of: MSI: Simplify irqdomain lookup
[linux/fpc-iii.git] / drivers / iommu / fsl_pamu.c
bloba34355fca37a555e5d5df308bd8df69f4a830b47
1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
11 * You should have received a copy of the GNU General Public License
12 * along with this program; if not, write to the Free Software
13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
15 * Copyright (C) 2013 Freescale Semiconductor, Inc.
19 #define pr_fmt(fmt) "fsl-pamu: %s: " fmt, __func__
21 #include "fsl_pamu.h"
23 #include <linux/fsl/guts.h>
24 #include <linux/interrupt.h>
25 #include <linux/genalloc.h>
27 #include <asm/mpc85xx.h>
29 /* define indexes for each operation mapping scenario */
30 #define OMI_QMAN 0x00
31 #define OMI_FMAN 0x01
32 #define OMI_QMAN_PRIV 0x02
33 #define OMI_CAAM 0x03
35 #define make64(high, low) (((u64)(high) << 32) | (low))
37 struct pamu_isr_data {
38 void __iomem *pamu_reg_base; /* Base address of PAMU regs */
39 unsigned int count; /* The number of PAMUs */
42 static struct paace *ppaact;
43 static struct paace *spaact;
46 * Table for matching compatible strings, for device tree
47 * guts node, for QorIQ SOCs.
48 * "fsl,qoriq-device-config-2.0" corresponds to T4 & B4
49 * SOCs. For the older SOCs "fsl,qoriq-device-config-1.0"
50 * string would be used.
52 static const struct of_device_id guts_device_ids[] = {
53 { .compatible = "fsl,qoriq-device-config-1.0", },
54 { .compatible = "fsl,qoriq-device-config-2.0", },
59 * Table for matching compatible strings, for device tree
60 * L3 cache controller node.
61 * "fsl,t4240-l3-cache-controller" corresponds to T4,
62 * "fsl,b4860-l3-cache-controller" corresponds to B4 &
63 * "fsl,p4080-l3-cache-controller" corresponds to other,
64 * SOCs.
66 static const struct of_device_id l3_device_ids[] = {
67 { .compatible = "fsl,t4240-l3-cache-controller", },
68 { .compatible = "fsl,b4860-l3-cache-controller", },
69 { .compatible = "fsl,p4080-l3-cache-controller", },
73 /* maximum subwindows permitted per liodn */
74 static u32 max_subwindow_count;
76 /* Pool for fspi allocation */
77 static struct gen_pool *spaace_pool;
79 /**
80 * pamu_get_max_subwin_cnt() - Return the maximum supported
81 * subwindow count per liodn.
84 u32 pamu_get_max_subwin_cnt(void)
86 return max_subwindow_count;
89 /**
90 * pamu_get_ppaace() - Return the primary PACCE
91 * @liodn: liodn PAACT index for desired PAACE
93 * Returns the ppace pointer upon success else return
94 * null.
96 static struct paace *pamu_get_ppaace(int liodn)
98 if (!ppaact || liodn >= PAACE_NUMBER_ENTRIES) {
99 pr_debug("PPAACT doesn't exist\n");
100 return NULL;
103 return &ppaact[liodn];
107 * pamu_enable_liodn() - Set valid bit of PACCE
108 * @liodn: liodn PAACT index for desired PAACE
110 * Returns 0 upon success else error code < 0 returned
112 int pamu_enable_liodn(int liodn)
114 struct paace *ppaace;
116 ppaace = pamu_get_ppaace(liodn);
117 if (!ppaace) {
118 pr_debug("Invalid primary paace entry\n");
119 return -ENOENT;
122 if (!get_bf(ppaace->addr_bitfields, PPAACE_AF_WSE)) {
123 pr_debug("liodn %d not configured\n", liodn);
124 return -EINVAL;
127 /* Ensure that all other stores to the ppaace complete first */
128 mb();
130 set_bf(ppaace->addr_bitfields, PAACE_AF_V, PAACE_V_VALID);
131 mb();
133 return 0;
137 * pamu_disable_liodn() - Clears valid bit of PACCE
138 * @liodn: liodn PAACT index for desired PAACE
140 * Returns 0 upon success else error code < 0 returned
142 int pamu_disable_liodn(int liodn)
144 struct paace *ppaace;
146 ppaace = pamu_get_ppaace(liodn);
147 if (!ppaace) {
148 pr_debug("Invalid primary paace entry\n");
149 return -ENOENT;
152 set_bf(ppaace->addr_bitfields, PAACE_AF_V, PAACE_V_INVALID);
153 mb();
155 return 0;
158 /* Derive the window size encoding for a particular PAACE entry */
159 static unsigned int map_addrspace_size_to_wse(phys_addr_t addrspace_size)
161 /* Bug if not a power of 2 */
162 BUG_ON(addrspace_size & (addrspace_size - 1));
164 /* window size is 2^(WSE+1) bytes */
165 return fls64(addrspace_size) - 2;
168 /* Derive the PAACE window count encoding for the subwindow count */
169 static unsigned int map_subwindow_cnt_to_wce(u32 subwindow_cnt)
171 /* window count is 2^(WCE+1) bytes */
172 return __ffs(subwindow_cnt) - 1;
176 * Set the PAACE type as primary and set the coherency required domain
177 * attribute
179 static void pamu_init_ppaace(struct paace *ppaace)
181 set_bf(ppaace->addr_bitfields, PAACE_AF_PT, PAACE_PT_PRIMARY);
183 set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
184 PAACE_M_COHERENCE_REQ);
188 * Set the PAACE type as secondary and set the coherency required domain
189 * attribute.
191 static void pamu_init_spaace(struct paace *spaace)
193 set_bf(spaace->addr_bitfields, PAACE_AF_PT, PAACE_PT_SECONDARY);
194 set_bf(spaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
195 PAACE_M_COHERENCE_REQ);
199 * Return the spaace (corresponding to the secondary window index)
200 * for a particular ppaace.
202 static struct paace *pamu_get_spaace(struct paace *paace, u32 wnum)
204 u32 subwin_cnt;
205 struct paace *spaace = NULL;
207 subwin_cnt = 1UL << (get_bf(paace->impl_attr, PAACE_IA_WCE) + 1);
209 if (wnum < subwin_cnt)
210 spaace = &spaact[paace->fspi + wnum];
211 else
212 pr_debug("secondary paace out of bounds\n");
214 return spaace;
218 * pamu_get_fspi_and_allocate() - Allocates fspi index and reserves subwindows
219 * required for primary PAACE in the secondary
220 * PAACE table.
221 * @subwin_cnt: Number of subwindows to be reserved.
223 * A PPAACE entry may have a number of associated subwindows. A subwindow
224 * corresponds to a SPAACE entry in the SPAACT table. Each PAACE entry stores
225 * the index (fspi) of the first SPAACE entry in the SPAACT table. This
226 * function returns the index of the first SPAACE entry. The remaining
227 * SPAACE entries are reserved contiguously from that index.
229 * Returns a valid fspi index in the range of 0 - SPAACE_NUMBER_ENTRIES on success.
230 * If no SPAACE entry is available or the allocator can not reserve the required
231 * number of contiguous entries function returns ULONG_MAX indicating a failure.
234 static unsigned long pamu_get_fspi_and_allocate(u32 subwin_cnt)
236 unsigned long spaace_addr;
238 spaace_addr = gen_pool_alloc(spaace_pool, subwin_cnt * sizeof(struct paace));
239 if (!spaace_addr)
240 return ULONG_MAX;
242 return (spaace_addr - (unsigned long)spaact) / (sizeof(struct paace));
245 /* Release the subwindows reserved for a particular LIODN */
246 void pamu_free_subwins(int liodn)
248 struct paace *ppaace;
249 u32 subwin_cnt, size;
251 ppaace = pamu_get_ppaace(liodn);
252 if (!ppaace) {
253 pr_debug("Invalid liodn entry\n");
254 return;
257 if (get_bf(ppaace->addr_bitfields, PPAACE_AF_MW)) {
258 subwin_cnt = 1UL << (get_bf(ppaace->impl_attr, PAACE_IA_WCE) + 1);
259 size = (subwin_cnt - 1) * sizeof(struct paace);
260 gen_pool_free(spaace_pool, (unsigned long)&spaact[ppaace->fspi], size);
261 set_bf(ppaace->addr_bitfields, PPAACE_AF_MW, 0);
266 * Function used for updating stash destination for the coressponding
267 * LIODN.
269 int pamu_update_paace_stash(int liodn, u32 subwin, u32 value)
271 struct paace *paace;
273 paace = pamu_get_ppaace(liodn);
274 if (!paace) {
275 pr_debug("Invalid liodn entry\n");
276 return -ENOENT;
278 if (subwin) {
279 paace = pamu_get_spaace(paace, subwin - 1);
280 if (!paace)
281 return -ENOENT;
283 set_bf(paace->impl_attr, PAACE_IA_CID, value);
285 mb();
287 return 0;
290 /* Disable a subwindow corresponding to the LIODN */
291 int pamu_disable_spaace(int liodn, u32 subwin)
293 struct paace *paace;
295 paace = pamu_get_ppaace(liodn);
296 if (!paace) {
297 pr_debug("Invalid liodn entry\n");
298 return -ENOENT;
300 if (subwin) {
301 paace = pamu_get_spaace(paace, subwin - 1);
302 if (!paace)
303 return -ENOENT;
304 set_bf(paace->addr_bitfields, PAACE_AF_V, PAACE_V_INVALID);
305 } else {
306 set_bf(paace->addr_bitfields, PAACE_AF_AP,
307 PAACE_AP_PERMS_DENIED);
310 mb();
312 return 0;
316 * pamu_config_paace() - Sets up PPAACE entry for specified liodn
318 * @liodn: Logical IO device number
319 * @win_addr: starting address of DSA window
320 * @win-size: size of DSA window
321 * @omi: Operation mapping index -- if ~omi == 0 then omi not defined
322 * @rpn: real (true physical) page number
323 * @stashid: cache stash id for associated cpu -- if ~stashid == 0 then
324 * stashid not defined
325 * @snoopid: snoop id for hardware coherency -- if ~snoopid == 0 then
326 * snoopid not defined
327 * @subwin_cnt: number of sub-windows
328 * @prot: window permissions
330 * Returns 0 upon success else error code < 0 returned
332 int pamu_config_ppaace(int liodn, phys_addr_t win_addr, phys_addr_t win_size,
333 u32 omi, unsigned long rpn, u32 snoopid, u32 stashid,
334 u32 subwin_cnt, int prot)
336 struct paace *ppaace;
337 unsigned long fspi;
339 if ((win_size & (win_size - 1)) || win_size < PAMU_PAGE_SIZE) {
340 pr_debug("window size too small or not a power of two %pa\n",
341 &win_size);
342 return -EINVAL;
345 if (win_addr & (win_size - 1)) {
346 pr_debug("window address is not aligned with window size\n");
347 return -EINVAL;
350 ppaace = pamu_get_ppaace(liodn);
351 if (!ppaace)
352 return -ENOENT;
354 /* window size is 2^(WSE+1) bytes */
355 set_bf(ppaace->addr_bitfields, PPAACE_AF_WSE,
356 map_addrspace_size_to_wse(win_size));
358 pamu_init_ppaace(ppaace);
360 ppaace->wbah = win_addr >> (PAMU_PAGE_SHIFT + 20);
361 set_bf(ppaace->addr_bitfields, PPAACE_AF_WBAL,
362 (win_addr >> PAMU_PAGE_SHIFT));
364 /* set up operation mapping if it's configured */
365 if (omi < OME_NUMBER_ENTRIES) {
366 set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
367 ppaace->op_encode.index_ot.omi = omi;
368 } else if (~omi != 0) {
369 pr_debug("bad operation mapping index: %d\n", omi);
370 return -EINVAL;
373 /* configure stash id */
374 if (~stashid != 0)
375 set_bf(ppaace->impl_attr, PAACE_IA_CID, stashid);
377 /* configure snoop id */
378 if (~snoopid != 0)
379 ppaace->domain_attr.to_host.snpid = snoopid;
381 if (subwin_cnt) {
382 /* The first entry is in the primary PAACE instead */
383 fspi = pamu_get_fspi_and_allocate(subwin_cnt - 1);
384 if (fspi == ULONG_MAX) {
385 pr_debug("spaace indexes exhausted\n");
386 return -EINVAL;
389 /* window count is 2^(WCE+1) bytes */
390 set_bf(ppaace->impl_attr, PAACE_IA_WCE,
391 map_subwindow_cnt_to_wce(subwin_cnt));
392 set_bf(ppaace->addr_bitfields, PPAACE_AF_MW, 0x1);
393 ppaace->fspi = fspi;
394 } else {
395 set_bf(ppaace->impl_attr, PAACE_IA_ATM, PAACE_ATM_WINDOW_XLATE);
396 ppaace->twbah = rpn >> 20;
397 set_bf(ppaace->win_bitfields, PAACE_WIN_TWBAL, rpn);
398 set_bf(ppaace->addr_bitfields, PAACE_AF_AP, prot);
399 set_bf(ppaace->impl_attr, PAACE_IA_WCE, 0);
400 set_bf(ppaace->addr_bitfields, PPAACE_AF_MW, 0);
402 mb();
404 return 0;
408 * pamu_config_spaace() - Sets up SPAACE entry for specified subwindow
410 * @liodn: Logical IO device number
411 * @subwin_cnt: number of sub-windows associated with dma-window
412 * @subwin: subwindow index
413 * @subwin_size: size of subwindow
414 * @omi: Operation mapping index
415 * @rpn: real (true physical) page number
416 * @snoopid: snoop id for hardware coherency -- if ~snoopid == 0 then
417 * snoopid not defined
418 * @stashid: cache stash id for associated cpu
419 * @enable: enable/disable subwindow after reconfiguration
420 * @prot: sub window permissions
422 * Returns 0 upon success else error code < 0 returned
424 int pamu_config_spaace(int liodn, u32 subwin_cnt, u32 subwin,
425 phys_addr_t subwin_size, u32 omi, unsigned long rpn,
426 u32 snoopid, u32 stashid, int enable, int prot)
428 struct paace *paace;
430 /* setup sub-windows */
431 if (!subwin_cnt) {
432 pr_debug("Invalid subwindow count\n");
433 return -EINVAL;
436 paace = pamu_get_ppaace(liodn);
437 if (subwin > 0 && subwin < subwin_cnt && paace) {
438 paace = pamu_get_spaace(paace, subwin - 1);
440 if (paace && !(paace->addr_bitfields & PAACE_V_VALID)) {
441 pamu_init_spaace(paace);
442 set_bf(paace->addr_bitfields, SPAACE_AF_LIODN, liodn);
446 if (!paace) {
447 pr_debug("Invalid liodn entry\n");
448 return -ENOENT;
451 if ((subwin_size & (subwin_size - 1)) || subwin_size < PAMU_PAGE_SIZE) {
452 pr_debug("subwindow size out of range, or not a power of 2\n");
453 return -EINVAL;
456 if (rpn == ULONG_MAX) {
457 pr_debug("real page number out of range\n");
458 return -EINVAL;
461 /* window size is 2^(WSE+1) bytes */
462 set_bf(paace->win_bitfields, PAACE_WIN_SWSE,
463 map_addrspace_size_to_wse(subwin_size));
465 set_bf(paace->impl_attr, PAACE_IA_ATM, PAACE_ATM_WINDOW_XLATE);
466 paace->twbah = rpn >> 20;
467 set_bf(paace->win_bitfields, PAACE_WIN_TWBAL, rpn);
468 set_bf(paace->addr_bitfields, PAACE_AF_AP, prot);
470 /* configure snoop id */
471 if (~snoopid != 0)
472 paace->domain_attr.to_host.snpid = snoopid;
474 /* set up operation mapping if it's configured */
475 if (omi < OME_NUMBER_ENTRIES) {
476 set_bf(paace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
477 paace->op_encode.index_ot.omi = omi;
478 } else if (~omi != 0) {
479 pr_debug("bad operation mapping index: %d\n", omi);
480 return -EINVAL;
483 if (~stashid != 0)
484 set_bf(paace->impl_attr, PAACE_IA_CID, stashid);
486 smp_wmb();
488 if (enable)
489 set_bf(paace->addr_bitfields, PAACE_AF_V, PAACE_V_VALID);
491 mb();
493 return 0;
497 * get_ome_index() - Returns the index in the operation mapping table
498 * for device.
499 * @*omi_index: pointer for storing the index value
502 void get_ome_index(u32 *omi_index, struct device *dev)
504 if (of_device_is_compatible(dev->of_node, "fsl,qman-portal"))
505 *omi_index = OMI_QMAN;
506 if (of_device_is_compatible(dev->of_node, "fsl,qman"))
507 *omi_index = OMI_QMAN_PRIV;
511 * get_stash_id - Returns stash destination id corresponding to a
512 * cache type and vcpu.
513 * @stash_dest_hint: L1, L2 or L3
514 * @vcpu: vpcu target for a particular cache type.
516 * Returs stash on success or ~(u32)0 on failure.
519 u32 get_stash_id(u32 stash_dest_hint, u32 vcpu)
521 const u32 *prop;
522 struct device_node *node;
523 u32 cache_level;
524 int len, found = 0;
525 int i;
527 /* Fastpath, exit early if L3/CPC cache is target for stashing */
528 if (stash_dest_hint == PAMU_ATTR_CACHE_L3) {
529 node = of_find_matching_node(NULL, l3_device_ids);
530 if (node) {
531 prop = of_get_property(node, "cache-stash-id", NULL);
532 if (!prop) {
533 pr_debug("missing cache-stash-id at %s\n",
534 node->full_name);
535 of_node_put(node);
536 return ~(u32)0;
538 of_node_put(node);
539 return be32_to_cpup(prop);
541 return ~(u32)0;
544 for_each_node_by_type(node, "cpu") {
545 prop = of_get_property(node, "reg", &len);
546 for (i = 0; i < len / sizeof(u32); i++) {
547 if (be32_to_cpup(&prop[i]) == vcpu) {
548 found = 1;
549 goto found_cpu_node;
553 found_cpu_node:
555 /* find the hwnode that represents the cache */
556 for (cache_level = PAMU_ATTR_CACHE_L1; (cache_level < PAMU_ATTR_CACHE_L3) && found; cache_level++) {
557 if (stash_dest_hint == cache_level) {
558 prop = of_get_property(node, "cache-stash-id", NULL);
559 if (!prop) {
560 pr_debug("missing cache-stash-id at %s\n",
561 node->full_name);
562 of_node_put(node);
563 return ~(u32)0;
565 of_node_put(node);
566 return be32_to_cpup(prop);
569 prop = of_get_property(node, "next-level-cache", NULL);
570 if (!prop) {
571 pr_debug("can't find next-level-cache at %s\n",
572 node->full_name);
573 of_node_put(node);
574 return ~(u32)0; /* can't traverse any further */
576 of_node_put(node);
578 /* advance to next node in cache hierarchy */
579 node = of_find_node_by_phandle(*prop);
580 if (!node) {
581 pr_debug("Invalid node for cache hierarchy\n");
582 return ~(u32)0;
586 pr_debug("stash dest not found for %d on vcpu %d\n",
587 stash_dest_hint, vcpu);
588 return ~(u32)0;
591 /* Identify if the PAACT table entry belongs to QMAN, BMAN or QMAN Portal */
592 #define QMAN_PAACE 1
593 #define QMAN_PORTAL_PAACE 2
594 #define BMAN_PAACE 3
597 * Setup operation mapping and stash destinations for QMAN and QMAN portal.
598 * Memory accesses to QMAN and BMAN private memory need not be coherent, so
599 * clear the PAACE entry coherency attribute for them.
601 static void setup_qbman_paace(struct paace *ppaace, int paace_type)
603 switch (paace_type) {
604 case QMAN_PAACE:
605 set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
606 ppaace->op_encode.index_ot.omi = OMI_QMAN_PRIV;
607 /* setup QMAN Private data stashing for the L3 cache */
608 set_bf(ppaace->impl_attr, PAACE_IA_CID, get_stash_id(PAMU_ATTR_CACHE_L3, 0));
609 set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
611 break;
612 case QMAN_PORTAL_PAACE:
613 set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
614 ppaace->op_encode.index_ot.omi = OMI_QMAN;
615 /* Set DQRR and Frame stashing for the L3 cache */
616 set_bf(ppaace->impl_attr, PAACE_IA_CID, get_stash_id(PAMU_ATTR_CACHE_L3, 0));
617 break;
618 case BMAN_PAACE:
619 set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
621 break;
626 * Setup the operation mapping table for various devices. This is a static
627 * table where each table index corresponds to a particular device. PAMU uses
628 * this table to translate device transaction to appropriate corenet
629 * transaction.
631 static void setup_omt(struct ome *omt)
633 struct ome *ome;
635 /* Configure OMI_QMAN */
636 ome = &omt[OMI_QMAN];
638 ome->moe[IOE_READ_IDX] = EOE_VALID | EOE_READ;
639 ome->moe[IOE_EREAD0_IDX] = EOE_VALID | EOE_RSA;
640 ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
641 ome->moe[IOE_EWRITE0_IDX] = EOE_VALID | EOE_WWSAO;
643 ome->moe[IOE_DIRECT0_IDX] = EOE_VALID | EOE_LDEC;
644 ome->moe[IOE_DIRECT1_IDX] = EOE_VALID | EOE_LDECPE;
646 /* Configure OMI_FMAN */
647 ome = &omt[OMI_FMAN];
648 ome->moe[IOE_READ_IDX] = EOE_VALID | EOE_READI;
649 ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
651 /* Configure OMI_QMAN private */
652 ome = &omt[OMI_QMAN_PRIV];
653 ome->moe[IOE_READ_IDX] = EOE_VALID | EOE_READ;
654 ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
655 ome->moe[IOE_EREAD0_IDX] = EOE_VALID | EOE_RSA;
656 ome->moe[IOE_EWRITE0_IDX] = EOE_VALID | EOE_WWSA;
658 /* Configure OMI_CAAM */
659 ome = &omt[OMI_CAAM];
660 ome->moe[IOE_READ_IDX] = EOE_VALID | EOE_READI;
661 ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
665 * Get the maximum number of PAACT table entries
666 * and subwindows supported by PAMU
668 static void get_pamu_cap_values(unsigned long pamu_reg_base)
670 u32 pc_val;
672 pc_val = in_be32((u32 *)(pamu_reg_base + PAMU_PC3));
673 /* Maximum number of subwindows per liodn */
674 max_subwindow_count = 1 << (1 + PAMU_PC3_MWCE(pc_val));
677 /* Setup PAMU registers pointing to PAACT, SPAACT and OMT */
678 static int setup_one_pamu(unsigned long pamu_reg_base, unsigned long pamu_reg_size,
679 phys_addr_t ppaact_phys, phys_addr_t spaact_phys,
680 phys_addr_t omt_phys)
682 u32 *pc;
683 struct pamu_mmap_regs *pamu_regs;
685 pc = (u32 *) (pamu_reg_base + PAMU_PC);
686 pamu_regs = (struct pamu_mmap_regs *)
687 (pamu_reg_base + PAMU_MMAP_REGS_BASE);
689 /* set up pointers to corenet control blocks */
691 out_be32(&pamu_regs->ppbah, upper_32_bits(ppaact_phys));
692 out_be32(&pamu_regs->ppbal, lower_32_bits(ppaact_phys));
693 ppaact_phys = ppaact_phys + PAACT_SIZE;
694 out_be32(&pamu_regs->pplah, upper_32_bits(ppaact_phys));
695 out_be32(&pamu_regs->pplal, lower_32_bits(ppaact_phys));
697 out_be32(&pamu_regs->spbah, upper_32_bits(spaact_phys));
698 out_be32(&pamu_regs->spbal, lower_32_bits(spaact_phys));
699 spaact_phys = spaact_phys + SPAACT_SIZE;
700 out_be32(&pamu_regs->splah, upper_32_bits(spaact_phys));
701 out_be32(&pamu_regs->splal, lower_32_bits(spaact_phys));
703 out_be32(&pamu_regs->obah, upper_32_bits(omt_phys));
704 out_be32(&pamu_regs->obal, lower_32_bits(omt_phys));
705 omt_phys = omt_phys + OMT_SIZE;
706 out_be32(&pamu_regs->olah, upper_32_bits(omt_phys));
707 out_be32(&pamu_regs->olal, lower_32_bits(omt_phys));
710 * set PAMU enable bit,
711 * allow ppaact & omt to be cached
712 * & enable PAMU access violation interrupts.
715 out_be32((u32 *)(pamu_reg_base + PAMU_PICS),
716 PAMU_ACCESS_VIOLATION_ENABLE);
717 out_be32(pc, PAMU_PC_PE | PAMU_PC_OCE | PAMU_PC_SPCC | PAMU_PC_PPCC);
718 return 0;
721 /* Enable all device LIODNS */
722 static void setup_liodns(void)
724 int i, len;
725 struct paace *ppaace;
726 struct device_node *node = NULL;
727 const u32 *prop;
729 for_each_node_with_property(node, "fsl,liodn") {
730 prop = of_get_property(node, "fsl,liodn", &len);
731 for (i = 0; i < len / sizeof(u32); i++) {
732 int liodn;
734 liodn = be32_to_cpup(&prop[i]);
735 if (liodn >= PAACE_NUMBER_ENTRIES) {
736 pr_debug("Invalid LIODN value %d\n", liodn);
737 continue;
739 ppaace = pamu_get_ppaace(liodn);
740 pamu_init_ppaace(ppaace);
741 /* window size is 2^(WSE+1) bytes */
742 set_bf(ppaace->addr_bitfields, PPAACE_AF_WSE, 35);
743 ppaace->wbah = 0;
744 set_bf(ppaace->addr_bitfields, PPAACE_AF_WBAL, 0);
745 set_bf(ppaace->impl_attr, PAACE_IA_ATM,
746 PAACE_ATM_NO_XLATE);
747 set_bf(ppaace->addr_bitfields, PAACE_AF_AP,
748 PAACE_AP_PERMS_ALL);
749 if (of_device_is_compatible(node, "fsl,qman-portal"))
750 setup_qbman_paace(ppaace, QMAN_PORTAL_PAACE);
751 if (of_device_is_compatible(node, "fsl,qman"))
752 setup_qbman_paace(ppaace, QMAN_PAACE);
753 if (of_device_is_compatible(node, "fsl,bman"))
754 setup_qbman_paace(ppaace, BMAN_PAACE);
755 mb();
756 pamu_enable_liodn(liodn);
761 static irqreturn_t pamu_av_isr(int irq, void *arg)
763 struct pamu_isr_data *data = arg;
764 phys_addr_t phys;
765 unsigned int i, j, ret;
767 pr_emerg("access violation interrupt\n");
769 for (i = 0; i < data->count; i++) {
770 void __iomem *p = data->pamu_reg_base + i * PAMU_OFFSET;
771 u32 pics = in_be32(p + PAMU_PICS);
773 if (pics & PAMU_ACCESS_VIOLATION_STAT) {
774 u32 avs1 = in_be32(p + PAMU_AVS1);
775 struct paace *paace;
777 pr_emerg("POES1=%08x\n", in_be32(p + PAMU_POES1));
778 pr_emerg("POES2=%08x\n", in_be32(p + PAMU_POES2));
779 pr_emerg("AVS1=%08x\n", avs1);
780 pr_emerg("AVS2=%08x\n", in_be32(p + PAMU_AVS2));
781 pr_emerg("AVA=%016llx\n",
782 make64(in_be32(p + PAMU_AVAH),
783 in_be32(p + PAMU_AVAL)));
784 pr_emerg("UDAD=%08x\n", in_be32(p + PAMU_UDAD));
785 pr_emerg("POEA=%016llx\n",
786 make64(in_be32(p + PAMU_POEAH),
787 in_be32(p + PAMU_POEAL)));
789 phys = make64(in_be32(p + PAMU_POEAH),
790 in_be32(p + PAMU_POEAL));
792 /* Assume that POEA points to a PAACE */
793 if (phys) {
794 u32 *paace = phys_to_virt(phys);
796 /* Only the first four words are relevant */
797 for (j = 0; j < 4; j++)
798 pr_emerg("PAACE[%u]=%08x\n",
799 j, in_be32(paace + j));
802 /* clear access violation condition */
803 out_be32(p + PAMU_AVS1, avs1 & PAMU_AV_MASK);
804 paace = pamu_get_ppaace(avs1 >> PAMU_AVS1_LIODN_SHIFT);
805 BUG_ON(!paace);
806 /* check if we got a violation for a disabled LIODN */
807 if (!get_bf(paace->addr_bitfields, PAACE_AF_V)) {
809 * As per hardware erratum A-003638, access
810 * violation can be reported for a disabled
811 * LIODN. If we hit that condition, disable
812 * access violation reporting.
814 pics &= ~PAMU_ACCESS_VIOLATION_ENABLE;
815 } else {
816 /* Disable the LIODN */
817 ret = pamu_disable_liodn(avs1 >> PAMU_AVS1_LIODN_SHIFT);
818 BUG_ON(ret);
819 pr_emerg("Disabling liodn %x\n",
820 avs1 >> PAMU_AVS1_LIODN_SHIFT);
822 out_be32((p + PAMU_PICS), pics);
826 return IRQ_HANDLED;
829 #define LAWAR_EN 0x80000000
830 #define LAWAR_TARGET_MASK 0x0FF00000
831 #define LAWAR_TARGET_SHIFT 20
832 #define LAWAR_SIZE_MASK 0x0000003F
833 #define LAWAR_CSDID_MASK 0x000FF000
834 #define LAWAR_CSDID_SHIFT 12
836 #define LAW_SIZE_4K 0xb
838 struct ccsr_law {
839 u32 lawbarh; /* LAWn base address high */
840 u32 lawbarl; /* LAWn base address low */
841 u32 lawar; /* LAWn attributes */
842 u32 reserved;
846 * Create a coherence subdomain for a given memory block.
848 static int create_csd(phys_addr_t phys, size_t size, u32 csd_port_id)
850 struct device_node *np;
851 const __be32 *iprop;
852 void __iomem *lac = NULL; /* Local Access Control registers */
853 struct ccsr_law __iomem *law;
854 void __iomem *ccm = NULL;
855 u32 __iomem *csdids;
856 unsigned int i, num_laws, num_csds;
857 u32 law_target = 0;
858 u32 csd_id = 0;
859 int ret = 0;
861 np = of_find_compatible_node(NULL, NULL, "fsl,corenet-law");
862 if (!np)
863 return -ENODEV;
865 iprop = of_get_property(np, "fsl,num-laws", NULL);
866 if (!iprop) {
867 ret = -ENODEV;
868 goto error;
871 num_laws = be32_to_cpup(iprop);
872 if (!num_laws) {
873 ret = -ENODEV;
874 goto error;
877 lac = of_iomap(np, 0);
878 if (!lac) {
879 ret = -ENODEV;
880 goto error;
883 /* LAW registers are at offset 0xC00 */
884 law = lac + 0xC00;
886 of_node_put(np);
888 np = of_find_compatible_node(NULL, NULL, "fsl,corenet-cf");
889 if (!np) {
890 ret = -ENODEV;
891 goto error;
894 iprop = of_get_property(np, "fsl,ccf-num-csdids", NULL);
895 if (!iprop) {
896 ret = -ENODEV;
897 goto error;
900 num_csds = be32_to_cpup(iprop);
901 if (!num_csds) {
902 ret = -ENODEV;
903 goto error;
906 ccm = of_iomap(np, 0);
907 if (!ccm) {
908 ret = -ENOMEM;
909 goto error;
912 /* The undocumented CSDID registers are at offset 0x600 */
913 csdids = ccm + 0x600;
915 of_node_put(np);
916 np = NULL;
918 /* Find an unused coherence subdomain ID */
919 for (csd_id = 0; csd_id < num_csds; csd_id++) {
920 if (!csdids[csd_id])
921 break;
924 /* Store the Port ID in the (undocumented) proper CIDMRxx register */
925 csdids[csd_id] = csd_port_id;
927 /* Find the DDR LAW that maps to our buffer. */
928 for (i = 0; i < num_laws; i++) {
929 if (law[i].lawar & LAWAR_EN) {
930 phys_addr_t law_start, law_end;
932 law_start = make64(law[i].lawbarh, law[i].lawbarl);
933 law_end = law_start +
934 (2ULL << (law[i].lawar & LAWAR_SIZE_MASK));
936 if (law_start <= phys && phys < law_end) {
937 law_target = law[i].lawar & LAWAR_TARGET_MASK;
938 break;
943 if (i == 0 || i == num_laws) {
944 /* This should never happen */
945 ret = -ENOENT;
946 goto error;
949 /* Find a free LAW entry */
950 while (law[--i].lawar & LAWAR_EN) {
951 if (i == 0) {
952 /* No higher priority LAW slots available */
953 ret = -ENOENT;
954 goto error;
958 law[i].lawbarh = upper_32_bits(phys);
959 law[i].lawbarl = lower_32_bits(phys);
960 wmb();
961 law[i].lawar = LAWAR_EN | law_target | (csd_id << LAWAR_CSDID_SHIFT) |
962 (LAW_SIZE_4K + get_order(size));
963 wmb();
965 error:
966 if (ccm)
967 iounmap(ccm);
969 if (lac)
970 iounmap(lac);
972 if (np)
973 of_node_put(np);
975 return ret;
979 * Table of SVRs and the corresponding PORT_ID values. Port ID corresponds to a
980 * bit map of snoopers for a given range of memory mapped by a LAW.
982 * All future CoreNet-enabled SOCs will have this erratum(A-004510) fixed, so this
983 * table should never need to be updated. SVRs are guaranteed to be unique, so
984 * there is no worry that a future SOC will inadvertently have one of these
985 * values.
987 static const struct {
988 u32 svr;
989 u32 port_id;
990 } port_id_map[] = {
991 {(SVR_P2040 << 8) | 0x10, 0xFF000000}, /* P2040 1.0 */
992 {(SVR_P2040 << 8) | 0x11, 0xFF000000}, /* P2040 1.1 */
993 {(SVR_P2041 << 8) | 0x10, 0xFF000000}, /* P2041 1.0 */
994 {(SVR_P2041 << 8) | 0x11, 0xFF000000}, /* P2041 1.1 */
995 {(SVR_P3041 << 8) | 0x10, 0xFF000000}, /* P3041 1.0 */
996 {(SVR_P3041 << 8) | 0x11, 0xFF000000}, /* P3041 1.1 */
997 {(SVR_P4040 << 8) | 0x20, 0xFFF80000}, /* P4040 2.0 */
998 {(SVR_P4080 << 8) | 0x20, 0xFFF80000}, /* P4080 2.0 */
999 {(SVR_P5010 << 8) | 0x10, 0xFC000000}, /* P5010 1.0 */
1000 {(SVR_P5010 << 8) | 0x20, 0xFC000000}, /* P5010 2.0 */
1001 {(SVR_P5020 << 8) | 0x10, 0xFC000000}, /* P5020 1.0 */
1002 {(SVR_P5021 << 8) | 0x10, 0xFF800000}, /* P5021 1.0 */
1003 {(SVR_P5040 << 8) | 0x10, 0xFF800000}, /* P5040 1.0 */
1006 #define SVR_SECURITY 0x80000 /* The Security (E) bit */
1008 static int fsl_pamu_probe(struct platform_device *pdev)
1010 struct device *dev = &pdev->dev;
1011 void __iomem *pamu_regs = NULL;
1012 struct ccsr_guts __iomem *guts_regs = NULL;
1013 u32 pamubypenr, pamu_counter;
1014 unsigned long pamu_reg_off;
1015 unsigned long pamu_reg_base;
1016 struct pamu_isr_data *data = NULL;
1017 struct device_node *guts_node;
1018 u64 size;
1019 struct page *p;
1020 int ret = 0;
1021 int irq;
1022 phys_addr_t ppaact_phys;
1023 phys_addr_t spaact_phys;
1024 struct ome *omt;
1025 phys_addr_t omt_phys;
1026 size_t mem_size = 0;
1027 unsigned int order = 0;
1028 u32 csd_port_id = 0;
1029 unsigned i;
1031 * enumerate all PAMUs and allocate and setup PAMU tables
1032 * for each of them,
1033 * NOTE : All PAMUs share the same LIODN tables.
1036 pamu_regs = of_iomap(dev->of_node, 0);
1037 if (!pamu_regs) {
1038 dev_err(dev, "ioremap of PAMU node failed\n");
1039 return -ENOMEM;
1041 of_get_address(dev->of_node, 0, &size, NULL);
1043 irq = irq_of_parse_and_map(dev->of_node, 0);
1044 if (irq == NO_IRQ) {
1045 dev_warn(dev, "no interrupts listed in PAMU node\n");
1046 goto error;
1049 data = kzalloc(sizeof(*data), GFP_KERNEL);
1050 if (!data) {
1051 ret = -ENOMEM;
1052 goto error;
1054 data->pamu_reg_base = pamu_regs;
1055 data->count = size / PAMU_OFFSET;
1057 /* The ISR needs access to the regs, so we won't iounmap them */
1058 ret = request_irq(irq, pamu_av_isr, 0, "pamu", data);
1059 if (ret < 0) {
1060 dev_err(dev, "error %i installing ISR for irq %i\n", ret, irq);
1061 goto error;
1064 guts_node = of_find_matching_node(NULL, guts_device_ids);
1065 if (!guts_node) {
1066 dev_err(dev, "could not find GUTS node %s\n",
1067 dev->of_node->full_name);
1068 ret = -ENODEV;
1069 goto error;
1072 guts_regs = of_iomap(guts_node, 0);
1073 of_node_put(guts_node);
1074 if (!guts_regs) {
1075 dev_err(dev, "ioremap of GUTS node failed\n");
1076 ret = -ENODEV;
1077 goto error;
1080 /* read in the PAMU capability registers */
1081 get_pamu_cap_values((unsigned long)pamu_regs);
1083 * To simplify the allocation of a coherency domain, we allocate the
1084 * PAACT and the OMT in the same memory buffer. Unfortunately, this
1085 * wastes more memory compared to allocating the buffers separately.
1087 /* Determine how much memory we need */
1088 mem_size = (PAGE_SIZE << get_order(PAACT_SIZE)) +
1089 (PAGE_SIZE << get_order(SPAACT_SIZE)) +
1090 (PAGE_SIZE << get_order(OMT_SIZE));
1091 order = get_order(mem_size);
1093 p = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
1094 if (!p) {
1095 dev_err(dev, "unable to allocate PAACT/SPAACT/OMT block\n");
1096 ret = -ENOMEM;
1097 goto error;
1100 ppaact = page_address(p);
1101 ppaact_phys = page_to_phys(p);
1103 /* Make sure the memory is naturally aligned */
1104 if (ppaact_phys & ((PAGE_SIZE << order) - 1)) {
1105 dev_err(dev, "PAACT/OMT block is unaligned\n");
1106 ret = -ENOMEM;
1107 goto error;
1110 spaact = (void *)ppaact + (PAGE_SIZE << get_order(PAACT_SIZE));
1111 omt = (void *)spaact + (PAGE_SIZE << get_order(SPAACT_SIZE));
1113 dev_dbg(dev, "ppaact virt=%p phys=%pa\n", ppaact, &ppaact_phys);
1115 /* Check to see if we need to implement the work-around on this SOC */
1117 /* Determine the Port ID for our coherence subdomain */
1118 for (i = 0; i < ARRAY_SIZE(port_id_map); i++) {
1119 if (port_id_map[i].svr == (mfspr(SPRN_SVR) & ~SVR_SECURITY)) {
1120 csd_port_id = port_id_map[i].port_id;
1121 dev_dbg(dev, "found matching SVR %08x\n",
1122 port_id_map[i].svr);
1123 break;
1127 if (csd_port_id) {
1128 dev_dbg(dev, "creating coherency subdomain at address %pa, size %zu, port id 0x%08x",
1129 &ppaact_phys, mem_size, csd_port_id);
1131 ret = create_csd(ppaact_phys, mem_size, csd_port_id);
1132 if (ret) {
1133 dev_err(dev, "could not create coherence subdomain\n");
1134 return ret;
1138 spaact_phys = virt_to_phys(spaact);
1139 omt_phys = virt_to_phys(omt);
1141 spaace_pool = gen_pool_create(ilog2(sizeof(struct paace)), -1);
1142 if (!spaace_pool) {
1143 ret = -ENOMEM;
1144 dev_err(dev, "Failed to allocate spaace gen pool\n");
1145 goto error;
1148 ret = gen_pool_add(spaace_pool, (unsigned long)spaact, SPAACT_SIZE, -1);
1149 if (ret)
1150 goto error_genpool;
1152 pamubypenr = in_be32(&guts_regs->pamubypenr);
1154 for (pamu_reg_off = 0, pamu_counter = 0x80000000; pamu_reg_off < size;
1155 pamu_reg_off += PAMU_OFFSET, pamu_counter >>= 1) {
1157 pamu_reg_base = (unsigned long)pamu_regs + pamu_reg_off;
1158 setup_one_pamu(pamu_reg_base, pamu_reg_off, ppaact_phys,
1159 spaact_phys, omt_phys);
1160 /* Disable PAMU bypass for this PAMU */
1161 pamubypenr &= ~pamu_counter;
1164 setup_omt(omt);
1166 /* Enable all relevant PAMU(s) */
1167 out_be32(&guts_regs->pamubypenr, pamubypenr);
1169 iounmap(guts_regs);
1171 /* Enable DMA for the LIODNs in the device tree */
1173 setup_liodns();
1175 return 0;
1177 error_genpool:
1178 gen_pool_destroy(spaace_pool);
1180 error:
1181 if (irq != NO_IRQ)
1182 free_irq(irq, data);
1184 if (data) {
1185 memset(data, 0, sizeof(struct pamu_isr_data));
1186 kfree(data);
1189 if (pamu_regs)
1190 iounmap(pamu_regs);
1192 if (guts_regs)
1193 iounmap(guts_regs);
1195 if (ppaact)
1196 free_pages((unsigned long)ppaact, order);
1198 ppaact = NULL;
1200 return ret;
1203 static struct platform_driver fsl_of_pamu_driver = {
1204 .driver = {
1205 .name = "fsl-of-pamu",
1207 .probe = fsl_pamu_probe,
1210 static __init int fsl_pamu_init(void)
1212 struct platform_device *pdev = NULL;
1213 struct device_node *np;
1214 int ret;
1217 * The normal OF process calls the probe function at some
1218 * indeterminate later time, after most drivers have loaded. This is
1219 * too late for us, because PAMU clients (like the Qman driver)
1220 * depend on PAMU being initialized early.
1222 * So instead, we "manually" call our probe function by creating the
1223 * platform devices ourselves.
1227 * We assume that there is only one PAMU node in the device tree. A
1228 * single PAMU node represents all of the PAMU devices in the SOC
1229 * already. Everything else already makes that assumption, and the
1230 * binding for the PAMU nodes doesn't allow for any parent-child
1231 * relationships anyway. In other words, support for more than one
1232 * PAMU node would require significant changes to a lot of code.
1235 np = of_find_compatible_node(NULL, NULL, "fsl,pamu");
1236 if (!np) {
1237 pr_err("could not find a PAMU node\n");
1238 return -ENODEV;
1241 ret = platform_driver_register(&fsl_of_pamu_driver);
1242 if (ret) {
1243 pr_err("could not register driver (err=%i)\n", ret);
1244 goto error_driver_register;
1247 pdev = platform_device_alloc("fsl-of-pamu", 0);
1248 if (!pdev) {
1249 pr_err("could not allocate device %s\n",
1250 np->full_name);
1251 ret = -ENOMEM;
1252 goto error_device_alloc;
1254 pdev->dev.of_node = of_node_get(np);
1256 ret = pamu_domain_init();
1257 if (ret)
1258 goto error_device_add;
1260 ret = platform_device_add(pdev);
1261 if (ret) {
1262 pr_err("could not add device %s (err=%i)\n",
1263 np->full_name, ret);
1264 goto error_device_add;
1267 return 0;
1269 error_device_add:
1270 of_node_put(pdev->dev.of_node);
1271 pdev->dev.of_node = NULL;
1273 platform_device_put(pdev);
1275 error_device_alloc:
1276 platform_driver_unregister(&fsl_of_pamu_driver);
1278 error_driver_register:
1279 of_node_put(np);
1281 return ret;
1283 arch_initcall(fsl_pamu_init);