of: MSI: Simplify irqdomain lookup
[linux/fpc-iii.git] / drivers / infiniband / ulp / srpt / ib_srpt.c
blob2e2fe818ca9f1acc42d74c8f4d0e0cfbaf810172
1 /*
2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved.
3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/ctype.h>
40 #include <linux/kthread.h>
41 #include <linux/string.h>
42 #include <linux/delay.h>
43 #include <linux/atomic.h>
44 #include <scsi/scsi_proto.h>
45 #include <scsi/scsi_tcq.h>
46 #include <target/target_core_base.h>
47 #include <target/target_core_fabric.h>
48 #include "ib_srpt.h"
50 /* Name of this kernel module. */
51 #define DRV_NAME "ib_srpt"
52 #define DRV_VERSION "2.0.0"
53 #define DRV_RELDATE "2011-02-14"
55 #define SRPT_ID_STRING "Linux SRP target"
57 #undef pr_fmt
58 #define pr_fmt(fmt) DRV_NAME " " fmt
60 MODULE_AUTHOR("Vu Pham and Bart Van Assche");
61 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
62 "v" DRV_VERSION " (" DRV_RELDATE ")");
63 MODULE_LICENSE("Dual BSD/GPL");
66 * Global Variables
69 static u64 srpt_service_guid;
70 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */
71 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */
73 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
74 module_param(srp_max_req_size, int, 0444);
75 MODULE_PARM_DESC(srp_max_req_size,
76 "Maximum size of SRP request messages in bytes.");
78 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
79 module_param(srpt_srq_size, int, 0444);
80 MODULE_PARM_DESC(srpt_srq_size,
81 "Shared receive queue (SRQ) size.");
83 static int srpt_get_u64_x(char *buffer, struct kernel_param *kp)
85 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
87 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
88 0444);
89 MODULE_PARM_DESC(srpt_service_guid,
90 "Using this value for ioc_guid, id_ext, and cm_listen_id"
91 " instead of using the node_guid of the first HCA.");
93 static struct ib_client srpt_client;
94 static void srpt_release_channel(struct srpt_rdma_ch *ch);
95 static int srpt_queue_status(struct se_cmd *cmd);
97 /**
98 * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE.
100 static inline
101 enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir)
103 switch (dir) {
104 case DMA_TO_DEVICE: return DMA_FROM_DEVICE;
105 case DMA_FROM_DEVICE: return DMA_TO_DEVICE;
106 default: return dir;
111 * srpt_sdev_name() - Return the name associated with the HCA.
113 * Examples are ib0, ib1, ...
115 static inline const char *srpt_sdev_name(struct srpt_device *sdev)
117 return sdev->device->name;
120 static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch)
122 unsigned long flags;
123 enum rdma_ch_state state;
125 spin_lock_irqsave(&ch->spinlock, flags);
126 state = ch->state;
127 spin_unlock_irqrestore(&ch->spinlock, flags);
128 return state;
131 static enum rdma_ch_state
132 srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state)
134 unsigned long flags;
135 enum rdma_ch_state prev;
137 spin_lock_irqsave(&ch->spinlock, flags);
138 prev = ch->state;
139 ch->state = new_state;
140 spin_unlock_irqrestore(&ch->spinlock, flags);
141 return prev;
145 * srpt_test_and_set_ch_state() - Test and set the channel state.
147 * Returns true if and only if the channel state has been set to the new state.
149 static bool
150 srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old,
151 enum rdma_ch_state new)
153 unsigned long flags;
154 enum rdma_ch_state prev;
156 spin_lock_irqsave(&ch->spinlock, flags);
157 prev = ch->state;
158 if (prev == old)
159 ch->state = new;
160 spin_unlock_irqrestore(&ch->spinlock, flags);
161 return prev == old;
165 * srpt_event_handler() - Asynchronous IB event callback function.
167 * Callback function called by the InfiniBand core when an asynchronous IB
168 * event occurs. This callback may occur in interrupt context. See also
169 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
170 * Architecture Specification.
172 static void srpt_event_handler(struct ib_event_handler *handler,
173 struct ib_event *event)
175 struct srpt_device *sdev;
176 struct srpt_port *sport;
178 sdev = ib_get_client_data(event->device, &srpt_client);
179 if (!sdev || sdev->device != event->device)
180 return;
182 pr_debug("ASYNC event= %d on device= %s\n", event->event,
183 srpt_sdev_name(sdev));
185 switch (event->event) {
186 case IB_EVENT_PORT_ERR:
187 if (event->element.port_num <= sdev->device->phys_port_cnt) {
188 sport = &sdev->port[event->element.port_num - 1];
189 sport->lid = 0;
190 sport->sm_lid = 0;
192 break;
193 case IB_EVENT_PORT_ACTIVE:
194 case IB_EVENT_LID_CHANGE:
195 case IB_EVENT_PKEY_CHANGE:
196 case IB_EVENT_SM_CHANGE:
197 case IB_EVENT_CLIENT_REREGISTER:
198 case IB_EVENT_GID_CHANGE:
199 /* Refresh port data asynchronously. */
200 if (event->element.port_num <= sdev->device->phys_port_cnt) {
201 sport = &sdev->port[event->element.port_num - 1];
202 if (!sport->lid && !sport->sm_lid)
203 schedule_work(&sport->work);
205 break;
206 default:
207 pr_err("received unrecognized IB event %d\n",
208 event->event);
209 break;
214 * srpt_srq_event() - SRQ event callback function.
216 static void srpt_srq_event(struct ib_event *event, void *ctx)
218 pr_info("SRQ event %d\n", event->event);
222 * srpt_qp_event() - QP event callback function.
224 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
226 pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
227 event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch));
229 switch (event->event) {
230 case IB_EVENT_COMM_EST:
231 ib_cm_notify(ch->cm_id, event->event);
232 break;
233 case IB_EVENT_QP_LAST_WQE_REACHED:
234 if (srpt_test_and_set_ch_state(ch, CH_DRAINING,
235 CH_RELEASING))
236 srpt_release_channel(ch);
237 else
238 pr_debug("%s: state %d - ignored LAST_WQE.\n",
239 ch->sess_name, srpt_get_ch_state(ch));
240 break;
241 default:
242 pr_err("received unrecognized IB QP event %d\n", event->event);
243 break;
248 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure.
250 * @slot: one-based slot number.
251 * @value: four-bit value.
253 * Copies the lowest four bits of value in element slot of the array of four
254 * bit elements called c_list (controller list). The index slot is one-based.
256 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
258 u16 id;
259 u8 tmp;
261 id = (slot - 1) / 2;
262 if (slot & 0x1) {
263 tmp = c_list[id] & 0xf;
264 c_list[id] = (value << 4) | tmp;
265 } else {
266 tmp = c_list[id] & 0xf0;
267 c_list[id] = (value & 0xf) | tmp;
272 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram.
274 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
275 * Specification.
277 static void srpt_get_class_port_info(struct ib_dm_mad *mad)
279 struct ib_class_port_info *cif;
281 cif = (struct ib_class_port_info *)mad->data;
282 memset(cif, 0, sizeof *cif);
283 cif->base_version = 1;
284 cif->class_version = 1;
285 cif->resp_time_value = 20;
287 mad->mad_hdr.status = 0;
291 * srpt_get_iou() - Write IOUnitInfo to a management datagram.
293 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
294 * Specification. See also section B.7, table B.6 in the SRP r16a document.
296 static void srpt_get_iou(struct ib_dm_mad *mad)
298 struct ib_dm_iou_info *ioui;
299 u8 slot;
300 int i;
302 ioui = (struct ib_dm_iou_info *)mad->data;
303 ioui->change_id = cpu_to_be16(1);
304 ioui->max_controllers = 16;
306 /* set present for slot 1 and empty for the rest */
307 srpt_set_ioc(ioui->controller_list, 1, 1);
308 for (i = 1, slot = 2; i < 16; i++, slot++)
309 srpt_set_ioc(ioui->controller_list, slot, 0);
311 mad->mad_hdr.status = 0;
315 * srpt_get_ioc() - Write IOControllerprofile to a management datagram.
317 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
318 * Architecture Specification. See also section B.7, table B.7 in the SRP
319 * r16a document.
321 static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
322 struct ib_dm_mad *mad)
324 struct srpt_device *sdev = sport->sdev;
325 struct ib_dm_ioc_profile *iocp;
327 iocp = (struct ib_dm_ioc_profile *)mad->data;
329 if (!slot || slot > 16) {
330 mad->mad_hdr.status
331 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
332 return;
335 if (slot > 2) {
336 mad->mad_hdr.status
337 = cpu_to_be16(DM_MAD_STATUS_NO_IOC);
338 return;
341 memset(iocp, 0, sizeof *iocp);
342 strcpy(iocp->id_string, SRPT_ID_STRING);
343 iocp->guid = cpu_to_be64(srpt_service_guid);
344 iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
345 iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id);
346 iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver);
347 iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
348 iocp->subsys_device_id = 0x0;
349 iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
350 iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS);
351 iocp->protocol = cpu_to_be16(SRP_PROTOCOL);
352 iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION);
353 iocp->send_queue_depth = cpu_to_be16(sdev->srq_size);
354 iocp->rdma_read_depth = 4;
355 iocp->send_size = cpu_to_be32(srp_max_req_size);
356 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
357 1U << 24));
358 iocp->num_svc_entries = 1;
359 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
360 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
362 mad->mad_hdr.status = 0;
366 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram.
368 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
369 * Specification. See also section B.7, table B.8 in the SRP r16a document.
371 static void srpt_get_svc_entries(u64 ioc_guid,
372 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
374 struct ib_dm_svc_entries *svc_entries;
376 WARN_ON(!ioc_guid);
378 if (!slot || slot > 16) {
379 mad->mad_hdr.status
380 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
381 return;
384 if (slot > 2 || lo > hi || hi > 1) {
385 mad->mad_hdr.status
386 = cpu_to_be16(DM_MAD_STATUS_NO_IOC);
387 return;
390 svc_entries = (struct ib_dm_svc_entries *)mad->data;
391 memset(svc_entries, 0, sizeof *svc_entries);
392 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
393 snprintf(svc_entries->service_entries[0].name,
394 sizeof(svc_entries->service_entries[0].name),
395 "%s%016llx",
396 SRP_SERVICE_NAME_PREFIX,
397 ioc_guid);
399 mad->mad_hdr.status = 0;
403 * srpt_mgmt_method_get() - Process a received management datagram.
404 * @sp: source port through which the MAD has been received.
405 * @rq_mad: received MAD.
406 * @rsp_mad: response MAD.
408 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
409 struct ib_dm_mad *rsp_mad)
411 u16 attr_id;
412 u32 slot;
413 u8 hi, lo;
415 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
416 switch (attr_id) {
417 case DM_ATTR_CLASS_PORT_INFO:
418 srpt_get_class_port_info(rsp_mad);
419 break;
420 case DM_ATTR_IOU_INFO:
421 srpt_get_iou(rsp_mad);
422 break;
423 case DM_ATTR_IOC_PROFILE:
424 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
425 srpt_get_ioc(sp, slot, rsp_mad);
426 break;
427 case DM_ATTR_SVC_ENTRIES:
428 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
429 hi = (u8) ((slot >> 8) & 0xff);
430 lo = (u8) (slot & 0xff);
431 slot = (u16) ((slot >> 16) & 0xffff);
432 srpt_get_svc_entries(srpt_service_guid,
433 slot, hi, lo, rsp_mad);
434 break;
435 default:
436 rsp_mad->mad_hdr.status =
437 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
438 break;
443 * srpt_mad_send_handler() - Post MAD-send callback function.
445 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
446 struct ib_mad_send_wc *mad_wc)
448 ib_destroy_ah(mad_wc->send_buf->ah);
449 ib_free_send_mad(mad_wc->send_buf);
453 * srpt_mad_recv_handler() - MAD reception callback function.
455 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
456 struct ib_mad_recv_wc *mad_wc)
458 struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
459 struct ib_ah *ah;
460 struct ib_mad_send_buf *rsp;
461 struct ib_dm_mad *dm_mad;
463 if (!mad_wc || !mad_wc->recv_buf.mad)
464 return;
466 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
467 mad_wc->recv_buf.grh, mad_agent->port_num);
468 if (IS_ERR(ah))
469 goto err;
471 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
473 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
474 mad_wc->wc->pkey_index, 0,
475 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
476 GFP_KERNEL,
477 IB_MGMT_BASE_VERSION);
478 if (IS_ERR(rsp))
479 goto err_rsp;
481 rsp->ah = ah;
483 dm_mad = rsp->mad;
484 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad);
485 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
486 dm_mad->mad_hdr.status = 0;
488 switch (mad_wc->recv_buf.mad->mad_hdr.method) {
489 case IB_MGMT_METHOD_GET:
490 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
491 break;
492 case IB_MGMT_METHOD_SET:
493 dm_mad->mad_hdr.status =
494 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
495 break;
496 default:
497 dm_mad->mad_hdr.status =
498 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
499 break;
502 if (!ib_post_send_mad(rsp, NULL)) {
503 ib_free_recv_mad(mad_wc);
504 /* will destroy_ah & free_send_mad in send completion */
505 return;
508 ib_free_send_mad(rsp);
510 err_rsp:
511 ib_destroy_ah(ah);
512 err:
513 ib_free_recv_mad(mad_wc);
517 * srpt_refresh_port() - Configure a HCA port.
519 * Enable InfiniBand management datagram processing, update the cached sm_lid,
520 * lid and gid values, and register a callback function for processing MADs
521 * on the specified port.
523 * Note: It is safe to call this function more than once for the same port.
525 static int srpt_refresh_port(struct srpt_port *sport)
527 struct ib_mad_reg_req reg_req;
528 struct ib_port_modify port_modify;
529 struct ib_port_attr port_attr;
530 int ret;
532 memset(&port_modify, 0, sizeof port_modify);
533 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
534 port_modify.clr_port_cap_mask = 0;
536 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
537 if (ret)
538 goto err_mod_port;
540 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
541 if (ret)
542 goto err_query_port;
544 sport->sm_lid = port_attr.sm_lid;
545 sport->lid = port_attr.lid;
547 ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid,
548 NULL);
549 if (ret)
550 goto err_query_port;
552 if (!sport->mad_agent) {
553 memset(&reg_req, 0, sizeof reg_req);
554 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
555 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
556 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
557 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
559 sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
560 sport->port,
561 IB_QPT_GSI,
562 &reg_req, 0,
563 srpt_mad_send_handler,
564 srpt_mad_recv_handler,
565 sport, 0);
566 if (IS_ERR(sport->mad_agent)) {
567 ret = PTR_ERR(sport->mad_agent);
568 sport->mad_agent = NULL;
569 goto err_query_port;
573 return 0;
575 err_query_port:
577 port_modify.set_port_cap_mask = 0;
578 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
579 ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
581 err_mod_port:
583 return ret;
587 * srpt_unregister_mad_agent() - Unregister MAD callback functions.
589 * Note: It is safe to call this function more than once for the same device.
591 static void srpt_unregister_mad_agent(struct srpt_device *sdev)
593 struct ib_port_modify port_modify = {
594 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
596 struct srpt_port *sport;
597 int i;
599 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
600 sport = &sdev->port[i - 1];
601 WARN_ON(sport->port != i);
602 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
603 pr_err("disabling MAD processing failed.\n");
604 if (sport->mad_agent) {
605 ib_unregister_mad_agent(sport->mad_agent);
606 sport->mad_agent = NULL;
612 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure.
614 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
615 int ioctx_size, int dma_size,
616 enum dma_data_direction dir)
618 struct srpt_ioctx *ioctx;
620 ioctx = kmalloc(ioctx_size, GFP_KERNEL);
621 if (!ioctx)
622 goto err;
624 ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
625 if (!ioctx->buf)
626 goto err_free_ioctx;
628 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
629 if (ib_dma_mapping_error(sdev->device, ioctx->dma))
630 goto err_free_buf;
632 return ioctx;
634 err_free_buf:
635 kfree(ioctx->buf);
636 err_free_ioctx:
637 kfree(ioctx);
638 err:
639 return NULL;
643 * srpt_free_ioctx() - Free an SRPT I/O context structure.
645 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
646 int dma_size, enum dma_data_direction dir)
648 if (!ioctx)
649 return;
651 ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
652 kfree(ioctx->buf);
653 kfree(ioctx);
657 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures.
658 * @sdev: Device to allocate the I/O context ring for.
659 * @ring_size: Number of elements in the I/O context ring.
660 * @ioctx_size: I/O context size.
661 * @dma_size: DMA buffer size.
662 * @dir: DMA data direction.
664 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
665 int ring_size, int ioctx_size,
666 int dma_size, enum dma_data_direction dir)
668 struct srpt_ioctx **ring;
669 int i;
671 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
672 && ioctx_size != sizeof(struct srpt_send_ioctx));
674 ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
675 if (!ring)
676 goto out;
677 for (i = 0; i < ring_size; ++i) {
678 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
679 if (!ring[i])
680 goto err;
681 ring[i]->index = i;
683 goto out;
685 err:
686 while (--i >= 0)
687 srpt_free_ioctx(sdev, ring[i], dma_size, dir);
688 kfree(ring);
689 ring = NULL;
690 out:
691 return ring;
695 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures.
697 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
698 struct srpt_device *sdev, int ring_size,
699 int dma_size, enum dma_data_direction dir)
701 int i;
703 for (i = 0; i < ring_size; ++i)
704 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
705 kfree(ioctx_ring);
709 * srpt_get_cmd_state() - Get the state of a SCSI command.
711 static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx)
713 enum srpt_command_state state;
714 unsigned long flags;
716 BUG_ON(!ioctx);
718 spin_lock_irqsave(&ioctx->spinlock, flags);
719 state = ioctx->state;
720 spin_unlock_irqrestore(&ioctx->spinlock, flags);
721 return state;
725 * srpt_set_cmd_state() - Set the state of a SCSI command.
727 * Does not modify the state of aborted commands. Returns the previous command
728 * state.
730 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
731 enum srpt_command_state new)
733 enum srpt_command_state previous;
734 unsigned long flags;
736 BUG_ON(!ioctx);
738 spin_lock_irqsave(&ioctx->spinlock, flags);
739 previous = ioctx->state;
740 if (previous != SRPT_STATE_DONE)
741 ioctx->state = new;
742 spin_unlock_irqrestore(&ioctx->spinlock, flags);
744 return previous;
748 * srpt_test_and_set_cmd_state() - Test and set the state of a command.
750 * Returns true if and only if the previous command state was equal to 'old'.
752 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
753 enum srpt_command_state old,
754 enum srpt_command_state new)
756 enum srpt_command_state previous;
757 unsigned long flags;
759 WARN_ON(!ioctx);
760 WARN_ON(old == SRPT_STATE_DONE);
761 WARN_ON(new == SRPT_STATE_NEW);
763 spin_lock_irqsave(&ioctx->spinlock, flags);
764 previous = ioctx->state;
765 if (previous == old)
766 ioctx->state = new;
767 spin_unlock_irqrestore(&ioctx->spinlock, flags);
768 return previous == old;
772 * srpt_post_recv() - Post an IB receive request.
774 static int srpt_post_recv(struct srpt_device *sdev,
775 struct srpt_recv_ioctx *ioctx)
777 struct ib_sge list;
778 struct ib_recv_wr wr, *bad_wr;
780 BUG_ON(!sdev);
781 wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index);
783 list.addr = ioctx->ioctx.dma;
784 list.length = srp_max_req_size;
785 list.lkey = sdev->pd->local_dma_lkey;
787 wr.next = NULL;
788 wr.sg_list = &list;
789 wr.num_sge = 1;
791 return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
795 * srpt_post_send() - Post an IB send request.
797 * Returns zero upon success and a non-zero value upon failure.
799 static int srpt_post_send(struct srpt_rdma_ch *ch,
800 struct srpt_send_ioctx *ioctx, int len)
802 struct ib_sge list;
803 struct ib_send_wr wr, *bad_wr;
804 struct srpt_device *sdev = ch->sport->sdev;
805 int ret;
807 atomic_inc(&ch->req_lim);
809 ret = -ENOMEM;
810 if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) {
811 pr_warn("IB send queue full (needed 1)\n");
812 goto out;
815 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len,
816 DMA_TO_DEVICE);
818 list.addr = ioctx->ioctx.dma;
819 list.length = len;
820 list.lkey = sdev->pd->local_dma_lkey;
822 wr.next = NULL;
823 wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index);
824 wr.sg_list = &list;
825 wr.num_sge = 1;
826 wr.opcode = IB_WR_SEND;
827 wr.send_flags = IB_SEND_SIGNALED;
829 ret = ib_post_send(ch->qp, &wr, &bad_wr);
831 out:
832 if (ret < 0) {
833 atomic_inc(&ch->sq_wr_avail);
834 atomic_dec(&ch->req_lim);
836 return ret;
840 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request.
841 * @ioctx: Pointer to the I/O context associated with the request.
842 * @srp_cmd: Pointer to the SRP_CMD request data.
843 * @dir: Pointer to the variable to which the transfer direction will be
844 * written.
845 * @data_len: Pointer to the variable to which the total data length of all
846 * descriptors in the SRP_CMD request will be written.
848 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
850 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
851 * -ENOMEM when memory allocation fails and zero upon success.
853 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
854 struct srp_cmd *srp_cmd,
855 enum dma_data_direction *dir, u64 *data_len)
857 struct srp_indirect_buf *idb;
858 struct srp_direct_buf *db;
859 unsigned add_cdb_offset;
860 int ret;
863 * The pointer computations below will only be compiled correctly
864 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
865 * whether srp_cmd::add_data has been declared as a byte pointer.
867 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0)
868 && !__same_type(srp_cmd->add_data[0], (u8)0));
870 BUG_ON(!dir);
871 BUG_ON(!data_len);
873 ret = 0;
874 *data_len = 0;
877 * The lower four bits of the buffer format field contain the DATA-IN
878 * buffer descriptor format, and the highest four bits contain the
879 * DATA-OUT buffer descriptor format.
881 *dir = DMA_NONE;
882 if (srp_cmd->buf_fmt & 0xf)
883 /* DATA-IN: transfer data from target to initiator (read). */
884 *dir = DMA_FROM_DEVICE;
885 else if (srp_cmd->buf_fmt >> 4)
886 /* DATA-OUT: transfer data from initiator to target (write). */
887 *dir = DMA_TO_DEVICE;
890 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
891 * CDB LENGTH' field are reserved and the size in bytes of this field
892 * is four times the value specified in bits 3..7. Hence the "& ~3".
894 add_cdb_offset = srp_cmd->add_cdb_len & ~3;
895 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
896 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
897 ioctx->n_rbuf = 1;
898 ioctx->rbufs = &ioctx->single_rbuf;
900 db = (struct srp_direct_buf *)(srp_cmd->add_data
901 + add_cdb_offset);
902 memcpy(ioctx->rbufs, db, sizeof *db);
903 *data_len = be32_to_cpu(db->len);
904 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
905 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
906 idb = (struct srp_indirect_buf *)(srp_cmd->add_data
907 + add_cdb_offset);
909 ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db;
911 if (ioctx->n_rbuf >
912 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
913 pr_err("received unsupported SRP_CMD request"
914 " type (%u out + %u in != %u / %zu)\n",
915 srp_cmd->data_out_desc_cnt,
916 srp_cmd->data_in_desc_cnt,
917 be32_to_cpu(idb->table_desc.len),
918 sizeof(*db));
919 ioctx->n_rbuf = 0;
920 ret = -EINVAL;
921 goto out;
924 if (ioctx->n_rbuf == 1)
925 ioctx->rbufs = &ioctx->single_rbuf;
926 else {
927 ioctx->rbufs =
928 kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC);
929 if (!ioctx->rbufs) {
930 ioctx->n_rbuf = 0;
931 ret = -ENOMEM;
932 goto out;
936 db = idb->desc_list;
937 memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db);
938 *data_len = be32_to_cpu(idb->len);
940 out:
941 return ret;
945 * srpt_init_ch_qp() - Initialize queue pair attributes.
947 * Initialized the attributes of queue pair 'qp' by allowing local write,
948 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
950 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
952 struct ib_qp_attr *attr;
953 int ret;
955 attr = kzalloc(sizeof *attr, GFP_KERNEL);
956 if (!attr)
957 return -ENOMEM;
959 attr->qp_state = IB_QPS_INIT;
960 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ |
961 IB_ACCESS_REMOTE_WRITE;
962 attr->port_num = ch->sport->port;
963 attr->pkey_index = 0;
965 ret = ib_modify_qp(qp, attr,
966 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
967 IB_QP_PKEY_INDEX);
969 kfree(attr);
970 return ret;
974 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR).
975 * @ch: channel of the queue pair.
976 * @qp: queue pair to change the state of.
978 * Returns zero upon success and a negative value upon failure.
980 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
981 * If this structure ever becomes larger, it might be necessary to allocate
982 * it dynamically instead of on the stack.
984 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
986 struct ib_qp_attr qp_attr;
987 int attr_mask;
988 int ret;
990 qp_attr.qp_state = IB_QPS_RTR;
991 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
992 if (ret)
993 goto out;
995 qp_attr.max_dest_rd_atomic = 4;
997 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
999 out:
1000 return ret;
1004 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS).
1005 * @ch: channel of the queue pair.
1006 * @qp: queue pair to change the state of.
1008 * Returns zero upon success and a negative value upon failure.
1010 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1011 * If this structure ever becomes larger, it might be necessary to allocate
1012 * it dynamically instead of on the stack.
1014 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1016 struct ib_qp_attr qp_attr;
1017 int attr_mask;
1018 int ret;
1020 qp_attr.qp_state = IB_QPS_RTS;
1021 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
1022 if (ret)
1023 goto out;
1025 qp_attr.max_rd_atomic = 4;
1027 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1029 out:
1030 return ret;
1034 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'.
1036 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1038 struct ib_qp_attr qp_attr;
1040 qp_attr.qp_state = IB_QPS_ERR;
1041 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1045 * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list.
1047 static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1048 struct srpt_send_ioctx *ioctx)
1050 struct scatterlist *sg;
1051 enum dma_data_direction dir;
1053 BUG_ON(!ch);
1054 BUG_ON(!ioctx);
1055 BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius);
1057 while (ioctx->n_rdma)
1058 kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge);
1060 kfree(ioctx->rdma_ius);
1061 ioctx->rdma_ius = NULL;
1063 if (ioctx->mapped_sg_count) {
1064 sg = ioctx->sg;
1065 WARN_ON(!sg);
1066 dir = ioctx->cmd.data_direction;
1067 BUG_ON(dir == DMA_NONE);
1068 ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt,
1069 opposite_dma_dir(dir));
1070 ioctx->mapped_sg_count = 0;
1075 * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list.
1077 static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1078 struct srpt_send_ioctx *ioctx)
1080 struct ib_device *dev = ch->sport->sdev->device;
1081 struct se_cmd *cmd;
1082 struct scatterlist *sg, *sg_orig;
1083 int sg_cnt;
1084 enum dma_data_direction dir;
1085 struct rdma_iu *riu;
1086 struct srp_direct_buf *db;
1087 dma_addr_t dma_addr;
1088 struct ib_sge *sge;
1089 u64 raddr;
1090 u32 rsize;
1091 u32 tsize;
1092 u32 dma_len;
1093 int count, nrdma;
1094 int i, j, k;
1096 BUG_ON(!ch);
1097 BUG_ON(!ioctx);
1098 cmd = &ioctx->cmd;
1099 dir = cmd->data_direction;
1100 BUG_ON(dir == DMA_NONE);
1102 ioctx->sg = sg = sg_orig = cmd->t_data_sg;
1103 ioctx->sg_cnt = sg_cnt = cmd->t_data_nents;
1105 count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt,
1106 opposite_dma_dir(dir));
1107 if (unlikely(!count))
1108 return -EAGAIN;
1110 ioctx->mapped_sg_count = count;
1112 if (ioctx->rdma_ius && ioctx->n_rdma_ius)
1113 nrdma = ioctx->n_rdma_ius;
1114 else {
1115 nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE
1116 + ioctx->n_rbuf;
1118 ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL);
1119 if (!ioctx->rdma_ius)
1120 goto free_mem;
1122 ioctx->n_rdma_ius = nrdma;
1125 db = ioctx->rbufs;
1126 tsize = cmd->data_length;
1127 dma_len = ib_sg_dma_len(dev, &sg[0]);
1128 riu = ioctx->rdma_ius;
1131 * For each remote desc - calculate the #ib_sge.
1132 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then
1133 * each remote desc rdma_iu is required a rdma wr;
1134 * else
1135 * we need to allocate extra rdma_iu to carry extra #ib_sge in
1136 * another rdma wr
1138 for (i = 0, j = 0;
1139 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1140 rsize = be32_to_cpu(db->len);
1141 raddr = be64_to_cpu(db->va);
1142 riu->raddr = raddr;
1143 riu->rkey = be32_to_cpu(db->key);
1144 riu->sge_cnt = 0;
1146 /* calculate how many sge required for this remote_buf */
1147 while (rsize > 0 && tsize > 0) {
1149 if (rsize >= dma_len) {
1150 tsize -= dma_len;
1151 rsize -= dma_len;
1152 raddr += dma_len;
1154 if (tsize > 0) {
1155 ++j;
1156 if (j < count) {
1157 sg = sg_next(sg);
1158 dma_len = ib_sg_dma_len(
1159 dev, sg);
1162 } else {
1163 tsize -= rsize;
1164 dma_len -= rsize;
1165 rsize = 0;
1168 ++riu->sge_cnt;
1170 if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) {
1171 ++ioctx->n_rdma;
1172 riu->sge =
1173 kmalloc(riu->sge_cnt * sizeof *riu->sge,
1174 GFP_KERNEL);
1175 if (!riu->sge)
1176 goto free_mem;
1178 ++riu;
1179 riu->sge_cnt = 0;
1180 riu->raddr = raddr;
1181 riu->rkey = be32_to_cpu(db->key);
1185 ++ioctx->n_rdma;
1186 riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge,
1187 GFP_KERNEL);
1188 if (!riu->sge)
1189 goto free_mem;
1192 db = ioctx->rbufs;
1193 tsize = cmd->data_length;
1194 riu = ioctx->rdma_ius;
1195 sg = sg_orig;
1196 dma_len = ib_sg_dma_len(dev, &sg[0]);
1197 dma_addr = ib_sg_dma_address(dev, &sg[0]);
1199 /* this second loop is really mapped sg_addres to rdma_iu->ib_sge */
1200 for (i = 0, j = 0;
1201 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1202 rsize = be32_to_cpu(db->len);
1203 sge = riu->sge;
1204 k = 0;
1206 while (rsize > 0 && tsize > 0) {
1207 sge->addr = dma_addr;
1208 sge->lkey = ch->sport->sdev->pd->local_dma_lkey;
1210 if (rsize >= dma_len) {
1211 sge->length =
1212 (tsize < dma_len) ? tsize : dma_len;
1213 tsize -= dma_len;
1214 rsize -= dma_len;
1216 if (tsize > 0) {
1217 ++j;
1218 if (j < count) {
1219 sg = sg_next(sg);
1220 dma_len = ib_sg_dma_len(
1221 dev, sg);
1222 dma_addr = ib_sg_dma_address(
1223 dev, sg);
1226 } else {
1227 sge->length = (tsize < rsize) ? tsize : rsize;
1228 tsize -= rsize;
1229 dma_len -= rsize;
1230 dma_addr += rsize;
1231 rsize = 0;
1234 ++k;
1235 if (k == riu->sge_cnt && rsize > 0 && tsize > 0) {
1236 ++riu;
1237 sge = riu->sge;
1238 k = 0;
1239 } else if (rsize > 0 && tsize > 0)
1240 ++sge;
1244 return 0;
1246 free_mem:
1247 srpt_unmap_sg_to_ib_sge(ch, ioctx);
1249 return -ENOMEM;
1253 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator.
1255 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1257 struct srpt_send_ioctx *ioctx;
1258 unsigned long flags;
1260 BUG_ON(!ch);
1262 ioctx = NULL;
1263 spin_lock_irqsave(&ch->spinlock, flags);
1264 if (!list_empty(&ch->free_list)) {
1265 ioctx = list_first_entry(&ch->free_list,
1266 struct srpt_send_ioctx, free_list);
1267 list_del(&ioctx->free_list);
1269 spin_unlock_irqrestore(&ch->spinlock, flags);
1271 if (!ioctx)
1272 return ioctx;
1274 BUG_ON(ioctx->ch != ch);
1275 spin_lock_init(&ioctx->spinlock);
1276 ioctx->state = SRPT_STATE_NEW;
1277 ioctx->n_rbuf = 0;
1278 ioctx->rbufs = NULL;
1279 ioctx->n_rdma = 0;
1280 ioctx->n_rdma_ius = 0;
1281 ioctx->rdma_ius = NULL;
1282 ioctx->mapped_sg_count = 0;
1283 init_completion(&ioctx->tx_done);
1284 ioctx->queue_status_only = false;
1286 * transport_init_se_cmd() does not initialize all fields, so do it
1287 * here.
1289 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1290 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1292 return ioctx;
1296 * srpt_abort_cmd() - Abort a SCSI command.
1297 * @ioctx: I/O context associated with the SCSI command.
1298 * @context: Preferred execution context.
1300 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1302 enum srpt_command_state state;
1303 unsigned long flags;
1305 BUG_ON(!ioctx);
1308 * If the command is in a state where the target core is waiting for
1309 * the ib_srpt driver, change the state to the next state. Changing
1310 * the state of the command from SRPT_STATE_NEED_DATA to
1311 * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this
1312 * function a second time.
1315 spin_lock_irqsave(&ioctx->spinlock, flags);
1316 state = ioctx->state;
1317 switch (state) {
1318 case SRPT_STATE_NEED_DATA:
1319 ioctx->state = SRPT_STATE_DATA_IN;
1320 break;
1321 case SRPT_STATE_DATA_IN:
1322 case SRPT_STATE_CMD_RSP_SENT:
1323 case SRPT_STATE_MGMT_RSP_SENT:
1324 ioctx->state = SRPT_STATE_DONE;
1325 break;
1326 default:
1327 break;
1329 spin_unlock_irqrestore(&ioctx->spinlock, flags);
1331 if (state == SRPT_STATE_DONE) {
1332 struct srpt_rdma_ch *ch = ioctx->ch;
1334 BUG_ON(ch->sess == NULL);
1336 target_put_sess_cmd(&ioctx->cmd);
1337 goto out;
1340 pr_debug("Aborting cmd with state %d and tag %lld\n", state,
1341 ioctx->cmd.tag);
1343 switch (state) {
1344 case SRPT_STATE_NEW:
1345 case SRPT_STATE_DATA_IN:
1346 case SRPT_STATE_MGMT:
1348 * Do nothing - defer abort processing until
1349 * srpt_queue_response() is invoked.
1351 WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false));
1352 break;
1353 case SRPT_STATE_NEED_DATA:
1354 /* DMA_TO_DEVICE (write) - RDMA read error. */
1356 /* XXX(hch): this is a horrible layering violation.. */
1357 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1358 ioctx->cmd.transport_state &= ~CMD_T_ACTIVE;
1359 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
1360 break;
1361 case SRPT_STATE_CMD_RSP_SENT:
1363 * SRP_RSP sending failed or the SRP_RSP send completion has
1364 * not been received in time.
1366 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
1367 target_put_sess_cmd(&ioctx->cmd);
1368 break;
1369 case SRPT_STATE_MGMT_RSP_SENT:
1370 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1371 target_put_sess_cmd(&ioctx->cmd);
1372 break;
1373 default:
1374 WARN(1, "Unexpected command state (%d)", state);
1375 break;
1378 out:
1379 return state;
1383 * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion.
1385 static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id)
1387 struct srpt_send_ioctx *ioctx;
1388 enum srpt_command_state state;
1389 u32 index;
1391 atomic_inc(&ch->sq_wr_avail);
1393 index = idx_from_wr_id(wr_id);
1394 ioctx = ch->ioctx_ring[index];
1395 state = srpt_get_cmd_state(ioctx);
1397 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1398 && state != SRPT_STATE_MGMT_RSP_SENT
1399 && state != SRPT_STATE_NEED_DATA
1400 && state != SRPT_STATE_DONE);
1402 /* If SRP_RSP sending failed, undo the ch->req_lim change. */
1403 if (state == SRPT_STATE_CMD_RSP_SENT
1404 || state == SRPT_STATE_MGMT_RSP_SENT)
1405 atomic_dec(&ch->req_lim);
1407 srpt_abort_cmd(ioctx);
1411 * srpt_handle_send_comp() - Process an IB send completion notification.
1413 static void srpt_handle_send_comp(struct srpt_rdma_ch *ch,
1414 struct srpt_send_ioctx *ioctx)
1416 enum srpt_command_state state;
1418 atomic_inc(&ch->sq_wr_avail);
1420 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1422 if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1423 && state != SRPT_STATE_MGMT_RSP_SENT
1424 && state != SRPT_STATE_DONE))
1425 pr_debug("state = %d\n", state);
1427 if (state != SRPT_STATE_DONE) {
1428 srpt_unmap_sg_to_ib_sge(ch, ioctx);
1429 transport_generic_free_cmd(&ioctx->cmd, 0);
1430 } else {
1431 pr_err("IB completion has been received too late for"
1432 " wr_id = %u.\n", ioctx->ioctx.index);
1437 * srpt_handle_rdma_comp() - Process an IB RDMA completion notification.
1439 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1440 * the data that has been transferred via IB RDMA had to be postponed until the
1441 * check_stop_free() callback. None of this is necessary anymore and needs to
1442 * be cleaned up.
1444 static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch,
1445 struct srpt_send_ioctx *ioctx,
1446 enum srpt_opcode opcode)
1448 WARN_ON(ioctx->n_rdma <= 0);
1449 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1451 if (opcode == SRPT_RDMA_READ_LAST) {
1452 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1453 SRPT_STATE_DATA_IN))
1454 target_execute_cmd(&ioctx->cmd);
1455 else
1456 pr_err("%s[%d]: wrong state = %d\n", __func__,
1457 __LINE__, srpt_get_cmd_state(ioctx));
1458 } else if (opcode == SRPT_RDMA_ABORT) {
1459 ioctx->rdma_aborted = true;
1460 } else {
1461 WARN(true, "unexpected opcode %d\n", opcode);
1466 * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion.
1468 static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch,
1469 struct srpt_send_ioctx *ioctx,
1470 enum srpt_opcode opcode)
1472 enum srpt_command_state state;
1474 state = srpt_get_cmd_state(ioctx);
1475 switch (opcode) {
1476 case SRPT_RDMA_READ_LAST:
1477 if (ioctx->n_rdma <= 0) {
1478 pr_err("Received invalid RDMA read"
1479 " error completion with idx %d\n",
1480 ioctx->ioctx.index);
1481 break;
1483 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1484 if (state == SRPT_STATE_NEED_DATA)
1485 srpt_abort_cmd(ioctx);
1486 else
1487 pr_err("%s[%d]: wrong state = %d\n",
1488 __func__, __LINE__, state);
1489 break;
1490 case SRPT_RDMA_WRITE_LAST:
1491 break;
1492 default:
1493 pr_err("%s[%d]: opcode = %u\n", __func__, __LINE__, opcode);
1494 break;
1499 * srpt_build_cmd_rsp() - Build an SRP_RSP response.
1500 * @ch: RDMA channel through which the request has been received.
1501 * @ioctx: I/O context associated with the SRP_CMD request. The response will
1502 * be built in the buffer ioctx->buf points at and hence this function will
1503 * overwrite the request data.
1504 * @tag: tag of the request for which this response is being generated.
1505 * @status: value for the STATUS field of the SRP_RSP information unit.
1507 * Returns the size in bytes of the SRP_RSP response.
1509 * An SRP_RSP response contains a SCSI status or service response. See also
1510 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1511 * response. See also SPC-2 for more information about sense data.
1513 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1514 struct srpt_send_ioctx *ioctx, u64 tag,
1515 int status)
1517 struct srp_rsp *srp_rsp;
1518 const u8 *sense_data;
1519 int sense_data_len, max_sense_len;
1522 * The lowest bit of all SAM-3 status codes is zero (see also
1523 * paragraph 5.3 in SAM-3).
1525 WARN_ON(status & 1);
1527 srp_rsp = ioctx->ioctx.buf;
1528 BUG_ON(!srp_rsp);
1530 sense_data = ioctx->sense_data;
1531 sense_data_len = ioctx->cmd.scsi_sense_length;
1532 WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1534 memset(srp_rsp, 0, sizeof *srp_rsp);
1535 srp_rsp->opcode = SRP_RSP;
1536 srp_rsp->req_lim_delta =
1537 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1538 srp_rsp->tag = tag;
1539 srp_rsp->status = status;
1541 if (sense_data_len) {
1542 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1543 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1544 if (sense_data_len > max_sense_len) {
1545 pr_warn("truncated sense data from %d to %d"
1546 " bytes\n", sense_data_len, max_sense_len);
1547 sense_data_len = max_sense_len;
1550 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1551 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1552 memcpy(srp_rsp + 1, sense_data, sense_data_len);
1555 return sizeof(*srp_rsp) + sense_data_len;
1559 * srpt_build_tskmgmt_rsp() - Build a task management response.
1560 * @ch: RDMA channel through which the request has been received.
1561 * @ioctx: I/O context in which the SRP_RSP response will be built.
1562 * @rsp_code: RSP_CODE that will be stored in the response.
1563 * @tag: Tag of the request for which this response is being generated.
1565 * Returns the size in bytes of the SRP_RSP response.
1567 * An SRP_RSP response contains a SCSI status or service response. See also
1568 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1569 * response.
1571 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1572 struct srpt_send_ioctx *ioctx,
1573 u8 rsp_code, u64 tag)
1575 struct srp_rsp *srp_rsp;
1576 int resp_data_len;
1577 int resp_len;
1579 resp_data_len = 4;
1580 resp_len = sizeof(*srp_rsp) + resp_data_len;
1582 srp_rsp = ioctx->ioctx.buf;
1583 BUG_ON(!srp_rsp);
1584 memset(srp_rsp, 0, sizeof *srp_rsp);
1586 srp_rsp->opcode = SRP_RSP;
1587 srp_rsp->req_lim_delta =
1588 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1589 srp_rsp->tag = tag;
1591 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1592 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1593 srp_rsp->data[3] = rsp_code;
1595 return resp_len;
1598 #define NO_SUCH_LUN ((uint64_t)-1LL)
1601 * SCSI LUN addressing method. See also SAM-2 and the section about
1602 * eight byte LUNs.
1604 enum scsi_lun_addr_method {
1605 SCSI_LUN_ADDR_METHOD_PERIPHERAL = 0,
1606 SCSI_LUN_ADDR_METHOD_FLAT = 1,
1607 SCSI_LUN_ADDR_METHOD_LUN = 2,
1608 SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3,
1612 * srpt_unpack_lun() - Convert from network LUN to linear LUN.
1614 * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte
1615 * order (big endian) to a linear LUN. Supports three LUN addressing methods:
1616 * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40).
1618 static uint64_t srpt_unpack_lun(const uint8_t *lun, int len)
1620 uint64_t res = NO_SUCH_LUN;
1621 int addressing_method;
1623 if (unlikely(len < 2)) {
1624 pr_err("Illegal LUN length %d, expected 2 bytes or more\n",
1625 len);
1626 goto out;
1629 switch (len) {
1630 case 8:
1631 if ((*((__be64 *)lun) &
1632 cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0)
1633 goto out_err;
1634 break;
1635 case 4:
1636 if (*((__be16 *)&lun[2]) != 0)
1637 goto out_err;
1638 break;
1639 case 6:
1640 if (*((__be32 *)&lun[2]) != 0)
1641 goto out_err;
1642 break;
1643 case 2:
1644 break;
1645 default:
1646 goto out_err;
1649 addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */
1650 switch (addressing_method) {
1651 case SCSI_LUN_ADDR_METHOD_PERIPHERAL:
1652 case SCSI_LUN_ADDR_METHOD_FLAT:
1653 case SCSI_LUN_ADDR_METHOD_LUN:
1654 res = *(lun + 1) | (((*lun) & 0x3f) << 8);
1655 break;
1657 case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN:
1658 default:
1659 pr_err("Unimplemented LUN addressing method %u\n",
1660 addressing_method);
1661 break;
1664 out:
1665 return res;
1667 out_err:
1668 pr_err("Support for multi-level LUNs has not yet been implemented\n");
1669 goto out;
1672 static int srpt_check_stop_free(struct se_cmd *cmd)
1674 struct srpt_send_ioctx *ioctx = container_of(cmd,
1675 struct srpt_send_ioctx, cmd);
1677 return target_put_sess_cmd(&ioctx->cmd);
1681 * srpt_handle_cmd() - Process SRP_CMD.
1683 static int srpt_handle_cmd(struct srpt_rdma_ch *ch,
1684 struct srpt_recv_ioctx *recv_ioctx,
1685 struct srpt_send_ioctx *send_ioctx)
1687 struct se_cmd *cmd;
1688 struct srp_cmd *srp_cmd;
1689 uint64_t unpacked_lun;
1690 u64 data_len;
1691 enum dma_data_direction dir;
1692 sense_reason_t ret;
1693 int rc;
1695 BUG_ON(!send_ioctx);
1697 srp_cmd = recv_ioctx->ioctx.buf;
1698 cmd = &send_ioctx->cmd;
1699 cmd->tag = srp_cmd->tag;
1701 switch (srp_cmd->task_attr) {
1702 case SRP_CMD_SIMPLE_Q:
1703 cmd->sam_task_attr = TCM_SIMPLE_TAG;
1704 break;
1705 case SRP_CMD_ORDERED_Q:
1706 default:
1707 cmd->sam_task_attr = TCM_ORDERED_TAG;
1708 break;
1709 case SRP_CMD_HEAD_OF_Q:
1710 cmd->sam_task_attr = TCM_HEAD_TAG;
1711 break;
1712 case SRP_CMD_ACA:
1713 cmd->sam_task_attr = TCM_ACA_TAG;
1714 break;
1717 if (srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len)) {
1718 pr_err("0x%llx: parsing SRP descriptor table failed.\n",
1719 srp_cmd->tag);
1720 ret = TCM_INVALID_CDB_FIELD;
1721 goto send_sense;
1724 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun,
1725 sizeof(srp_cmd->lun));
1726 rc = target_submit_cmd(cmd, ch->sess, srp_cmd->cdb,
1727 &send_ioctx->sense_data[0], unpacked_lun, data_len,
1728 TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF);
1729 if (rc != 0) {
1730 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1731 goto send_sense;
1733 return 0;
1735 send_sense:
1736 transport_send_check_condition_and_sense(cmd, ret, 0);
1737 return -1;
1741 * srpt_rx_mgmt_fn_tag() - Process a task management function by tag.
1742 * @ch: RDMA channel of the task management request.
1743 * @fn: Task management function to perform.
1744 * @req_tag: Tag of the SRP task management request.
1745 * @mgmt_ioctx: I/O context of the task management request.
1747 * Returns zero if the target core will process the task management
1748 * request asynchronously.
1750 * Note: It is assumed that the initiator serializes tag-based task management
1751 * requests.
1753 static int srpt_rx_mgmt_fn_tag(struct srpt_send_ioctx *ioctx, u64 tag)
1755 struct srpt_device *sdev;
1756 struct srpt_rdma_ch *ch;
1757 struct srpt_send_ioctx *target;
1758 int ret, i;
1760 ret = -EINVAL;
1761 ch = ioctx->ch;
1762 BUG_ON(!ch);
1763 BUG_ON(!ch->sport);
1764 sdev = ch->sport->sdev;
1765 BUG_ON(!sdev);
1766 spin_lock_irq(&sdev->spinlock);
1767 for (i = 0; i < ch->rq_size; ++i) {
1768 target = ch->ioctx_ring[i];
1769 if (target->cmd.se_lun == ioctx->cmd.se_lun &&
1770 target->cmd.tag == tag &&
1771 srpt_get_cmd_state(target) != SRPT_STATE_DONE) {
1772 ret = 0;
1773 /* now let the target core abort &target->cmd; */
1774 break;
1777 spin_unlock_irq(&sdev->spinlock);
1778 return ret;
1781 static int srp_tmr_to_tcm(int fn)
1783 switch (fn) {
1784 case SRP_TSK_ABORT_TASK:
1785 return TMR_ABORT_TASK;
1786 case SRP_TSK_ABORT_TASK_SET:
1787 return TMR_ABORT_TASK_SET;
1788 case SRP_TSK_CLEAR_TASK_SET:
1789 return TMR_CLEAR_TASK_SET;
1790 case SRP_TSK_LUN_RESET:
1791 return TMR_LUN_RESET;
1792 case SRP_TSK_CLEAR_ACA:
1793 return TMR_CLEAR_ACA;
1794 default:
1795 return -1;
1800 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit.
1802 * Returns 0 if and only if the request will be processed by the target core.
1804 * For more information about SRP_TSK_MGMT information units, see also section
1805 * 6.7 in the SRP r16a document.
1807 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1808 struct srpt_recv_ioctx *recv_ioctx,
1809 struct srpt_send_ioctx *send_ioctx)
1811 struct srp_tsk_mgmt *srp_tsk;
1812 struct se_cmd *cmd;
1813 struct se_session *sess = ch->sess;
1814 uint64_t unpacked_lun;
1815 uint32_t tag = 0;
1816 int tcm_tmr;
1817 int rc;
1819 BUG_ON(!send_ioctx);
1821 srp_tsk = recv_ioctx->ioctx.buf;
1822 cmd = &send_ioctx->cmd;
1824 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
1825 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
1826 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);
1828 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1829 send_ioctx->cmd.tag = srp_tsk->tag;
1830 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1831 if (tcm_tmr < 0) {
1832 send_ioctx->cmd.se_tmr_req->response =
1833 TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
1834 goto fail;
1836 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun,
1837 sizeof(srp_tsk->lun));
1839 if (srp_tsk->tsk_mgmt_func == SRP_TSK_ABORT_TASK) {
1840 rc = srpt_rx_mgmt_fn_tag(send_ioctx, srp_tsk->task_tag);
1841 if (rc < 0) {
1842 send_ioctx->cmd.se_tmr_req->response =
1843 TMR_TASK_DOES_NOT_EXIST;
1844 goto fail;
1846 tag = srp_tsk->task_tag;
1848 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, unpacked_lun,
1849 srp_tsk, tcm_tmr, GFP_KERNEL, tag,
1850 TARGET_SCF_ACK_KREF);
1851 if (rc != 0) {
1852 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1853 goto fail;
1855 return;
1856 fail:
1857 transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
1861 * srpt_handle_new_iu() - Process a newly received information unit.
1862 * @ch: RDMA channel through which the information unit has been received.
1863 * @ioctx: SRPT I/O context associated with the information unit.
1865 static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
1866 struct srpt_recv_ioctx *recv_ioctx,
1867 struct srpt_send_ioctx *send_ioctx)
1869 struct srp_cmd *srp_cmd;
1870 enum rdma_ch_state ch_state;
1872 BUG_ON(!ch);
1873 BUG_ON(!recv_ioctx);
1875 ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1876 recv_ioctx->ioctx.dma, srp_max_req_size,
1877 DMA_FROM_DEVICE);
1879 ch_state = srpt_get_ch_state(ch);
1880 if (unlikely(ch_state == CH_CONNECTING)) {
1881 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1882 goto out;
1885 if (unlikely(ch_state != CH_LIVE))
1886 goto out;
1888 srp_cmd = recv_ioctx->ioctx.buf;
1889 if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
1890 if (!send_ioctx)
1891 send_ioctx = srpt_get_send_ioctx(ch);
1892 if (unlikely(!send_ioctx)) {
1893 list_add_tail(&recv_ioctx->wait_list,
1894 &ch->cmd_wait_list);
1895 goto out;
1899 switch (srp_cmd->opcode) {
1900 case SRP_CMD:
1901 srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1902 break;
1903 case SRP_TSK_MGMT:
1904 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1905 break;
1906 case SRP_I_LOGOUT:
1907 pr_err("Not yet implemented: SRP_I_LOGOUT\n");
1908 break;
1909 case SRP_CRED_RSP:
1910 pr_debug("received SRP_CRED_RSP\n");
1911 break;
1912 case SRP_AER_RSP:
1913 pr_debug("received SRP_AER_RSP\n");
1914 break;
1915 case SRP_RSP:
1916 pr_err("Received SRP_RSP\n");
1917 break;
1918 default:
1919 pr_err("received IU with unknown opcode 0x%x\n",
1920 srp_cmd->opcode);
1921 break;
1924 srpt_post_recv(ch->sport->sdev, recv_ioctx);
1925 out:
1926 return;
1929 static void srpt_process_rcv_completion(struct ib_cq *cq,
1930 struct srpt_rdma_ch *ch,
1931 struct ib_wc *wc)
1933 struct srpt_device *sdev = ch->sport->sdev;
1934 struct srpt_recv_ioctx *ioctx;
1935 u32 index;
1937 index = idx_from_wr_id(wc->wr_id);
1938 if (wc->status == IB_WC_SUCCESS) {
1939 int req_lim;
1941 req_lim = atomic_dec_return(&ch->req_lim);
1942 if (unlikely(req_lim < 0))
1943 pr_err("req_lim = %d < 0\n", req_lim);
1944 ioctx = sdev->ioctx_ring[index];
1945 srpt_handle_new_iu(ch, ioctx, NULL);
1946 } else {
1947 pr_info("receiving failed for idx %u with status %d\n",
1948 index, wc->status);
1953 * srpt_process_send_completion() - Process an IB send completion.
1955 * Note: Although this has not yet been observed during tests, at least in
1956 * theory it is possible that the srpt_get_send_ioctx() call invoked by
1957 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1958 * value in each response is set to one, and it is possible that this response
1959 * makes the initiator send a new request before the send completion for that
1960 * response has been processed. This could e.g. happen if the call to
1961 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1962 * if IB retransmission causes generation of the send completion to be
1963 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1964 * are queued on cmd_wait_list. The code below processes these delayed
1965 * requests one at a time.
1967 static void srpt_process_send_completion(struct ib_cq *cq,
1968 struct srpt_rdma_ch *ch,
1969 struct ib_wc *wc)
1971 struct srpt_send_ioctx *send_ioctx;
1972 uint32_t index;
1973 enum srpt_opcode opcode;
1975 index = idx_from_wr_id(wc->wr_id);
1976 opcode = opcode_from_wr_id(wc->wr_id);
1977 send_ioctx = ch->ioctx_ring[index];
1978 if (wc->status == IB_WC_SUCCESS) {
1979 if (opcode == SRPT_SEND)
1980 srpt_handle_send_comp(ch, send_ioctx);
1981 else {
1982 WARN_ON(opcode != SRPT_RDMA_ABORT &&
1983 wc->opcode != IB_WC_RDMA_READ);
1984 srpt_handle_rdma_comp(ch, send_ioctx, opcode);
1986 } else {
1987 if (opcode == SRPT_SEND) {
1988 pr_info("sending response for idx %u failed"
1989 " with status %d\n", index, wc->status);
1990 srpt_handle_send_err_comp(ch, wc->wr_id);
1991 } else if (opcode != SRPT_RDMA_MID) {
1992 pr_info("RDMA t %d for idx %u failed with"
1993 " status %d\n", opcode, index, wc->status);
1994 srpt_handle_rdma_err_comp(ch, send_ioctx, opcode);
1998 while (unlikely(opcode == SRPT_SEND
1999 && !list_empty(&ch->cmd_wait_list)
2000 && srpt_get_ch_state(ch) == CH_LIVE
2001 && (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) {
2002 struct srpt_recv_ioctx *recv_ioctx;
2004 recv_ioctx = list_first_entry(&ch->cmd_wait_list,
2005 struct srpt_recv_ioctx,
2006 wait_list);
2007 list_del(&recv_ioctx->wait_list);
2008 srpt_handle_new_iu(ch, recv_ioctx, send_ioctx);
2012 static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch)
2014 struct ib_wc *const wc = ch->wc;
2015 int i, n;
2017 WARN_ON(cq != ch->cq);
2019 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
2020 while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) {
2021 for (i = 0; i < n; i++) {
2022 if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV)
2023 srpt_process_rcv_completion(cq, ch, &wc[i]);
2024 else
2025 srpt_process_send_completion(cq, ch, &wc[i]);
2031 * srpt_completion() - IB completion queue callback function.
2033 * Notes:
2034 * - It is guaranteed that a completion handler will never be invoked
2035 * concurrently on two different CPUs for the same completion queue. See also
2036 * Documentation/infiniband/core_locking.txt and the implementation of
2037 * handle_edge_irq() in kernel/irq/chip.c.
2038 * - When threaded IRQs are enabled, completion handlers are invoked in thread
2039 * context instead of interrupt context.
2041 static void srpt_completion(struct ib_cq *cq, void *ctx)
2043 struct srpt_rdma_ch *ch = ctx;
2045 wake_up_interruptible(&ch->wait_queue);
2048 static int srpt_compl_thread(void *arg)
2050 struct srpt_rdma_ch *ch;
2052 /* Hibernation / freezing of the SRPT kernel thread is not supported. */
2053 current->flags |= PF_NOFREEZE;
2055 ch = arg;
2056 BUG_ON(!ch);
2057 pr_info("Session %s: kernel thread %s (PID %d) started\n",
2058 ch->sess_name, ch->thread->comm, current->pid);
2059 while (!kthread_should_stop()) {
2060 wait_event_interruptible(ch->wait_queue,
2061 (srpt_process_completion(ch->cq, ch),
2062 kthread_should_stop()));
2064 pr_info("Session %s: kernel thread %s (PID %d) stopped\n",
2065 ch->sess_name, ch->thread->comm, current->pid);
2066 return 0;
2070 * srpt_create_ch_ib() - Create receive and send completion queues.
2072 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
2074 struct ib_qp_init_attr *qp_init;
2075 struct srpt_port *sport = ch->sport;
2076 struct srpt_device *sdev = sport->sdev;
2077 u32 srp_sq_size = sport->port_attrib.srp_sq_size;
2078 struct ib_cq_init_attr cq_attr = {};
2079 int ret;
2081 WARN_ON(ch->rq_size < 1);
2083 ret = -ENOMEM;
2084 qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL);
2085 if (!qp_init)
2086 goto out;
2088 retry:
2089 cq_attr.cqe = ch->rq_size + srp_sq_size;
2090 ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch,
2091 &cq_attr);
2092 if (IS_ERR(ch->cq)) {
2093 ret = PTR_ERR(ch->cq);
2094 pr_err("failed to create CQ cqe= %d ret= %d\n",
2095 ch->rq_size + srp_sq_size, ret);
2096 goto out;
2099 qp_init->qp_context = (void *)ch;
2100 qp_init->event_handler
2101 = (void(*)(struct ib_event *, void*))srpt_qp_event;
2102 qp_init->send_cq = ch->cq;
2103 qp_init->recv_cq = ch->cq;
2104 qp_init->srq = sdev->srq;
2105 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
2106 qp_init->qp_type = IB_QPT_RC;
2107 qp_init->cap.max_send_wr = srp_sq_size;
2108 qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE;
2110 ch->qp = ib_create_qp(sdev->pd, qp_init);
2111 if (IS_ERR(ch->qp)) {
2112 ret = PTR_ERR(ch->qp);
2113 if (ret == -ENOMEM) {
2114 srp_sq_size /= 2;
2115 if (srp_sq_size >= MIN_SRPT_SQ_SIZE) {
2116 ib_destroy_cq(ch->cq);
2117 goto retry;
2120 pr_err("failed to create_qp ret= %d\n", ret);
2121 goto err_destroy_cq;
2124 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
2126 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
2127 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
2128 qp_init->cap.max_send_wr, ch->cm_id);
2130 ret = srpt_init_ch_qp(ch, ch->qp);
2131 if (ret)
2132 goto err_destroy_qp;
2134 init_waitqueue_head(&ch->wait_queue);
2136 pr_debug("creating thread for session %s\n", ch->sess_name);
2138 ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl");
2139 if (IS_ERR(ch->thread)) {
2140 pr_err("failed to create kernel thread %ld\n",
2141 PTR_ERR(ch->thread));
2142 ch->thread = NULL;
2143 goto err_destroy_qp;
2146 out:
2147 kfree(qp_init);
2148 return ret;
2150 err_destroy_qp:
2151 ib_destroy_qp(ch->qp);
2152 err_destroy_cq:
2153 ib_destroy_cq(ch->cq);
2154 goto out;
2157 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
2159 if (ch->thread)
2160 kthread_stop(ch->thread);
2162 ib_destroy_qp(ch->qp);
2163 ib_destroy_cq(ch->cq);
2167 * __srpt_close_ch() - Close an RDMA channel by setting the QP error state.
2169 * Reset the QP and make sure all resources associated with the channel will
2170 * be deallocated at an appropriate time.
2172 * Note: The caller must hold ch->sport->sdev->spinlock.
2174 static void __srpt_close_ch(struct srpt_rdma_ch *ch)
2176 enum rdma_ch_state prev_state;
2177 unsigned long flags;
2179 spin_lock_irqsave(&ch->spinlock, flags);
2180 prev_state = ch->state;
2181 switch (prev_state) {
2182 case CH_CONNECTING:
2183 case CH_LIVE:
2184 ch->state = CH_DISCONNECTING;
2185 break;
2186 default:
2187 break;
2189 spin_unlock_irqrestore(&ch->spinlock, flags);
2191 switch (prev_state) {
2192 case CH_CONNECTING:
2193 ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0,
2194 NULL, 0);
2195 /* fall through */
2196 case CH_LIVE:
2197 if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0)
2198 pr_err("sending CM DREQ failed.\n");
2199 break;
2200 case CH_DISCONNECTING:
2201 break;
2202 case CH_DRAINING:
2203 case CH_RELEASING:
2204 break;
2209 * srpt_close_ch() - Close an RDMA channel.
2211 static void srpt_close_ch(struct srpt_rdma_ch *ch)
2213 struct srpt_device *sdev;
2215 sdev = ch->sport->sdev;
2216 spin_lock_irq(&sdev->spinlock);
2217 __srpt_close_ch(ch);
2218 spin_unlock_irq(&sdev->spinlock);
2222 * srpt_shutdown_session() - Whether or not a session may be shut down.
2224 static int srpt_shutdown_session(struct se_session *se_sess)
2226 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
2227 unsigned long flags;
2229 spin_lock_irqsave(&ch->spinlock, flags);
2230 if (ch->in_shutdown) {
2231 spin_unlock_irqrestore(&ch->spinlock, flags);
2232 return true;
2235 ch->in_shutdown = true;
2236 target_sess_cmd_list_set_waiting(se_sess);
2237 spin_unlock_irqrestore(&ch->spinlock, flags);
2239 return true;
2243 * srpt_drain_channel() - Drain a channel by resetting the IB queue pair.
2244 * @cm_id: Pointer to the CM ID of the channel to be drained.
2246 * Note: Must be called from inside srpt_cm_handler to avoid a race between
2247 * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one()
2248 * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one()
2249 * waits until all target sessions for the associated IB device have been
2250 * unregistered and target session registration involves a call to
2251 * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until
2252 * this function has finished).
2254 static void srpt_drain_channel(struct ib_cm_id *cm_id)
2256 struct srpt_device *sdev;
2257 struct srpt_rdma_ch *ch;
2258 int ret;
2259 bool do_reset = false;
2261 WARN_ON_ONCE(irqs_disabled());
2263 sdev = cm_id->context;
2264 BUG_ON(!sdev);
2265 spin_lock_irq(&sdev->spinlock);
2266 list_for_each_entry(ch, &sdev->rch_list, list) {
2267 if (ch->cm_id == cm_id) {
2268 do_reset = srpt_test_and_set_ch_state(ch,
2269 CH_CONNECTING, CH_DRAINING) ||
2270 srpt_test_and_set_ch_state(ch,
2271 CH_LIVE, CH_DRAINING) ||
2272 srpt_test_and_set_ch_state(ch,
2273 CH_DISCONNECTING, CH_DRAINING);
2274 break;
2277 spin_unlock_irq(&sdev->spinlock);
2279 if (do_reset) {
2280 if (ch->sess)
2281 srpt_shutdown_session(ch->sess);
2283 ret = srpt_ch_qp_err(ch);
2284 if (ret < 0)
2285 pr_err("Setting queue pair in error state"
2286 " failed: %d\n", ret);
2291 * srpt_find_channel() - Look up an RDMA channel.
2292 * @cm_id: Pointer to the CM ID of the channel to be looked up.
2294 * Return NULL if no matching RDMA channel has been found.
2296 static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev,
2297 struct ib_cm_id *cm_id)
2299 struct srpt_rdma_ch *ch;
2300 bool found;
2302 WARN_ON_ONCE(irqs_disabled());
2303 BUG_ON(!sdev);
2305 found = false;
2306 spin_lock_irq(&sdev->spinlock);
2307 list_for_each_entry(ch, &sdev->rch_list, list) {
2308 if (ch->cm_id == cm_id) {
2309 found = true;
2310 break;
2313 spin_unlock_irq(&sdev->spinlock);
2315 return found ? ch : NULL;
2319 * srpt_release_channel() - Release channel resources.
2321 * Schedules the actual release because:
2322 * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would
2323 * trigger a deadlock.
2324 * - It is not safe to call TCM transport_* functions from interrupt context.
2326 static void srpt_release_channel(struct srpt_rdma_ch *ch)
2328 schedule_work(&ch->release_work);
2331 static void srpt_release_channel_work(struct work_struct *w)
2333 struct srpt_rdma_ch *ch;
2334 struct srpt_device *sdev;
2335 struct se_session *se_sess;
2337 ch = container_of(w, struct srpt_rdma_ch, release_work);
2338 pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess,
2339 ch->release_done);
2341 sdev = ch->sport->sdev;
2342 BUG_ON(!sdev);
2344 se_sess = ch->sess;
2345 BUG_ON(!se_sess);
2347 target_wait_for_sess_cmds(se_sess);
2349 transport_deregister_session_configfs(se_sess);
2350 transport_deregister_session(se_sess);
2351 ch->sess = NULL;
2353 ib_destroy_cm_id(ch->cm_id);
2355 srpt_destroy_ch_ib(ch);
2357 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2358 ch->sport->sdev, ch->rq_size,
2359 ch->rsp_size, DMA_TO_DEVICE);
2361 spin_lock_irq(&sdev->spinlock);
2362 list_del(&ch->list);
2363 spin_unlock_irq(&sdev->spinlock);
2365 if (ch->release_done)
2366 complete(ch->release_done);
2368 wake_up(&sdev->ch_releaseQ);
2370 kfree(ch);
2373 static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport,
2374 u8 i_port_id[16])
2376 struct srpt_node_acl *nacl;
2378 list_for_each_entry(nacl, &sport->port_acl_list, list)
2379 if (memcmp(nacl->i_port_id, i_port_id,
2380 sizeof(nacl->i_port_id)) == 0)
2381 return nacl;
2383 return NULL;
2386 static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport,
2387 u8 i_port_id[16])
2389 struct srpt_node_acl *nacl;
2391 spin_lock_irq(&sport->port_acl_lock);
2392 nacl = __srpt_lookup_acl(sport, i_port_id);
2393 spin_unlock_irq(&sport->port_acl_lock);
2395 return nacl;
2399 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED.
2401 * Ownership of the cm_id is transferred to the target session if this
2402 * functions returns zero. Otherwise the caller remains the owner of cm_id.
2404 static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
2405 struct ib_cm_req_event_param *param,
2406 void *private_data)
2408 struct srpt_device *sdev = cm_id->context;
2409 struct srpt_port *sport = &sdev->port[param->port - 1];
2410 struct srp_login_req *req;
2411 struct srp_login_rsp *rsp;
2412 struct srp_login_rej *rej;
2413 struct ib_cm_rep_param *rep_param;
2414 struct srpt_rdma_ch *ch, *tmp_ch;
2415 struct srpt_node_acl *nacl;
2416 u32 it_iu_len;
2417 int i;
2418 int ret = 0;
2420 WARN_ON_ONCE(irqs_disabled());
2422 if (WARN_ON(!sdev || !private_data))
2423 return -EINVAL;
2425 req = (struct srp_login_req *)private_data;
2427 it_iu_len = be32_to_cpu(req->req_it_iu_len);
2429 pr_info("Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx,"
2430 " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d"
2431 " (guid=0x%llx:0x%llx)\n",
2432 be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]),
2433 be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]),
2434 be64_to_cpu(*(__be64 *)&req->target_port_id[0]),
2435 be64_to_cpu(*(__be64 *)&req->target_port_id[8]),
2436 it_iu_len,
2437 param->port,
2438 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]),
2439 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8]));
2441 rsp = kzalloc(sizeof *rsp, GFP_KERNEL);
2442 rej = kzalloc(sizeof *rej, GFP_KERNEL);
2443 rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL);
2445 if (!rsp || !rej || !rep_param) {
2446 ret = -ENOMEM;
2447 goto out;
2450 if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2451 rej->reason = cpu_to_be32(
2452 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2453 ret = -EINVAL;
2454 pr_err("rejected SRP_LOGIN_REQ because its"
2455 " length (%d bytes) is out of range (%d .. %d)\n",
2456 it_iu_len, 64, srp_max_req_size);
2457 goto reject;
2460 if (!sport->enabled) {
2461 rej->reason = cpu_to_be32(
2462 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2463 ret = -EINVAL;
2464 pr_err("rejected SRP_LOGIN_REQ because the target port"
2465 " has not yet been enabled\n");
2466 goto reject;
2469 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2470 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;
2472 spin_lock_irq(&sdev->spinlock);
2474 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
2475 if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
2476 && !memcmp(ch->t_port_id, req->target_port_id, 16)
2477 && param->port == ch->sport->port
2478 && param->listen_id == ch->sport->sdev->cm_id
2479 && ch->cm_id) {
2480 enum rdma_ch_state ch_state;
2482 ch_state = srpt_get_ch_state(ch);
2483 if (ch_state != CH_CONNECTING
2484 && ch_state != CH_LIVE)
2485 continue;
2487 /* found an existing channel */
2488 pr_debug("Found existing channel %s"
2489 " cm_id= %p state= %d\n",
2490 ch->sess_name, ch->cm_id, ch_state);
2492 __srpt_close_ch(ch);
2494 rsp->rsp_flags =
2495 SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2499 spin_unlock_irq(&sdev->spinlock);
2501 } else
2502 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2504 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2505 || *(__be64 *)(req->target_port_id + 8) !=
2506 cpu_to_be64(srpt_service_guid)) {
2507 rej->reason = cpu_to_be32(
2508 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2509 ret = -ENOMEM;
2510 pr_err("rejected SRP_LOGIN_REQ because it"
2511 " has an invalid target port identifier.\n");
2512 goto reject;
2515 ch = kzalloc(sizeof *ch, GFP_KERNEL);
2516 if (!ch) {
2517 rej->reason = cpu_to_be32(
2518 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2519 pr_err("rejected SRP_LOGIN_REQ because no memory.\n");
2520 ret = -ENOMEM;
2521 goto reject;
2524 INIT_WORK(&ch->release_work, srpt_release_channel_work);
2525 memcpy(ch->i_port_id, req->initiator_port_id, 16);
2526 memcpy(ch->t_port_id, req->target_port_id, 16);
2527 ch->sport = &sdev->port[param->port - 1];
2528 ch->cm_id = cm_id;
2530 * Avoid QUEUE_FULL conditions by limiting the number of buffers used
2531 * for the SRP protocol to the command queue size.
2533 ch->rq_size = SRPT_RQ_SIZE;
2534 spin_lock_init(&ch->spinlock);
2535 ch->state = CH_CONNECTING;
2536 INIT_LIST_HEAD(&ch->cmd_wait_list);
2537 ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2539 ch->ioctx_ring = (struct srpt_send_ioctx **)
2540 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2541 sizeof(*ch->ioctx_ring[0]),
2542 ch->rsp_size, DMA_TO_DEVICE);
2543 if (!ch->ioctx_ring)
2544 goto free_ch;
2546 INIT_LIST_HEAD(&ch->free_list);
2547 for (i = 0; i < ch->rq_size; i++) {
2548 ch->ioctx_ring[i]->ch = ch;
2549 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
2552 ret = srpt_create_ch_ib(ch);
2553 if (ret) {
2554 rej->reason = cpu_to_be32(
2555 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2556 pr_err("rejected SRP_LOGIN_REQ because creating"
2557 " a new RDMA channel failed.\n");
2558 goto free_ring;
2561 ret = srpt_ch_qp_rtr(ch, ch->qp);
2562 if (ret) {
2563 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2564 pr_err("rejected SRP_LOGIN_REQ because enabling"
2565 " RTR failed (error code = %d)\n", ret);
2566 goto destroy_ib;
2569 * Use the initator port identifier as the session name.
2571 snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
2572 be64_to_cpu(*(__be64 *)ch->i_port_id),
2573 be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));
2575 pr_debug("registering session %s\n", ch->sess_name);
2577 nacl = srpt_lookup_acl(sport, ch->i_port_id);
2578 if (!nacl) {
2579 pr_info("Rejected login because no ACL has been"
2580 " configured yet for initiator %s.\n", ch->sess_name);
2581 rej->reason = cpu_to_be32(
2582 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2583 goto destroy_ib;
2586 ch->sess = transport_init_session(TARGET_PROT_NORMAL);
2587 if (IS_ERR(ch->sess)) {
2588 rej->reason = cpu_to_be32(
2589 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2590 pr_debug("Failed to create session\n");
2591 goto deregister_session;
2593 ch->sess->se_node_acl = &nacl->nacl;
2594 transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch);
2596 pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
2597 ch->sess_name, ch->cm_id);
2599 /* create srp_login_response */
2600 rsp->opcode = SRP_LOGIN_RSP;
2601 rsp->tag = req->tag;
2602 rsp->max_it_iu_len = req->req_it_iu_len;
2603 rsp->max_ti_iu_len = req->req_it_iu_len;
2604 ch->max_ti_iu_len = it_iu_len;
2605 rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2606 | SRP_BUF_FORMAT_INDIRECT);
2607 rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2608 atomic_set(&ch->req_lim, ch->rq_size);
2609 atomic_set(&ch->req_lim_delta, 0);
2611 /* create cm reply */
2612 rep_param->qp_num = ch->qp->qp_num;
2613 rep_param->private_data = (void *)rsp;
2614 rep_param->private_data_len = sizeof *rsp;
2615 rep_param->rnr_retry_count = 7;
2616 rep_param->flow_control = 1;
2617 rep_param->failover_accepted = 0;
2618 rep_param->srq = 1;
2619 rep_param->responder_resources = 4;
2620 rep_param->initiator_depth = 4;
2622 ret = ib_send_cm_rep(cm_id, rep_param);
2623 if (ret) {
2624 pr_err("sending SRP_LOGIN_REQ response failed"
2625 " (error code = %d)\n", ret);
2626 goto release_channel;
2629 spin_lock_irq(&sdev->spinlock);
2630 list_add_tail(&ch->list, &sdev->rch_list);
2631 spin_unlock_irq(&sdev->spinlock);
2633 goto out;
2635 release_channel:
2636 srpt_set_ch_state(ch, CH_RELEASING);
2637 transport_deregister_session_configfs(ch->sess);
2639 deregister_session:
2640 transport_deregister_session(ch->sess);
2641 ch->sess = NULL;
2643 destroy_ib:
2644 srpt_destroy_ch_ib(ch);
2646 free_ring:
2647 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2648 ch->sport->sdev, ch->rq_size,
2649 ch->rsp_size, DMA_TO_DEVICE);
2650 free_ch:
2651 kfree(ch);
2653 reject:
2654 rej->opcode = SRP_LOGIN_REJ;
2655 rej->tag = req->tag;
2656 rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2657 | SRP_BUF_FORMAT_INDIRECT);
2659 ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2660 (void *)rej, sizeof *rej);
2662 out:
2663 kfree(rep_param);
2664 kfree(rsp);
2665 kfree(rej);
2667 return ret;
2670 static void srpt_cm_rej_recv(struct ib_cm_id *cm_id)
2672 pr_info("Received IB REJ for cm_id %p.\n", cm_id);
2673 srpt_drain_channel(cm_id);
2677 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event.
2679 * An IB_CM_RTU_RECEIVED message indicates that the connection is established
2680 * and that the recipient may begin transmitting (RTU = ready to use).
2682 static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id)
2684 struct srpt_rdma_ch *ch;
2685 int ret;
2687 ch = srpt_find_channel(cm_id->context, cm_id);
2688 BUG_ON(!ch);
2690 if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) {
2691 struct srpt_recv_ioctx *ioctx, *ioctx_tmp;
2693 ret = srpt_ch_qp_rts(ch, ch->qp);
2695 list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list,
2696 wait_list) {
2697 list_del(&ioctx->wait_list);
2698 srpt_handle_new_iu(ch, ioctx, NULL);
2700 if (ret)
2701 srpt_close_ch(ch);
2705 static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id)
2707 pr_info("Received IB TimeWait exit for cm_id %p.\n", cm_id);
2708 srpt_drain_channel(cm_id);
2711 static void srpt_cm_rep_error(struct ib_cm_id *cm_id)
2713 pr_info("Received IB REP error for cm_id %p.\n", cm_id);
2714 srpt_drain_channel(cm_id);
2718 * srpt_cm_dreq_recv() - Process reception of a DREQ message.
2720 static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id)
2722 struct srpt_rdma_ch *ch;
2723 unsigned long flags;
2724 bool send_drep = false;
2726 ch = srpt_find_channel(cm_id->context, cm_id);
2727 BUG_ON(!ch);
2729 pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch));
2731 spin_lock_irqsave(&ch->spinlock, flags);
2732 switch (ch->state) {
2733 case CH_CONNECTING:
2734 case CH_LIVE:
2735 send_drep = true;
2736 ch->state = CH_DISCONNECTING;
2737 break;
2738 case CH_DISCONNECTING:
2739 case CH_DRAINING:
2740 case CH_RELEASING:
2741 WARN(true, "unexpected channel state %d\n", ch->state);
2742 break;
2744 spin_unlock_irqrestore(&ch->spinlock, flags);
2746 if (send_drep) {
2747 if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0)
2748 pr_err("Sending IB DREP failed.\n");
2749 pr_info("Received DREQ and sent DREP for session %s.\n",
2750 ch->sess_name);
2755 * srpt_cm_drep_recv() - Process reception of a DREP message.
2757 static void srpt_cm_drep_recv(struct ib_cm_id *cm_id)
2759 pr_info("Received InfiniBand DREP message for cm_id %p.\n", cm_id);
2760 srpt_drain_channel(cm_id);
2764 * srpt_cm_handler() - IB connection manager callback function.
2766 * A non-zero return value will cause the caller destroy the CM ID.
2768 * Note: srpt_cm_handler() must only return a non-zero value when transferring
2769 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2770 * a non-zero value in any other case will trigger a race with the
2771 * ib_destroy_cm_id() call in srpt_release_channel().
2773 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2775 int ret;
2777 ret = 0;
2778 switch (event->event) {
2779 case IB_CM_REQ_RECEIVED:
2780 ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
2781 event->private_data);
2782 break;
2783 case IB_CM_REJ_RECEIVED:
2784 srpt_cm_rej_recv(cm_id);
2785 break;
2786 case IB_CM_RTU_RECEIVED:
2787 case IB_CM_USER_ESTABLISHED:
2788 srpt_cm_rtu_recv(cm_id);
2789 break;
2790 case IB_CM_DREQ_RECEIVED:
2791 srpt_cm_dreq_recv(cm_id);
2792 break;
2793 case IB_CM_DREP_RECEIVED:
2794 srpt_cm_drep_recv(cm_id);
2795 break;
2796 case IB_CM_TIMEWAIT_EXIT:
2797 srpt_cm_timewait_exit(cm_id);
2798 break;
2799 case IB_CM_REP_ERROR:
2800 srpt_cm_rep_error(cm_id);
2801 break;
2802 case IB_CM_DREQ_ERROR:
2803 pr_info("Received IB DREQ ERROR event.\n");
2804 break;
2805 case IB_CM_MRA_RECEIVED:
2806 pr_info("Received IB MRA event\n");
2807 break;
2808 default:
2809 pr_err("received unrecognized IB CM event %d\n", event->event);
2810 break;
2813 return ret;
2817 * srpt_perform_rdmas() - Perform IB RDMA.
2819 * Returns zero upon success or a negative number upon failure.
2821 static int srpt_perform_rdmas(struct srpt_rdma_ch *ch,
2822 struct srpt_send_ioctx *ioctx)
2824 struct ib_rdma_wr wr;
2825 struct ib_send_wr *bad_wr;
2826 struct rdma_iu *riu;
2827 int i;
2828 int ret;
2829 int sq_wr_avail;
2830 enum dma_data_direction dir;
2831 const int n_rdma = ioctx->n_rdma;
2833 dir = ioctx->cmd.data_direction;
2834 if (dir == DMA_TO_DEVICE) {
2835 /* write */
2836 ret = -ENOMEM;
2837 sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail);
2838 if (sq_wr_avail < 0) {
2839 pr_warn("IB send queue full (needed %d)\n",
2840 n_rdma);
2841 goto out;
2845 ioctx->rdma_aborted = false;
2846 ret = 0;
2847 riu = ioctx->rdma_ius;
2848 memset(&wr, 0, sizeof wr);
2850 for (i = 0; i < n_rdma; ++i, ++riu) {
2851 if (dir == DMA_FROM_DEVICE) {
2852 wr.wr.opcode = IB_WR_RDMA_WRITE;
2853 wr.wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2854 SRPT_RDMA_WRITE_LAST :
2855 SRPT_RDMA_MID,
2856 ioctx->ioctx.index);
2857 } else {
2858 wr.wr.opcode = IB_WR_RDMA_READ;
2859 wr.wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2860 SRPT_RDMA_READ_LAST :
2861 SRPT_RDMA_MID,
2862 ioctx->ioctx.index);
2864 wr.wr.next = NULL;
2865 wr.remote_addr = riu->raddr;
2866 wr.rkey = riu->rkey;
2867 wr.wr.num_sge = riu->sge_cnt;
2868 wr.wr.sg_list = riu->sge;
2870 /* only get completion event for the last rdma write */
2871 if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE)
2872 wr.wr.send_flags = IB_SEND_SIGNALED;
2874 ret = ib_post_send(ch->qp, &wr.wr, &bad_wr);
2875 if (ret)
2876 break;
2879 if (ret)
2880 pr_err("%s[%d]: ib_post_send() returned %d for %d/%d\n",
2881 __func__, __LINE__, ret, i, n_rdma);
2882 if (ret && i > 0) {
2883 wr.wr.num_sge = 0;
2884 wr.wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index);
2885 wr.wr.send_flags = IB_SEND_SIGNALED;
2886 while (ch->state == CH_LIVE &&
2887 ib_post_send(ch->qp, &wr.wr, &bad_wr) != 0) {
2888 pr_info("Trying to abort failed RDMA transfer [%d]\n",
2889 ioctx->ioctx.index);
2890 msleep(1000);
2892 while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) {
2893 pr_info("Waiting until RDMA abort finished [%d]\n",
2894 ioctx->ioctx.index);
2895 msleep(1000);
2898 out:
2899 if (unlikely(dir == DMA_TO_DEVICE && ret < 0))
2900 atomic_add(n_rdma, &ch->sq_wr_avail);
2901 return ret;
2905 * srpt_xfer_data() - Start data transfer from initiator to target.
2907 static int srpt_xfer_data(struct srpt_rdma_ch *ch,
2908 struct srpt_send_ioctx *ioctx)
2910 int ret;
2912 ret = srpt_map_sg_to_ib_sge(ch, ioctx);
2913 if (ret) {
2914 pr_err("%s[%d] ret=%d\n", __func__, __LINE__, ret);
2915 goto out;
2918 ret = srpt_perform_rdmas(ch, ioctx);
2919 if (ret) {
2920 if (ret == -EAGAIN || ret == -ENOMEM)
2921 pr_info("%s[%d] queue full -- ret=%d\n",
2922 __func__, __LINE__, ret);
2923 else
2924 pr_err("%s[%d] fatal error -- ret=%d\n",
2925 __func__, __LINE__, ret);
2926 goto out_unmap;
2929 out:
2930 return ret;
2931 out_unmap:
2932 srpt_unmap_sg_to_ib_sge(ch, ioctx);
2933 goto out;
2936 static int srpt_write_pending_status(struct se_cmd *se_cmd)
2938 struct srpt_send_ioctx *ioctx;
2940 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2941 return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA;
2945 * srpt_write_pending() - Start data transfer from initiator to target (write).
2947 static int srpt_write_pending(struct se_cmd *se_cmd)
2949 struct srpt_rdma_ch *ch;
2950 struct srpt_send_ioctx *ioctx;
2951 enum srpt_command_state new_state;
2952 enum rdma_ch_state ch_state;
2953 int ret;
2955 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2957 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2958 WARN_ON(new_state == SRPT_STATE_DONE);
2960 ch = ioctx->ch;
2961 BUG_ON(!ch);
2963 ch_state = srpt_get_ch_state(ch);
2964 switch (ch_state) {
2965 case CH_CONNECTING:
2966 WARN(true, "unexpected channel state %d\n", ch_state);
2967 ret = -EINVAL;
2968 goto out;
2969 case CH_LIVE:
2970 break;
2971 case CH_DISCONNECTING:
2972 case CH_DRAINING:
2973 case CH_RELEASING:
2974 pr_debug("cmd with tag %lld: channel disconnecting\n",
2975 ioctx->cmd.tag);
2976 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
2977 ret = -EINVAL;
2978 goto out;
2980 ret = srpt_xfer_data(ch, ioctx);
2982 out:
2983 return ret;
2986 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
2988 switch (tcm_mgmt_status) {
2989 case TMR_FUNCTION_COMPLETE:
2990 return SRP_TSK_MGMT_SUCCESS;
2991 case TMR_FUNCTION_REJECTED:
2992 return SRP_TSK_MGMT_FUNC_NOT_SUPP;
2994 return SRP_TSK_MGMT_FAILED;
2998 * srpt_queue_response() - Transmits the response to a SCSI command.
3000 * Callback function called by the TCM core. Must not block since it can be
3001 * invoked on the context of the IB completion handler.
3003 static void srpt_queue_response(struct se_cmd *cmd)
3005 struct srpt_rdma_ch *ch;
3006 struct srpt_send_ioctx *ioctx;
3007 enum srpt_command_state state;
3008 unsigned long flags;
3009 int ret;
3010 enum dma_data_direction dir;
3011 int resp_len;
3012 u8 srp_tm_status;
3014 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3015 ch = ioctx->ch;
3016 BUG_ON(!ch);
3018 spin_lock_irqsave(&ioctx->spinlock, flags);
3019 state = ioctx->state;
3020 switch (state) {
3021 case SRPT_STATE_NEW:
3022 case SRPT_STATE_DATA_IN:
3023 ioctx->state = SRPT_STATE_CMD_RSP_SENT;
3024 break;
3025 case SRPT_STATE_MGMT:
3026 ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
3027 break;
3028 default:
3029 WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
3030 ch, ioctx->ioctx.index, ioctx->state);
3031 break;
3033 spin_unlock_irqrestore(&ioctx->spinlock, flags);
3035 if (unlikely(transport_check_aborted_status(&ioctx->cmd, false)
3036 || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) {
3037 atomic_inc(&ch->req_lim_delta);
3038 srpt_abort_cmd(ioctx);
3039 return;
3042 dir = ioctx->cmd.data_direction;
3044 /* For read commands, transfer the data to the initiator. */
3045 if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length &&
3046 !ioctx->queue_status_only) {
3047 ret = srpt_xfer_data(ch, ioctx);
3048 if (ret) {
3049 pr_err("xfer_data failed for tag %llu\n",
3050 ioctx->cmd.tag);
3051 return;
3055 if (state != SRPT_STATE_MGMT)
3056 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag,
3057 cmd->scsi_status);
3058 else {
3059 srp_tm_status
3060 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
3061 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
3062 ioctx->cmd.tag);
3064 ret = srpt_post_send(ch, ioctx, resp_len);
3065 if (ret) {
3066 pr_err("sending cmd response failed for tag %llu\n",
3067 ioctx->cmd.tag);
3068 srpt_unmap_sg_to_ib_sge(ch, ioctx);
3069 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
3070 target_put_sess_cmd(&ioctx->cmd);
3074 static int srpt_queue_data_in(struct se_cmd *cmd)
3076 srpt_queue_response(cmd);
3077 return 0;
3080 static void srpt_queue_tm_rsp(struct se_cmd *cmd)
3082 srpt_queue_response(cmd);
3085 static void srpt_aborted_task(struct se_cmd *cmd)
3087 struct srpt_send_ioctx *ioctx = container_of(cmd,
3088 struct srpt_send_ioctx, cmd);
3090 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
3093 static int srpt_queue_status(struct se_cmd *cmd)
3095 struct srpt_send_ioctx *ioctx;
3097 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3098 BUG_ON(ioctx->sense_data != cmd->sense_buffer);
3099 if (cmd->se_cmd_flags &
3100 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
3101 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
3102 ioctx->queue_status_only = true;
3103 srpt_queue_response(cmd);
3104 return 0;
3107 static void srpt_refresh_port_work(struct work_struct *work)
3109 struct srpt_port *sport = container_of(work, struct srpt_port, work);
3111 srpt_refresh_port(sport);
3114 static int srpt_ch_list_empty(struct srpt_device *sdev)
3116 int res;
3118 spin_lock_irq(&sdev->spinlock);
3119 res = list_empty(&sdev->rch_list);
3120 spin_unlock_irq(&sdev->spinlock);
3122 return res;
3126 * srpt_release_sdev() - Free the channel resources associated with a target.
3128 static int srpt_release_sdev(struct srpt_device *sdev)
3130 struct srpt_rdma_ch *ch, *tmp_ch;
3131 int res;
3133 WARN_ON_ONCE(irqs_disabled());
3135 BUG_ON(!sdev);
3137 spin_lock_irq(&sdev->spinlock);
3138 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list)
3139 __srpt_close_ch(ch);
3140 spin_unlock_irq(&sdev->spinlock);
3142 res = wait_event_interruptible(sdev->ch_releaseQ,
3143 srpt_ch_list_empty(sdev));
3144 if (res)
3145 pr_err("%s: interrupted.\n", __func__);
3147 return 0;
3150 static struct srpt_port *__srpt_lookup_port(const char *name)
3152 struct ib_device *dev;
3153 struct srpt_device *sdev;
3154 struct srpt_port *sport;
3155 int i;
3157 list_for_each_entry(sdev, &srpt_dev_list, list) {
3158 dev = sdev->device;
3159 if (!dev)
3160 continue;
3162 for (i = 0; i < dev->phys_port_cnt; i++) {
3163 sport = &sdev->port[i];
3165 if (!strcmp(sport->port_guid, name))
3166 return sport;
3170 return NULL;
3173 static struct srpt_port *srpt_lookup_port(const char *name)
3175 struct srpt_port *sport;
3177 spin_lock(&srpt_dev_lock);
3178 sport = __srpt_lookup_port(name);
3179 spin_unlock(&srpt_dev_lock);
3181 return sport;
3185 * srpt_add_one() - Infiniband device addition callback function.
3187 static void srpt_add_one(struct ib_device *device)
3189 struct srpt_device *sdev;
3190 struct srpt_port *sport;
3191 struct ib_srq_init_attr srq_attr;
3192 int i;
3194 pr_debug("device = %p, device->dma_ops = %p\n", device,
3195 device->dma_ops);
3197 sdev = kzalloc(sizeof *sdev, GFP_KERNEL);
3198 if (!sdev)
3199 goto err;
3201 sdev->device = device;
3202 INIT_LIST_HEAD(&sdev->rch_list);
3203 init_waitqueue_head(&sdev->ch_releaseQ);
3204 spin_lock_init(&sdev->spinlock);
3206 if (ib_query_device(device, &sdev->dev_attr))
3207 goto free_dev;
3209 sdev->pd = ib_alloc_pd(device);
3210 if (IS_ERR(sdev->pd))
3211 goto free_dev;
3213 sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr);
3215 srq_attr.event_handler = srpt_srq_event;
3216 srq_attr.srq_context = (void *)sdev;
3217 srq_attr.attr.max_wr = sdev->srq_size;
3218 srq_attr.attr.max_sge = 1;
3219 srq_attr.attr.srq_limit = 0;
3220 srq_attr.srq_type = IB_SRQT_BASIC;
3222 sdev->srq = ib_create_srq(sdev->pd, &srq_attr);
3223 if (IS_ERR(sdev->srq))
3224 goto err_pd;
3226 pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n",
3227 __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr,
3228 device->name);
3230 if (!srpt_service_guid)
3231 srpt_service_guid = be64_to_cpu(device->node_guid);
3233 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
3234 if (IS_ERR(sdev->cm_id))
3235 goto err_srq;
3237 /* print out target login information */
3238 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
3239 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
3240 srpt_service_guid, srpt_service_guid);
3243 * We do not have a consistent service_id (ie. also id_ext of target_id)
3244 * to identify this target. We currently use the guid of the first HCA
3245 * in the system as service_id; therefore, the target_id will change
3246 * if this HCA is gone bad and replaced by different HCA
3248 if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0))
3249 goto err_cm;
3251 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3252 srpt_event_handler);
3253 if (ib_register_event_handler(&sdev->event_handler))
3254 goto err_cm;
3256 sdev->ioctx_ring = (struct srpt_recv_ioctx **)
3257 srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
3258 sizeof(*sdev->ioctx_ring[0]),
3259 srp_max_req_size, DMA_FROM_DEVICE);
3260 if (!sdev->ioctx_ring)
3261 goto err_event;
3263 for (i = 0; i < sdev->srq_size; ++i)
3264 srpt_post_recv(sdev, sdev->ioctx_ring[i]);
3266 WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
3268 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3269 sport = &sdev->port[i - 1];
3270 sport->sdev = sdev;
3271 sport->port = i;
3272 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3273 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3274 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3275 INIT_WORK(&sport->work, srpt_refresh_port_work);
3276 INIT_LIST_HEAD(&sport->port_acl_list);
3277 spin_lock_init(&sport->port_acl_lock);
3279 if (srpt_refresh_port(sport)) {
3280 pr_err("MAD registration failed for %s-%d.\n",
3281 srpt_sdev_name(sdev), i);
3282 goto err_ring;
3284 snprintf(sport->port_guid, sizeof(sport->port_guid),
3285 "0x%016llx%016llx",
3286 be64_to_cpu(sport->gid.global.subnet_prefix),
3287 be64_to_cpu(sport->gid.global.interface_id));
3290 spin_lock(&srpt_dev_lock);
3291 list_add_tail(&sdev->list, &srpt_dev_list);
3292 spin_unlock(&srpt_dev_lock);
3294 out:
3295 ib_set_client_data(device, &srpt_client, sdev);
3296 pr_debug("added %s.\n", device->name);
3297 return;
3299 err_ring:
3300 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3301 sdev->srq_size, srp_max_req_size,
3302 DMA_FROM_DEVICE);
3303 err_event:
3304 ib_unregister_event_handler(&sdev->event_handler);
3305 err_cm:
3306 ib_destroy_cm_id(sdev->cm_id);
3307 err_srq:
3308 ib_destroy_srq(sdev->srq);
3309 err_pd:
3310 ib_dealloc_pd(sdev->pd);
3311 free_dev:
3312 kfree(sdev);
3313 err:
3314 sdev = NULL;
3315 pr_info("%s(%s) failed.\n", __func__, device->name);
3316 goto out;
3320 * srpt_remove_one() - InfiniBand device removal callback function.
3322 static void srpt_remove_one(struct ib_device *device, void *client_data)
3324 struct srpt_device *sdev = client_data;
3325 int i;
3327 if (!sdev) {
3328 pr_info("%s(%s): nothing to do.\n", __func__, device->name);
3329 return;
3332 srpt_unregister_mad_agent(sdev);
3334 ib_unregister_event_handler(&sdev->event_handler);
3336 /* Cancel any work queued by the just unregistered IB event handler. */
3337 for (i = 0; i < sdev->device->phys_port_cnt; i++)
3338 cancel_work_sync(&sdev->port[i].work);
3340 ib_destroy_cm_id(sdev->cm_id);
3343 * Unregistering a target must happen after destroying sdev->cm_id
3344 * such that no new SRP_LOGIN_REQ information units can arrive while
3345 * destroying the target.
3347 spin_lock(&srpt_dev_lock);
3348 list_del(&sdev->list);
3349 spin_unlock(&srpt_dev_lock);
3350 srpt_release_sdev(sdev);
3352 ib_destroy_srq(sdev->srq);
3353 ib_dealloc_pd(sdev->pd);
3355 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3356 sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
3357 sdev->ioctx_ring = NULL;
3358 kfree(sdev);
3361 static struct ib_client srpt_client = {
3362 .name = DRV_NAME,
3363 .add = srpt_add_one,
3364 .remove = srpt_remove_one
3367 static int srpt_check_true(struct se_portal_group *se_tpg)
3369 return 1;
3372 static int srpt_check_false(struct se_portal_group *se_tpg)
3374 return 0;
3377 static char *srpt_get_fabric_name(void)
3379 return "srpt";
3382 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3384 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3386 return sport->port_guid;
3389 static u16 srpt_get_tag(struct se_portal_group *tpg)
3391 return 1;
3394 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
3396 return 1;
3399 static void srpt_release_cmd(struct se_cmd *se_cmd)
3401 struct srpt_send_ioctx *ioctx = container_of(se_cmd,
3402 struct srpt_send_ioctx, cmd);
3403 struct srpt_rdma_ch *ch = ioctx->ch;
3404 unsigned long flags;
3406 WARN_ON(ioctx->state != SRPT_STATE_DONE);
3407 WARN_ON(ioctx->mapped_sg_count != 0);
3409 if (ioctx->n_rbuf > 1) {
3410 kfree(ioctx->rbufs);
3411 ioctx->rbufs = NULL;
3412 ioctx->n_rbuf = 0;
3415 spin_lock_irqsave(&ch->spinlock, flags);
3416 list_add(&ioctx->free_list, &ch->free_list);
3417 spin_unlock_irqrestore(&ch->spinlock, flags);
3421 * srpt_close_session() - Forcibly close a session.
3423 * Callback function invoked by the TCM core to clean up sessions associated
3424 * with a node ACL when the user invokes
3425 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3427 static void srpt_close_session(struct se_session *se_sess)
3429 DECLARE_COMPLETION_ONSTACK(release_done);
3430 struct srpt_rdma_ch *ch;
3431 struct srpt_device *sdev;
3432 unsigned long res;
3434 ch = se_sess->fabric_sess_ptr;
3435 WARN_ON(ch->sess != se_sess);
3437 pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch));
3439 sdev = ch->sport->sdev;
3440 spin_lock_irq(&sdev->spinlock);
3441 BUG_ON(ch->release_done);
3442 ch->release_done = &release_done;
3443 __srpt_close_ch(ch);
3444 spin_unlock_irq(&sdev->spinlock);
3446 res = wait_for_completion_timeout(&release_done, 60 * HZ);
3447 WARN_ON(res == 0);
3451 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB).
3453 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3454 * This object represents an arbitrary integer used to uniquely identify a
3455 * particular attached remote initiator port to a particular SCSI target port
3456 * within a particular SCSI target device within a particular SCSI instance.
3458 static u32 srpt_sess_get_index(struct se_session *se_sess)
3460 return 0;
3463 static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
3467 /* Note: only used from inside debug printk's by the TCM core. */
3468 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3470 struct srpt_send_ioctx *ioctx;
3472 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3473 return srpt_get_cmd_state(ioctx);
3477 * srpt_parse_i_port_id() - Parse an initiator port ID.
3478 * @name: ASCII representation of a 128-bit initiator port ID.
3479 * @i_port_id: Binary 128-bit port ID.
3481 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3483 const char *p;
3484 unsigned len, count, leading_zero_bytes;
3485 int ret, rc;
3487 p = name;
3488 if (strncasecmp(p, "0x", 2) == 0)
3489 p += 2;
3490 ret = -EINVAL;
3491 len = strlen(p);
3492 if (len % 2)
3493 goto out;
3494 count = min(len / 2, 16U);
3495 leading_zero_bytes = 16 - count;
3496 memset(i_port_id, 0, leading_zero_bytes);
3497 rc = hex2bin(i_port_id + leading_zero_bytes, p, count);
3498 if (rc < 0)
3499 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc);
3500 ret = 0;
3501 out:
3502 return ret;
3506 * configfs callback function invoked for
3507 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3509 static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name)
3511 struct srpt_port *sport =
3512 container_of(se_nacl->se_tpg, struct srpt_port, port_tpg_1);
3513 struct srpt_node_acl *nacl =
3514 container_of(se_nacl, struct srpt_node_acl, nacl);
3515 u8 i_port_id[16];
3517 if (srpt_parse_i_port_id(i_port_id, name) < 0) {
3518 pr_err("invalid initiator port ID %s\n", name);
3519 return -EINVAL;
3522 memcpy(&nacl->i_port_id[0], &i_port_id[0], 16);
3523 nacl->sport = sport;
3525 spin_lock_irq(&sport->port_acl_lock);
3526 list_add_tail(&nacl->list, &sport->port_acl_list);
3527 spin_unlock_irq(&sport->port_acl_lock);
3529 return 0;
3533 * configfs callback function invoked for
3534 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3536 static void srpt_cleanup_nodeacl(struct se_node_acl *se_nacl)
3538 struct srpt_node_acl *nacl =
3539 container_of(se_nacl, struct srpt_node_acl, nacl);
3540 struct srpt_port *sport = nacl->sport;
3542 spin_lock_irq(&sport->port_acl_lock);
3543 list_del(&nacl->list);
3544 spin_unlock_irq(&sport->port_acl_lock);
3547 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item,
3548 char *page)
3550 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3551 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3553 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3556 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item,
3557 const char *page, size_t count)
3559 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3560 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3561 unsigned long val;
3562 int ret;
3564 ret = kstrtoul(page, 0, &val);
3565 if (ret < 0) {
3566 pr_err("kstrtoul() failed with ret: %d\n", ret);
3567 return -EINVAL;
3569 if (val > MAX_SRPT_RDMA_SIZE) {
3570 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3571 MAX_SRPT_RDMA_SIZE);
3572 return -EINVAL;
3574 if (val < DEFAULT_MAX_RDMA_SIZE) {
3575 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3576 val, DEFAULT_MAX_RDMA_SIZE);
3577 return -EINVAL;
3579 sport->port_attrib.srp_max_rdma_size = val;
3581 return count;
3584 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item,
3585 char *page)
3587 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3588 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3590 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3593 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item,
3594 const char *page, size_t count)
3596 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3597 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3598 unsigned long val;
3599 int ret;
3601 ret = kstrtoul(page, 0, &val);
3602 if (ret < 0) {
3603 pr_err("kstrtoul() failed with ret: %d\n", ret);
3604 return -EINVAL;
3606 if (val > MAX_SRPT_RSP_SIZE) {
3607 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3608 MAX_SRPT_RSP_SIZE);
3609 return -EINVAL;
3611 if (val < MIN_MAX_RSP_SIZE) {
3612 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3613 MIN_MAX_RSP_SIZE);
3614 return -EINVAL;
3616 sport->port_attrib.srp_max_rsp_size = val;
3618 return count;
3621 static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item,
3622 char *page)
3624 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3625 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3627 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
3630 static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item,
3631 const char *page, size_t count)
3633 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3634 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3635 unsigned long val;
3636 int ret;
3638 ret = kstrtoul(page, 0, &val);
3639 if (ret < 0) {
3640 pr_err("kstrtoul() failed with ret: %d\n", ret);
3641 return -EINVAL;
3643 if (val > MAX_SRPT_SRQ_SIZE) {
3644 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3645 MAX_SRPT_SRQ_SIZE);
3646 return -EINVAL;
3648 if (val < MIN_SRPT_SRQ_SIZE) {
3649 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3650 MIN_SRPT_SRQ_SIZE);
3651 return -EINVAL;
3653 sport->port_attrib.srp_sq_size = val;
3655 return count;
3658 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rdma_size);
3659 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rsp_size);
3660 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_sq_size);
3662 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3663 &srpt_tpg_attrib_attr_srp_max_rdma_size,
3664 &srpt_tpg_attrib_attr_srp_max_rsp_size,
3665 &srpt_tpg_attrib_attr_srp_sq_size,
3666 NULL,
3669 static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page)
3671 struct se_portal_group *se_tpg = to_tpg(item);
3672 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3674 return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
3677 static ssize_t srpt_tpg_enable_store(struct config_item *item,
3678 const char *page, size_t count)
3680 struct se_portal_group *se_tpg = to_tpg(item);
3681 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3682 unsigned long tmp;
3683 int ret;
3685 ret = kstrtoul(page, 0, &tmp);
3686 if (ret < 0) {
3687 pr_err("Unable to extract srpt_tpg_store_enable\n");
3688 return -EINVAL;
3691 if ((tmp != 0) && (tmp != 1)) {
3692 pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3693 return -EINVAL;
3695 if (tmp == 1)
3696 sport->enabled = true;
3697 else
3698 sport->enabled = false;
3700 return count;
3703 CONFIGFS_ATTR(srpt_tpg_, enable);
3705 static struct configfs_attribute *srpt_tpg_attrs[] = {
3706 &srpt_tpg_attr_enable,
3707 NULL,
3711 * configfs callback invoked for
3712 * mkdir /sys/kernel/config/target/$driver/$port/$tpg
3714 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3715 struct config_group *group,
3716 const char *name)
3718 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3719 int res;
3721 /* Initialize sport->port_wwn and sport->port_tpg_1 */
3722 res = core_tpg_register(&sport->port_wwn, &sport->port_tpg_1, SCSI_PROTOCOL_SRP);
3723 if (res)
3724 return ERR_PTR(res);
3726 return &sport->port_tpg_1;
3730 * configfs callback invoked for
3731 * rmdir /sys/kernel/config/target/$driver/$port/$tpg
3733 static void srpt_drop_tpg(struct se_portal_group *tpg)
3735 struct srpt_port *sport = container_of(tpg,
3736 struct srpt_port, port_tpg_1);
3738 sport->enabled = false;
3739 core_tpg_deregister(&sport->port_tpg_1);
3743 * configfs callback invoked for
3744 * mkdir /sys/kernel/config/target/$driver/$port
3746 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3747 struct config_group *group,
3748 const char *name)
3750 struct srpt_port *sport;
3751 int ret;
3753 sport = srpt_lookup_port(name);
3754 pr_debug("make_tport(%s)\n", name);
3755 ret = -EINVAL;
3756 if (!sport)
3757 goto err;
3759 return &sport->port_wwn;
3761 err:
3762 return ERR_PTR(ret);
3766 * configfs callback invoked for
3767 * rmdir /sys/kernel/config/target/$driver/$port
3769 static void srpt_drop_tport(struct se_wwn *wwn)
3771 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3773 pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item));
3776 static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf)
3778 return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
3781 CONFIGFS_ATTR_RO(srpt_wwn_, version);
3783 static struct configfs_attribute *srpt_wwn_attrs[] = {
3784 &srpt_wwn_attr_version,
3785 NULL,
3788 static const struct target_core_fabric_ops srpt_template = {
3789 .module = THIS_MODULE,
3790 .name = "srpt",
3791 .node_acl_size = sizeof(struct srpt_node_acl),
3792 .get_fabric_name = srpt_get_fabric_name,
3793 .tpg_get_wwn = srpt_get_fabric_wwn,
3794 .tpg_get_tag = srpt_get_tag,
3795 .tpg_check_demo_mode = srpt_check_false,
3796 .tpg_check_demo_mode_cache = srpt_check_true,
3797 .tpg_check_demo_mode_write_protect = srpt_check_true,
3798 .tpg_check_prod_mode_write_protect = srpt_check_false,
3799 .tpg_get_inst_index = srpt_tpg_get_inst_index,
3800 .release_cmd = srpt_release_cmd,
3801 .check_stop_free = srpt_check_stop_free,
3802 .shutdown_session = srpt_shutdown_session,
3803 .close_session = srpt_close_session,
3804 .sess_get_index = srpt_sess_get_index,
3805 .sess_get_initiator_sid = NULL,
3806 .write_pending = srpt_write_pending,
3807 .write_pending_status = srpt_write_pending_status,
3808 .set_default_node_attributes = srpt_set_default_node_attrs,
3809 .get_cmd_state = srpt_get_tcm_cmd_state,
3810 .queue_data_in = srpt_queue_data_in,
3811 .queue_status = srpt_queue_status,
3812 .queue_tm_rsp = srpt_queue_tm_rsp,
3813 .aborted_task = srpt_aborted_task,
3815 * Setup function pointers for generic logic in
3816 * target_core_fabric_configfs.c
3818 .fabric_make_wwn = srpt_make_tport,
3819 .fabric_drop_wwn = srpt_drop_tport,
3820 .fabric_make_tpg = srpt_make_tpg,
3821 .fabric_drop_tpg = srpt_drop_tpg,
3822 .fabric_init_nodeacl = srpt_init_nodeacl,
3823 .fabric_cleanup_nodeacl = srpt_cleanup_nodeacl,
3825 .tfc_wwn_attrs = srpt_wwn_attrs,
3826 .tfc_tpg_base_attrs = srpt_tpg_attrs,
3827 .tfc_tpg_attrib_attrs = srpt_tpg_attrib_attrs,
3831 * srpt_init_module() - Kernel module initialization.
3833 * Note: Since ib_register_client() registers callback functions, and since at
3834 * least one of these callback functions (srpt_add_one()) calls target core
3835 * functions, this driver must be registered with the target core before
3836 * ib_register_client() is called.
3838 static int __init srpt_init_module(void)
3840 int ret;
3842 ret = -EINVAL;
3843 if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3844 pr_err("invalid value %d for kernel module parameter"
3845 " srp_max_req_size -- must be at least %d.\n",
3846 srp_max_req_size, MIN_MAX_REQ_SIZE);
3847 goto out;
3850 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3851 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3852 pr_err("invalid value %d for kernel module parameter"
3853 " srpt_srq_size -- must be in the range [%d..%d].\n",
3854 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3855 goto out;
3858 ret = target_register_template(&srpt_template);
3859 if (ret)
3860 goto out;
3862 ret = ib_register_client(&srpt_client);
3863 if (ret) {
3864 pr_err("couldn't register IB client\n");
3865 goto out_unregister_target;
3868 return 0;
3870 out_unregister_target:
3871 target_unregister_template(&srpt_template);
3872 out:
3873 return ret;
3876 static void __exit srpt_cleanup_module(void)
3878 ib_unregister_client(&srpt_client);
3879 target_unregister_template(&srpt_template);
3882 module_init(srpt_init_module);
3883 module_exit(srpt_cleanup_module);