of: MSI: Simplify irqdomain lookup
[linux/fpc-iii.git] / drivers / input / input.c
blob880605959aa6f74a87da70b24f813d2ce428af9f
1 /*
2 * The input core
4 * Copyright (c) 1999-2002 Vojtech Pavlik
5 */
7 /*
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
13 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
15 #include <linux/init.h>
16 #include <linux/types.h>
17 #include <linux/idr.h>
18 #include <linux/input/mt.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/random.h>
22 #include <linux/major.h>
23 #include <linux/proc_fs.h>
24 #include <linux/sched.h>
25 #include <linux/seq_file.h>
26 #include <linux/poll.h>
27 #include <linux/device.h>
28 #include <linux/mutex.h>
29 #include <linux/rcupdate.h>
30 #include "input-compat.h"
32 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
33 MODULE_DESCRIPTION("Input core");
34 MODULE_LICENSE("GPL");
36 #define INPUT_MAX_CHAR_DEVICES 1024
37 #define INPUT_FIRST_DYNAMIC_DEV 256
38 static DEFINE_IDA(input_ida);
40 static LIST_HEAD(input_dev_list);
41 static LIST_HEAD(input_handler_list);
44 * input_mutex protects access to both input_dev_list and input_handler_list.
45 * This also causes input_[un]register_device and input_[un]register_handler
46 * be mutually exclusive which simplifies locking in drivers implementing
47 * input handlers.
49 static DEFINE_MUTEX(input_mutex);
51 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
53 static inline int is_event_supported(unsigned int code,
54 unsigned long *bm, unsigned int max)
56 return code <= max && test_bit(code, bm);
59 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
61 if (fuzz) {
62 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
63 return old_val;
65 if (value > old_val - fuzz && value < old_val + fuzz)
66 return (old_val * 3 + value) / 4;
68 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
69 return (old_val + value) / 2;
72 return value;
75 static void input_start_autorepeat(struct input_dev *dev, int code)
77 if (test_bit(EV_REP, dev->evbit) &&
78 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
79 dev->timer.data) {
80 dev->repeat_key = code;
81 mod_timer(&dev->timer,
82 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
86 static void input_stop_autorepeat(struct input_dev *dev)
88 del_timer(&dev->timer);
92 * Pass event first through all filters and then, if event has not been
93 * filtered out, through all open handles. This function is called with
94 * dev->event_lock held and interrupts disabled.
96 static unsigned int input_to_handler(struct input_handle *handle,
97 struct input_value *vals, unsigned int count)
99 struct input_handler *handler = handle->handler;
100 struct input_value *end = vals;
101 struct input_value *v;
103 if (handler->filter) {
104 for (v = vals; v != vals + count; v++) {
105 if (handler->filter(handle, v->type, v->code, v->value))
106 continue;
107 if (end != v)
108 *end = *v;
109 end++;
111 count = end - vals;
114 if (!count)
115 return 0;
117 if (handler->events)
118 handler->events(handle, vals, count);
119 else if (handler->event)
120 for (v = vals; v != vals + count; v++)
121 handler->event(handle, v->type, v->code, v->value);
123 return count;
127 * Pass values first through all filters and then, if event has not been
128 * filtered out, through all open handles. This function is called with
129 * dev->event_lock held and interrupts disabled.
131 static void input_pass_values(struct input_dev *dev,
132 struct input_value *vals, unsigned int count)
134 struct input_handle *handle;
135 struct input_value *v;
137 if (!count)
138 return;
140 rcu_read_lock();
142 handle = rcu_dereference(dev->grab);
143 if (handle) {
144 count = input_to_handler(handle, vals, count);
145 } else {
146 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
147 if (handle->open) {
148 count = input_to_handler(handle, vals, count);
149 if (!count)
150 break;
154 rcu_read_unlock();
156 add_input_randomness(vals->type, vals->code, vals->value);
158 /* trigger auto repeat for key events */
159 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
160 for (v = vals; v != vals + count; v++) {
161 if (v->type == EV_KEY && v->value != 2) {
162 if (v->value)
163 input_start_autorepeat(dev, v->code);
164 else
165 input_stop_autorepeat(dev);
171 static void input_pass_event(struct input_dev *dev,
172 unsigned int type, unsigned int code, int value)
174 struct input_value vals[] = { { type, code, value } };
176 input_pass_values(dev, vals, ARRAY_SIZE(vals));
180 * Generate software autorepeat event. Note that we take
181 * dev->event_lock here to avoid racing with input_event
182 * which may cause keys get "stuck".
184 static void input_repeat_key(unsigned long data)
186 struct input_dev *dev = (void *) data;
187 unsigned long flags;
189 spin_lock_irqsave(&dev->event_lock, flags);
191 if (test_bit(dev->repeat_key, dev->key) &&
192 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
193 struct input_value vals[] = {
194 { EV_KEY, dev->repeat_key, 2 },
195 input_value_sync
198 input_pass_values(dev, vals, ARRAY_SIZE(vals));
200 if (dev->rep[REP_PERIOD])
201 mod_timer(&dev->timer, jiffies +
202 msecs_to_jiffies(dev->rep[REP_PERIOD]));
205 spin_unlock_irqrestore(&dev->event_lock, flags);
208 #define INPUT_IGNORE_EVENT 0
209 #define INPUT_PASS_TO_HANDLERS 1
210 #define INPUT_PASS_TO_DEVICE 2
211 #define INPUT_SLOT 4
212 #define INPUT_FLUSH 8
213 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
215 static int input_handle_abs_event(struct input_dev *dev,
216 unsigned int code, int *pval)
218 struct input_mt *mt = dev->mt;
219 bool is_mt_event;
220 int *pold;
222 if (code == ABS_MT_SLOT) {
224 * "Stage" the event; we'll flush it later, when we
225 * get actual touch data.
227 if (mt && *pval >= 0 && *pval < mt->num_slots)
228 mt->slot = *pval;
230 return INPUT_IGNORE_EVENT;
233 is_mt_event = input_is_mt_value(code);
235 if (!is_mt_event) {
236 pold = &dev->absinfo[code].value;
237 } else if (mt) {
238 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
239 } else {
241 * Bypass filtering for multi-touch events when
242 * not employing slots.
244 pold = NULL;
247 if (pold) {
248 *pval = input_defuzz_abs_event(*pval, *pold,
249 dev->absinfo[code].fuzz);
250 if (*pold == *pval)
251 return INPUT_IGNORE_EVENT;
253 *pold = *pval;
256 /* Flush pending "slot" event */
257 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
258 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
259 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
262 return INPUT_PASS_TO_HANDLERS;
265 static int input_get_disposition(struct input_dev *dev,
266 unsigned int type, unsigned int code, int *pval)
268 int disposition = INPUT_IGNORE_EVENT;
269 int value = *pval;
271 switch (type) {
273 case EV_SYN:
274 switch (code) {
275 case SYN_CONFIG:
276 disposition = INPUT_PASS_TO_ALL;
277 break;
279 case SYN_REPORT:
280 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
281 break;
282 case SYN_MT_REPORT:
283 disposition = INPUT_PASS_TO_HANDLERS;
284 break;
286 break;
288 case EV_KEY:
289 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
291 /* auto-repeat bypasses state updates */
292 if (value == 2) {
293 disposition = INPUT_PASS_TO_HANDLERS;
294 break;
297 if (!!test_bit(code, dev->key) != !!value) {
299 __change_bit(code, dev->key);
300 disposition = INPUT_PASS_TO_HANDLERS;
303 break;
305 case EV_SW:
306 if (is_event_supported(code, dev->swbit, SW_MAX) &&
307 !!test_bit(code, dev->sw) != !!value) {
309 __change_bit(code, dev->sw);
310 disposition = INPUT_PASS_TO_HANDLERS;
312 break;
314 case EV_ABS:
315 if (is_event_supported(code, dev->absbit, ABS_MAX))
316 disposition = input_handle_abs_event(dev, code, &value);
318 break;
320 case EV_REL:
321 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
322 disposition = INPUT_PASS_TO_HANDLERS;
324 break;
326 case EV_MSC:
327 if (is_event_supported(code, dev->mscbit, MSC_MAX))
328 disposition = INPUT_PASS_TO_ALL;
330 break;
332 case EV_LED:
333 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
334 !!test_bit(code, dev->led) != !!value) {
336 __change_bit(code, dev->led);
337 disposition = INPUT_PASS_TO_ALL;
339 break;
341 case EV_SND:
342 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
344 if (!!test_bit(code, dev->snd) != !!value)
345 __change_bit(code, dev->snd);
346 disposition = INPUT_PASS_TO_ALL;
348 break;
350 case EV_REP:
351 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
352 dev->rep[code] = value;
353 disposition = INPUT_PASS_TO_ALL;
355 break;
357 case EV_FF:
358 if (value >= 0)
359 disposition = INPUT_PASS_TO_ALL;
360 break;
362 case EV_PWR:
363 disposition = INPUT_PASS_TO_ALL;
364 break;
367 *pval = value;
368 return disposition;
371 static void input_handle_event(struct input_dev *dev,
372 unsigned int type, unsigned int code, int value)
374 int disposition;
376 disposition = input_get_disposition(dev, type, code, &value);
378 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
379 dev->event(dev, type, code, value);
381 if (!dev->vals)
382 return;
384 if (disposition & INPUT_PASS_TO_HANDLERS) {
385 struct input_value *v;
387 if (disposition & INPUT_SLOT) {
388 v = &dev->vals[dev->num_vals++];
389 v->type = EV_ABS;
390 v->code = ABS_MT_SLOT;
391 v->value = dev->mt->slot;
394 v = &dev->vals[dev->num_vals++];
395 v->type = type;
396 v->code = code;
397 v->value = value;
400 if (disposition & INPUT_FLUSH) {
401 if (dev->num_vals >= 2)
402 input_pass_values(dev, dev->vals, dev->num_vals);
403 dev->num_vals = 0;
404 } else if (dev->num_vals >= dev->max_vals - 2) {
405 dev->vals[dev->num_vals++] = input_value_sync;
406 input_pass_values(dev, dev->vals, dev->num_vals);
407 dev->num_vals = 0;
413 * input_event() - report new input event
414 * @dev: device that generated the event
415 * @type: type of the event
416 * @code: event code
417 * @value: value of the event
419 * This function should be used by drivers implementing various input
420 * devices to report input events. See also input_inject_event().
422 * NOTE: input_event() may be safely used right after input device was
423 * allocated with input_allocate_device(), even before it is registered
424 * with input_register_device(), but the event will not reach any of the
425 * input handlers. Such early invocation of input_event() may be used
426 * to 'seed' initial state of a switch or initial position of absolute
427 * axis, etc.
429 void input_event(struct input_dev *dev,
430 unsigned int type, unsigned int code, int value)
432 unsigned long flags;
434 if (is_event_supported(type, dev->evbit, EV_MAX)) {
436 spin_lock_irqsave(&dev->event_lock, flags);
437 input_handle_event(dev, type, code, value);
438 spin_unlock_irqrestore(&dev->event_lock, flags);
441 EXPORT_SYMBOL(input_event);
444 * input_inject_event() - send input event from input handler
445 * @handle: input handle to send event through
446 * @type: type of the event
447 * @code: event code
448 * @value: value of the event
450 * Similar to input_event() but will ignore event if device is
451 * "grabbed" and handle injecting event is not the one that owns
452 * the device.
454 void input_inject_event(struct input_handle *handle,
455 unsigned int type, unsigned int code, int value)
457 struct input_dev *dev = handle->dev;
458 struct input_handle *grab;
459 unsigned long flags;
461 if (is_event_supported(type, dev->evbit, EV_MAX)) {
462 spin_lock_irqsave(&dev->event_lock, flags);
464 rcu_read_lock();
465 grab = rcu_dereference(dev->grab);
466 if (!grab || grab == handle)
467 input_handle_event(dev, type, code, value);
468 rcu_read_unlock();
470 spin_unlock_irqrestore(&dev->event_lock, flags);
473 EXPORT_SYMBOL(input_inject_event);
476 * input_alloc_absinfo - allocates array of input_absinfo structs
477 * @dev: the input device emitting absolute events
479 * If the absinfo struct the caller asked for is already allocated, this
480 * functions will not do anything.
482 void input_alloc_absinfo(struct input_dev *dev)
484 if (!dev->absinfo)
485 dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo),
486 GFP_KERNEL);
488 WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
490 EXPORT_SYMBOL(input_alloc_absinfo);
492 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
493 int min, int max, int fuzz, int flat)
495 struct input_absinfo *absinfo;
497 input_alloc_absinfo(dev);
498 if (!dev->absinfo)
499 return;
501 absinfo = &dev->absinfo[axis];
502 absinfo->minimum = min;
503 absinfo->maximum = max;
504 absinfo->fuzz = fuzz;
505 absinfo->flat = flat;
507 __set_bit(EV_ABS, dev->evbit);
508 __set_bit(axis, dev->absbit);
510 EXPORT_SYMBOL(input_set_abs_params);
514 * input_grab_device - grabs device for exclusive use
515 * @handle: input handle that wants to own the device
517 * When a device is grabbed by an input handle all events generated by
518 * the device are delivered only to this handle. Also events injected
519 * by other input handles are ignored while device is grabbed.
521 int input_grab_device(struct input_handle *handle)
523 struct input_dev *dev = handle->dev;
524 int retval;
526 retval = mutex_lock_interruptible(&dev->mutex);
527 if (retval)
528 return retval;
530 if (dev->grab) {
531 retval = -EBUSY;
532 goto out;
535 rcu_assign_pointer(dev->grab, handle);
537 out:
538 mutex_unlock(&dev->mutex);
539 return retval;
541 EXPORT_SYMBOL(input_grab_device);
543 static void __input_release_device(struct input_handle *handle)
545 struct input_dev *dev = handle->dev;
546 struct input_handle *grabber;
548 grabber = rcu_dereference_protected(dev->grab,
549 lockdep_is_held(&dev->mutex));
550 if (grabber == handle) {
551 rcu_assign_pointer(dev->grab, NULL);
552 /* Make sure input_pass_event() notices that grab is gone */
553 synchronize_rcu();
555 list_for_each_entry(handle, &dev->h_list, d_node)
556 if (handle->open && handle->handler->start)
557 handle->handler->start(handle);
562 * input_release_device - release previously grabbed device
563 * @handle: input handle that owns the device
565 * Releases previously grabbed device so that other input handles can
566 * start receiving input events. Upon release all handlers attached
567 * to the device have their start() method called so they have a change
568 * to synchronize device state with the rest of the system.
570 void input_release_device(struct input_handle *handle)
572 struct input_dev *dev = handle->dev;
574 mutex_lock(&dev->mutex);
575 __input_release_device(handle);
576 mutex_unlock(&dev->mutex);
578 EXPORT_SYMBOL(input_release_device);
581 * input_open_device - open input device
582 * @handle: handle through which device is being accessed
584 * This function should be called by input handlers when they
585 * want to start receive events from given input device.
587 int input_open_device(struct input_handle *handle)
589 struct input_dev *dev = handle->dev;
590 int retval;
592 retval = mutex_lock_interruptible(&dev->mutex);
593 if (retval)
594 return retval;
596 if (dev->going_away) {
597 retval = -ENODEV;
598 goto out;
601 handle->open++;
603 if (!dev->users++ && dev->open)
604 retval = dev->open(dev);
606 if (retval) {
607 dev->users--;
608 if (!--handle->open) {
610 * Make sure we are not delivering any more events
611 * through this handle
613 synchronize_rcu();
617 out:
618 mutex_unlock(&dev->mutex);
619 return retval;
621 EXPORT_SYMBOL(input_open_device);
623 int input_flush_device(struct input_handle *handle, struct file *file)
625 struct input_dev *dev = handle->dev;
626 int retval;
628 retval = mutex_lock_interruptible(&dev->mutex);
629 if (retval)
630 return retval;
632 if (dev->flush)
633 retval = dev->flush(dev, file);
635 mutex_unlock(&dev->mutex);
636 return retval;
638 EXPORT_SYMBOL(input_flush_device);
641 * input_close_device - close input device
642 * @handle: handle through which device is being accessed
644 * This function should be called by input handlers when they
645 * want to stop receive events from given input device.
647 void input_close_device(struct input_handle *handle)
649 struct input_dev *dev = handle->dev;
651 mutex_lock(&dev->mutex);
653 __input_release_device(handle);
655 if (!--dev->users && dev->close)
656 dev->close(dev);
658 if (!--handle->open) {
660 * synchronize_rcu() makes sure that input_pass_event()
661 * completed and that no more input events are delivered
662 * through this handle
664 synchronize_rcu();
667 mutex_unlock(&dev->mutex);
669 EXPORT_SYMBOL(input_close_device);
672 * Simulate keyup events for all keys that are marked as pressed.
673 * The function must be called with dev->event_lock held.
675 static void input_dev_release_keys(struct input_dev *dev)
677 bool need_sync = false;
678 int code;
680 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
681 for_each_set_bit(code, dev->key, KEY_CNT) {
682 input_pass_event(dev, EV_KEY, code, 0);
683 need_sync = true;
686 if (need_sync)
687 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
689 memset(dev->key, 0, sizeof(dev->key));
694 * Prepare device for unregistering
696 static void input_disconnect_device(struct input_dev *dev)
698 struct input_handle *handle;
701 * Mark device as going away. Note that we take dev->mutex here
702 * not to protect access to dev->going_away but rather to ensure
703 * that there are no threads in the middle of input_open_device()
705 mutex_lock(&dev->mutex);
706 dev->going_away = true;
707 mutex_unlock(&dev->mutex);
709 spin_lock_irq(&dev->event_lock);
712 * Simulate keyup events for all pressed keys so that handlers
713 * are not left with "stuck" keys. The driver may continue
714 * generate events even after we done here but they will not
715 * reach any handlers.
717 input_dev_release_keys(dev);
719 list_for_each_entry(handle, &dev->h_list, d_node)
720 handle->open = 0;
722 spin_unlock_irq(&dev->event_lock);
726 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
727 * @ke: keymap entry containing scancode to be converted.
728 * @scancode: pointer to the location where converted scancode should
729 * be stored.
731 * This function is used to convert scancode stored in &struct keymap_entry
732 * into scalar form understood by legacy keymap handling methods. These
733 * methods expect scancodes to be represented as 'unsigned int'.
735 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
736 unsigned int *scancode)
738 switch (ke->len) {
739 case 1:
740 *scancode = *((u8 *)ke->scancode);
741 break;
743 case 2:
744 *scancode = *((u16 *)ke->scancode);
745 break;
747 case 4:
748 *scancode = *((u32 *)ke->scancode);
749 break;
751 default:
752 return -EINVAL;
755 return 0;
757 EXPORT_SYMBOL(input_scancode_to_scalar);
760 * Those routines handle the default case where no [gs]etkeycode() is
761 * defined. In this case, an array indexed by the scancode is used.
764 static unsigned int input_fetch_keycode(struct input_dev *dev,
765 unsigned int index)
767 switch (dev->keycodesize) {
768 case 1:
769 return ((u8 *)dev->keycode)[index];
771 case 2:
772 return ((u16 *)dev->keycode)[index];
774 default:
775 return ((u32 *)dev->keycode)[index];
779 static int input_default_getkeycode(struct input_dev *dev,
780 struct input_keymap_entry *ke)
782 unsigned int index;
783 int error;
785 if (!dev->keycodesize)
786 return -EINVAL;
788 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
789 index = ke->index;
790 else {
791 error = input_scancode_to_scalar(ke, &index);
792 if (error)
793 return error;
796 if (index >= dev->keycodemax)
797 return -EINVAL;
799 ke->keycode = input_fetch_keycode(dev, index);
800 ke->index = index;
801 ke->len = sizeof(index);
802 memcpy(ke->scancode, &index, sizeof(index));
804 return 0;
807 static int input_default_setkeycode(struct input_dev *dev,
808 const struct input_keymap_entry *ke,
809 unsigned int *old_keycode)
811 unsigned int index;
812 int error;
813 int i;
815 if (!dev->keycodesize)
816 return -EINVAL;
818 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
819 index = ke->index;
820 } else {
821 error = input_scancode_to_scalar(ke, &index);
822 if (error)
823 return error;
826 if (index >= dev->keycodemax)
827 return -EINVAL;
829 if (dev->keycodesize < sizeof(ke->keycode) &&
830 (ke->keycode >> (dev->keycodesize * 8)))
831 return -EINVAL;
833 switch (dev->keycodesize) {
834 case 1: {
835 u8 *k = (u8 *)dev->keycode;
836 *old_keycode = k[index];
837 k[index] = ke->keycode;
838 break;
840 case 2: {
841 u16 *k = (u16 *)dev->keycode;
842 *old_keycode = k[index];
843 k[index] = ke->keycode;
844 break;
846 default: {
847 u32 *k = (u32 *)dev->keycode;
848 *old_keycode = k[index];
849 k[index] = ke->keycode;
850 break;
854 __clear_bit(*old_keycode, dev->keybit);
855 __set_bit(ke->keycode, dev->keybit);
857 for (i = 0; i < dev->keycodemax; i++) {
858 if (input_fetch_keycode(dev, i) == *old_keycode) {
859 __set_bit(*old_keycode, dev->keybit);
860 break; /* Setting the bit twice is useless, so break */
864 return 0;
868 * input_get_keycode - retrieve keycode currently mapped to a given scancode
869 * @dev: input device which keymap is being queried
870 * @ke: keymap entry
872 * This function should be called by anyone interested in retrieving current
873 * keymap. Presently evdev handlers use it.
875 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
877 unsigned long flags;
878 int retval;
880 spin_lock_irqsave(&dev->event_lock, flags);
881 retval = dev->getkeycode(dev, ke);
882 spin_unlock_irqrestore(&dev->event_lock, flags);
884 return retval;
886 EXPORT_SYMBOL(input_get_keycode);
889 * input_set_keycode - attribute a keycode to a given scancode
890 * @dev: input device which keymap is being updated
891 * @ke: new keymap entry
893 * This function should be called by anyone needing to update current
894 * keymap. Presently keyboard and evdev handlers use it.
896 int input_set_keycode(struct input_dev *dev,
897 const struct input_keymap_entry *ke)
899 unsigned long flags;
900 unsigned int old_keycode;
901 int retval;
903 if (ke->keycode > KEY_MAX)
904 return -EINVAL;
906 spin_lock_irqsave(&dev->event_lock, flags);
908 retval = dev->setkeycode(dev, ke, &old_keycode);
909 if (retval)
910 goto out;
912 /* Make sure KEY_RESERVED did not get enabled. */
913 __clear_bit(KEY_RESERVED, dev->keybit);
916 * Simulate keyup event if keycode is not present
917 * in the keymap anymore
919 if (test_bit(EV_KEY, dev->evbit) &&
920 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
921 __test_and_clear_bit(old_keycode, dev->key)) {
922 struct input_value vals[] = {
923 { EV_KEY, old_keycode, 0 },
924 input_value_sync
927 input_pass_values(dev, vals, ARRAY_SIZE(vals));
930 out:
931 spin_unlock_irqrestore(&dev->event_lock, flags);
933 return retval;
935 EXPORT_SYMBOL(input_set_keycode);
937 static const struct input_device_id *input_match_device(struct input_handler *handler,
938 struct input_dev *dev)
940 const struct input_device_id *id;
942 for (id = handler->id_table; id->flags || id->driver_info; id++) {
944 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
945 if (id->bustype != dev->id.bustype)
946 continue;
948 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
949 if (id->vendor != dev->id.vendor)
950 continue;
952 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
953 if (id->product != dev->id.product)
954 continue;
956 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
957 if (id->version != dev->id.version)
958 continue;
960 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX))
961 continue;
963 if (!bitmap_subset(id->keybit, dev->keybit, KEY_MAX))
964 continue;
966 if (!bitmap_subset(id->relbit, dev->relbit, REL_MAX))
967 continue;
969 if (!bitmap_subset(id->absbit, dev->absbit, ABS_MAX))
970 continue;
972 if (!bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX))
973 continue;
975 if (!bitmap_subset(id->ledbit, dev->ledbit, LED_MAX))
976 continue;
978 if (!bitmap_subset(id->sndbit, dev->sndbit, SND_MAX))
979 continue;
981 if (!bitmap_subset(id->ffbit, dev->ffbit, FF_MAX))
982 continue;
984 if (!bitmap_subset(id->swbit, dev->swbit, SW_MAX))
985 continue;
987 if (!handler->match || handler->match(handler, dev))
988 return id;
991 return NULL;
994 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
996 const struct input_device_id *id;
997 int error;
999 id = input_match_device(handler, dev);
1000 if (!id)
1001 return -ENODEV;
1003 error = handler->connect(handler, dev, id);
1004 if (error && error != -ENODEV)
1005 pr_err("failed to attach handler %s to device %s, error: %d\n",
1006 handler->name, kobject_name(&dev->dev.kobj), error);
1008 return error;
1011 #ifdef CONFIG_COMPAT
1013 static int input_bits_to_string(char *buf, int buf_size,
1014 unsigned long bits, bool skip_empty)
1016 int len = 0;
1018 if (INPUT_COMPAT_TEST) {
1019 u32 dword = bits >> 32;
1020 if (dword || !skip_empty)
1021 len += snprintf(buf, buf_size, "%x ", dword);
1023 dword = bits & 0xffffffffUL;
1024 if (dword || !skip_empty || len)
1025 len += snprintf(buf + len, max(buf_size - len, 0),
1026 "%x", dword);
1027 } else {
1028 if (bits || !skip_empty)
1029 len += snprintf(buf, buf_size, "%lx", bits);
1032 return len;
1035 #else /* !CONFIG_COMPAT */
1037 static int input_bits_to_string(char *buf, int buf_size,
1038 unsigned long bits, bool skip_empty)
1040 return bits || !skip_empty ?
1041 snprintf(buf, buf_size, "%lx", bits) : 0;
1044 #endif
1046 #ifdef CONFIG_PROC_FS
1048 static struct proc_dir_entry *proc_bus_input_dir;
1049 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1050 static int input_devices_state;
1052 static inline void input_wakeup_procfs_readers(void)
1054 input_devices_state++;
1055 wake_up(&input_devices_poll_wait);
1058 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
1060 poll_wait(file, &input_devices_poll_wait, wait);
1061 if (file->f_version != input_devices_state) {
1062 file->f_version = input_devices_state;
1063 return POLLIN | POLLRDNORM;
1066 return 0;
1069 union input_seq_state {
1070 struct {
1071 unsigned short pos;
1072 bool mutex_acquired;
1074 void *p;
1077 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1079 union input_seq_state *state = (union input_seq_state *)&seq->private;
1080 int error;
1082 /* We need to fit into seq->private pointer */
1083 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1085 error = mutex_lock_interruptible(&input_mutex);
1086 if (error) {
1087 state->mutex_acquired = false;
1088 return ERR_PTR(error);
1091 state->mutex_acquired = true;
1093 return seq_list_start(&input_dev_list, *pos);
1096 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1098 return seq_list_next(v, &input_dev_list, pos);
1101 static void input_seq_stop(struct seq_file *seq, void *v)
1103 union input_seq_state *state = (union input_seq_state *)&seq->private;
1105 if (state->mutex_acquired)
1106 mutex_unlock(&input_mutex);
1109 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1110 unsigned long *bitmap, int max)
1112 int i;
1113 bool skip_empty = true;
1114 char buf[18];
1116 seq_printf(seq, "B: %s=", name);
1118 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1119 if (input_bits_to_string(buf, sizeof(buf),
1120 bitmap[i], skip_empty)) {
1121 skip_empty = false;
1122 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1127 * If no output was produced print a single 0.
1129 if (skip_empty)
1130 seq_puts(seq, "0");
1132 seq_putc(seq, '\n');
1135 static int input_devices_seq_show(struct seq_file *seq, void *v)
1137 struct input_dev *dev = container_of(v, struct input_dev, node);
1138 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1139 struct input_handle *handle;
1141 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1142 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1144 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1145 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1146 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1147 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1148 seq_printf(seq, "H: Handlers=");
1150 list_for_each_entry(handle, &dev->h_list, d_node)
1151 seq_printf(seq, "%s ", handle->name);
1152 seq_putc(seq, '\n');
1154 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1156 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1157 if (test_bit(EV_KEY, dev->evbit))
1158 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1159 if (test_bit(EV_REL, dev->evbit))
1160 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1161 if (test_bit(EV_ABS, dev->evbit))
1162 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1163 if (test_bit(EV_MSC, dev->evbit))
1164 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1165 if (test_bit(EV_LED, dev->evbit))
1166 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1167 if (test_bit(EV_SND, dev->evbit))
1168 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1169 if (test_bit(EV_FF, dev->evbit))
1170 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1171 if (test_bit(EV_SW, dev->evbit))
1172 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1174 seq_putc(seq, '\n');
1176 kfree(path);
1177 return 0;
1180 static const struct seq_operations input_devices_seq_ops = {
1181 .start = input_devices_seq_start,
1182 .next = input_devices_seq_next,
1183 .stop = input_seq_stop,
1184 .show = input_devices_seq_show,
1187 static int input_proc_devices_open(struct inode *inode, struct file *file)
1189 return seq_open(file, &input_devices_seq_ops);
1192 static const struct file_operations input_devices_fileops = {
1193 .owner = THIS_MODULE,
1194 .open = input_proc_devices_open,
1195 .poll = input_proc_devices_poll,
1196 .read = seq_read,
1197 .llseek = seq_lseek,
1198 .release = seq_release,
1201 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1203 union input_seq_state *state = (union input_seq_state *)&seq->private;
1204 int error;
1206 /* We need to fit into seq->private pointer */
1207 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1209 error = mutex_lock_interruptible(&input_mutex);
1210 if (error) {
1211 state->mutex_acquired = false;
1212 return ERR_PTR(error);
1215 state->mutex_acquired = true;
1216 state->pos = *pos;
1218 return seq_list_start(&input_handler_list, *pos);
1221 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1223 union input_seq_state *state = (union input_seq_state *)&seq->private;
1225 state->pos = *pos + 1;
1226 return seq_list_next(v, &input_handler_list, pos);
1229 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1231 struct input_handler *handler = container_of(v, struct input_handler, node);
1232 union input_seq_state *state = (union input_seq_state *)&seq->private;
1234 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1235 if (handler->filter)
1236 seq_puts(seq, " (filter)");
1237 if (handler->legacy_minors)
1238 seq_printf(seq, " Minor=%d", handler->minor);
1239 seq_putc(seq, '\n');
1241 return 0;
1244 static const struct seq_operations input_handlers_seq_ops = {
1245 .start = input_handlers_seq_start,
1246 .next = input_handlers_seq_next,
1247 .stop = input_seq_stop,
1248 .show = input_handlers_seq_show,
1251 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1253 return seq_open(file, &input_handlers_seq_ops);
1256 static const struct file_operations input_handlers_fileops = {
1257 .owner = THIS_MODULE,
1258 .open = input_proc_handlers_open,
1259 .read = seq_read,
1260 .llseek = seq_lseek,
1261 .release = seq_release,
1264 static int __init input_proc_init(void)
1266 struct proc_dir_entry *entry;
1268 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1269 if (!proc_bus_input_dir)
1270 return -ENOMEM;
1272 entry = proc_create("devices", 0, proc_bus_input_dir,
1273 &input_devices_fileops);
1274 if (!entry)
1275 goto fail1;
1277 entry = proc_create("handlers", 0, proc_bus_input_dir,
1278 &input_handlers_fileops);
1279 if (!entry)
1280 goto fail2;
1282 return 0;
1284 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1285 fail1: remove_proc_entry("bus/input", NULL);
1286 return -ENOMEM;
1289 static void input_proc_exit(void)
1291 remove_proc_entry("devices", proc_bus_input_dir);
1292 remove_proc_entry("handlers", proc_bus_input_dir);
1293 remove_proc_entry("bus/input", NULL);
1296 #else /* !CONFIG_PROC_FS */
1297 static inline void input_wakeup_procfs_readers(void) { }
1298 static inline int input_proc_init(void) { return 0; }
1299 static inline void input_proc_exit(void) { }
1300 #endif
1302 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1303 static ssize_t input_dev_show_##name(struct device *dev, \
1304 struct device_attribute *attr, \
1305 char *buf) \
1307 struct input_dev *input_dev = to_input_dev(dev); \
1309 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1310 input_dev->name ? input_dev->name : ""); \
1312 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1314 INPUT_DEV_STRING_ATTR_SHOW(name);
1315 INPUT_DEV_STRING_ATTR_SHOW(phys);
1316 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1318 static int input_print_modalias_bits(char *buf, int size,
1319 char name, unsigned long *bm,
1320 unsigned int min_bit, unsigned int max_bit)
1322 int len = 0, i;
1324 len += snprintf(buf, max(size, 0), "%c", name);
1325 for (i = min_bit; i < max_bit; i++)
1326 if (bm[BIT_WORD(i)] & BIT_MASK(i))
1327 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1328 return len;
1331 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1332 int add_cr)
1334 int len;
1336 len = snprintf(buf, max(size, 0),
1337 "input:b%04Xv%04Xp%04Xe%04X-",
1338 id->id.bustype, id->id.vendor,
1339 id->id.product, id->id.version);
1341 len += input_print_modalias_bits(buf + len, size - len,
1342 'e', id->evbit, 0, EV_MAX);
1343 len += input_print_modalias_bits(buf + len, size - len,
1344 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1345 len += input_print_modalias_bits(buf + len, size - len,
1346 'r', id->relbit, 0, REL_MAX);
1347 len += input_print_modalias_bits(buf + len, size - len,
1348 'a', id->absbit, 0, ABS_MAX);
1349 len += input_print_modalias_bits(buf + len, size - len,
1350 'm', id->mscbit, 0, MSC_MAX);
1351 len += input_print_modalias_bits(buf + len, size - len,
1352 'l', id->ledbit, 0, LED_MAX);
1353 len += input_print_modalias_bits(buf + len, size - len,
1354 's', id->sndbit, 0, SND_MAX);
1355 len += input_print_modalias_bits(buf + len, size - len,
1356 'f', id->ffbit, 0, FF_MAX);
1357 len += input_print_modalias_bits(buf + len, size - len,
1358 'w', id->swbit, 0, SW_MAX);
1360 if (add_cr)
1361 len += snprintf(buf + len, max(size - len, 0), "\n");
1363 return len;
1366 static ssize_t input_dev_show_modalias(struct device *dev,
1367 struct device_attribute *attr,
1368 char *buf)
1370 struct input_dev *id = to_input_dev(dev);
1371 ssize_t len;
1373 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1375 return min_t(int, len, PAGE_SIZE);
1377 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1379 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1380 int max, int add_cr);
1382 static ssize_t input_dev_show_properties(struct device *dev,
1383 struct device_attribute *attr,
1384 char *buf)
1386 struct input_dev *input_dev = to_input_dev(dev);
1387 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1388 INPUT_PROP_MAX, true);
1389 return min_t(int, len, PAGE_SIZE);
1391 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1393 static struct attribute *input_dev_attrs[] = {
1394 &dev_attr_name.attr,
1395 &dev_attr_phys.attr,
1396 &dev_attr_uniq.attr,
1397 &dev_attr_modalias.attr,
1398 &dev_attr_properties.attr,
1399 NULL
1402 static struct attribute_group input_dev_attr_group = {
1403 .attrs = input_dev_attrs,
1406 #define INPUT_DEV_ID_ATTR(name) \
1407 static ssize_t input_dev_show_id_##name(struct device *dev, \
1408 struct device_attribute *attr, \
1409 char *buf) \
1411 struct input_dev *input_dev = to_input_dev(dev); \
1412 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1414 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1416 INPUT_DEV_ID_ATTR(bustype);
1417 INPUT_DEV_ID_ATTR(vendor);
1418 INPUT_DEV_ID_ATTR(product);
1419 INPUT_DEV_ID_ATTR(version);
1421 static struct attribute *input_dev_id_attrs[] = {
1422 &dev_attr_bustype.attr,
1423 &dev_attr_vendor.attr,
1424 &dev_attr_product.attr,
1425 &dev_attr_version.attr,
1426 NULL
1429 static struct attribute_group input_dev_id_attr_group = {
1430 .name = "id",
1431 .attrs = input_dev_id_attrs,
1434 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1435 int max, int add_cr)
1437 int i;
1438 int len = 0;
1439 bool skip_empty = true;
1441 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1442 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1443 bitmap[i], skip_empty);
1444 if (len) {
1445 skip_empty = false;
1446 if (i > 0)
1447 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1452 * If no output was produced print a single 0.
1454 if (len == 0)
1455 len = snprintf(buf, buf_size, "%d", 0);
1457 if (add_cr)
1458 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1460 return len;
1463 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1464 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1465 struct device_attribute *attr, \
1466 char *buf) \
1468 struct input_dev *input_dev = to_input_dev(dev); \
1469 int len = input_print_bitmap(buf, PAGE_SIZE, \
1470 input_dev->bm##bit, ev##_MAX, \
1471 true); \
1472 return min_t(int, len, PAGE_SIZE); \
1474 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1476 INPUT_DEV_CAP_ATTR(EV, ev);
1477 INPUT_DEV_CAP_ATTR(KEY, key);
1478 INPUT_DEV_CAP_ATTR(REL, rel);
1479 INPUT_DEV_CAP_ATTR(ABS, abs);
1480 INPUT_DEV_CAP_ATTR(MSC, msc);
1481 INPUT_DEV_CAP_ATTR(LED, led);
1482 INPUT_DEV_CAP_ATTR(SND, snd);
1483 INPUT_DEV_CAP_ATTR(FF, ff);
1484 INPUT_DEV_CAP_ATTR(SW, sw);
1486 static struct attribute *input_dev_caps_attrs[] = {
1487 &dev_attr_ev.attr,
1488 &dev_attr_key.attr,
1489 &dev_attr_rel.attr,
1490 &dev_attr_abs.attr,
1491 &dev_attr_msc.attr,
1492 &dev_attr_led.attr,
1493 &dev_attr_snd.attr,
1494 &dev_attr_ff.attr,
1495 &dev_attr_sw.attr,
1496 NULL
1499 static struct attribute_group input_dev_caps_attr_group = {
1500 .name = "capabilities",
1501 .attrs = input_dev_caps_attrs,
1504 static const struct attribute_group *input_dev_attr_groups[] = {
1505 &input_dev_attr_group,
1506 &input_dev_id_attr_group,
1507 &input_dev_caps_attr_group,
1508 NULL
1511 static void input_dev_release(struct device *device)
1513 struct input_dev *dev = to_input_dev(device);
1515 input_ff_destroy(dev);
1516 input_mt_destroy_slots(dev);
1517 kfree(dev->absinfo);
1518 kfree(dev->vals);
1519 kfree(dev);
1521 module_put(THIS_MODULE);
1525 * Input uevent interface - loading event handlers based on
1526 * device bitfields.
1528 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1529 const char *name, unsigned long *bitmap, int max)
1531 int len;
1533 if (add_uevent_var(env, "%s", name))
1534 return -ENOMEM;
1536 len = input_print_bitmap(&env->buf[env->buflen - 1],
1537 sizeof(env->buf) - env->buflen,
1538 bitmap, max, false);
1539 if (len >= (sizeof(env->buf) - env->buflen))
1540 return -ENOMEM;
1542 env->buflen += len;
1543 return 0;
1546 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1547 struct input_dev *dev)
1549 int len;
1551 if (add_uevent_var(env, "MODALIAS="))
1552 return -ENOMEM;
1554 len = input_print_modalias(&env->buf[env->buflen - 1],
1555 sizeof(env->buf) - env->buflen,
1556 dev, 0);
1557 if (len >= (sizeof(env->buf) - env->buflen))
1558 return -ENOMEM;
1560 env->buflen += len;
1561 return 0;
1564 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1565 do { \
1566 int err = add_uevent_var(env, fmt, val); \
1567 if (err) \
1568 return err; \
1569 } while (0)
1571 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1572 do { \
1573 int err = input_add_uevent_bm_var(env, name, bm, max); \
1574 if (err) \
1575 return err; \
1576 } while (0)
1578 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1579 do { \
1580 int err = input_add_uevent_modalias_var(env, dev); \
1581 if (err) \
1582 return err; \
1583 } while (0)
1585 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1587 struct input_dev *dev = to_input_dev(device);
1589 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1590 dev->id.bustype, dev->id.vendor,
1591 dev->id.product, dev->id.version);
1592 if (dev->name)
1593 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1594 if (dev->phys)
1595 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1596 if (dev->uniq)
1597 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1599 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1601 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1602 if (test_bit(EV_KEY, dev->evbit))
1603 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1604 if (test_bit(EV_REL, dev->evbit))
1605 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1606 if (test_bit(EV_ABS, dev->evbit))
1607 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1608 if (test_bit(EV_MSC, dev->evbit))
1609 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1610 if (test_bit(EV_LED, dev->evbit))
1611 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1612 if (test_bit(EV_SND, dev->evbit))
1613 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1614 if (test_bit(EV_FF, dev->evbit))
1615 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1616 if (test_bit(EV_SW, dev->evbit))
1617 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1619 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1621 return 0;
1624 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1625 do { \
1626 int i; \
1627 bool active; \
1629 if (!test_bit(EV_##type, dev->evbit)) \
1630 break; \
1632 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \
1633 active = test_bit(i, dev->bits); \
1634 if (!active && !on) \
1635 continue; \
1637 dev->event(dev, EV_##type, i, on ? active : 0); \
1639 } while (0)
1641 static void input_dev_toggle(struct input_dev *dev, bool activate)
1643 if (!dev->event)
1644 return;
1646 INPUT_DO_TOGGLE(dev, LED, led, activate);
1647 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1649 if (activate && test_bit(EV_REP, dev->evbit)) {
1650 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1651 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1656 * input_reset_device() - reset/restore the state of input device
1657 * @dev: input device whose state needs to be reset
1659 * This function tries to reset the state of an opened input device and
1660 * bring internal state and state if the hardware in sync with each other.
1661 * We mark all keys as released, restore LED state, repeat rate, etc.
1663 void input_reset_device(struct input_dev *dev)
1665 unsigned long flags;
1667 mutex_lock(&dev->mutex);
1668 spin_lock_irqsave(&dev->event_lock, flags);
1670 input_dev_toggle(dev, true);
1671 input_dev_release_keys(dev);
1673 spin_unlock_irqrestore(&dev->event_lock, flags);
1674 mutex_unlock(&dev->mutex);
1676 EXPORT_SYMBOL(input_reset_device);
1678 #ifdef CONFIG_PM_SLEEP
1679 static int input_dev_suspend(struct device *dev)
1681 struct input_dev *input_dev = to_input_dev(dev);
1683 spin_lock_irq(&input_dev->event_lock);
1686 * Keys that are pressed now are unlikely to be
1687 * still pressed when we resume.
1689 input_dev_release_keys(input_dev);
1691 /* Turn off LEDs and sounds, if any are active. */
1692 input_dev_toggle(input_dev, false);
1694 spin_unlock_irq(&input_dev->event_lock);
1696 return 0;
1699 static int input_dev_resume(struct device *dev)
1701 struct input_dev *input_dev = to_input_dev(dev);
1703 spin_lock_irq(&input_dev->event_lock);
1705 /* Restore state of LEDs and sounds, if any were active. */
1706 input_dev_toggle(input_dev, true);
1708 spin_unlock_irq(&input_dev->event_lock);
1710 return 0;
1713 static int input_dev_freeze(struct device *dev)
1715 struct input_dev *input_dev = to_input_dev(dev);
1717 spin_lock_irq(&input_dev->event_lock);
1720 * Keys that are pressed now are unlikely to be
1721 * still pressed when we resume.
1723 input_dev_release_keys(input_dev);
1725 spin_unlock_irq(&input_dev->event_lock);
1727 return 0;
1730 static int input_dev_poweroff(struct device *dev)
1732 struct input_dev *input_dev = to_input_dev(dev);
1734 spin_lock_irq(&input_dev->event_lock);
1736 /* Turn off LEDs and sounds, if any are active. */
1737 input_dev_toggle(input_dev, false);
1739 spin_unlock_irq(&input_dev->event_lock);
1741 return 0;
1744 static const struct dev_pm_ops input_dev_pm_ops = {
1745 .suspend = input_dev_suspend,
1746 .resume = input_dev_resume,
1747 .freeze = input_dev_freeze,
1748 .poweroff = input_dev_poweroff,
1749 .restore = input_dev_resume,
1751 #endif /* CONFIG_PM */
1753 static struct device_type input_dev_type = {
1754 .groups = input_dev_attr_groups,
1755 .release = input_dev_release,
1756 .uevent = input_dev_uevent,
1757 #ifdef CONFIG_PM_SLEEP
1758 .pm = &input_dev_pm_ops,
1759 #endif
1762 static char *input_devnode(struct device *dev, umode_t *mode)
1764 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1767 struct class input_class = {
1768 .name = "input",
1769 .devnode = input_devnode,
1771 EXPORT_SYMBOL_GPL(input_class);
1774 * input_allocate_device - allocate memory for new input device
1776 * Returns prepared struct input_dev or %NULL.
1778 * NOTE: Use input_free_device() to free devices that have not been
1779 * registered; input_unregister_device() should be used for already
1780 * registered devices.
1782 struct input_dev *input_allocate_device(void)
1784 static atomic_t input_no = ATOMIC_INIT(-1);
1785 struct input_dev *dev;
1787 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1788 if (dev) {
1789 dev->dev.type = &input_dev_type;
1790 dev->dev.class = &input_class;
1791 device_initialize(&dev->dev);
1792 mutex_init(&dev->mutex);
1793 spin_lock_init(&dev->event_lock);
1794 init_timer(&dev->timer);
1795 INIT_LIST_HEAD(&dev->h_list);
1796 INIT_LIST_HEAD(&dev->node);
1798 dev_set_name(&dev->dev, "input%lu",
1799 (unsigned long)atomic_inc_return(&input_no));
1801 __module_get(THIS_MODULE);
1804 return dev;
1806 EXPORT_SYMBOL(input_allocate_device);
1808 struct input_devres {
1809 struct input_dev *input;
1812 static int devm_input_device_match(struct device *dev, void *res, void *data)
1814 struct input_devres *devres = res;
1816 return devres->input == data;
1819 static void devm_input_device_release(struct device *dev, void *res)
1821 struct input_devres *devres = res;
1822 struct input_dev *input = devres->input;
1824 dev_dbg(dev, "%s: dropping reference to %s\n",
1825 __func__, dev_name(&input->dev));
1826 input_put_device(input);
1830 * devm_input_allocate_device - allocate managed input device
1831 * @dev: device owning the input device being created
1833 * Returns prepared struct input_dev or %NULL.
1835 * Managed input devices do not need to be explicitly unregistered or
1836 * freed as it will be done automatically when owner device unbinds from
1837 * its driver (or binding fails). Once managed input device is allocated,
1838 * it is ready to be set up and registered in the same fashion as regular
1839 * input device. There are no special devm_input_device_[un]register()
1840 * variants, regular ones work with both managed and unmanaged devices,
1841 * should you need them. In most cases however, managed input device need
1842 * not be explicitly unregistered or freed.
1844 * NOTE: the owner device is set up as parent of input device and users
1845 * should not override it.
1847 struct input_dev *devm_input_allocate_device(struct device *dev)
1849 struct input_dev *input;
1850 struct input_devres *devres;
1852 devres = devres_alloc(devm_input_device_release,
1853 sizeof(struct input_devres), GFP_KERNEL);
1854 if (!devres)
1855 return NULL;
1857 input = input_allocate_device();
1858 if (!input) {
1859 devres_free(devres);
1860 return NULL;
1863 input->dev.parent = dev;
1864 input->devres_managed = true;
1866 devres->input = input;
1867 devres_add(dev, devres);
1869 return input;
1871 EXPORT_SYMBOL(devm_input_allocate_device);
1874 * input_free_device - free memory occupied by input_dev structure
1875 * @dev: input device to free
1877 * This function should only be used if input_register_device()
1878 * was not called yet or if it failed. Once device was registered
1879 * use input_unregister_device() and memory will be freed once last
1880 * reference to the device is dropped.
1882 * Device should be allocated by input_allocate_device().
1884 * NOTE: If there are references to the input device then memory
1885 * will not be freed until last reference is dropped.
1887 void input_free_device(struct input_dev *dev)
1889 if (dev) {
1890 if (dev->devres_managed)
1891 WARN_ON(devres_destroy(dev->dev.parent,
1892 devm_input_device_release,
1893 devm_input_device_match,
1894 dev));
1895 input_put_device(dev);
1898 EXPORT_SYMBOL(input_free_device);
1901 * input_set_capability - mark device as capable of a certain event
1902 * @dev: device that is capable of emitting or accepting event
1903 * @type: type of the event (EV_KEY, EV_REL, etc...)
1904 * @code: event code
1906 * In addition to setting up corresponding bit in appropriate capability
1907 * bitmap the function also adjusts dev->evbit.
1909 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1911 switch (type) {
1912 case EV_KEY:
1913 __set_bit(code, dev->keybit);
1914 break;
1916 case EV_REL:
1917 __set_bit(code, dev->relbit);
1918 break;
1920 case EV_ABS:
1921 input_alloc_absinfo(dev);
1922 if (!dev->absinfo)
1923 return;
1925 __set_bit(code, dev->absbit);
1926 break;
1928 case EV_MSC:
1929 __set_bit(code, dev->mscbit);
1930 break;
1932 case EV_SW:
1933 __set_bit(code, dev->swbit);
1934 break;
1936 case EV_LED:
1937 __set_bit(code, dev->ledbit);
1938 break;
1940 case EV_SND:
1941 __set_bit(code, dev->sndbit);
1942 break;
1944 case EV_FF:
1945 __set_bit(code, dev->ffbit);
1946 break;
1948 case EV_PWR:
1949 /* do nothing */
1950 break;
1952 default:
1953 pr_err("input_set_capability: unknown type %u (code %u)\n",
1954 type, code);
1955 dump_stack();
1956 return;
1959 __set_bit(type, dev->evbit);
1961 EXPORT_SYMBOL(input_set_capability);
1963 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
1965 int mt_slots;
1966 int i;
1967 unsigned int events;
1969 if (dev->mt) {
1970 mt_slots = dev->mt->num_slots;
1971 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
1972 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
1973 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
1974 mt_slots = clamp(mt_slots, 2, 32);
1975 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
1976 mt_slots = 2;
1977 } else {
1978 mt_slots = 0;
1981 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
1983 if (test_bit(EV_ABS, dev->evbit))
1984 for_each_set_bit(i, dev->absbit, ABS_CNT)
1985 events += input_is_mt_axis(i) ? mt_slots : 1;
1987 if (test_bit(EV_REL, dev->evbit))
1988 events += bitmap_weight(dev->relbit, REL_CNT);
1990 /* Make room for KEY and MSC events */
1991 events += 7;
1993 return events;
1996 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
1997 do { \
1998 if (!test_bit(EV_##type, dev->evbit)) \
1999 memset(dev->bits##bit, 0, \
2000 sizeof(dev->bits##bit)); \
2001 } while (0)
2003 static void input_cleanse_bitmasks(struct input_dev *dev)
2005 INPUT_CLEANSE_BITMASK(dev, KEY, key);
2006 INPUT_CLEANSE_BITMASK(dev, REL, rel);
2007 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2008 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2009 INPUT_CLEANSE_BITMASK(dev, LED, led);
2010 INPUT_CLEANSE_BITMASK(dev, SND, snd);
2011 INPUT_CLEANSE_BITMASK(dev, FF, ff);
2012 INPUT_CLEANSE_BITMASK(dev, SW, sw);
2015 static void __input_unregister_device(struct input_dev *dev)
2017 struct input_handle *handle, *next;
2019 input_disconnect_device(dev);
2021 mutex_lock(&input_mutex);
2023 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2024 handle->handler->disconnect(handle);
2025 WARN_ON(!list_empty(&dev->h_list));
2027 del_timer_sync(&dev->timer);
2028 list_del_init(&dev->node);
2030 input_wakeup_procfs_readers();
2032 mutex_unlock(&input_mutex);
2034 device_del(&dev->dev);
2037 static void devm_input_device_unregister(struct device *dev, void *res)
2039 struct input_devres *devres = res;
2040 struct input_dev *input = devres->input;
2042 dev_dbg(dev, "%s: unregistering device %s\n",
2043 __func__, dev_name(&input->dev));
2044 __input_unregister_device(input);
2048 * input_enable_softrepeat - enable software autorepeat
2049 * @dev: input device
2050 * @delay: repeat delay
2051 * @period: repeat period
2053 * Enable software autorepeat on the input device.
2055 void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2057 dev->timer.data = (unsigned long) dev;
2058 dev->timer.function = input_repeat_key;
2059 dev->rep[REP_DELAY] = delay;
2060 dev->rep[REP_PERIOD] = period;
2062 EXPORT_SYMBOL(input_enable_softrepeat);
2065 * input_register_device - register device with input core
2066 * @dev: device to be registered
2068 * This function registers device with input core. The device must be
2069 * allocated with input_allocate_device() and all it's capabilities
2070 * set up before registering.
2071 * If function fails the device must be freed with input_free_device().
2072 * Once device has been successfully registered it can be unregistered
2073 * with input_unregister_device(); input_free_device() should not be
2074 * called in this case.
2076 * Note that this function is also used to register managed input devices
2077 * (ones allocated with devm_input_allocate_device()). Such managed input
2078 * devices need not be explicitly unregistered or freed, their tear down
2079 * is controlled by the devres infrastructure. It is also worth noting
2080 * that tear down of managed input devices is internally a 2-step process:
2081 * registered managed input device is first unregistered, but stays in
2082 * memory and can still handle input_event() calls (although events will
2083 * not be delivered anywhere). The freeing of managed input device will
2084 * happen later, when devres stack is unwound to the point where device
2085 * allocation was made.
2087 int input_register_device(struct input_dev *dev)
2089 struct input_devres *devres = NULL;
2090 struct input_handler *handler;
2091 unsigned int packet_size;
2092 const char *path;
2093 int error;
2095 if (dev->devres_managed) {
2096 devres = devres_alloc(devm_input_device_unregister,
2097 sizeof(struct input_devres), GFP_KERNEL);
2098 if (!devres)
2099 return -ENOMEM;
2101 devres->input = dev;
2104 /* Every input device generates EV_SYN/SYN_REPORT events. */
2105 __set_bit(EV_SYN, dev->evbit);
2107 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2108 __clear_bit(KEY_RESERVED, dev->keybit);
2110 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2111 input_cleanse_bitmasks(dev);
2113 packet_size = input_estimate_events_per_packet(dev);
2114 if (dev->hint_events_per_packet < packet_size)
2115 dev->hint_events_per_packet = packet_size;
2117 dev->max_vals = dev->hint_events_per_packet + 2;
2118 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2119 if (!dev->vals) {
2120 error = -ENOMEM;
2121 goto err_devres_free;
2125 * If delay and period are pre-set by the driver, then autorepeating
2126 * is handled by the driver itself and we don't do it in input.c.
2128 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2129 input_enable_softrepeat(dev, 250, 33);
2131 if (!dev->getkeycode)
2132 dev->getkeycode = input_default_getkeycode;
2134 if (!dev->setkeycode)
2135 dev->setkeycode = input_default_setkeycode;
2137 error = device_add(&dev->dev);
2138 if (error)
2139 goto err_free_vals;
2141 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2142 pr_info("%s as %s\n",
2143 dev->name ? dev->name : "Unspecified device",
2144 path ? path : "N/A");
2145 kfree(path);
2147 error = mutex_lock_interruptible(&input_mutex);
2148 if (error)
2149 goto err_device_del;
2151 list_add_tail(&dev->node, &input_dev_list);
2153 list_for_each_entry(handler, &input_handler_list, node)
2154 input_attach_handler(dev, handler);
2156 input_wakeup_procfs_readers();
2158 mutex_unlock(&input_mutex);
2160 if (dev->devres_managed) {
2161 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2162 __func__, dev_name(&dev->dev));
2163 devres_add(dev->dev.parent, devres);
2165 return 0;
2167 err_device_del:
2168 device_del(&dev->dev);
2169 err_free_vals:
2170 kfree(dev->vals);
2171 dev->vals = NULL;
2172 err_devres_free:
2173 devres_free(devres);
2174 return error;
2176 EXPORT_SYMBOL(input_register_device);
2179 * input_unregister_device - unregister previously registered device
2180 * @dev: device to be unregistered
2182 * This function unregisters an input device. Once device is unregistered
2183 * the caller should not try to access it as it may get freed at any moment.
2185 void input_unregister_device(struct input_dev *dev)
2187 if (dev->devres_managed) {
2188 WARN_ON(devres_destroy(dev->dev.parent,
2189 devm_input_device_unregister,
2190 devm_input_device_match,
2191 dev));
2192 __input_unregister_device(dev);
2194 * We do not do input_put_device() here because it will be done
2195 * when 2nd devres fires up.
2197 } else {
2198 __input_unregister_device(dev);
2199 input_put_device(dev);
2202 EXPORT_SYMBOL(input_unregister_device);
2205 * input_register_handler - register a new input handler
2206 * @handler: handler to be registered
2208 * This function registers a new input handler (interface) for input
2209 * devices in the system and attaches it to all input devices that
2210 * are compatible with the handler.
2212 int input_register_handler(struct input_handler *handler)
2214 struct input_dev *dev;
2215 int error;
2217 error = mutex_lock_interruptible(&input_mutex);
2218 if (error)
2219 return error;
2221 INIT_LIST_HEAD(&handler->h_list);
2223 list_add_tail(&handler->node, &input_handler_list);
2225 list_for_each_entry(dev, &input_dev_list, node)
2226 input_attach_handler(dev, handler);
2228 input_wakeup_procfs_readers();
2230 mutex_unlock(&input_mutex);
2231 return 0;
2233 EXPORT_SYMBOL(input_register_handler);
2236 * input_unregister_handler - unregisters an input handler
2237 * @handler: handler to be unregistered
2239 * This function disconnects a handler from its input devices and
2240 * removes it from lists of known handlers.
2242 void input_unregister_handler(struct input_handler *handler)
2244 struct input_handle *handle, *next;
2246 mutex_lock(&input_mutex);
2248 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2249 handler->disconnect(handle);
2250 WARN_ON(!list_empty(&handler->h_list));
2252 list_del_init(&handler->node);
2254 input_wakeup_procfs_readers();
2256 mutex_unlock(&input_mutex);
2258 EXPORT_SYMBOL(input_unregister_handler);
2261 * input_handler_for_each_handle - handle iterator
2262 * @handler: input handler to iterate
2263 * @data: data for the callback
2264 * @fn: function to be called for each handle
2266 * Iterate over @bus's list of devices, and call @fn for each, passing
2267 * it @data and stop when @fn returns a non-zero value. The function is
2268 * using RCU to traverse the list and therefore may be using in atomic
2269 * contexts. The @fn callback is invoked from RCU critical section and
2270 * thus must not sleep.
2272 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2273 int (*fn)(struct input_handle *, void *))
2275 struct input_handle *handle;
2276 int retval = 0;
2278 rcu_read_lock();
2280 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2281 retval = fn(handle, data);
2282 if (retval)
2283 break;
2286 rcu_read_unlock();
2288 return retval;
2290 EXPORT_SYMBOL(input_handler_for_each_handle);
2293 * input_register_handle - register a new input handle
2294 * @handle: handle to register
2296 * This function puts a new input handle onto device's
2297 * and handler's lists so that events can flow through
2298 * it once it is opened using input_open_device().
2300 * This function is supposed to be called from handler's
2301 * connect() method.
2303 int input_register_handle(struct input_handle *handle)
2305 struct input_handler *handler = handle->handler;
2306 struct input_dev *dev = handle->dev;
2307 int error;
2310 * We take dev->mutex here to prevent race with
2311 * input_release_device().
2313 error = mutex_lock_interruptible(&dev->mutex);
2314 if (error)
2315 return error;
2318 * Filters go to the head of the list, normal handlers
2319 * to the tail.
2321 if (handler->filter)
2322 list_add_rcu(&handle->d_node, &dev->h_list);
2323 else
2324 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2326 mutex_unlock(&dev->mutex);
2329 * Since we are supposed to be called from ->connect()
2330 * which is mutually exclusive with ->disconnect()
2331 * we can't be racing with input_unregister_handle()
2332 * and so separate lock is not needed here.
2334 list_add_tail_rcu(&handle->h_node, &handler->h_list);
2336 if (handler->start)
2337 handler->start(handle);
2339 return 0;
2341 EXPORT_SYMBOL(input_register_handle);
2344 * input_unregister_handle - unregister an input handle
2345 * @handle: handle to unregister
2347 * This function removes input handle from device's
2348 * and handler's lists.
2350 * This function is supposed to be called from handler's
2351 * disconnect() method.
2353 void input_unregister_handle(struct input_handle *handle)
2355 struct input_dev *dev = handle->dev;
2357 list_del_rcu(&handle->h_node);
2360 * Take dev->mutex to prevent race with input_release_device().
2362 mutex_lock(&dev->mutex);
2363 list_del_rcu(&handle->d_node);
2364 mutex_unlock(&dev->mutex);
2366 synchronize_rcu();
2368 EXPORT_SYMBOL(input_unregister_handle);
2371 * input_get_new_minor - allocates a new input minor number
2372 * @legacy_base: beginning or the legacy range to be searched
2373 * @legacy_num: size of legacy range
2374 * @allow_dynamic: whether we can also take ID from the dynamic range
2376 * This function allocates a new device minor for from input major namespace.
2377 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2378 * parameters and whether ID can be allocated from dynamic range if there are
2379 * no free IDs in legacy range.
2381 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2382 bool allow_dynamic)
2385 * This function should be called from input handler's ->connect()
2386 * methods, which are serialized with input_mutex, so no additional
2387 * locking is needed here.
2389 if (legacy_base >= 0) {
2390 int minor = ida_simple_get(&input_ida,
2391 legacy_base,
2392 legacy_base + legacy_num,
2393 GFP_KERNEL);
2394 if (minor >= 0 || !allow_dynamic)
2395 return minor;
2398 return ida_simple_get(&input_ida,
2399 INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2400 GFP_KERNEL);
2402 EXPORT_SYMBOL(input_get_new_minor);
2405 * input_free_minor - release previously allocated minor
2406 * @minor: minor to be released
2408 * This function releases previously allocated input minor so that it can be
2409 * reused later.
2411 void input_free_minor(unsigned int minor)
2413 ida_simple_remove(&input_ida, minor);
2415 EXPORT_SYMBOL(input_free_minor);
2417 static int __init input_init(void)
2419 int err;
2421 err = class_register(&input_class);
2422 if (err) {
2423 pr_err("unable to register input_dev class\n");
2424 return err;
2427 err = input_proc_init();
2428 if (err)
2429 goto fail1;
2431 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2432 INPUT_MAX_CHAR_DEVICES, "input");
2433 if (err) {
2434 pr_err("unable to register char major %d", INPUT_MAJOR);
2435 goto fail2;
2438 return 0;
2440 fail2: input_proc_exit();
2441 fail1: class_unregister(&input_class);
2442 return err;
2445 static void __exit input_exit(void)
2447 input_proc_exit();
2448 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2449 INPUT_MAX_CHAR_DEVICES);
2450 class_unregister(&input_class);
2453 subsys_initcall(input_init);
2454 module_exit(input_exit);