2 * A fairly generic DMA-API to IOMMU-API glue layer.
4 * Copyright (C) 2014-2015 ARM Ltd.
6 * based in part on arch/arm/mm/dma-mapping.c:
7 * Copyright (C) 2000-2004 Russell King
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
22 #include <linux/device.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/gfp.h>
25 #include <linux/huge_mm.h>
26 #include <linux/iommu.h>
27 #include <linux/iova.h>
29 #include <linux/scatterlist.h>
30 #include <linux/vmalloc.h>
32 int iommu_dma_init(void)
34 return iova_cache_get();
38 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
39 * @domain: IOMMU domain to prepare for DMA-API usage
41 * IOMMU drivers should normally call this from their domain_alloc
42 * callback when domain->type == IOMMU_DOMAIN_DMA.
44 int iommu_get_dma_cookie(struct iommu_domain
*domain
)
46 struct iova_domain
*iovad
;
48 if (domain
->iova_cookie
)
51 iovad
= kzalloc(sizeof(*iovad
), GFP_KERNEL
);
52 domain
->iova_cookie
= iovad
;
54 return iovad
? 0 : -ENOMEM
;
56 EXPORT_SYMBOL(iommu_get_dma_cookie
);
59 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
60 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
62 * IOMMU drivers should normally call this from their domain_free callback.
64 void iommu_put_dma_cookie(struct iommu_domain
*domain
)
66 struct iova_domain
*iovad
= domain
->iova_cookie
;
71 put_iova_domain(iovad
);
73 domain
->iova_cookie
= NULL
;
75 EXPORT_SYMBOL(iommu_put_dma_cookie
);
78 * iommu_dma_init_domain - Initialise a DMA mapping domain
79 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
80 * @base: IOVA at which the mappable address space starts
81 * @size: Size of IOVA space
83 * @base and @size should be exact multiples of IOMMU page granularity to
84 * avoid rounding surprises. If necessary, we reserve the page at address 0
85 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
86 * any change which could make prior IOVAs invalid will fail.
88 int iommu_dma_init_domain(struct iommu_domain
*domain
, dma_addr_t base
, u64 size
)
90 struct iova_domain
*iovad
= domain
->iova_cookie
;
91 unsigned long order
, base_pfn
, end_pfn
;
96 /* Use the smallest supported page size for IOVA granularity */
97 order
= __ffs(domain
->ops
->pgsize_bitmap
);
98 base_pfn
= max_t(unsigned long, 1, base
>> order
);
99 end_pfn
= (base
+ size
- 1) >> order
;
101 /* Check the domain allows at least some access to the device... */
102 if (domain
->geometry
.force_aperture
) {
103 if (base
> domain
->geometry
.aperture_end
||
104 base
+ size
<= domain
->geometry
.aperture_start
) {
105 pr_warn("specified DMA range outside IOMMU capability\n");
108 /* ...then finally give it a kicking to make sure it fits */
109 base_pfn
= max_t(unsigned long, base_pfn
,
110 domain
->geometry
.aperture_start
>> order
);
111 end_pfn
= min_t(unsigned long, end_pfn
,
112 domain
->geometry
.aperture_end
>> order
);
115 /* All we can safely do with an existing domain is enlarge it */
116 if (iovad
->start_pfn
) {
117 if (1UL << order
!= iovad
->granule
||
118 base_pfn
!= iovad
->start_pfn
||
119 end_pfn
< iovad
->dma_32bit_pfn
) {
120 pr_warn("Incompatible range for DMA domain\n");
123 iovad
->dma_32bit_pfn
= end_pfn
;
125 init_iova_domain(iovad
, 1UL << order
, base_pfn
, end_pfn
);
129 EXPORT_SYMBOL(iommu_dma_init_domain
);
132 * dma_direction_to_prot - Translate DMA API directions to IOMMU API page flags
133 * @dir: Direction of DMA transfer
134 * @coherent: Is the DMA master cache-coherent?
136 * Return: corresponding IOMMU API page protection flags
138 int dma_direction_to_prot(enum dma_data_direction dir
, bool coherent
)
140 int prot
= coherent
? IOMMU_CACHE
: 0;
143 case DMA_BIDIRECTIONAL
:
144 return prot
| IOMMU_READ
| IOMMU_WRITE
;
146 return prot
| IOMMU_READ
;
147 case DMA_FROM_DEVICE
:
148 return prot
| IOMMU_WRITE
;
154 static struct iova
*__alloc_iova(struct iova_domain
*iovad
, size_t size
,
155 dma_addr_t dma_limit
)
157 unsigned long shift
= iova_shift(iovad
);
158 unsigned long length
= iova_align(iovad
, size
) >> shift
;
161 * Enforce size-alignment to be safe - there could perhaps be an
162 * attribute to control this per-device, or at least per-domain...
164 return alloc_iova(iovad
, length
, dma_limit
>> shift
, true);
167 /* The IOVA allocator knows what we mapped, so just unmap whatever that was */
168 static void __iommu_dma_unmap(struct iommu_domain
*domain
, dma_addr_t dma_addr
)
170 struct iova_domain
*iovad
= domain
->iova_cookie
;
171 unsigned long shift
= iova_shift(iovad
);
172 unsigned long pfn
= dma_addr
>> shift
;
173 struct iova
*iova
= find_iova(iovad
, pfn
);
179 size
= iova_size(iova
) << shift
;
180 size
-= iommu_unmap(domain
, pfn
<< shift
, size
);
181 /* ...and if we can't, then something is horribly, horribly wrong */
183 __free_iova(iovad
, iova
);
186 static void __iommu_dma_free_pages(struct page
**pages
, int count
)
189 __free_page(pages
[count
]);
193 static struct page
**__iommu_dma_alloc_pages(unsigned int count
, gfp_t gfp
)
196 unsigned int i
= 0, array_size
= count
* sizeof(*pages
);
197 unsigned int order
= MAX_ORDER
;
199 if (array_size
<= PAGE_SIZE
)
200 pages
= kzalloc(array_size
, GFP_KERNEL
);
202 pages
= vzalloc(array_size
);
206 /* IOMMU can map any pages, so himem can also be used here */
207 gfp
|= __GFP_NOWARN
| __GFP_HIGHMEM
;
210 struct page
*page
= NULL
;
214 * Higher-order allocations are a convenience rather
215 * than a necessity, hence using __GFP_NORETRY until
216 * falling back to single-page allocations.
218 for (order
= min_t(unsigned int, order
, __fls(count
));
219 order
> 0; order
--) {
220 page
= alloc_pages(gfp
| __GFP_NORETRY
, order
);
223 if (PageCompound(page
)) {
224 if (!split_huge_page(page
))
226 __free_pages(page
, order
);
228 split_page(page
, order
);
233 page
= alloc_page(gfp
);
235 __iommu_dma_free_pages(pages
, i
);
247 * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc()
248 * @dev: Device which owns this buffer
249 * @pages: Array of buffer pages as returned by iommu_dma_alloc()
250 * @size: Size of buffer in bytes
251 * @handle: DMA address of buffer
253 * Frees both the pages associated with the buffer, and the array
256 void iommu_dma_free(struct device
*dev
, struct page
**pages
, size_t size
,
259 __iommu_dma_unmap(iommu_get_domain_for_dev(dev
), *handle
);
260 __iommu_dma_free_pages(pages
, PAGE_ALIGN(size
) >> PAGE_SHIFT
);
261 *handle
= DMA_ERROR_CODE
;
265 * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space
266 * @dev: Device to allocate memory for. Must be a real device
267 * attached to an iommu_dma_domain
268 * @size: Size of buffer in bytes
269 * @gfp: Allocation flags
270 * @prot: IOMMU mapping flags
271 * @handle: Out argument for allocated DMA handle
272 * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the
273 * given VA/PA are visible to the given non-coherent device.
275 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
276 * but an IOMMU which supports smaller pages might not map the whole thing.
278 * Return: Array of struct page pointers describing the buffer,
279 * or NULL on failure.
281 struct page
**iommu_dma_alloc(struct device
*dev
, size_t size
,
282 gfp_t gfp
, int prot
, dma_addr_t
*handle
,
283 void (*flush_page
)(struct device
*, const void *, phys_addr_t
))
285 struct iommu_domain
*domain
= iommu_get_domain_for_dev(dev
);
286 struct iova_domain
*iovad
= domain
->iova_cookie
;
291 unsigned int count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
293 *handle
= DMA_ERROR_CODE
;
295 pages
= __iommu_dma_alloc_pages(count
, gfp
);
299 iova
= __alloc_iova(iovad
, size
, dev
->coherent_dma_mask
);
303 size
= iova_align(iovad
, size
);
304 if (sg_alloc_table_from_pages(&sgt
, pages
, count
, 0, size
, GFP_KERNEL
))
307 if (!(prot
& IOMMU_CACHE
)) {
308 struct sg_mapping_iter miter
;
310 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't
311 * sufficient here, so skip it by using the "wrong" direction.
313 sg_miter_start(&miter
, sgt
.sgl
, sgt
.orig_nents
, SG_MITER_FROM_SG
);
314 while (sg_miter_next(&miter
))
315 flush_page(dev
, miter
.addr
, page_to_phys(miter
.page
));
316 sg_miter_stop(&miter
);
319 dma_addr
= iova_dma_addr(iovad
, iova
);
320 if (iommu_map_sg(domain
, dma_addr
, sgt
.sgl
, sgt
.orig_nents
, prot
)
331 __free_iova(iovad
, iova
);
333 __iommu_dma_free_pages(pages
, count
);
338 * iommu_dma_mmap - Map a buffer into provided user VMA
339 * @pages: Array representing buffer from iommu_dma_alloc()
340 * @size: Size of buffer in bytes
341 * @vma: VMA describing requested userspace mapping
343 * Maps the pages of the buffer in @pages into @vma. The caller is responsible
344 * for verifying the correct size and protection of @vma beforehand.
347 int iommu_dma_mmap(struct page
**pages
, size_t size
, struct vm_area_struct
*vma
)
349 unsigned long uaddr
= vma
->vm_start
;
350 unsigned int i
, count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
353 for (i
= vma
->vm_pgoff
; i
< count
&& uaddr
< vma
->vm_end
; i
++) {
354 ret
= vm_insert_page(vma
, uaddr
, pages
[i
]);
362 dma_addr_t
iommu_dma_map_page(struct device
*dev
, struct page
*page
,
363 unsigned long offset
, size_t size
, int prot
)
366 struct iommu_domain
*domain
= iommu_get_domain_for_dev(dev
);
367 struct iova_domain
*iovad
= domain
->iova_cookie
;
368 phys_addr_t phys
= page_to_phys(page
) + offset
;
369 size_t iova_off
= iova_offset(iovad
, phys
);
370 size_t len
= iova_align(iovad
, size
+ iova_off
);
371 struct iova
*iova
= __alloc_iova(iovad
, len
, dma_get_mask(dev
));
374 return DMA_ERROR_CODE
;
376 dma_addr
= iova_dma_addr(iovad
, iova
);
377 if (iommu_map(domain
, dma_addr
, phys
- iova_off
, len
, prot
)) {
378 __free_iova(iovad
, iova
);
379 return DMA_ERROR_CODE
;
381 return dma_addr
+ iova_off
;
384 void iommu_dma_unmap_page(struct device
*dev
, dma_addr_t handle
, size_t size
,
385 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
387 __iommu_dma_unmap(iommu_get_domain_for_dev(dev
), handle
);
391 * Prepare a successfully-mapped scatterlist to give back to the caller.
392 * Handling IOVA concatenation can come later, if needed
394 static int __finalise_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
397 struct scatterlist
*s
;
400 for_each_sg(sg
, s
, nents
, i
) {
401 /* Un-swizzling the fields here, hence the naming mismatch */
402 unsigned int s_offset
= sg_dma_address(s
);
403 unsigned int s_length
= sg_dma_len(s
);
404 unsigned int s_dma_len
= s
->length
;
406 s
->offset
= s_offset
;
407 s
->length
= s_length
;
408 sg_dma_address(s
) = dma_addr
+ s_offset
;
409 dma_addr
+= s_dma_len
;
415 * If mapping failed, then just restore the original list,
416 * but making sure the DMA fields are invalidated.
418 static void __invalidate_sg(struct scatterlist
*sg
, int nents
)
420 struct scatterlist
*s
;
423 for_each_sg(sg
, s
, nents
, i
) {
424 if (sg_dma_address(s
) != DMA_ERROR_CODE
)
425 s
->offset
= sg_dma_address(s
);
427 s
->length
= sg_dma_len(s
);
428 sg_dma_address(s
) = DMA_ERROR_CODE
;
434 * The DMA API client is passing in a scatterlist which could describe
435 * any old buffer layout, but the IOMMU API requires everything to be
436 * aligned to IOMMU pages. Hence the need for this complicated bit of
437 * impedance-matching, to be able to hand off a suitably-aligned list,
438 * but still preserve the original offsets and sizes for the caller.
440 int iommu_dma_map_sg(struct device
*dev
, struct scatterlist
*sg
,
443 struct iommu_domain
*domain
= iommu_get_domain_for_dev(dev
);
444 struct iova_domain
*iovad
= domain
->iova_cookie
;
446 struct scatterlist
*s
, *prev
= NULL
;
452 * Work out how much IOVA space we need, and align the segments to
453 * IOVA granules for the IOMMU driver to handle. With some clever
454 * trickery we can modify the list in-place, but reversibly, by
455 * hiding the original data in the as-yet-unused DMA fields.
457 for_each_sg(sg
, s
, nents
, i
) {
458 size_t s_offset
= iova_offset(iovad
, s
->offset
);
459 size_t s_length
= s
->length
;
461 sg_dma_address(s
) = s_offset
;
462 sg_dma_len(s
) = s_length
;
463 s
->offset
-= s_offset
;
464 s_length
= iova_align(iovad
, s_length
+ s_offset
);
465 s
->length
= s_length
;
468 * The simple way to avoid the rare case of a segment
469 * crossing the boundary mask is to pad the previous one
470 * to end at a naturally-aligned IOVA for this one's size,
471 * at the cost of potentially over-allocating a little.
474 size_t pad_len
= roundup_pow_of_two(s_length
);
476 pad_len
= (pad_len
- iova_len
) & (pad_len
- 1);
477 prev
->length
+= pad_len
;
481 iova_len
+= s_length
;
485 iova
= __alloc_iova(iovad
, iova_len
, dma_get_mask(dev
));
490 * We'll leave any physical concatenation to the IOMMU driver's
491 * implementation - it knows better than we do.
493 dma_addr
= iova_dma_addr(iovad
, iova
);
494 if (iommu_map_sg(domain
, dma_addr
, sg
, nents
, prot
) < iova_len
)
497 return __finalise_sg(dev
, sg
, nents
, dma_addr
);
500 __free_iova(iovad
, iova
);
502 __invalidate_sg(sg
, nents
);
506 void iommu_dma_unmap_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
507 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
510 * The scatterlist segments are mapped into a single
511 * contiguous IOVA allocation, so this is incredibly easy.
513 __iommu_dma_unmap(iommu_get_domain_for_dev(dev
), sg_dma_address(sg
));
516 int iommu_dma_supported(struct device
*dev
, u64 mask
)
519 * 'Special' IOMMUs which don't have the same addressing capability
520 * as the CPU will have to wait until we have some way to query that
521 * before they'll be able to use this framework.
526 int iommu_dma_mapping_error(struct device
*dev
, dma_addr_t dma_addr
)
528 return dma_addr
== DMA_ERROR_CODE
;