, ioctx_size
, dma_size
, dir
);
687 srpt_free_ioctx(sdev
, ring
[i
], dma_size
, dir
);
695 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures.
697 static void srpt_free_ioctx_ring(struct srpt_ioctx
**ioctx_ring
,
698 struct srpt_device
*sdev
, int ring_size
,
699 int dma_size
, enum dma_data_direction dir
)
703 for (i
= 0; i
< ring_size
; ++i
)
704 srpt_free_ioctx(sdev
, ioctx_ring
[i
], dma_size
, dir
);
709 * srpt_get_cmd_state() - Get the state of a SCSI command.
711 static enum srpt_command_state
srpt_get_cmd_state(struct srpt_send_ioctx
*ioctx
)
713 enum srpt_command_state state
;
718 spin_lock_irqsave(&ioctx
->spinlock
, flags
);
719 state
= ioctx
->state
;
720 spin_unlock_irqrestore(&ioctx
->spinlock
, flags
);
725 * srpt_set_cmd_state() - Set the state of a SCSI command.
727 * Does not modify the state of aborted commands. Returns the previous command
730 static enum srpt_command_state
srpt_set_cmd_state(struct srpt_send_ioctx
*ioctx
,
731 enum srpt_command_state
new)
733 enum srpt_command_state previous
;
738 spin_lock_irqsave(&ioctx
->spinlock
, flags
);
739 previous
= ioctx
->state
;
740 if (previous
!= SRPT_STATE_DONE
)
742 spin_unlock_irqrestore(&ioctx
->spinlock
, flags
);
748 * srpt_test_and_set_cmd_state() - Test and set the state of a command.
750 * Returns true if and only if the previous command state was equal to 'old'.
752 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx
*ioctx
,
753 enum srpt_command_state old
,
754 enum srpt_command_state
new)
756 enum srpt_command_state previous
;
760 WARN_ON(old
== SRPT_STATE_DONE
);
761 WARN_ON(new == SRPT_STATE_NEW
);
763 spin_lock_irqsave(&ioctx
->spinlock
, flags
);
764 previous
= ioctx
->state
;
767 spin_unlock_irqrestore(&ioctx
->spinlock
, flags
);
768 return previous
== old
;
772 * srpt_post_recv() - Post an IB receive request.
774 static int srpt_post_recv(struct srpt_device
*sdev
,
775 struct srpt_recv_ioctx
*ioctx
)
778 struct ib_recv_wr wr
, *bad_wr
;
781 wr
.wr_id
= encode_wr_id(SRPT_RECV
, ioctx
->ioctx
.index
);
783 list
.addr
= ioctx
->ioctx
.dma
;
784 list
.length
= srp_max_req_size
;
785 list
.lkey
= sdev
->pd
->local_dma_lkey
;
791 return ib_post_srq_recv(sdev
->srq
, &wr
, &bad_wr
);
795 * srpt_post_send() - Post an IB send request.
797 * Returns zero upon success and a non-zero value upon failure.
799 static int srpt_post_send(struct srpt_rdma_ch
*ch
,
800 struct srpt_send_ioctx
*ioctx
, int len
)
803 struct ib_send_wr wr
, *bad_wr
;
804 struct srpt_device
*sdev
= ch
->sport
->sdev
;
807 atomic_inc(&ch
->req_lim
);
810 if (unlikely(atomic_dec_return(&ch
->sq_wr_avail
) < 0)) {
811 pr_warn("IB send queue full (needed 1)\n");
815 ib_dma_sync_single_for_device(sdev
->device
, ioctx
->ioctx
.dma
, len
,
818 list
.addr
= ioctx
->ioctx
.dma
;
820 list
.lkey
= sdev
->pd
->local_dma_lkey
;
823 wr
.wr_id
= encode_wr_id(SRPT_SEND
, ioctx
->ioctx
.index
);
826 wr
.opcode
= IB_WR_SEND
;
827 wr
.send_flags
= IB_SEND_SIGNALED
;
829 ret
= ib_post_send(ch
->qp
, &wr
, &bad_wr
);
833 atomic_inc(&ch
->sq_wr_avail
);
834 atomic_dec(&ch
->req_lim
);
840 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request.
841 * @ioctx: Pointer to the I/O context associated with the request.
842 * @srp_cmd: Pointer to the SRP_CMD request data.
843 * @dir: Pointer to the variable to which the transfer direction will be
845 * @data_len: Pointer to the variable to which the total data length of all
846 * descriptors in the SRP_CMD request will be written.
848 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
850 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
851 * -ENOMEM when memory allocation fails and zero upon success.
853 static int srpt_get_desc_tbl(struct srpt_send_ioctx
*ioctx
,
854 struct srp_cmd
*srp_cmd
,
855 enum dma_data_direction
*dir
, u64
*data_len
)
857 struct srp_indirect_buf
*idb
;
858 struct srp_direct_buf
*db
;
859 unsigned add_cdb_offset
;
863 * The pointer computations below will only be compiled correctly
864 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
865 * whether srp_cmd::add_data has been declared as a byte pointer.
867 BUILD_BUG_ON(!__same_type(srp_cmd
->add_data
[0], (s8
)0)
868 && !__same_type(srp_cmd
->add_data
[0], (u8
)0));
877 * The lower four bits of the buffer format field contain the DATA-IN
878 * buffer descriptor format, and the highest four bits contain the
879 * DATA-OUT buffer descriptor format.
882 if (srp_cmd
->buf_fmt
& 0xf)
883 /* DATA-IN: transfer data from target to initiator (read). */
884 *dir
= DMA_FROM_DEVICE
;
885 else if (srp_cmd
->buf_fmt
>> 4)
886 /* DATA-OUT: transfer data from initiator to target (write). */
887 *dir
= DMA_TO_DEVICE
;
890 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
891 * CDB LENGTH' field are reserved and the size in bytes of this field
892 * is four times the value specified in bits 3..7. Hence the "& ~3".
894 add_cdb_offset
= srp_cmd
->add_cdb_len
& ~3;
895 if (((srp_cmd
->buf_fmt
& 0xf) == SRP_DATA_DESC_DIRECT
) ||
896 ((srp_cmd
->buf_fmt
>> 4) == SRP_DATA_DESC_DIRECT
)) {
898 ioctx
->rbufs
= &ioctx
->single_rbuf
;
900 db
= (struct srp_direct_buf
*)(srp_cmd
->add_data
902 memcpy(ioctx
->rbufs
, db
, sizeof *db
);
903 *data_len
= be32_to_cpu(db
->len
);
904 } else if (((srp_cmd
->buf_fmt
& 0xf) == SRP_DATA_DESC_INDIRECT
) ||
905 ((srp_cmd
->buf_fmt
>> 4) == SRP_DATA_DESC_INDIRECT
)) {
906 idb
= (struct srp_indirect_buf
*)(srp_cmd
->add_data
909 ioctx
->n_rbuf
= be32_to_cpu(idb
->table_desc
.len
) / sizeof *db
;
912 (srp_cmd
->data_out_desc_cnt
+ srp_cmd
->data_in_desc_cnt
)) {
913 pr_err("received unsupported SRP_CMD request"
914 " type (%u out + %u in != %u / %zu)\n",
915 srp_cmd
->data_out_desc_cnt
,
916 srp_cmd
->data_in_desc_cnt
,
917 be32_to_cpu(idb
->table_desc
.len
),
924 if (ioctx
->n_rbuf
== 1)
925 ioctx
->rbufs
= &ioctx
->single_rbuf
;
928 kmalloc(ioctx
->n_rbuf
* sizeof *db
, GFP_ATOMIC
);
937 memcpy(ioctx
->rbufs
, db
, ioctx
->n_rbuf
* sizeof *db
);
938 *data_len
= be32_to_cpu(idb
->len
);
945 * srpt_init_ch_qp() - Initialize queue pair attributes.
947 * Initialized the attributes of queue pair 'qp' by allowing local write,
948 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
950 static int srpt_init_ch_qp(struct srpt_rdma_ch
*ch
, struct ib_qp
*qp
)
952 struct ib_qp_attr
*attr
;
955 attr
= kzalloc(sizeof *attr
, GFP_KERNEL
);
959 attr
->qp_state
= IB_QPS_INIT
;
960 attr
->qp_access_flags
= IB_ACCESS_LOCAL_WRITE
| IB_ACCESS_REMOTE_READ
|
961 IB_ACCESS_REMOTE_WRITE
;
962 attr
->port_num
= ch
->sport
->port
;
963 attr
->pkey_index
= 0;
965 ret
= ib_modify_qp(qp
, attr
,
966 IB_QP_STATE
| IB_QP_ACCESS_FLAGS
| IB_QP_PORT
|
974 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR).
975 * @ch: channel of the queue pair.
976 * @qp: queue pair to change the state of.
978 * Returns zero upon success and a negative value upon failure.
980 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
981 * If this structure ever becomes larger, it might be necessary to allocate
982 * it dynamically instead of on the stack.
984 static int srpt_ch_qp_rtr(struct srpt_rdma_ch
*ch
, struct ib_qp
*qp
)
986 struct ib_qp_attr qp_attr
;
990 qp_attr
.qp_state
= IB_QPS_RTR
;
991 ret
= ib_cm_init_qp_attr(ch
->cm_id
, &qp_attr
, &attr_mask
);
995 qp_attr
.max_dest_rd_atomic
= 4;
997 ret
= ib_modify_qp(qp
, &qp_attr
, attr_mask
);
1004 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS).
1005 * @ch: channel of the queue pair.
1006 * @qp: queue pair to change the state of.
1008 * Returns zero upon success and a negative value upon failure.
1010 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1011 * If this structure ever becomes larger, it might be necessary to allocate
1012 * it dynamically instead of on the stack.
1014 static int srpt_ch_qp_rts(struct srpt_rdma_ch
*ch
, struct ib_qp
*qp
)
1016 struct ib_qp_attr qp_attr
;
1020 qp_attr
.qp_state
= IB_QPS_RTS
;
1021 ret
= ib_cm_init_qp_attr(ch
->cm_id
, &qp_attr
, &attr_mask
);
1025 qp_attr
.max_rd_atomic
= 4;
1027 ret
= ib_modify_qp(qp
, &qp_attr
, attr_mask
);
1034 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'.
1036 static int srpt_ch_qp_err(struct srpt_rdma_ch
*ch
)
1038 struct ib_qp_attr qp_attr
;
1040 qp_attr
.qp_state
= IB_QPS_ERR
;
1041 return ib_modify_qp(ch
->qp
, &qp_attr
, IB_QP_STATE
);
1045 * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list.
1047 static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch
*ch
,
1048 struct srpt_send_ioctx
*ioctx
)
1050 struct scatterlist
*sg
;
1051 enum dma_data_direction dir
;
1055 BUG_ON(ioctx
->n_rdma
&& !ioctx
->rdma_ius
);
1057 while (ioctx
->n_rdma
)
1058 kfree(ioctx
->rdma_ius
[--ioctx
->n_rdma
].sge
);
1060 kfree(ioctx
->rdma_ius
);
1061 ioctx
->rdma_ius
= NULL
;
1063 if (ioctx
->mapped_sg_count
) {
1066 dir
= ioctx
->cmd
.data_direction
;
1067 BUG_ON(dir
== DMA_NONE
);
1068 ib_dma_unmap_sg(ch
->sport
->sdev
->device
, sg
, ioctx
->sg_cnt
,
1069 opposite_dma_dir(dir
));
1070 ioctx
->mapped_sg_count
= 0;
1075 * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list.
1077 static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch
*ch
,
1078 struct srpt_send_ioctx
*ioctx
)
1080 struct ib_device
*dev
= ch
->sport
->sdev
->device
;
1082 struct scatterlist
*sg
, *sg_orig
;
1084 enum dma_data_direction dir
;
1085 struct rdma_iu
*riu
;
1086 struct srp_direct_buf
*db
;
1087 dma_addr_t dma_addr
;
1099 dir
= cmd
->data_direction
;
1100 BUG_ON(dir
== DMA_NONE
);
1102 ioctx
->sg
= sg
= sg_orig
= cmd
->t_data_sg
;
1103 ioctx
->sg_cnt
= sg_cnt
= cmd
->t_data_nents
;
1105 count
= ib_dma_map_sg(ch
->sport
->sdev
->device
, sg
, sg_cnt
,
1106 opposite_dma_dir(dir
));
1107 if (unlikely(!count
))
1110 ioctx
->mapped_sg_count
= count
;
1112 if (ioctx
->rdma_ius
&& ioctx
->n_rdma_ius
)
1113 nrdma
= ioctx
->n_rdma_ius
;
1115 nrdma
= (count
+ SRPT_DEF_SG_PER_WQE
- 1) / SRPT_DEF_SG_PER_WQE
1118 ioctx
->rdma_ius
= kzalloc(nrdma
* sizeof *riu
, GFP_KERNEL
);
1119 if (!ioctx
->rdma_ius
)
1122 ioctx
->n_rdma_ius
= nrdma
;
1126 tsize
= cmd
->data_length
;
1127 dma_len
= ib_sg_dma_len(dev
, &sg
[0]);
1128 riu
= ioctx
->rdma_ius
;
1131 * For each remote desc - calculate the #ib_sge.
1132 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then
1133 * each remote desc rdma_iu is required a rdma wr;
1135 * we need to allocate extra rdma_iu to carry extra #ib_sge in
1139 j
< count
&& i
< ioctx
->n_rbuf
&& tsize
> 0; ++i
, ++riu
, ++db
) {
1140 rsize
= be32_to_cpu(db
->len
);
1141 raddr
= be64_to_cpu(db
->va
);
1143 riu
->rkey
= be32_to_cpu(db
->key
);
1146 /* calculate how many sge required for this remote_buf */
1147 while (rsize
> 0 && tsize
> 0) {
1149 if (rsize
>= dma_len
) {
1158 dma_len
= ib_sg_dma_len(
1170 if (rsize
> 0 && riu
->sge_cnt
== SRPT_DEF_SG_PER_WQE
) {
1173 kmalloc(riu
->sge_cnt
* sizeof *riu
->sge
,
1181 riu
->rkey
= be32_to_cpu(db
->key
);
1186 riu
->sge
= kmalloc(riu
->sge_cnt
* sizeof *riu
->sge
,
1193 tsize
= cmd
->data_length
;
1194 riu
= ioctx
->rdma_ius
;
1196 dma_len
= ib_sg_dma_len(dev
, &sg
[0]);
1197 dma_addr
= ib_sg_dma_address(dev
, &sg
[0]);
1199 /* this second loop is really mapped sg_addres to rdma_iu->ib_sge */
1201 j
< count
&& i
< ioctx
->n_rbuf
&& tsize
> 0; ++i
, ++riu
, ++db
) {
1202 rsize
= be32_to_cpu(db
->len
);
1206 while (rsize
> 0 && tsize
> 0) {
1207 sge
->addr
= dma_addr
;
1208 sge
->lkey
= ch
->sport
->sdev
->pd
->local_dma_lkey
;
1210 if (rsize
>= dma_len
) {
1212 (tsize
< dma_len
) ? tsize
: dma_len
;
1220 dma_len
= ib_sg_dma_len(
1222 dma_addr
= ib_sg_dma_address(
1227 sge
->length
= (tsize
< rsize
) ? tsize
: rsize
;
1235 if (k
== riu
->sge_cnt
&& rsize
> 0 && tsize
> 0) {
1239 } else if (rsize
> 0 && tsize
> 0)
1247 srpt_unmap_sg_to_ib_sge(ch
, ioctx
);
1253 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator.
1255 static struct srpt_send_ioctx
*srpt_get_send_ioctx(struct srpt_rdma_ch
*ch
)
1257 struct srpt_send_ioctx
*ioctx
;
1258 unsigned long flags
;
1263 spin_lock_irqsave(&ch
->spinlock
, flags
);
1264 if (!list_empty(&ch
->free_list
)) {
1265 ioctx
= list_first_entry(&ch
->free_list
,
1266 struct srpt_send_ioctx
, free_list
);
1267 list_del(&ioctx
->free_list
);
1269 spin_unlock_irqrestore(&ch
->spinlock
, flags
);
1274 BUG_ON(ioctx
->ch
!= ch
);
1275 spin_lock_init(&ioctx
->spinlock
);
1276 ioctx
->state
= SRPT_STATE_NEW
;
1278 ioctx
->rbufs
= NULL
;
1280 ioctx
->n_rdma_ius
= 0;
1281 ioctx
->rdma_ius
= NULL
;
1282 ioctx
->mapped_sg_count
= 0;
1283 init_completion(&ioctx
->tx_done
);
1284 ioctx
->queue_status_only
= false;
1286 * transport_init_se_cmd() does not initialize all fields, so do it
1289 memset(&ioctx
->cmd
, 0, sizeof(ioctx
->cmd
));
1290 memset(&ioctx
->sense_data
, 0, sizeof(ioctx
->sense_data
));
1296 * srpt_abort_cmd() - Abort a SCSI command.
1297 * @ioctx: I/O context associated with the SCSI command.
1298 * @context: Preferred execution context.
1300 static int srpt_abort_cmd(struct srpt_send_ioctx
*ioctx
)
1302 enum srpt_command_state state
;
1303 unsigned long flags
;
1308 * If the command is in a state where the target core is waiting for
1309 * the ib_srpt driver, change the state to the next state. Changing
1310 * the state of the command from SRPT_STATE_NEED_DATA to
1311 * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this
1312 * function a second time.
1315 spin_lock_irqsave(&ioctx
->spinlock
, flags
);
1316 state
= ioctx
->state
;
1318 case SRPT_STATE_NEED_DATA
:
1319 ioctx
->state
= SRPT_STATE_DATA_IN
;
1321 case SRPT_STATE_DATA_IN
:
1322 case SRPT_STATE_CMD_RSP_SENT
:
1323 case SRPT_STATE_MGMT_RSP_SENT
:
1324 ioctx
->state
= SRPT_STATE_DONE
;
1329 spin_unlock_irqrestore(&ioctx
->spinlock
, flags
);
1331 if (state
== SRPT_STATE_DONE
) {
1332 struct srpt_rdma_ch
*ch
= ioctx
->ch
;
1334 BUG_ON(ch
->sess
== NULL
);
1336 target_put_sess_cmd(&ioctx
->cmd
);
1340 pr_debug("Aborting cmd with state %d and tag %lld\n", state
,
1344 case SRPT_STATE_NEW
:
1345 case SRPT_STATE_DATA_IN
:
1346 case SRPT_STATE_MGMT
:
1348 * Do nothing - defer abort processing until
1349 * srpt_queue_response() is invoked.
1351 WARN_ON(!transport_check_aborted_status(&ioctx
->cmd
, false));
1353 case SRPT_STATE_NEED_DATA
:
1354 /* DMA_TO_DEVICE (write) - RDMA read error. */
1356 /* XXX(hch): this is a horrible layering violation.. */
1357 spin_lock_irqsave(&ioctx
->cmd
.t_state_lock
, flags
);
1358 ioctx
->cmd
.transport_state
&= ~CMD_T_ACTIVE
;
1359 spin_unlock_irqrestore(&ioctx
->cmd
.t_state_lock
, flags
);
1361 case SRPT_STATE_CMD_RSP_SENT
:
1363 * SRP_RSP sending failed or the SRP_RSP send completion has
1364 * not been received in time.
1366 srpt_unmap_sg_to_ib_sge(ioctx
->ch
, ioctx
);
1367 target_put_sess_cmd(&ioctx
->cmd
);
1369 case SRPT_STATE_MGMT_RSP_SENT
:
1370 srpt_set_cmd_state(ioctx
, SRPT_STATE_DONE
);
1371 target_put_sess_cmd(&ioctx
->cmd
);
1374 WARN(1, "Unexpected command state (%d)", state
);
1383 * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion.
1385 static void srpt_handle_send_err_comp(struct srpt_rdma_ch
*ch
, u64 wr_id
)
1387 struct srpt_send_ioctx
*ioctx
;
1388 enum srpt_command_state state
;
1391 atomic_inc(&ch
->sq_wr_avail
);
1393 index
= idx_from_wr_id(wr_id
);
1394 ioctx
= ch
->ioctx_ring
[index
];
1395 state
= srpt_get_cmd_state(ioctx
);
1397 WARN_ON(state
!= SRPT_STATE_CMD_RSP_SENT
1398 && state
!= SRPT_STATE_MGMT_RSP_SENT
1399 && state
!= SRPT_STATE_NEED_DATA
1400 && state
!= SRPT_STATE_DONE
);
1402 /* If SRP_RSP sending failed, undo the ch->req_lim change. */
1403 if (state
== SRPT_STATE_CMD_RSP_SENT
1404 || state
== SRPT_STATE_MGMT_RSP_SENT
)
1405 atomic_dec(&ch
->req_lim
);
1407 srpt_abort_cmd(ioctx
);
1411 * srpt_handle_send_comp() - Process an IB send completion notification.
1413 static void srpt_handle_send_comp(struct srpt_rdma_ch
*ch
,
1414 struct srpt_send_ioctx
*ioctx
)
1416 enum srpt_command_state state
;
1418 atomic_inc(&ch
->sq_wr_avail
);
1420 state
= srpt_set_cmd_state(ioctx
, SRPT_STATE_DONE
);
1422 if (WARN_ON(state
!= SRPT_STATE_CMD_RSP_SENT
1423 && state
!= SRPT_STATE_MGMT_RSP_SENT
1424 && state
!= SRPT_STATE_DONE
))
1425 pr_debug("state = %d\n", state
);
1427 if (state
!= SRPT_STATE_DONE
) {
1428 srpt_unmap_sg_to_ib_sge(ch
, ioctx
);
1429 transport_generic_free_cmd(&ioctx
->cmd
, 0);
1431 pr_err("IB completion has been received too late for"
1432 " wr_id = %u.\n", ioctx
->ioctx
.index
);
1437 * srpt_handle_rdma_comp() - Process an IB RDMA completion notification.
1439 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1440 * the data that has been transferred via IB RDMA had to be postponed until the
1441 * check_stop_free() callback. None of this is necessary anymore and needs to
1444 static void srpt_handle_rdma_comp(struct srpt_rdma_ch
*ch
,
1445 struct srpt_send_ioctx
*ioctx
,
1446 enum srpt_opcode opcode
)
1448 WARN_ON(ioctx
->n_rdma
<= 0);
1449 atomic_add(ioctx
->n_rdma
, &ch
->sq_wr_avail
);
1451 if (opcode
== SRPT_RDMA_READ_LAST
) {
1452 if (srpt_test_and_set_cmd_state(ioctx
, SRPT_STATE_NEED_DATA
,
1453 SRPT_STATE_DATA_IN
))
1454 target_execute_cmd(&ioctx
->cmd
);
1456 pr_err("%s[%d]: wrong state = %d\n", __func__
,
1457 __LINE__
, srpt_get_cmd_state(ioctx
));
1458 } else if (opcode
== SRPT_RDMA_ABORT
) {
1459 ioctx
->rdma_aborted
= true;
1461 WARN(true, "unexpected opcode %d\n", opcode
);
1466 * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion.
1468 static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch
*ch
,
1469 struct srpt_send_ioctx
*ioctx
,
1470 enum srpt_opcode opcode
)
1472 enum srpt_command_state state
;
1474 state
= srpt_get_cmd_state(ioctx
);
1476 case SRPT_RDMA_READ_LAST
:
1477 if (ioctx
->n_rdma
<= 0) {
1478 pr_err("Received invalid RDMA read"
1479 " error completion with idx %d\n",
1480 ioctx
->ioctx
.index
);
1483 atomic_add(ioctx
->n_rdma
, &ch
->sq_wr_avail
);
1484 if (state
== SRPT_STATE_NEED_DATA
)
1485 srpt_abort_cmd(ioctx
);
1487 pr_err("%s[%d]: wrong state = %d\n",
1488 __func__
, __LINE__
, state
);
1490 case SRPT_RDMA_WRITE_LAST
:
1493 pr_err("%s[%d]: opcode = %u\n", __func__
, __LINE__
, opcode
);
1499 * srpt_build_cmd_rsp() - Build an SRP_RSP response.
1500 * @ch: RDMA channel through which the request has been received.
1501 * @ioctx: I/O context associated with the SRP_CMD request. The response will
1502 * be built in the buffer ioctx->buf points at and hence this function will
1503 * overwrite the request data.
1504 * @tag: tag of the request for which this response is being generated.
1505 * @status: value for the STATUS field of the SRP_RSP information unit.
1507 * Returns the size in bytes of the SRP_RSP response.
1509 * An SRP_RSP response contains a SCSI status or service response. See also
1510 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1511 * response. See also SPC-2 for more information about sense data.
1513 static int srpt_build_cmd_rsp(struct srpt_rdma_ch
*ch
,
1514 struct srpt_send_ioctx
*ioctx
, u64 tag
,
1517 struct srp_rsp
*srp_rsp
;
1518 const u8
*sense_data
;
1519 int sense_data_len
, max_sense_len
;
1522 * The lowest bit of all SAM-3 status codes is zero (see also
1523 * paragraph 5.3 in SAM-3).
1525 WARN_ON(status
& 1);
1527 srp_rsp
= ioctx
->ioctx
.buf
;
1530 sense_data
= ioctx
->sense_data
;
1531 sense_data_len
= ioctx
->cmd
.scsi_sense_length
;
1532 WARN_ON(sense_data_len
> sizeof(ioctx
->sense_data
));
1534 memset(srp_rsp
, 0, sizeof *srp_rsp
);
1535 srp_rsp
->opcode
= SRP_RSP
;
1536 srp_rsp
->req_lim_delta
=
1537 cpu_to_be32(1 + atomic_xchg(&ch
->req_lim_delta
, 0));
1539 srp_rsp
->status
= status
;
1541 if (sense_data_len
) {
1542 BUILD_BUG_ON(MIN_MAX_RSP_SIZE
<= sizeof(*srp_rsp
));
1543 max_sense_len
= ch
->max_ti_iu_len
- sizeof(*srp_rsp
);
1544 if (sense_data_len
> max_sense_len
) {
1545 pr_warn("truncated sense data from %d to %d"
1546 " bytes\n", sense_data_len
, max_sense_len
);
1547 sense_data_len
= max_sense_len
;
1550 srp_rsp
->flags
|= SRP_RSP_FLAG_SNSVALID
;
1551 srp_rsp
->sense_data_len
= cpu_to_be32(sense_data_len
);
1552 memcpy(srp_rsp
+ 1, sense_data
, sense_data_len
);
1555 return sizeof(*srp_rsp
) + sense_data_len
;
1559 * srpt_build_tskmgmt_rsp() - Build a task management response.
1560 * @ch: RDMA channel through which the request has been received.
1561 * @ioctx: I/O context in which the SRP_RSP response will be built.
1562 * @rsp_code: RSP_CODE that will be stored in the response.
1563 * @tag: Tag of the request for which this response is being generated.
1565 * Returns the size in bytes of the SRP_RSP response.
1567 * An SRP_RSP response contains a SCSI status or service response. See also
1568 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1571 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch
*ch
,
1572 struct srpt_send_ioctx
*ioctx
,
1573 u8 rsp_code
, u64 tag
)
1575 struct srp_rsp
*srp_rsp
;
1580 resp_len
= sizeof(*srp_rsp
) + resp_data_len
;
1582 srp_rsp
= ioctx
->ioctx
.buf
;
1584 memset(srp_rsp
, 0, sizeof *srp_rsp
);
1586 srp_rsp
->opcode
= SRP_RSP
;
1587 srp_rsp
->req_lim_delta
=
1588 cpu_to_be32(1 + atomic_xchg(&ch
->req_lim_delta
, 0));
1591 srp_rsp
->flags
|= SRP_RSP_FLAG_RSPVALID
;
1592 srp_rsp
->resp_data_len
= cpu_to_be32(resp_data_len
);
1593 srp_rsp
->data
[3] = rsp_code
;
1598 #define NO_SUCH_LUN ((uint64_t)-1LL)
1601 * SCSI LUN addressing method. See also SAM-2 and the section about
1604 enum scsi_lun_addr_method
{
1605 SCSI_LUN_ADDR_METHOD_PERIPHERAL
= 0,
1606 SCSI_LUN_ADDR_METHOD_FLAT
= 1,
1607 SCSI_LUN_ADDR_METHOD_LUN
= 2,
1608 SCSI_LUN_ADDR_METHOD_EXTENDED_LUN
= 3,
1612 * srpt_unpack_lun() - Convert from network LUN to linear LUN.
1614 * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte
1615 * order (big endian) to a linear LUN. Supports three LUN addressing methods:
1616 * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40).
1618 static uint64_t srpt_unpack_lun(const uint8_t *lun
, int len
)
1620 uint64_t res
= NO_SUCH_LUN
;
1621 int addressing_method
;
1623 if (unlikely(len
< 2)) {
1624 pr_err("Illegal LUN length %d, expected 2 bytes or more\n",
1631 if ((*((__be64
*)lun
) &
1632 cpu_to_be64(0x0000FFFFFFFFFFFFLL
)) != 0)
1636 if (*((__be16
*)&lun
[2]) != 0)
1640 if (*((__be32
*)&lun
[2]) != 0)
1649 addressing_method
= (*lun
) >> 6; /* highest two bits of byte 0 */
1650 switch (addressing_method
) {
1651 case SCSI_LUN_ADDR_METHOD_PERIPHERAL
:
1652 case SCSI_LUN_ADDR_METHOD_FLAT
:
1653 case SCSI_LUN_ADDR_METHOD_LUN
:
1654 res
= *(lun
+ 1) | (((*lun
) & 0x3f) << 8);
1657 case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN
:
1659 pr_err("Unimplemented LUN addressing method %u\n",
1668 pr_err("Support for multi-level LUNs has not yet been implemented\n");
1672 static int srpt_check_stop_free(struct se_cmd
*cmd
)
1674 struct srpt_send_ioctx
*ioctx
= container_of(cmd
,
1675 struct srpt_send_ioctx
, cmd
);
1677 return target_put_sess_cmd(&ioctx
->cmd
);
1681 * srpt_handle_cmd() - Process SRP_CMD.
1683 static int srpt_handle_cmd(struct srpt_rdma_ch
*ch
,
1684 struct srpt_recv_ioctx
*recv_ioctx
,
1685 struct srpt_send_ioctx
*send_ioctx
)
1688 struct srp_cmd
*srp_cmd
;
1689 uint64_t unpacked_lun
;
1691 enum dma_data_direction dir
;
1695 BUG_ON(!send_ioctx
);
1697 srp_cmd
= recv_ioctx
->ioctx
.buf
;
1698 cmd
= &send_ioctx
->cmd
;
1699 cmd
->tag
= srp_cmd
->tag
;
1701 switch (srp_cmd
->task_attr
) {
1702 case SRP_CMD_SIMPLE_Q
:
1703 cmd
->sam_task_attr
= TCM_SIMPLE_TAG
;
1705 case SRP_CMD_ORDERED_Q
:
1707 cmd
->sam_task_attr
= TCM_ORDERED_TAG
;
1709 case SRP_CMD_HEAD_OF_Q
:
1710 cmd
->sam_task_attr
= TCM_HEAD_TAG
;
1713 cmd
->sam_task_attr
= TCM_ACA_TAG
;
1717 if (srpt_get_desc_tbl(send_ioctx
, srp_cmd
, &dir
, &data_len
)) {
1718 pr_err("0x%llx: parsing SRP descriptor table failed.\n",
1720 ret
= TCM_INVALID_CDB_FIELD
;
1724 unpacked_lun
= srpt_unpack_lun((uint8_t *)&srp_cmd
->lun
,
1725 sizeof(srp_cmd
->lun
));
1726 rc
= target_submit_cmd(cmd
, ch
->sess
, srp_cmd
->cdb
,
1727 &send_ioctx
->sense_data
[0], unpacked_lun
, data_len
,
1728 TCM_SIMPLE_TAG
, dir
, TARGET_SCF_ACK_KREF
);
1730 ret
= TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
1736 transport_send_check_condition_and_sense(cmd
, ret
, 0);
1741 * srpt_rx_mgmt_fn_tag() - Process a task management function by tag.
1742 * @ch: RDMA channel of the task management request.
1743 * @fn: Task management function to perform.
1744 * @req_tag: Tag of the SRP task management request.
1745 * @mgmt_ioctx: I/O context of the task management request.
1747 * Returns zero if the target core will process the task management
1748 * request asynchronously.
1750 * Note: It is assumed that the initiator serializes tag-based task management
1753 static int srpt_rx_mgmt_fn_tag(struct srpt_send_ioctx
*ioctx
, u64 tag
)
1755 struct srpt_device
*sdev
;
1756 struct srpt_rdma_ch
*ch
;
1757 struct srpt_send_ioctx
*target
;
1764 sdev
= ch
->sport
->sdev
;
1766 spin_lock_irq(&sdev
->spinlock
);
1767 for (i
= 0; i
< ch
->rq_size
; ++i
) {
1768 target
= ch
->ioctx_ring
[i
];
1769 if (target
->cmd
.se_lun
== ioctx
->cmd
.se_lun
&&
1770 target
->cmd
.tag
== tag
&&
1771 srpt_get_cmd_state(target
) != SRPT_STATE_DONE
) {
1773 /* now let the target core abort &target->cmd; */
1777 spin_unlock_irq(&sdev
->spinlock
);
1781 static int srp_tmr_to_tcm(int fn
)
1784 case SRP_TSK_ABORT_TASK
:
1785 return TMR_ABORT_TASK
;
1786 case SRP_TSK_ABORT_TASK_SET
:
1787 return TMR_ABORT_TASK_SET
;
1788 case SRP_TSK_CLEAR_TASK_SET
:
1789 return TMR_CLEAR_TASK_SET
;
1790 case SRP_TSK_LUN_RESET
:
1791 return TMR_LUN_RESET
;
1792 case SRP_TSK_CLEAR_ACA
:
1793 return TMR_CLEAR_ACA
;
1800 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit.
1802 * Returns 0 if and only if the request will be processed by the target core.
1804 * For more information about SRP_TSK_MGMT information units, see also section
1805 * 6.7 in the SRP r16a document.
1807 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch
*ch
,
1808 struct srpt_recv_ioctx
*recv_ioctx
,
1809 struct srpt_send_ioctx
*send_ioctx
)
1811 struct srp_tsk_mgmt
*srp_tsk
;
1813 struct se_session
*sess
= ch
->sess
;
1814 uint64_t unpacked_lun
;
1819 BUG_ON(!send_ioctx
);
1821 srp_tsk
= recv_ioctx
->ioctx
.buf
;
1822 cmd
= &send_ioctx
->cmd
;
1824 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
1825 " cm_id %p sess %p\n", srp_tsk
->tsk_mgmt_func
,
1826 srp_tsk
->task_tag
, srp_tsk
->tag
, ch
->cm_id
, ch
->sess
);
1828 srpt_set_cmd_state(send_ioctx
, SRPT_STATE_MGMT
);
1829 send_ioctx
->cmd
.tag
= srp_tsk
->tag
;
1830 tcm_tmr
= srp_tmr_to_tcm(srp_tsk
->tsk_mgmt_func
);
1832 send_ioctx
->cmd
.se_tmr_req
->response
=
1833 TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED
;
1836 unpacked_lun
= srpt_unpack_lun((uint8_t *)&srp_tsk
->lun
,
1837 sizeof(srp_tsk
->lun
));
1839 if (srp_tsk
->tsk_mgmt_func
== SRP_TSK_ABORT_TASK
) {
1840 rc
= srpt_rx_mgmt_fn_tag(send_ioctx
, srp_tsk
->task_tag
);
1842 send_ioctx
->cmd
.se_tmr_req
->response
=
1843 TMR_TASK_DOES_NOT_EXIST
;
1846 tag
= srp_tsk
->task_tag
;
1848 rc
= target_submit_tmr(&send_ioctx
->cmd
, sess
, NULL
, unpacked_lun
,
1849 srp_tsk
, tcm_tmr
, GFP_KERNEL
, tag
,
1850 TARGET_SCF_ACK_KREF
);
1852 send_ioctx
->cmd
.se_tmr_req
->response
= TMR_FUNCTION_REJECTED
;
1857 transport_send_check_condition_and_sense(cmd
, 0, 0); // XXX:
1861 * srpt_handle_new_iu() - Process a newly received information unit.
1862 * @ch: RDMA channel through which the information unit has been received.
1863 * @ioctx: SRPT I/O context associated with the information unit.
1865 static void srpt_handle_new_iu(struct srpt_rdma_ch
*ch
,
1866 struct srpt_recv_ioctx
*recv_ioctx
,
1867 struct srpt_send_ioctx
*send_ioctx
)
1869 struct srp_cmd
*srp_cmd
;
1870 enum rdma_ch_state ch_state
;
1873 BUG_ON(!recv_ioctx
);
1875 ib_dma_sync_single_for_cpu(ch
->sport
->sdev
->device
,
1876 recv_ioctx
->ioctx
.dma
, srp_max_req_size
,
1879 ch_state
= srpt_get_ch_state(ch
);
1880 if (unlikely(ch_state
== CH_CONNECTING
)) {
1881 list_add_tail(&recv_ioctx
->wait_list
, &ch
->cmd_wait_list
);
1885 if (unlikely(ch_state
!= CH_LIVE
))
1888 srp_cmd
= recv_ioctx
->ioctx
.buf
;
1889 if (srp_cmd
->opcode
== SRP_CMD
|| srp_cmd
->opcode
== SRP_TSK_MGMT
) {
1891 send_ioctx
= srpt_get_send_ioctx(ch
);
1892 if (unlikely(!send_ioctx
)) {
1893 list_add_tail(&recv_ioctx
->wait_list
,
1894 &ch
->cmd_wait_list
);
1899 switch (srp_cmd
->opcode
) {
1901 srpt_handle_cmd(ch
, recv_ioctx
, send_ioctx
);
1904 srpt_handle_tsk_mgmt(ch
, recv_ioctx
, send_ioctx
);
1907 pr_err("Not yet implemented: SRP_I_LOGOUT\n");
1910 pr_debug("received SRP_CRED_RSP\n");
1913 pr_debug("received SRP_AER_RSP\n");
1916 pr_err("Received SRP_RSP\n");
1919 pr_err("received IU with unknown opcode 0x%x\n",
1924 srpt_post_recv(ch
->sport
->sdev
, recv_ioctx
);
1929 static void srpt_process_rcv_completion(struct ib_cq
*cq
,
1930 struct srpt_rdma_ch
*ch
,
1933 struct srpt_device
*sdev
= ch
->sport
->sdev
;
1934 struct srpt_recv_ioctx
*ioctx
;
1937 index
= idx_from_wr_id(wc
->wr_id
);
1938 if (wc
->status
== IB_WC_SUCCESS
) {
1941 req_lim
= atomic_dec_return(&ch
->req_lim
);
1942 if (unlikely(req_lim
< 0))
1943 pr_err("req_lim = %d < 0\n", req_lim
);
1944 ioctx
= sdev
->ioctx_ring
[index
];
1945 srpt_handle_new_iu(ch
, ioctx
, NULL
);
1947 pr_info("receiving failed for idx %u with status %d\n",
1953 * srpt_process_send_completion() - Process an IB send completion.
1955 * Note: Although this has not yet been observed during tests, at least in
1956 * theory it is possible that the srpt_get_send_ioctx() call invoked by
1957 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1958 * value in each response is set to one, and it is possible that this response
1959 * makes the initiator send a new request before the send completion for that
1960 * response has been processed. This could e.g. happen if the call to
1961 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1962 * if IB retransmission causes generation of the send completion to be
1963 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1964 * are queued on cmd_wait_list. The code below processes these delayed
1965 * requests one at a time.
1967 static void srpt_process_send_completion(struct ib_cq
*cq
,
1968 struct srpt_rdma_ch
*ch
,
1971 struct srpt_send_ioctx
*send_ioctx
;
1973 enum srpt_opcode opcode
;
1975 index
= idx_from_wr_id(wc
->wr_id
);
1976 opcode
= opcode_from_wr_id(wc
->wr_id
);
1977 send_ioctx
= ch
->ioctx_ring
[index
];
1978 if (wc
->status
== IB_WC_SUCCESS
) {
1979 if (opcode
== SRPT_SEND
)
1980 srpt_handle_send_comp(ch
, send_ioctx
);
1982 WARN_ON(opcode
!= SRPT_RDMA_ABORT
&&
1983 wc
->opcode
!= IB_WC_RDMA_READ
);
1984 srpt_handle_rdma_comp(ch
, send_ioctx
, opcode
);
1987 if (opcode
== SRPT_SEND
) {
1988 pr_info("sending response for idx %u failed"
1989 " with status %d\n", index
, wc
->status
);
1990 srpt_handle_send_err_comp(ch
, wc
->wr_id
);
1991 } else if (opcode
!= SRPT_RDMA_MID
) {
1992 pr_info("RDMA t %d for idx %u failed with"
1993 " status %d\n", opcode
, index
, wc
->status
);
1994 srpt_handle_rdma_err_comp(ch
, send_ioctx
, opcode
);
1998 while (unlikely(opcode
== SRPT_SEND
1999 && !list_empty(&ch
->cmd_wait_list
)
2000 && srpt_get_ch_state(ch
) == CH_LIVE
2001 && (send_ioctx
= srpt_get_send_ioctx(ch
)) != NULL
)) {
2002 struct srpt_recv_ioctx
*recv_ioctx
;
2004 recv_ioctx
= list_first_entry(&ch
->cmd_wait_list
,
2005 struct srpt_recv_ioctx
,
2007 list_del(&recv_ioctx
->wait_list
);
2008 srpt_handle_new_iu(ch
, recv_ioctx
, send_ioctx
);
2012 static void srpt_process_completion(struct ib_cq
*cq
, struct srpt_rdma_ch
*ch
)
2014 struct ib_wc
*const wc
= ch
->wc
;
2017 WARN_ON(cq
!= ch
->cq
);
2019 ib_req_notify_cq(cq
, IB_CQ_NEXT_COMP
);
2020 while ((n
= ib_poll_cq(cq
, ARRAY_SIZE(ch
->wc
), wc
)) > 0) {
2021 for (i
= 0; i
< n
; i
++) {
2022 if (opcode_from_wr_id(wc
[i
].wr_id
) == SRPT_RECV
)
2023 srpt_process_rcv_completion(cq
, ch
, &wc
[i
]);
2025 srpt_process_send_completion(cq
, ch
, &wc
[i
]);
2031 * srpt_completion() - IB completion queue callback function.
2034 * - It is guaranteed that a completion handler will never be invoked
2035 * concurrently on two different CPUs for the same completion queue. See also
2036 * Documentation/infiniband/core_locking.txt and the implementation of
2037 * handle_edge_irq() in kernel/irq/chip.c.
2038 * - When threaded IRQs are enabled, completion handlers are invoked in thread
2039 * context instead of interrupt context.
2041 static void srpt_completion(struct ib_cq
*cq
, void *ctx
)
2043 struct srpt_rdma_ch
*ch
= ctx
;
2045 wake_up_interruptible(&ch
->wait_queue
);
2048 static int srpt_compl_thread(void *arg
)
2050 struct srpt_rdma_ch
*ch
;
2052 /* Hibernation / freezing of the SRPT kernel thread is not supported. */
2053 current
->flags
|= PF_NOFREEZE
;
2057 pr_info("Session %s: kernel thread %s (PID %d) started\n",
2058 ch
->sess_name
, ch
->thread
->comm
, current
->pid
);
2059 while (!kthread_should_stop()) {
2060 wait_event_interruptible(ch
->wait_queue
,
2061 (srpt_process_completion(ch
->cq
, ch
),
2062 kthread_should_stop()));
2064 pr_info("Session %s: kernel thread %s (PID %d) stopped\n",
2065 ch
->sess_name
, ch
->thread
->comm
, current
->pid
);
2070 * srpt_create_ch_ib() - Create receive and send completion queues.
2072 static int srpt_create_ch_ib(struct srpt_rdma_ch
*ch
)
2074 struct ib_qp_init_attr
*qp_init
;
2075 struct srpt_port
*sport
= ch
->sport
;
2076 struct srpt_device
*sdev
= sport
->sdev
;
2077 u32 srp_sq_size
= sport
->port_attrib
.srp_sq_size
;
2078 struct ib_cq_init_attr cq_attr
= {};
2081 WARN_ON(ch
->rq_size
< 1);
2084 qp_init
= kzalloc(sizeof *qp_init
, GFP_KERNEL
);
2089 cq_attr
.cqe
= ch
->rq_size
+ srp_sq_size
;
2090 ch
->cq
= ib_create_cq(sdev
->device
, srpt_completion
, NULL
, ch
,
2092 if (IS_ERR(ch
->cq
)) {
2093 ret
= PTR_ERR(ch
->cq
);
2094 pr_err("failed to create CQ cqe= %d ret= %d\n",
2095 ch
->rq_size
+ srp_sq_size
, ret
);
2099 qp_init
->qp_context
= (void *)ch
;
2100 qp_init
->event_handler
2101 = (void(*)(struct ib_event
*, void*))srpt_qp_event
;
2102 qp_init
->send_cq
= ch
->cq
;
2103 qp_init
->recv_cq
= ch
->cq
;
2104 qp_init
->srq
= sdev
->srq
;
2105 qp_init
->sq_sig_type
= IB_SIGNAL_REQ_WR
;
2106 qp_init
->qp_type
= IB_QPT_RC
;
2107 qp_init
->cap
.max_send_wr
= srp_sq_size
;
2108 qp_init
->cap
.max_send_sge
= SRPT_DEF_SG_PER_WQE
;
2110 ch
->qp
= ib_create_qp(sdev
->pd
, qp_init
);
2111 if (IS_ERR(ch
->qp
)) {
2112 ret
= PTR_ERR(ch
->qp
);
2113 if (ret
== -ENOMEM
) {
2115 if (srp_sq_size
>= MIN_SRPT_SQ_SIZE
) {
2116 ib_destroy_cq(ch
->cq
);
2120 pr_err("failed to create_qp ret= %d\n", ret
);
2121 goto err_destroy_cq
;
2124 atomic_set(&ch
->sq_wr_avail
, qp_init
->cap
.max_send_wr
);
2126 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
2127 __func__
, ch
->cq
->cqe
, qp_init
->cap
.max_send_sge
,
2128 qp_init
->cap
.max_send_wr
, ch
->cm_id
);
2130 ret
= srpt_init_ch_qp(ch
, ch
->qp
);
2132 goto err_destroy_qp
;
2134 init_waitqueue_head(&ch
->wait_queue
);
2136 pr_debug("creating thread for session %s\n", ch
->sess_name
);
2138 ch
->thread
= kthread_run(srpt_compl_thread
, ch
, "ib_srpt_compl");
2139 if (IS_ERR(ch
->thread
)) {
2140 pr_err("failed to create kernel thread %ld\n",
2141 PTR_ERR(ch
->thread
));
2143 goto err_destroy_qp
;
2151 ib_destroy_qp(ch
->qp
);
2153 ib_destroy_cq(ch
->cq
);
2157 static void srpt_destroy_ch_ib(struct srpt_rdma_ch
*ch
)
2160 kthread_stop(ch
->thread
);
2162 ib_destroy_qp(ch
->qp
);
2163 ib_destroy_cq(ch
->cq
);
2167 * __srpt_close_ch() - Close an RDMA channel by setting the QP error state.
2169 * Reset the QP and make sure all resources associated with the channel will
2170 * be deallocated at an appropriate time.
2172 * Note: The caller must hold ch->sport->sdev->spinlock.
2174 static void __srpt_close_ch(struct srpt_rdma_ch
*ch
)
2176 enum rdma_ch_state prev_state
;
2177 unsigned long flags
;
2179 spin_lock_irqsave(&ch
->spinlock
, flags
);
2180 prev_state
= ch
->state
;
2181 switch (prev_state
) {
2184 ch
->state
= CH_DISCONNECTING
;
2189 spin_unlock_irqrestore(&ch
->spinlock
, flags
);
2191 switch (prev_state
) {
2193 ib_send_cm_rej(ch
->cm_id
, IB_CM_REJ_NO_RESOURCES
, NULL
, 0,
2197 if (ib_send_cm_dreq(ch
->cm_id
, NULL
, 0) < 0)
2198 pr_err("sending CM DREQ failed.\n");
2200 case CH_DISCONNECTING
:
2209 * srpt_close_ch() - Close an RDMA channel.
2211 static void srpt_close_ch(struct srpt_rdma_ch
*ch
)
2213 struct srpt_device
*sdev
;
2215 sdev
= ch
->sport
->sdev
;
2216 spin_lock_irq(&sdev
->spinlock
);
2217 __srpt_close_ch(ch
);
2218 spin_unlock_irq(&sdev
->spinlock
);
2222 * srpt_shutdown_session() - Whether or not a session may be shut down.
2224 static int srpt_shutdown_session(struct se_session
*se_sess
)
2226 struct srpt_rdma_ch
*ch
= se_sess
->fabric_sess_ptr
;
2227 unsigned long flags
;
2229 spin_lock_irqsave(&ch
->spinlock
, flags
);
2230 if (ch
->in_shutdown
) {
2231 spin_unlock_irqrestore(&ch
->spinlock
, flags
);
2235 ch
->in_shutdown
= true;
2236 target_sess_cmd_list_set_waiting(se_sess
);
2237 spin_unlock_irqrestore(&ch
->spinlock
, flags
);
2243 * srpt_drain_channel() - Drain a channel by resetting the IB queue pair.
2244 * @cm_id: Pointer to the CM ID of the channel to be drained.
2246 * Note: Must be called from inside srpt_cm_handler to avoid a race between
2247 * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one()
2248 * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one()
2249 * waits until all target sessions for the associated IB device have been
2250 * unregistered and target session registration involves a call to
2251 * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until
2252 * this function has finished).
2254 static void srpt_drain_channel(struct ib_cm_id
*cm_id
)
2256 struct srpt_device
*sdev
;
2257 struct srpt_rdma_ch
*ch
;
2259 bool do_reset
= false;
2261 WARN_ON_ONCE(irqs_disabled());
2263 sdev
= cm_id
->context
;
2265 spin_lock_irq(&sdev
->spinlock
);
2266 list_for_each_entry(ch
, &sdev
->rch_list
, list
) {
2267 if (ch
->cm_id
== cm_id
) {
2268 do_reset
= srpt_test_and_set_ch_state(ch
,
2269 CH_CONNECTING
, CH_DRAINING
) ||
2270 srpt_test_and_set_ch_state(ch
,
2271 CH_LIVE
, CH_DRAINING
) ||
2272 srpt_test_and_set_ch_state(ch
,
2273 CH_DISCONNECTING
, CH_DRAINING
);
2277 spin_unlock_irq(&sdev
->spinlock
);
2281 srpt_shutdown_session(ch
->sess
);
2283 ret
= srpt_ch_qp_err(ch
);
2285 pr_err("Setting queue pair in error state"
2286 " failed: %d\n", ret
);
2291 * srpt_find_channel() - Look up an RDMA channel.
2292 * @cm_id: Pointer to the CM ID of the channel to be looked up.
2294 * Return NULL if no matching RDMA channel has been found.
2296 static struct srpt_rdma_ch
*srpt_find_channel(struct srpt_device
*sdev
,
2297 struct ib_cm_id
*cm_id
)
2299 struct srpt_rdma_ch
*ch
;
2302 WARN_ON_ONCE(irqs_disabled());
2306 spin_lock_irq(&sdev
->spinlock
);
2307 list_for_each_entry(ch
, &sdev
->rch_list
, list
) {
2308 if (ch
->cm_id
== cm_id
) {
2313 spin_unlock_irq(&sdev
->spinlock
);
2315 return found
? ch
: NULL
;
2319 * srpt_release_channel() - Release channel resources.
2321 * Schedules the actual release because:
2322 * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would
2323 * trigger a deadlock.
2324 * - It is not safe to call TCM transport_* functions from interrupt context.
2326 static void srpt_release_channel(struct srpt_rdma_ch
*ch
)
2328 schedule_work(&ch
->release_work
);
2331 static void srpt_release_channel_work(struct work_struct
*w
)
2333 struct srpt_rdma_ch
*ch
;
2334 struct srpt_device
*sdev
;
2335 struct se_session
*se_sess
;
2337 ch
= container_of(w
, struct srpt_rdma_ch
, release_work
);
2338 pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch
, ch
->sess
,
2341 sdev
= ch
->sport
->sdev
;
2347 target_wait_for_sess_cmds(se_sess
);
2349 transport_deregister_session_configfs(se_sess
);
2350 transport_deregister_session(se_sess
);
2353 ib_destroy_cm_id(ch
->cm_id
);
2355 srpt_destroy_ch_ib(ch
);
2357 srpt_free_ioctx_ring((struct srpt_ioctx
**)ch
->ioctx_ring
,
2358 ch
->sport
->sdev
, ch
->rq_size
,
2359 ch
->rsp_size
, DMA_TO_DEVICE
);
2361 spin_lock_irq(&sdev
->spinlock
);
2362 list_del(&ch
->list
);
2363 spin_unlock_irq(&sdev
->spinlock
);
2365 if (ch
->release_done
)
2366 complete(ch
->release_done
);
2368 wake_up(&sdev
->ch_releaseQ
);
2373 static struct srpt_node_acl
*__srpt_lookup_acl(struct srpt_port
*sport
,
2376 struct srpt_node_acl
*nacl
;
2378 list_for_each_entry(nacl
, &sport
->port_acl_list
, list
)
2379 if (memcmp(nacl
->i_port_id
, i_port_id
,
2380 sizeof(nacl
->i_port_id
)) == 0)
2386 static struct srpt_node_acl
*srpt_lookup_acl(struct srpt_port
*sport
,
2389 struct srpt_node_acl
*nacl
;
2391 spin_lock_irq(&sport
->port_acl_lock
);
2392 nacl
= __srpt_lookup_acl(sport
, i_port_id
);
2393 spin_unlock_irq(&sport
->port_acl_lock
);
2399 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED.
2401 * Ownership of the cm_id is transferred to the target session if this
2402 * functions returns zero. Otherwise the caller remains the owner of cm_id.
2404 static int srpt_cm_req_recv(struct ib_cm_id
*cm_id
,
2405 struct ib_cm_req_event_param
*param
,
2408 struct srpt_device
*sdev
= cm_id
->context
;
2409 struct srpt_port
*sport
= &sdev
->port
[param
->port
- 1];
2410 struct srp_login_req
*req
;
2411 struct srp_login_rsp
*rsp
;
2412 struct srp_login_rej
*rej
;
2413 struct ib_cm_rep_param
*rep_param
;
2414 struct srpt_rdma_ch
*ch
, *tmp_ch
;
2415 struct srpt_node_acl
*nacl
;
2420 WARN_ON_ONCE(irqs_disabled());
2422 if (WARN_ON(!sdev
|| !private_data
))
2425 req
= (struct srp_login_req
*)private_data
;
2427 it_iu_len
= be32_to_cpu(req
->req_it_iu_len
);
2429 pr_info("Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx,"
2430 " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d"
2431 " (guid=0x%llx:0x%llx)\n",
2432 be64_to_cpu(*(__be64
*)&req
->initiator_port_id
[0]),
2433 be64_to_cpu(*(__be64
*)&req
->initiator_port_id
[8]),
2434 be64_to_cpu(*(__be64
*)&req
->target_port_id
[0]),
2435 be64_to_cpu(*(__be64
*)&req
->target_port_id
[8]),
2438 be64_to_cpu(*(__be64
*)&sdev
->port
[param
->port
- 1].gid
.raw
[0]),
2439 be64_to_cpu(*(__be64
*)&sdev
->port
[param
->port
- 1].gid
.raw
[8]));
2441 rsp
= kzalloc(sizeof *rsp
, GFP_KERNEL
);
2442 rej
= kzalloc(sizeof *rej
, GFP_KERNEL
);
2443 rep_param
= kzalloc(sizeof *rep_param
, GFP_KERNEL
);
2445 if (!rsp
|| !rej
|| !rep_param
) {
2450 if (it_iu_len
> srp_max_req_size
|| it_iu_len
< 64) {
2451 rej
->reason
= cpu_to_be32(
2452 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE
);
2454 pr_err("rejected SRP_LOGIN_REQ because its"
2455 " length (%d bytes) is out of range (%d .. %d)\n",
2456 it_iu_len
, 64, srp_max_req_size
);
2460 if (!sport
->enabled
) {
2461 rej
->reason
= cpu_to_be32(
2462 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES
);
2464 pr_err("rejected SRP_LOGIN_REQ because the target port"
2465 " has not yet been enabled\n");
2469 if ((req
->req_flags
& SRP_MTCH_ACTION
) == SRP_MULTICHAN_SINGLE
) {
2470 rsp
->rsp_flags
= SRP_LOGIN_RSP_MULTICHAN_NO_CHAN
;
2472 spin_lock_irq(&sdev
->spinlock
);
2474 list_for_each_entry_safe(ch
, tmp_ch
, &sdev
->rch_list
, list
) {
2475 if (!memcmp(ch
->i_port_id
, req
->initiator_port_id
, 16)
2476 && !memcmp(ch
->t_port_id
, req
->target_port_id
, 16)
2477 && param
->port
== ch
->sport
->port
2478 && param
->listen_id
== ch
->sport
->sdev
->cm_id
2480 enum rdma_ch_state ch_state
;
2482 ch_state
= srpt_get_ch_state(ch
);
2483 if (ch_state
!= CH_CONNECTING
2484 && ch_state
!= CH_LIVE
)
2487 /* found an existing channel */
2488 pr_debug("Found existing channel %s"
2489 " cm_id= %p state= %d\n",
2490 ch
->sess_name
, ch
->cm_id
, ch_state
);
2492 __srpt_close_ch(ch
);
2495 SRP_LOGIN_RSP_MULTICHAN_TERMINATED
;
2499 spin_unlock_irq(&sdev
->spinlock
);
2502 rsp
->rsp_flags
= SRP_LOGIN_RSP_MULTICHAN_MAINTAINED
;
2504 if (*(__be64
*)req
->target_port_id
!= cpu_to_be64(srpt_service_guid
)
2505 || *(__be64
*)(req
->target_port_id
+ 8) !=
2506 cpu_to_be64(srpt_service_guid
)) {
2507 rej
->reason
= cpu_to_be32(
2508 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL
);
2510 pr_err("rejected SRP_LOGIN_REQ because it"
2511 " has an invalid target port identifier.\n");
2515 ch
= kzalloc(sizeof *ch
, GFP_KERNEL
);
2517 rej
->reason
= cpu_to_be32(
2518 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES
);
2519 pr_err("rejected SRP_LOGIN_REQ because no memory.\n");
2524 INIT_WORK(&ch
->release_work
, srpt_release_channel_work
);
2525 memcpy(ch
->i_port_id
, req
->initiator_port_id
, 16);
2526 memcpy(ch
->t_port_id
, req
->target_port_id
, 16);
2527 ch
->sport
= &sdev
->port
[param
->port
- 1];
2530 * Avoid QUEUE_FULL conditions by limiting the number of buffers used
2531 * for the SRP protocol to the command queue size.
2533 ch
->rq_size
= SRPT_RQ_SIZE
;
2534 spin_lock_init(&ch
->spinlock
);
2535 ch
->state
= CH_CONNECTING
;
2536 INIT_LIST_HEAD(&ch
->cmd_wait_list
);
2537 ch
->rsp_size
= ch
->sport
->port_attrib
.srp_max_rsp_size
;
2539 ch
->ioctx_ring
= (struct srpt_send_ioctx
**)
2540 srpt_alloc_ioctx_ring(ch
->sport
->sdev
, ch
->rq_size
,
2541 sizeof(*ch
->ioctx_ring
[0]),
2542 ch
->rsp_size
, DMA_TO_DEVICE
);
2543 if (!ch
->ioctx_ring
)
2546 INIT_LIST_HEAD(&ch
->free_list
);
2547 for (i
= 0; i
< ch
->rq_size
; i
++) {
2548 ch
->ioctx_ring
[i
]->ch
= ch
;
2549 list_add_tail(&ch
->ioctx_ring
[i
]->free_list
, &ch
->free_list
);
2552 ret
= srpt_create_ch_ib(ch
);
2554 rej
->reason
= cpu_to_be32(
2555 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES
);
2556 pr_err("rejected SRP_LOGIN_REQ because creating"
2557 " a new RDMA channel failed.\n");
2561 ret
= srpt_ch_qp_rtr(ch
, ch
->qp
);
2563 rej
->reason
= cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES
);
2564 pr_err("rejected SRP_LOGIN_REQ because enabling"
2565 " RTR failed (error code = %d)\n", ret
);
2569 * Use the initator port identifier as the session name.
2571 snprintf(ch
->sess_name
, sizeof(ch
->sess_name
), "0x%016llx%016llx",
2572 be64_to_cpu(*(__be64
*)ch
->i_port_id
),
2573 be64_to_cpu(*(__be64
*)(ch
->i_port_id
+ 8)));
2575 pr_debug("registering session %s\n", ch
->sess_name
);
2577 nacl
= srpt_lookup_acl(sport
, ch
->i_port_id
);
2579 pr_info("Rejected login because no ACL has been"
2580 " configured yet for initiator %s.\n", ch
->sess_name
);
2581 rej
->reason
= cpu_to_be32(
2582 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED
);
2586 ch
->sess
= transport_init_session(TARGET_PROT_NORMAL
);
2587 if (IS_ERR(ch
->sess
)) {
2588 rej
->reason
= cpu_to_be32(
2589 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES
);
2590 pr_debug("Failed to create session\n");
2591 goto deregister_session
;
2593 ch
->sess
->se_node_acl
= &nacl
->nacl
;
2594 transport_register_session(&sport
->port_tpg_1
, &nacl
->nacl
, ch
->sess
, ch
);
2596 pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch
->sess
,
2597 ch
->sess_name
, ch
->cm_id
);
2599 /* create srp_login_response */
2600 rsp
->opcode
= SRP_LOGIN_RSP
;
2601 rsp
->tag
= req
->tag
;
2602 rsp
->max_it_iu_len
= req
->req_it_iu_len
;
2603 rsp
->max_ti_iu_len
= req
->req_it_iu_len
;
2604 ch
->max_ti_iu_len
= it_iu_len
;
2605 rsp
->buf_fmt
= cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2606 | SRP_BUF_FORMAT_INDIRECT
);
2607 rsp
->req_lim_delta
= cpu_to_be32(ch
->rq_size
);
2608 atomic_set(&ch
->req_lim
, ch
->rq_size
);
2609 atomic_set(&ch
->req_lim_delta
, 0);
2611 /* create cm reply */
2612 rep_param
->qp_num
= ch
->qp
->qp_num
;
2613 rep_param
->private_data
= (void *)rsp
;
2614 rep_param
->private_data_len
= sizeof *rsp
;
2615 rep_param
->rnr_retry_count
= 7;
2616 rep_param
->flow_control
= 1;
2617 rep_param
->failover_accepted
= 0;
2619 rep_param
->responder_resources
= 4;
2620 rep_param
->initiator_depth
= 4;
2622 ret
= ib_send_cm_rep(cm_id
, rep_param
);
2624 pr_err("sending SRP_LOGIN_REQ response failed"
2625 " (error code = %d)\n", ret
);
2626 goto release_channel
;
2629 spin_lock_irq(&sdev
->spinlock
);
2630 list_add_tail(&ch
->list
, &sdev
->rch_list
);
2631 spin_unlock_irq(&sdev
->spinlock
);
2636 srpt_set_ch_state(ch
, CH_RELEASING
);
2637 transport_deregister_session_configfs(ch
->sess
);
2640 transport_deregister_session(ch
->sess
);
2644 srpt_destroy_ch_ib(ch
);
2647 srpt_free_ioctx_ring((struct srpt_ioctx
**)ch
->ioctx_ring
,
2648 ch
->sport
->sdev
, ch
->rq_size
,
2649 ch
->rsp_size
, DMA_TO_DEVICE
);
2654 rej
->opcode
= SRP_LOGIN_REJ
;
2655 rej
->tag
= req
->tag
;
2656 rej
->buf_fmt
= cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2657 | SRP_BUF_FORMAT_INDIRECT
);
2659 ib_send_cm_rej(cm_id
, IB_CM_REJ_CONSUMER_DEFINED
, NULL
, 0,
2660 (void *)rej
, sizeof *rej
);
2670 static void srpt_cm_rej_recv(struct ib_cm_id
*cm_id
)
2672 pr_info("Received IB REJ for cm_id %p.\n", cm_id
);
2673 srpt_drain_channel(cm_id
);
2677 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event.
2679 * An IB_CM_RTU_RECEIVED message indicates that the connection is established
2680 * and that the recipient may begin transmitting (RTU = ready to use).
2682 static void srpt_cm_rtu_recv(struct ib_cm_id
*cm_id
)
2684 struct srpt_rdma_ch
*ch
;
2687 ch
= srpt_find_channel(cm_id
->context
, cm_id
);
2690 if (srpt_test_and_set_ch_state(ch
, CH_CONNECTING
, CH_LIVE
)) {
2691 struct srpt_recv_ioctx
*ioctx
, *ioctx_tmp
;
2693 ret
= srpt_ch_qp_rts(ch
, ch
->qp
);
2695 list_for_each_entry_safe(ioctx
, ioctx_tmp
, &ch
->cmd_wait_list
,
2697 list_del(&ioctx
->wait_list
);
2698 srpt_handle_new_iu(ch
, ioctx
, NULL
);
2705 static void srpt_cm_timewait_exit(struct ib_cm_id
*cm_id
)
2707 pr_info("Received IB TimeWait exit for cm_id %p.\n", cm_id
);
2708 srpt_drain_channel(cm_id
);
2711 static void srpt_cm_rep_error(struct ib_cm_id
*cm_id
)
2713 pr_info("Received IB REP error for cm_id %p.\n", cm_id
);
2714 srpt_drain_channel(cm_id
);
2718 * srpt_cm_dreq_recv() - Process reception of a DREQ message.
2720 static void srpt_cm_dreq_recv(struct ib_cm_id
*cm_id
)
2722 struct srpt_rdma_ch
*ch
;
2723 unsigned long flags
;
2724 bool send_drep
= false;
2726 ch
= srpt_find_channel(cm_id
->context
, cm_id
);
2729 pr_debug("cm_id= %p ch->state= %d\n", cm_id
, srpt_get_ch_state(ch
));
2731 spin_lock_irqsave(&ch
->spinlock
, flags
);
2732 switch (ch
->state
) {
2736 ch
->state
= CH_DISCONNECTING
;
2738 case CH_DISCONNECTING
:
2741 WARN(true, "unexpected channel state %d\n", ch
->state
);
2744 spin_unlock_irqrestore(&ch
->spinlock
, flags
);
2747 if (ib_send_cm_drep(ch
->cm_id
, NULL
, 0) < 0)
2748 pr_err("Sending IB DREP failed.\n");
2749 pr_info("Received DREQ and sent DREP for session %s.\n",
2755 * srpt_cm_drep_recv() - Process reception of a DREP message.
2757 static void srpt_cm_drep_recv(struct ib_cm_id
*cm_id
)
2759 pr_info("Received InfiniBand DREP message for cm_id %p.\n", cm_id
);
2760 srpt_drain_channel(cm_id
);
2764 * srpt_cm_handler() - IB connection manager callback function.
2766 * A non-zero return value will cause the caller destroy the CM ID.
2768 * Note: srpt_cm_handler() must only return a non-zero value when transferring
2769 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2770 * a non-zero value in any other case will trigger a race with the
2771 * ib_destroy_cm_id() call in srpt_release_channel().
2773 static int srpt_cm_handler(struct ib_cm_id
*cm_id
, struct ib_cm_event
*event
)
2778 switch (event
->event
) {
2779 case IB_CM_REQ_RECEIVED
:
2780 ret
= srpt_cm_req_recv(cm_id
, &event
->param
.req_rcvd
,
2781 event
->private_data
);
2783 case IB_CM_REJ_RECEIVED
:
2784 srpt_cm_rej_recv(cm_id
);
2786 case IB_CM_RTU_RECEIVED
:
2787 case IB_CM_USER_ESTABLISHED
:
2788 srpt_cm_rtu_recv(cm_id
);
2790 case IB_CM_DREQ_RECEIVED
:
2791 srpt_cm_dreq_recv(cm_id
);
2793 case IB_CM_DREP_RECEIVED
:
2794 srpt_cm_drep_recv(cm_id
);
2796 case IB_CM_TIMEWAIT_EXIT
:
2797 srpt_cm_timewait_exit(cm_id
);
2799 case IB_CM_REP_ERROR
:
2800 srpt_cm_rep_error(cm_id
);
2802 case IB_CM_DREQ_ERROR
:
2803 pr_info("Received IB DREQ ERROR event.\n");
2805 case IB_CM_MRA_RECEIVED
:
2806 pr_info("Received IB MRA event\n");
2809 pr_err("received unrecognized IB CM event %d\n", event
->event
);
2817 * srpt_perform_rdmas() - Perform IB RDMA.
2819 * Returns zero upon success or a negative number upon failure.
2821 static int srpt_perform_rdmas(struct srpt_rdma_ch
*ch
,
2822 struct srpt_send_ioctx
*ioctx
)
2824 struct ib_rdma_wr wr
;
2825 struct ib_send_wr
*bad_wr
;
2826 struct rdma_iu
*riu
;
2830 enum dma_data_direction dir
;
2831 const int n_rdma
= ioctx
->n_rdma
;
2833 dir
= ioctx
->cmd
.data_direction
;
2834 if (dir
== DMA_TO_DEVICE
) {
2837 sq_wr_avail
= atomic_sub_return(n_rdma
, &ch
->sq_wr_avail
);
2838 if (sq_wr_avail
< 0) {
2839 pr_warn("IB send queue full (needed %d)\n",
2845 ioctx
->rdma_aborted
= false;
2847 riu
= ioctx
->rdma_ius
;
2848 memset(&wr
, 0, sizeof wr
);
2850 for (i
= 0; i
< n_rdma
; ++i
, ++riu
) {
2851 if (dir
== DMA_FROM_DEVICE
) {
2852 wr
.wr
.opcode
= IB_WR_RDMA_WRITE
;
2853 wr
.wr
.wr_id
= encode_wr_id(i
== n_rdma
- 1 ?
2854 SRPT_RDMA_WRITE_LAST
:
2856 ioctx
->ioctx
.index
);
2858 wr
.wr
.opcode
= IB_WR_RDMA_READ
;
2859 wr
.wr
.wr_id
= encode_wr_id(i
== n_rdma
- 1 ?
2860 SRPT_RDMA_READ_LAST
:
2862 ioctx
->ioctx
.index
);
2865 wr
.remote_addr
= riu
->raddr
;
2866 wr
.rkey
= riu
->rkey
;
2867 wr
.wr
.num_sge
= riu
->sge_cnt
;
2868 wr
.wr
.sg_list
= riu
->sge
;
2870 /* only get completion event for the last rdma write */
2871 if (i
== (n_rdma
- 1) && dir
== DMA_TO_DEVICE
)
2872 wr
.wr
.send_flags
= IB_SEND_SIGNALED
;
2874 ret
= ib_post_send(ch
->qp
, &wr
.wr
, &bad_wr
);
2880 pr_err("%s[%d]: ib_post_send() returned %d for %d/%d\n",
2881 __func__
, __LINE__
, ret
, i
, n_rdma
);
2884 wr
.wr
.wr_id
= encode_wr_id(SRPT_RDMA_ABORT
, ioctx
->ioctx
.index
);
2885 wr
.wr
.send_flags
= IB_SEND_SIGNALED
;
2886 while (ch
->state
== CH_LIVE
&&
2887 ib_post_send(ch
->qp
, &wr
.wr
, &bad_wr
) != 0) {
2888 pr_info("Trying to abort failed RDMA transfer [%d]\n",
2889 ioctx
->ioctx
.index
);
2892 while (ch
->state
!= CH_RELEASING
&& !ioctx
->rdma_aborted
) {
2893 pr_info("Waiting until RDMA abort finished [%d]\n",
2894 ioctx
->ioctx
.index
);
2899 if (unlikely(dir
== DMA_TO_DEVICE
&& ret
< 0))
2900 atomic_add(n_rdma
, &ch
->sq_wr_avail
);
2905 * srpt_xfer_data() - Start data transfer from initiator to target.
2907 static int srpt_xfer_data(struct srpt_rdma_ch
*ch
,
2908 struct srpt_send_ioctx
*ioctx
)
2912 ret
= srpt_map_sg_to_ib_sge(ch
, ioctx
);
2914 pr_err("%s[%d] ret=%d\n", __func__
, __LINE__
, ret
);
2918 ret
= srpt_perform_rdmas(ch
, ioctx
);
2920 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2921 pr_info("%s[%d] queue full -- ret=%d\n",
2922 __func__
, __LINE__
, ret
);
2924 pr_err("%s[%d] fatal error -- ret=%d\n",
2925 __func__
, __LINE__
, ret
);
2932 srpt_unmap_sg_to_ib_sge(ch
, ioctx
);
2936 static int srpt_write_pending_status(struct se_cmd
*se_cmd
)
2938 struct srpt_send_ioctx
*ioctx
;
2940 ioctx
= container_of(se_cmd
, struct srpt_send_ioctx
, cmd
);
2941 return srpt_get_cmd_state(ioctx
) == SRPT_STATE_NEED_DATA
;
2945 * srpt_write_pending() - Start data transfer from initiator to target (write).
2947 static int srpt_write_pending(struct se_cmd
*se_cmd
)
2949 struct srpt_rdma_ch
*ch
;
2950 struct srpt_send_ioctx
*ioctx
;
2951 enum srpt_command_state new_state
;
2952 enum rdma_ch_state ch_state
;
2955 ioctx
= container_of(se_cmd
, struct srpt_send_ioctx
, cmd
);
2957 new_state
= srpt_set_cmd_state(ioctx
, SRPT_STATE_NEED_DATA
);
2958 WARN_ON(new_state
== SRPT_STATE_DONE
);
2963 ch_state
= srpt_get_ch_state(ch
);
2966 WARN(true, "unexpected channel state %d\n", ch_state
);
2971 case CH_DISCONNECTING
:
2974 pr_debug("cmd with tag %lld: channel disconnecting\n",
2976 srpt_set_cmd_state(ioctx
, SRPT_STATE_DATA_IN
);
2980 ret
= srpt_xfer_data(ch
, ioctx
);
2986 static u8
tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status
)
2988 switch (tcm_mgmt_status
) {
2989 case TMR_FUNCTION_COMPLETE
:
2990 return SRP_TSK_MGMT_SUCCESS
;
2991 case TMR_FUNCTION_REJECTED
:
2992 return SRP_TSK_MGMT_FUNC_NOT_SUPP
;
2994 return SRP_TSK_MGMT_FAILED
;
2998 * srpt_queue_response() - Transmits the response to a SCSI command.
3000 * Callback function called by the TCM core. Must not block since it can be
3001 * invoked on the context of the IB completion handler.
3003 static void srpt_queue_response(struct se_cmd
*cmd
)
3005 struct srpt_rdma_ch
*ch
;
3006 struct srpt_send_ioctx
*ioctx
;
3007 enum srpt_command_state state
;
3008 unsigned long flags
;
3010 enum dma_data_direction dir
;
3014 ioctx
= container_of(cmd
, struct srpt_send_ioctx
, cmd
);
3018 spin_lock_irqsave(&ioctx
->spinlock
, flags
);
3019 state
= ioctx
->state
;
3021 case SRPT_STATE_NEW
:
3022 case SRPT_STATE_DATA_IN
:
3023 ioctx
->state
= SRPT_STATE_CMD_RSP_SENT
;
3025 case SRPT_STATE_MGMT
:
3026 ioctx
->state
= SRPT_STATE_MGMT_RSP_SENT
;
3029 WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
3030 ch
, ioctx
->ioctx
.index
, ioctx
->state
);
3033 spin_unlock_irqrestore(&ioctx
->spinlock
, flags
);
3035 if (unlikely(transport_check_aborted_status(&ioctx
->cmd
, false)
3036 || WARN_ON_ONCE(state
== SRPT_STATE_CMD_RSP_SENT
))) {
3037 atomic_inc(&ch
->req_lim_delta
);
3038 srpt_abort_cmd(ioctx
);
3042 dir
= ioctx
->cmd
.data_direction
;
3044 /* For read commands, transfer the data to the initiator. */
3045 if (dir
== DMA_FROM_DEVICE
&& ioctx
->cmd
.data_length
&&
3046 !ioctx
->queue_status_only
) {
3047 ret
= srpt_xfer_data(ch
, ioctx
);
3049 pr_err("xfer_data failed for tag %llu\n",
3055 if (state
!= SRPT_STATE_MGMT
)
3056 resp_len
= srpt_build_cmd_rsp(ch
, ioctx
, ioctx
->cmd
.tag
,
3060 = tcm_to_srp_tsk_mgmt_status(cmd
->se_tmr_req
->response
);
3061 resp_len
= srpt_build_tskmgmt_rsp(ch
, ioctx
, srp_tm_status
,
3064 ret
= srpt_post_send(ch
, ioctx
, resp_len
);
3066 pr_err("sending cmd response failed for tag %llu\n",
3068 srpt_unmap_sg_to_ib_sge(ch
, ioctx
);
3069 srpt_set_cmd_state(ioctx
, SRPT_STATE_DONE
);
3070 target_put_sess_cmd(&ioctx
->cmd
);
3074 static int srpt_queue_data_in(struct se_cmd
*cmd
)
3076 srpt_queue_response(cmd
);
3080 static void srpt_queue_tm_rsp(struct se_cmd
*cmd
)
3082 srpt_queue_response(cmd
);
3085 static void srpt_aborted_task(struct se_cmd
*cmd
)
3087 struct srpt_send_ioctx
*ioctx
= container_of(cmd
,
3088 struct srpt_send_ioctx
, cmd
);
3090 srpt_unmap_sg_to_ib_sge(ioctx
->ch
, ioctx
);
3093 static int srpt_queue_status(struct se_cmd
*cmd
)
3095 struct srpt_send_ioctx
*ioctx
;
3097 ioctx
= container_of(cmd
, struct srpt_send_ioctx
, cmd
);
3098 BUG_ON(ioctx
->sense_data
!= cmd
->sense_buffer
);
3099 if (cmd
->se_cmd_flags
&
3100 (SCF_TRANSPORT_TASK_SENSE
| SCF_EMULATED_TASK_SENSE
))
3101 WARN_ON(cmd
->scsi_status
!= SAM_STAT_CHECK_CONDITION
);
3102 ioctx
->queue_status_only
= true;
3103 srpt_queue_response(cmd
);
3107 static void srpt_refresh_port_work(struct work_struct
*work
)
3109 struct srpt_port
*sport
= container_of(work
, struct srpt_port
, work
);
3111 srpt_refresh_port(sport
);
3114 static int srpt_ch_list_empty(struct srpt_device
*sdev
)
3118 spin_lock_irq(&sdev
->spinlock
);
3119 res
= list_empty(&sdev
->rch_list
);
3120 spin_unlock_irq(&sdev
->spinlock
);
3126 * srpt_release_sdev() - Free the channel resources associated with a target.
3128 static int srpt_release_sdev(struct srpt_device
*sdev
)
3130 struct srpt_rdma_ch
*ch
, *tmp_ch
;
3133 WARN_ON_ONCE(irqs_disabled());
3137 spin_lock_irq(&sdev
->spinlock
);
3138 list_for_each_entry_safe(ch
, tmp_ch
, &sdev
->rch_list
, list
)
3139 __srpt_close_ch(ch
);
3140 spin_unlock_irq(&sdev
->spinlock
);
3142 res
= wait_event_interruptible(sdev
->ch_releaseQ
,
3143 srpt_ch_list_empty(sdev
));
3145 pr_err("%s: interrupted.\n", __func__
);
3150 static struct srpt_port
*__srpt_lookup_port(const char *name
)
3152 struct ib_device
*dev
;
3153 struct srpt_device
*sdev
;
3154 struct srpt_port
*sport
;
3157 list_for_each_entry(sdev
, &srpt_dev_list
, list
) {
3162 for (i
= 0; i
< dev
->phys_port_cnt
; i
++) {
3163 sport
= &sdev
->port
[i
];
3165 if (!strcmp(sport
->port_guid
, name
))
3173 static struct srpt_port
*srpt_lookup_port(const char *name
)
3175 struct srpt_port
*sport
;
3177 spin_lock(&srpt_dev_lock
);
3178 sport
= __srpt_lookup_port(name
);
3179 spin_unlock(&srpt_dev_lock
);
3185 * srpt_add_one() - Infiniband device addition callback function.
3187 static void srpt_add_one(struct ib_device
*device
)
3189 struct srpt_device
*sdev
;
3190 struct srpt_port
*sport
;
3191 struct ib_srq_init_attr srq_attr
;
3194 pr_debug("device = %p, device->dma_ops = %p\n", device
,
3197 sdev
= kzalloc(sizeof *sdev
, GFP_KERNEL
);
3201 sdev
->device
= device
;
3202 INIT_LIST_HEAD(&sdev
->rch_list
);
3203 init_waitqueue_head(&sdev
->ch_releaseQ
);
3204 spin_lock_init(&sdev
->spinlock
);
3206 if (ib_query_device(device
, &sdev
->dev_attr
))
3209 sdev
->pd
= ib_alloc_pd(device
);
3210 if (IS_ERR(sdev
->pd
))
3213 sdev
->srq_size
= min(srpt_srq_size
, sdev
->dev_attr
.max_srq_wr
);
3215 srq_attr
.event_handler
= srpt_srq_event
;
3216 srq_attr
.srq_context
= (void *)sdev
;
3217 srq_attr
.attr
.max_wr
= sdev
->srq_size
;
3218 srq_attr
.attr
.max_sge
= 1;
3219 srq_attr
.attr
.srq_limit
= 0;
3220 srq_attr
.srq_type
= IB_SRQT_BASIC
;
3222 sdev
->srq
= ib_create_srq(sdev
->pd
, &srq_attr
);
3223 if (IS_ERR(sdev
->srq
))
3226 pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n",
3227 __func__
, sdev
->srq_size
, sdev
->dev_attr
.max_srq_wr
,
3230 if (!srpt_service_guid
)
3231 srpt_service_guid
= be64_to_cpu(device
->node_guid
);
3233 sdev
->cm_id
= ib_create_cm_id(device
, srpt_cm_handler
, sdev
);
3234 if (IS_ERR(sdev
->cm_id
))
3237 /* print out target login information */
3238 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
3239 "pkey=ffff,service_id=%016llx\n", srpt_service_guid
,
3240 srpt_service_guid
, srpt_service_guid
);
3243 * We do not have a consistent service_id (ie. also id_ext of target_id)
3244 * to identify this target. We currently use the guid of the first HCA
3245 * in the system as service_id; therefore, the target_id will change
3246 * if this HCA is gone bad and replaced by different HCA
3248 if (ib_cm_listen(sdev
->cm_id
, cpu_to_be64(srpt_service_guid
), 0))
3251 INIT_IB_EVENT_HANDLER(&sdev
->event_handler
, sdev
->device
,
3252 srpt_event_handler
);
3253 if (ib_register_event_handler(&sdev
->event_handler
))
3256 sdev
->ioctx_ring
= (struct srpt_recv_ioctx
**)
3257 srpt_alloc_ioctx_ring(sdev
, sdev
->srq_size
,
3258 sizeof(*sdev
->ioctx_ring
[0]),
3259 srp_max_req_size
, DMA_FROM_DEVICE
);
3260 if (!sdev
->ioctx_ring
)
3263 for (i
= 0; i
< sdev
->srq_size
; ++i
)
3264 srpt_post_recv(sdev
, sdev
->ioctx_ring
[i
]);
3266 WARN_ON(sdev
->device
->phys_port_cnt
> ARRAY_SIZE(sdev
->port
));
3268 for (i
= 1; i
<= sdev
->device
->phys_port_cnt
; i
++) {
3269 sport
= &sdev
->port
[i
- 1];
3272 sport
->port_attrib
.srp_max_rdma_size
= DEFAULT_MAX_RDMA_SIZE
;
3273 sport
->port_attrib
.srp_max_rsp_size
= DEFAULT_MAX_RSP_SIZE
;
3274 sport
->port_attrib
.srp_sq_size
= DEF_SRPT_SQ_SIZE
;
3275 INIT_WORK(&sport
->work
, srpt_refresh_port_work
);
3276 INIT_LIST_HEAD(&sport
->port_acl_list
);
3277 spin_lock_init(&sport
->port_acl_lock
);
3279 if (srpt_refresh_port(sport
)) {
3280 pr_err("MAD registration failed for %s-%d.\n",
3281 srpt_sdev_name(sdev
), i
);
3284 snprintf(sport
->port_guid
, sizeof(sport
->port_guid
),
3286 be64_to_cpu(sport
->gid
.global
.subnet_prefix
),
3287 be64_to_cpu(sport
->gid
.global
.interface_id
));
3290 spin_lock(&srpt_dev_lock
);
3291 list_add_tail(&sdev
->list
, &srpt_dev_list
);
3292 spin_unlock(&srpt_dev_lock
);
3295 ib_set_client_data(device
, &srpt_client
, sdev
);
3296 pr_debug("added %s.\n", device
->name
);
3300 srpt_free_ioctx_ring((struct srpt_ioctx
**)sdev
->ioctx_ring
, sdev
,
3301 sdev
->srq_size
, srp_max_req_size
,
3304 ib_unregister_event_handler(&sdev
->event_handler
);
3306 ib_destroy_cm_id(sdev
->cm_id
);
3308 ib_destroy_srq(sdev
->srq
);
3310 ib_dealloc_pd(sdev
->pd
);
3315 pr_info("%s(%s) failed.\n", __func__
, device
->name
);
3320 * srpt_remove_one() - InfiniBand device removal callback function.
3322 static void srpt_remove_one(struct ib_device
*device
, void *client_data
)
3324 struct srpt_device
*sdev
= client_data
;
3328 pr_info("%s(%s): nothing to do.\n", __func__
, device
->name
);
3332 srpt_unregister_mad_agent(sdev
);
3334 ib_unregister_event_handler(&sdev
->event_handler
);
3336 /* Cancel any work queued by the just unregistered IB event handler. */
3337 for (i
= 0; i
< sdev
->device
->phys_port_cnt
; i
++)
3338 cancel_work_sync(&sdev
->port
[i
].work
);
3340 ib_destroy_cm_id(sdev
->cm_id
);
3343 * Unregistering a target must happen after destroying sdev->cm_id
3344 * such that no new SRP_LOGIN_REQ information units can arrive while
3345 * destroying the target.
3347 spin_lock(&srpt_dev_lock
);
3348 list_del(&sdev
->list
);
3349 spin_unlock(&srpt_dev_lock
);
3350 srpt_release_sdev(sdev
);
3352 ib_destroy_srq(sdev
->srq
);
3353 ib_dealloc_pd(sdev
->pd
);
3355 srpt_free_ioctx_ring((struct srpt_ioctx
**)sdev
->ioctx_ring
, sdev
,
3356 sdev
->srq_size
, srp_max_req_size
, DMA_FROM_DEVICE
);
3357 sdev
->ioctx_ring
= NULL
;
3361 static struct ib_client srpt_client
= {
3363 .add
= srpt_add_one
,
3364 .remove
= srpt_remove_one
3367 static int srpt_check_true(struct se_portal_group
*se_tpg
)
3372 static int srpt_check_false(struct se_portal_group
*se_tpg
)
3377 static char *srpt_get_fabric_name(void)
3382 static char *srpt_get_fabric_wwn(struct se_portal_group
*tpg
)
3384 struct srpt_port
*sport
= container_of(tpg
, struct srpt_port
, port_tpg_1
);
3386 return sport
->port_guid
;
3389 static u16
srpt_get_tag(struct se_portal_group
*tpg
)
3394 static u32
srpt_tpg_get_inst_index(struct se_portal_group
*se_tpg
)
3399 static void srpt_release_cmd(struct se_cmd
*se_cmd
)
3401 struct srpt_send_ioctx
*ioctx
= container_of(se_cmd
,
3402 struct srpt_send_ioctx
, cmd
);
3403 struct srpt_rdma_ch
*ch
= ioctx
->ch
;
3404 unsigned long flags
;
3406 WARN_ON(ioctx
->state
!= SRPT_STATE_DONE
);
3407 WARN_ON(ioctx
->mapped_sg_count
!= 0);
3409 if (ioctx
->n_rbuf
> 1) {
3410 kfree(ioctx
->rbufs
);
3411 ioctx
->rbufs
= NULL
;
3415 spin_lock_irqsave(&ch
->spinlock
, flags
);
3416 list_add(&ioctx
->free_list
, &ch
->free_list
);
3417 spin_unlock_irqrestore(&ch
->spinlock
, flags
);
3421 * srpt_close_session() - Forcibly close a session.
3423 * Callback function invoked by the TCM core to clean up sessions associated
3424 * with a node ACL when the user invokes
3425 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3427 static void srpt_close_session(struct se_session
*se_sess
)
3429 DECLARE_COMPLETION_ONSTACK(release_done
);
3430 struct srpt_rdma_ch
*ch
;
3431 struct srpt_device
*sdev
;
3434 ch
= se_sess
->fabric_sess_ptr
;
3435 WARN_ON(ch
->sess
!= se_sess
);
3437 pr_debug("ch %p state %d\n", ch
, srpt_get_ch_state(ch
));
3439 sdev
= ch
->sport
->sdev
;
3440 spin_lock_irq(&sdev
->spinlock
);
3441 BUG_ON(ch
->release_done
);
3442 ch
->release_done
= &release_done
;
3443 __srpt_close_ch(ch
);
3444 spin_unlock_irq(&sdev
->spinlock
);
3446 res
= wait_for_completion_timeout(&release_done
, 60 * HZ
);
3451 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB).
3453 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3454 * This object represents an arbitrary integer used to uniquely identify a
3455 * particular attached remote initiator port to a particular SCSI target port
3456 * within a particular SCSI target device within a particular SCSI instance.
3458 static u32
srpt_sess_get_index(struct se_session
*se_sess
)
3463 static void srpt_set_default_node_attrs(struct se_node_acl
*nacl
)
3467 /* Note: only used from inside debug printk's by the TCM core. */
3468 static int srpt_get_tcm_cmd_state(struct se_cmd
*se_cmd
)
3470 struct srpt_send_ioctx
*ioctx
;
3472 ioctx
= container_of(se_cmd
, struct srpt_send_ioctx
, cmd
);
3473 return srpt_get_cmd_state(ioctx
);
3477 * srpt_parse_i_port_id() - Parse an initiator port ID.
3478 * @name: ASCII representation of a 128-bit initiator port ID.
3479 * @i_port_id: Binary 128-bit port ID.
3481 static int srpt_parse_i_port_id(u8 i_port_id
[16], const char *name
)
3484 unsigned len
, count
, leading_zero_bytes
;
3488 if (strncasecmp(p
, "0x", 2) == 0)
3494 count
= min(len
/ 2, 16U);
3495 leading_zero_bytes
= 16 - count
;
3496 memset(i_port_id
, 0, leading_zero_bytes
);
3497 rc
= hex2bin(i_port_id
+ leading_zero_bytes
, p
, count
);
3499 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc
);
3506 * configfs callback function invoked for
3507 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3509 static int srpt_init_nodeacl(struct se_node_acl
*se_nacl
, const char *name
)
3511 struct srpt_port
*sport
=
3512 container_of(se_nacl
->se_tpg
, struct srpt_port
, port_tpg_1
);
3513 struct srpt_node_acl
*nacl
=
3514 container_of(se_nacl
, struct srpt_node_acl
, nacl
);
3517 if (srpt_parse_i_port_id(i_port_id
, name
) < 0) {
3518 pr_err("invalid initiator port ID %s\n", name
);
3522 memcpy(&nacl
->i_port_id
[0], &i_port_id
[0], 16);
3523 nacl
->sport
= sport
;
3525 spin_lock_irq(&sport
->port_acl_lock
);
3526 list_add_tail(&nacl
->list
, &sport
->port_acl_list
);
3527 spin_unlock_irq(&sport
->port_acl_lock
);
3533 * configfs callback function invoked for
3534 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3536 static void srpt_cleanup_nodeacl(struct se_node_acl
*se_nacl
)
3538 struct srpt_node_acl
*nacl
=
3539 container_of(se_nacl
, struct srpt_node_acl
, nacl
);
3540 struct srpt_port
*sport
= nacl
->sport
;
3542 spin_lock_irq(&sport
->port_acl_lock
);
3543 list_del(&nacl
->list
);
3544 spin_unlock_irq(&sport
->port_acl_lock
);
3547 static ssize_t
srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item
*item
,
3550 struct se_portal_group
*se_tpg
= attrib_to_tpg(item
);
3551 struct srpt_port
*sport
= container_of(se_tpg
, struct srpt_port
, port_tpg_1
);
3553 return sprintf(page
, "%u\n", sport
->port_attrib
.srp_max_rdma_size
);
3556 static ssize_t
srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item
*item
,
3557 const char *page
, size_t count
)
3559 struct se_portal_group
*se_tpg
= attrib_to_tpg(item
);
3560 struct srpt_port
*sport
= container_of(se_tpg
, struct srpt_port
, port_tpg_1
);
3564 ret
= kstrtoul(page
, 0, &val
);
3566 pr_err("kstrtoul() failed with ret: %d\n", ret
);
3569 if (val
> MAX_SRPT_RDMA_SIZE
) {
3570 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val
,
3571 MAX_SRPT_RDMA_SIZE
);
3574 if (val
< DEFAULT_MAX_RDMA_SIZE
) {
3575 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3576 val
, DEFAULT_MAX_RDMA_SIZE
);
3579 sport
->port_attrib
.srp_max_rdma_size
= val
;
3584 static ssize_t
srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item
*item
,
3587 struct se_portal_group
*se_tpg
= attrib_to_tpg(item
);
3588 struct srpt_port
*sport
= container_of(se_tpg
, struct srpt_port
, port_tpg_1
);
3590 return sprintf(page
, "%u\n", sport
->port_attrib
.srp_max_rsp_size
);
3593 static ssize_t
srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item
*item
,
3594 const char *page
, size_t count
)
3596 struct se_portal_group
*se_tpg
= attrib_to_tpg(item
);
3597 struct srpt_port
*sport
= container_of(se_tpg
, struct srpt_port
, port_tpg_1
);
3601 ret
= kstrtoul(page
, 0, &val
);
3603 pr_err("kstrtoul() failed with ret: %d\n", ret
);
3606 if (val
> MAX_SRPT_RSP_SIZE
) {
3607 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val
,
3611 if (val
< MIN_MAX_RSP_SIZE
) {
3612 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val
,
3616 sport
->port_attrib
.srp_max_rsp_size
= val
;
3621 static ssize_t
srpt_tpg_attrib_srp_sq_size_show(struct config_item
*item
,
3624 struct se_portal_group
*se_tpg
= attrib_to_tpg(item
);
3625 struct srpt_port
*sport
= container_of(se_tpg
, struct srpt_port
, port_tpg_1
);
3627 return sprintf(page
, "%u\n", sport
->port_attrib
.srp_sq_size
);
3630 static ssize_t
srpt_tpg_attrib_srp_sq_size_store(struct config_item
*item
,
3631 const char *page
, size_t count
)
3633 struct se_portal_group
*se_tpg
= attrib_to_tpg(item
);
3634 struct srpt_port
*sport
= container_of(se_tpg
, struct srpt_port
, port_tpg_1
);
3638 ret
= kstrtoul(page
, 0, &val
);
3640 pr_err("kstrtoul() failed with ret: %d\n", ret
);
3643 if (val
> MAX_SRPT_SRQ_SIZE
) {
3644 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val
,
3648 if (val
< MIN_SRPT_SRQ_SIZE
) {
3649 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val
,
3653 sport
->port_attrib
.srp_sq_size
= val
;
3658 CONFIGFS_ATTR(srpt_tpg_attrib_
, srp_max_rdma_size
);
3659 CONFIGFS_ATTR(srpt_tpg_attrib_
, srp_max_rsp_size
);
3660 CONFIGFS_ATTR(srpt_tpg_attrib_
, srp_sq_size
);
3662 static struct configfs_attribute
*srpt_tpg_attrib_attrs
[] = {
3663 &srpt_tpg_attrib_attr_srp_max_rdma_size
,
3664 &srpt_tpg_attrib_attr_srp_max_rsp_size
,
3665 &srpt_tpg_attrib_attr_srp_sq_size
,
3669 static ssize_t
srpt_tpg_enable_show(struct config_item
*item
, char *page
)
3671 struct se_portal_group
*se_tpg
= to_tpg(item
);
3672 struct srpt_port
*sport
= container_of(se_tpg
, struct srpt_port
, port_tpg_1
);
3674 return snprintf(page
, PAGE_SIZE
, "%d\n", (sport
->enabled
) ? 1: 0);
3677 static ssize_t
srpt_tpg_enable_store(struct config_item
*item
,
3678 const char *page
, size_t count
)
3680 struct se_portal_group
*se_tpg
= to_tpg(item
);
3681 struct srpt_port
*sport
= container_of(se_tpg
, struct srpt_port
, port_tpg_1
);
3685 ret
= kstrtoul(page
, 0, &tmp
);
3687 pr_err("Unable to extract srpt_tpg_store_enable\n");
3691 if ((tmp
!= 0) && (tmp
!= 1)) {
3692 pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp
);
3696 sport
->enabled
= true;
3698 sport
->enabled
= false;
3703 CONFIGFS_ATTR(srpt_tpg_
, enable
);
3705 static struct configfs_attribute
*srpt_tpg_attrs
[] = {
3706 &srpt_tpg_attr_enable
,
3711 * configfs callback invoked for
3712 * mkdir /sys/kernel/config/target/$driver/$port/$tpg
3714 static struct se_portal_group
*srpt_make_tpg(struct se_wwn
*wwn
,
3715 struct config_group
*group
,
3718 struct srpt_port
*sport
= container_of(wwn
, struct srpt_port
, port_wwn
);
3721 /* Initialize sport->port_wwn and sport->port_tpg_1 */
3722 res
= core_tpg_register(&sport
->port_wwn
, &sport
->port_tpg_1
, SCSI_PROTOCOL_SRP
);
3724 return ERR_PTR(res
);
3726 return &sport
->port_tpg_1
;
3730 * configfs callback invoked for
3731 * rmdir /sys/kernel/config/target/$driver/$port/$tpg
3733 static void srpt_drop_tpg(struct se_portal_group
*tpg
)
3735 struct srpt_port
*sport
= container_of(tpg
,
3736 struct srpt_port
, port_tpg_1
);
3738 sport
->enabled
= false;
3739 core_tpg_deregister(&sport
->port_tpg_1
);
3743 * configfs callback invoked for
3744 * mkdir /sys/kernel/config/target/$driver/$port
3746 static struct se_wwn
*srpt_make_tport(struct target_fabric_configfs
*tf
,
3747 struct config_group
*group
,
3750 struct srpt_port
*sport
;
3753 sport
= srpt_lookup_port(name
);
3754 pr_debug("make_tport(%s)\n", name
);
3759 return &sport
->port_wwn
;
3762 return ERR_PTR(ret
);
3766 * configfs callback invoked for
3767 * rmdir /sys/kernel/config/target/$driver/$port
3769 static void srpt_drop_tport(struct se_wwn
*wwn
)
3771 struct srpt_port
*sport
= container_of(wwn
, struct srpt_port
, port_wwn
);
3773 pr_debug("drop_tport(%s\n", config_item_name(&sport
->port_wwn
.wwn_group
.cg_item
));
3776 static ssize_t
srpt_wwn_version_show(struct config_item
*item
, char *buf
)
3778 return scnprintf(buf
, PAGE_SIZE
, "%s\n", DRV_VERSION
);
3781 CONFIGFS_ATTR_RO(srpt_wwn_
, version
);
3783 static struct configfs_attribute
*srpt_wwn_attrs
[] = {
3784 &srpt_wwn_attr_version
,
3788 static const struct target_core_fabric_ops srpt_template
= {
3789 .module
= THIS_MODULE
,
3791 .node_acl_size
= sizeof(struct srpt_node_acl
),
3792 .get_fabric_name
= srpt_get_fabric_name
,
3793 .tpg_get_wwn
= srpt_get_fabric_wwn
,
3794 .tpg_get_tag
= srpt_get_tag
,
3795 .tpg_check_demo_mode
= srpt_check_false
,
3796 .tpg_check_demo_mode_cache
= srpt_check_true
,
3797 .tpg_check_demo_mode_write_protect
= srpt_check_true
,
3798 .tpg_check_prod_mode_write_protect
= srpt_check_false
,
3799 .tpg_get_inst_index
= srpt_tpg_get_inst_index
,
3800 .release_cmd
= srpt_release_cmd
,
3801 .check_stop_free
= srpt_check_stop_free
,
3802 .shutdown_session
= srpt_shutdown_session
,
3803 .close_session
= srpt_close_session
,
3804 .sess_get_index
= srpt_sess_get_index
,
3805 .sess_get_initiator_sid
= NULL
,
3806 .write_pending
= srpt_write_pending
,
3807 .write_pending_status
= srpt_write_pending_status
,
3808 .set_default_node_attributes
= srpt_set_default_node_attrs
,
3809 .get_cmd_state
= srpt_get_tcm_cmd_state
,
3810 .queue_data_in
= srpt_queue_data_in
,
3811 .queue_status
= srpt_queue_status
,
3812 .queue_tm_rsp
= srpt_queue_tm_rsp
,
3813 .aborted_task
= srpt_aborted_task
,
3815 * Setup function pointers for generic logic in
3816 * target_core_fabric_configfs.c
3818 .fabric_make_wwn
= srpt_make_tport
,
3819 .fabric_drop_wwn
= srpt_drop_tport
,
3820 .fabric_make_tpg
= srpt_make_tpg
,
3821 .fabric_drop_tpg
= srpt_drop_tpg
,
3822 .fabric_init_nodeacl
= srpt_init_nodeacl
,
3823 .fabric_cleanup_nodeacl
= srpt_cleanup_nodeacl
,
3825 .tfc_wwn_attrs
= srpt_wwn_attrs
,
3826 .tfc_tpg_base_attrs
= srpt_tpg_attrs
,
3827 .tfc_tpg_attrib_attrs
= srpt_tpg_attrib_attrs
,
3831 * srpt_init_module() - Kernel module initialization.
3833 * Note: Since ib_register_client() registers callback functions, and since at
3834 * least one of these callback functions (srpt_add_one()) calls target core
3835 * functions, this driver must be registered with the target core before
3836 * ib_register_client() is called.
3838 static int __init
srpt_init_module(void)
3843 if (srp_max_req_size
< MIN_MAX_REQ_SIZE
) {
3844 pr_err("invalid value %d for kernel module parameter"
3845 " srp_max_req_size -- must be at least %d.\n",
3846 srp_max_req_size
, MIN_MAX_REQ_SIZE
);
3850 if (srpt_srq_size
< MIN_SRPT_SRQ_SIZE
3851 || srpt_srq_size
> MAX_SRPT_SRQ_SIZE
) {
3852 pr_err("invalid value %d for kernel module parameter"
3853 " srpt_srq_size -- must be in the range [%d..%d].\n",
3854 srpt_srq_size
, MIN_SRPT_SRQ_SIZE
, MAX_SRPT_SRQ_SIZE
);
3858 ret
= target_register_template(&srpt_template
);
3862 ret
= ib_register_client(&srpt_client
);
3864 pr_err("couldn't register IB client\n");
3865 goto out_unregister_target
;
3870 out_unregister_target
:
3871 target_unregister_template(&srpt_template
);
3876 static void __exit
srpt_cleanup_module(void)
3878 ib_unregister_client(&srpt_client
);
3879 target_unregister_template(&srpt_template
);
3882 module_init(srpt_init_module
);
3883 module_exit(srpt_cleanup_module
);