of: MSI: Simplify irqdomain lookup
[linux/fpc-iii.git] / drivers / macintosh / smu.c
blobd531f804455d254ec90aa0f2e4573f21aef57ba8
1 /*
2 * PowerMac G5 SMU driver
4 * Copyright 2004 J. Mayer <l_indien@magic.fr>
5 * Copyright 2005 Benjamin Herrenschmidt, IBM Corp.
7 * Released under the term of the GNU GPL v2.
8 */
11 * TODO:
12 * - maybe add timeout to commands ?
13 * - blocking version of time functions
14 * - polling version of i2c commands (including timer that works with
15 * interrupts off)
16 * - maybe avoid some data copies with i2c by directly using the smu cmd
17 * buffer and a lower level internal interface
18 * - understand SMU -> CPU events and implement reception of them via
19 * the userland interface
22 #include <linux/types.h>
23 #include <linux/kernel.h>
24 #include <linux/device.h>
25 #include <linux/dmapool.h>
26 #include <linux/bootmem.h>
27 #include <linux/vmalloc.h>
28 #include <linux/highmem.h>
29 #include <linux/jiffies.h>
30 #include <linux/interrupt.h>
31 #include <linux/rtc.h>
32 #include <linux/completion.h>
33 #include <linux/miscdevice.h>
34 #include <linux/delay.h>
35 #include <linux/poll.h>
36 #include <linux/mutex.h>
37 #include <linux/of_device.h>
38 #include <linux/of_irq.h>
39 #include <linux/of_platform.h>
40 #include <linux/slab.h>
42 #include <asm/byteorder.h>
43 #include <asm/io.h>
44 #include <asm/prom.h>
45 #include <asm/machdep.h>
46 #include <asm/pmac_feature.h>
47 #include <asm/smu.h>
48 #include <asm/sections.h>
49 #include <asm/uaccess.h>
51 #define VERSION "0.7"
52 #define AUTHOR "(c) 2005 Benjamin Herrenschmidt, IBM Corp."
54 #undef DEBUG_SMU
56 #ifdef DEBUG_SMU
57 #define DPRINTK(fmt, args...) do { printk(KERN_DEBUG fmt , ##args); } while (0)
58 #else
59 #define DPRINTK(fmt, args...) do { } while (0)
60 #endif
63 * This is the command buffer passed to the SMU hardware
65 #define SMU_MAX_DATA 254
67 struct smu_cmd_buf {
68 u8 cmd;
69 u8 length;
70 u8 data[SMU_MAX_DATA];
73 struct smu_device {
74 spinlock_t lock;
75 struct device_node *of_node;
76 struct platform_device *of_dev;
77 int doorbell; /* doorbell gpio */
78 u32 __iomem *db_buf; /* doorbell buffer */
79 struct device_node *db_node;
80 unsigned int db_irq;
81 int msg;
82 struct device_node *msg_node;
83 unsigned int msg_irq;
84 struct smu_cmd_buf *cmd_buf; /* command buffer virtual */
85 u32 cmd_buf_abs; /* command buffer absolute */
86 struct list_head cmd_list;
87 struct smu_cmd *cmd_cur; /* pending command */
88 int broken_nap;
89 struct list_head cmd_i2c_list;
90 struct smu_i2c_cmd *cmd_i2c_cur; /* pending i2c command */
91 struct timer_list i2c_timer;
95 * I don't think there will ever be more than one SMU, so
96 * for now, just hard code that
98 static DEFINE_MUTEX(smu_mutex);
99 static struct smu_device *smu;
100 static DEFINE_MUTEX(smu_part_access);
101 static int smu_irq_inited;
103 static void smu_i2c_retry(unsigned long data);
106 * SMU driver low level stuff
109 static void smu_start_cmd(void)
111 unsigned long faddr, fend;
112 struct smu_cmd *cmd;
114 if (list_empty(&smu->cmd_list))
115 return;
117 /* Fetch first command in queue */
118 cmd = list_entry(smu->cmd_list.next, struct smu_cmd, link);
119 smu->cmd_cur = cmd;
120 list_del(&cmd->link);
122 DPRINTK("SMU: starting cmd %x, %d bytes data\n", cmd->cmd,
123 cmd->data_len);
124 DPRINTK("SMU: data buffer: %8ph\n", cmd->data_buf);
126 /* Fill the SMU command buffer */
127 smu->cmd_buf->cmd = cmd->cmd;
128 smu->cmd_buf->length = cmd->data_len;
129 memcpy(smu->cmd_buf->data, cmd->data_buf, cmd->data_len);
131 /* Flush command and data to RAM */
132 faddr = (unsigned long)smu->cmd_buf;
133 fend = faddr + smu->cmd_buf->length + 2;
134 flush_inval_dcache_range(faddr, fend);
137 /* We also disable NAP mode for the duration of the command
138 * on U3 based machines.
139 * This is slightly racy as it can be written back to 1 by a sysctl
140 * but that never happens in practice. There seem to be an issue with
141 * U3 based machines such as the iMac G5 where napping for the
142 * whole duration of the command prevents the SMU from fetching it
143 * from memory. This might be related to the strange i2c based
144 * mechanism the SMU uses to access memory.
146 if (smu->broken_nap)
147 powersave_nap = 0;
149 /* This isn't exactly a DMA mapping here, I suspect
150 * the SMU is actually communicating with us via i2c to the
151 * northbridge or the CPU to access RAM.
153 writel(smu->cmd_buf_abs, smu->db_buf);
155 /* Ring the SMU doorbell */
156 pmac_do_feature_call(PMAC_FTR_WRITE_GPIO, NULL, smu->doorbell, 4);
160 static irqreturn_t smu_db_intr(int irq, void *arg)
162 unsigned long flags;
163 struct smu_cmd *cmd;
164 void (*done)(struct smu_cmd *cmd, void *misc) = NULL;
165 void *misc = NULL;
166 u8 gpio;
167 int rc = 0;
169 /* SMU completed the command, well, we hope, let's make sure
170 * of it
172 spin_lock_irqsave(&smu->lock, flags);
174 gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
175 if ((gpio & 7) != 7) {
176 spin_unlock_irqrestore(&smu->lock, flags);
177 return IRQ_HANDLED;
180 cmd = smu->cmd_cur;
181 smu->cmd_cur = NULL;
182 if (cmd == NULL)
183 goto bail;
185 if (rc == 0) {
186 unsigned long faddr;
187 int reply_len;
188 u8 ack;
190 /* CPU might have brought back the cache line, so we need
191 * to flush again before peeking at the SMU response. We
192 * flush the entire buffer for now as we haven't read the
193 * reply length (it's only 2 cache lines anyway)
195 faddr = (unsigned long)smu->cmd_buf;
196 flush_inval_dcache_range(faddr, faddr + 256);
198 /* Now check ack */
199 ack = (~cmd->cmd) & 0xff;
200 if (ack != smu->cmd_buf->cmd) {
201 DPRINTK("SMU: incorrect ack, want %x got %x\n",
202 ack, smu->cmd_buf->cmd);
203 rc = -EIO;
205 reply_len = rc == 0 ? smu->cmd_buf->length : 0;
206 DPRINTK("SMU: reply len: %d\n", reply_len);
207 if (reply_len > cmd->reply_len) {
208 printk(KERN_WARNING "SMU: reply buffer too small,"
209 "got %d bytes for a %d bytes buffer\n",
210 reply_len, cmd->reply_len);
211 reply_len = cmd->reply_len;
213 cmd->reply_len = reply_len;
214 if (cmd->reply_buf && reply_len)
215 memcpy(cmd->reply_buf, smu->cmd_buf->data, reply_len);
218 /* Now complete the command. Write status last in order as we lost
219 * ownership of the command structure as soon as it's no longer -1
221 done = cmd->done;
222 misc = cmd->misc;
223 mb();
224 cmd->status = rc;
226 /* Re-enable NAP mode */
227 if (smu->broken_nap)
228 powersave_nap = 1;
229 bail:
230 /* Start next command if any */
231 smu_start_cmd();
232 spin_unlock_irqrestore(&smu->lock, flags);
234 /* Call command completion handler if any */
235 if (done)
236 done(cmd, misc);
238 /* It's an edge interrupt, nothing to do */
239 return IRQ_HANDLED;
243 static irqreturn_t smu_msg_intr(int irq, void *arg)
245 /* I don't quite know what to do with this one, we seem to never
246 * receive it, so I suspect we have to arm it someway in the SMU
247 * to start getting events that way.
250 printk(KERN_INFO "SMU: message interrupt !\n");
252 /* It's an edge interrupt, nothing to do */
253 return IRQ_HANDLED;
258 * Queued command management.
262 int smu_queue_cmd(struct smu_cmd *cmd)
264 unsigned long flags;
266 if (smu == NULL)
267 return -ENODEV;
268 if (cmd->data_len > SMU_MAX_DATA ||
269 cmd->reply_len > SMU_MAX_DATA)
270 return -EINVAL;
272 cmd->status = 1;
273 spin_lock_irqsave(&smu->lock, flags);
274 list_add_tail(&cmd->link, &smu->cmd_list);
275 if (smu->cmd_cur == NULL)
276 smu_start_cmd();
277 spin_unlock_irqrestore(&smu->lock, flags);
279 /* Workaround for early calls when irq isn't available */
280 if (!smu_irq_inited || smu->db_irq == NO_IRQ)
281 smu_spinwait_cmd(cmd);
283 return 0;
285 EXPORT_SYMBOL(smu_queue_cmd);
288 int smu_queue_simple(struct smu_simple_cmd *scmd, u8 command,
289 unsigned int data_len,
290 void (*done)(struct smu_cmd *cmd, void *misc),
291 void *misc, ...)
293 struct smu_cmd *cmd = &scmd->cmd;
294 va_list list;
295 int i;
297 if (data_len > sizeof(scmd->buffer))
298 return -EINVAL;
300 memset(scmd, 0, sizeof(*scmd));
301 cmd->cmd = command;
302 cmd->data_len = data_len;
303 cmd->data_buf = scmd->buffer;
304 cmd->reply_len = sizeof(scmd->buffer);
305 cmd->reply_buf = scmd->buffer;
306 cmd->done = done;
307 cmd->misc = misc;
309 va_start(list, misc);
310 for (i = 0; i < data_len; ++i)
311 scmd->buffer[i] = (u8)va_arg(list, int);
312 va_end(list);
314 return smu_queue_cmd(cmd);
316 EXPORT_SYMBOL(smu_queue_simple);
319 void smu_poll(void)
321 u8 gpio;
323 if (smu == NULL)
324 return;
326 gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
327 if ((gpio & 7) == 7)
328 smu_db_intr(smu->db_irq, smu);
330 EXPORT_SYMBOL(smu_poll);
333 void smu_done_complete(struct smu_cmd *cmd, void *misc)
335 struct completion *comp = misc;
337 complete(comp);
339 EXPORT_SYMBOL(smu_done_complete);
342 void smu_spinwait_cmd(struct smu_cmd *cmd)
344 while(cmd->status == 1)
345 smu_poll();
347 EXPORT_SYMBOL(smu_spinwait_cmd);
350 /* RTC low level commands */
351 static inline int bcd2hex (int n)
353 return (((n & 0xf0) >> 4) * 10) + (n & 0xf);
357 static inline int hex2bcd (int n)
359 return ((n / 10) << 4) + (n % 10);
363 static inline void smu_fill_set_rtc_cmd(struct smu_cmd_buf *cmd_buf,
364 struct rtc_time *time)
366 cmd_buf->cmd = 0x8e;
367 cmd_buf->length = 8;
368 cmd_buf->data[0] = 0x80;
369 cmd_buf->data[1] = hex2bcd(time->tm_sec);
370 cmd_buf->data[2] = hex2bcd(time->tm_min);
371 cmd_buf->data[3] = hex2bcd(time->tm_hour);
372 cmd_buf->data[4] = time->tm_wday;
373 cmd_buf->data[5] = hex2bcd(time->tm_mday);
374 cmd_buf->data[6] = hex2bcd(time->tm_mon) + 1;
375 cmd_buf->data[7] = hex2bcd(time->tm_year - 100);
379 int smu_get_rtc_time(struct rtc_time *time, int spinwait)
381 struct smu_simple_cmd cmd;
382 int rc;
384 if (smu == NULL)
385 return -ENODEV;
387 memset(time, 0, sizeof(struct rtc_time));
388 rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 1, NULL, NULL,
389 SMU_CMD_RTC_GET_DATETIME);
390 if (rc)
391 return rc;
392 smu_spinwait_simple(&cmd);
394 time->tm_sec = bcd2hex(cmd.buffer[0]);
395 time->tm_min = bcd2hex(cmd.buffer[1]);
396 time->tm_hour = bcd2hex(cmd.buffer[2]);
397 time->tm_wday = bcd2hex(cmd.buffer[3]);
398 time->tm_mday = bcd2hex(cmd.buffer[4]);
399 time->tm_mon = bcd2hex(cmd.buffer[5]) - 1;
400 time->tm_year = bcd2hex(cmd.buffer[6]) + 100;
402 return 0;
406 int smu_set_rtc_time(struct rtc_time *time, int spinwait)
408 struct smu_simple_cmd cmd;
409 int rc;
411 if (smu == NULL)
412 return -ENODEV;
414 rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 8, NULL, NULL,
415 SMU_CMD_RTC_SET_DATETIME,
416 hex2bcd(time->tm_sec),
417 hex2bcd(time->tm_min),
418 hex2bcd(time->tm_hour),
419 time->tm_wday,
420 hex2bcd(time->tm_mday),
421 hex2bcd(time->tm_mon) + 1,
422 hex2bcd(time->tm_year - 100));
423 if (rc)
424 return rc;
425 smu_spinwait_simple(&cmd);
427 return 0;
431 void smu_shutdown(void)
433 struct smu_simple_cmd cmd;
435 if (smu == NULL)
436 return;
438 if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 9, NULL, NULL,
439 'S', 'H', 'U', 'T', 'D', 'O', 'W', 'N', 0))
440 return;
441 smu_spinwait_simple(&cmd);
442 for (;;)
447 void smu_restart(void)
449 struct smu_simple_cmd cmd;
451 if (smu == NULL)
452 return;
454 if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 8, NULL, NULL,
455 'R', 'E', 'S', 'T', 'A', 'R', 'T', 0))
456 return;
457 smu_spinwait_simple(&cmd);
458 for (;;)
463 int smu_present(void)
465 return smu != NULL;
467 EXPORT_SYMBOL(smu_present);
470 int __init smu_init (void)
472 struct device_node *np;
473 const u32 *data;
474 int ret = 0;
476 np = of_find_node_by_type(NULL, "smu");
477 if (np == NULL)
478 return -ENODEV;
480 printk(KERN_INFO "SMU: Driver %s %s\n", VERSION, AUTHOR);
482 if (smu_cmdbuf_abs == 0) {
483 printk(KERN_ERR "SMU: Command buffer not allocated !\n");
484 ret = -EINVAL;
485 goto fail_np;
488 smu = alloc_bootmem(sizeof(struct smu_device));
490 spin_lock_init(&smu->lock);
491 INIT_LIST_HEAD(&smu->cmd_list);
492 INIT_LIST_HEAD(&smu->cmd_i2c_list);
493 smu->of_node = np;
494 smu->db_irq = NO_IRQ;
495 smu->msg_irq = NO_IRQ;
497 /* smu_cmdbuf_abs is in the low 2G of RAM, can be converted to a
498 * 32 bits value safely
500 smu->cmd_buf_abs = (u32)smu_cmdbuf_abs;
501 smu->cmd_buf = __va(smu_cmdbuf_abs);
503 smu->db_node = of_find_node_by_name(NULL, "smu-doorbell");
504 if (smu->db_node == NULL) {
505 printk(KERN_ERR "SMU: Can't find doorbell GPIO !\n");
506 ret = -ENXIO;
507 goto fail_bootmem;
509 data = of_get_property(smu->db_node, "reg", NULL);
510 if (data == NULL) {
511 printk(KERN_ERR "SMU: Can't find doorbell GPIO address !\n");
512 ret = -ENXIO;
513 goto fail_db_node;
516 /* Current setup has one doorbell GPIO that does both doorbell
517 * and ack. GPIOs are at 0x50, best would be to find that out
518 * in the device-tree though.
520 smu->doorbell = *data;
521 if (smu->doorbell < 0x50)
522 smu->doorbell += 0x50;
524 /* Now look for the smu-interrupt GPIO */
525 do {
526 smu->msg_node = of_find_node_by_name(NULL, "smu-interrupt");
527 if (smu->msg_node == NULL)
528 break;
529 data = of_get_property(smu->msg_node, "reg", NULL);
530 if (data == NULL) {
531 of_node_put(smu->msg_node);
532 smu->msg_node = NULL;
533 break;
535 smu->msg = *data;
536 if (smu->msg < 0x50)
537 smu->msg += 0x50;
538 } while(0);
540 /* Doorbell buffer is currently hard-coded, I didn't find a proper
541 * device-tree entry giving the address. Best would probably to use
542 * an offset for K2 base though, but let's do it that way for now.
544 smu->db_buf = ioremap(0x8000860c, 0x1000);
545 if (smu->db_buf == NULL) {
546 printk(KERN_ERR "SMU: Can't map doorbell buffer pointer !\n");
547 ret = -ENXIO;
548 goto fail_msg_node;
551 /* U3 has an issue with NAP mode when issuing SMU commands */
552 smu->broken_nap = pmac_get_uninorth_variant() < 4;
553 if (smu->broken_nap)
554 printk(KERN_INFO "SMU: using NAP mode workaround\n");
556 sys_ctrler = SYS_CTRLER_SMU;
557 return 0;
559 fail_msg_node:
560 of_node_put(smu->msg_node);
561 fail_db_node:
562 of_node_put(smu->db_node);
563 fail_bootmem:
564 free_bootmem(__pa(smu), sizeof(struct smu_device));
565 smu = NULL;
566 fail_np:
567 of_node_put(np);
568 return ret;
572 static int smu_late_init(void)
574 if (!smu)
575 return 0;
577 init_timer(&smu->i2c_timer);
578 smu->i2c_timer.function = smu_i2c_retry;
579 smu->i2c_timer.data = (unsigned long)smu;
581 if (smu->db_node) {
582 smu->db_irq = irq_of_parse_and_map(smu->db_node, 0);
583 if (smu->db_irq == NO_IRQ)
584 printk(KERN_ERR "smu: failed to map irq for node %s\n",
585 smu->db_node->full_name);
587 if (smu->msg_node) {
588 smu->msg_irq = irq_of_parse_and_map(smu->msg_node, 0);
589 if (smu->msg_irq == NO_IRQ)
590 printk(KERN_ERR "smu: failed to map irq for node %s\n",
591 smu->msg_node->full_name);
595 * Try to request the interrupts
598 if (smu->db_irq != NO_IRQ) {
599 if (request_irq(smu->db_irq, smu_db_intr,
600 IRQF_SHARED, "SMU doorbell", smu) < 0) {
601 printk(KERN_WARNING "SMU: can't "
602 "request interrupt %d\n",
603 smu->db_irq);
604 smu->db_irq = NO_IRQ;
608 if (smu->msg_irq != NO_IRQ) {
609 if (request_irq(smu->msg_irq, smu_msg_intr,
610 IRQF_SHARED, "SMU message", smu) < 0) {
611 printk(KERN_WARNING "SMU: can't "
612 "request interrupt %d\n",
613 smu->msg_irq);
614 smu->msg_irq = NO_IRQ;
618 smu_irq_inited = 1;
619 return 0;
621 /* This has to be before arch_initcall as the low i2c stuff relies on the
622 * above having been done before we reach arch_initcalls
624 core_initcall(smu_late_init);
627 * sysfs visibility
630 static void smu_expose_childs(struct work_struct *unused)
632 struct device_node *np;
634 for (np = NULL; (np = of_get_next_child(smu->of_node, np)) != NULL;)
635 if (of_device_is_compatible(np, "smu-sensors"))
636 of_platform_device_create(np, "smu-sensors",
637 &smu->of_dev->dev);
640 static DECLARE_WORK(smu_expose_childs_work, smu_expose_childs);
642 static int smu_platform_probe(struct platform_device* dev)
644 if (!smu)
645 return -ENODEV;
646 smu->of_dev = dev;
649 * Ok, we are matched, now expose all i2c busses. We have to defer
650 * that unfortunately or it would deadlock inside the device model
652 schedule_work(&smu_expose_childs_work);
654 return 0;
657 static const struct of_device_id smu_platform_match[] =
660 .type = "smu",
665 static struct platform_driver smu_of_platform_driver =
667 .driver = {
668 .name = "smu",
669 .of_match_table = smu_platform_match,
671 .probe = smu_platform_probe,
674 static int __init smu_init_sysfs(void)
677 * For now, we don't power manage machines with an SMU chip,
678 * I'm a bit too far from figuring out how that works with those
679 * new chipsets, but that will come back and bite us
681 platform_driver_register(&smu_of_platform_driver);
682 return 0;
685 device_initcall(smu_init_sysfs);
687 struct platform_device *smu_get_ofdev(void)
689 if (!smu)
690 return NULL;
691 return smu->of_dev;
694 EXPORT_SYMBOL_GPL(smu_get_ofdev);
697 * i2c interface
700 static void smu_i2c_complete_command(struct smu_i2c_cmd *cmd, int fail)
702 void (*done)(struct smu_i2c_cmd *cmd, void *misc) = cmd->done;
703 void *misc = cmd->misc;
704 unsigned long flags;
706 /* Check for read case */
707 if (!fail && cmd->read) {
708 if (cmd->pdata[0] < 1)
709 fail = 1;
710 else
711 memcpy(cmd->info.data, &cmd->pdata[1],
712 cmd->info.datalen);
715 DPRINTK("SMU: completing, success: %d\n", !fail);
717 /* Update status and mark no pending i2c command with lock
718 * held so nobody comes in while we dequeue an eventual
719 * pending next i2c command
721 spin_lock_irqsave(&smu->lock, flags);
722 smu->cmd_i2c_cur = NULL;
723 wmb();
724 cmd->status = fail ? -EIO : 0;
726 /* Is there another i2c command waiting ? */
727 if (!list_empty(&smu->cmd_i2c_list)) {
728 struct smu_i2c_cmd *newcmd;
730 /* Fetch it, new current, remove from list */
731 newcmd = list_entry(smu->cmd_i2c_list.next,
732 struct smu_i2c_cmd, link);
733 smu->cmd_i2c_cur = newcmd;
734 list_del(&cmd->link);
736 /* Queue with low level smu */
737 list_add_tail(&cmd->scmd.link, &smu->cmd_list);
738 if (smu->cmd_cur == NULL)
739 smu_start_cmd();
741 spin_unlock_irqrestore(&smu->lock, flags);
743 /* Call command completion handler if any */
744 if (done)
745 done(cmd, misc);
750 static void smu_i2c_retry(unsigned long data)
752 struct smu_i2c_cmd *cmd = smu->cmd_i2c_cur;
754 DPRINTK("SMU: i2c failure, requeuing...\n");
756 /* requeue command simply by resetting reply_len */
757 cmd->pdata[0] = 0xff;
758 cmd->scmd.reply_len = sizeof(cmd->pdata);
759 smu_queue_cmd(&cmd->scmd);
763 static void smu_i2c_low_completion(struct smu_cmd *scmd, void *misc)
765 struct smu_i2c_cmd *cmd = misc;
766 int fail = 0;
768 DPRINTK("SMU: i2c compl. stage=%d status=%x pdata[0]=%x rlen: %x\n",
769 cmd->stage, scmd->status, cmd->pdata[0], scmd->reply_len);
771 /* Check for possible status */
772 if (scmd->status < 0)
773 fail = 1;
774 else if (cmd->read) {
775 if (cmd->stage == 0)
776 fail = cmd->pdata[0] != 0;
777 else
778 fail = cmd->pdata[0] >= 0x80;
779 } else {
780 fail = cmd->pdata[0] != 0;
783 /* Handle failures by requeuing command, after 5ms interval
785 if (fail && --cmd->retries > 0) {
786 DPRINTK("SMU: i2c failure, starting timer...\n");
787 BUG_ON(cmd != smu->cmd_i2c_cur);
788 if (!smu_irq_inited) {
789 mdelay(5);
790 smu_i2c_retry(0);
791 return;
793 mod_timer(&smu->i2c_timer, jiffies + msecs_to_jiffies(5));
794 return;
797 /* If failure or stage 1, command is complete */
798 if (fail || cmd->stage != 0) {
799 smu_i2c_complete_command(cmd, fail);
800 return;
803 DPRINTK("SMU: going to stage 1\n");
805 /* Ok, initial command complete, now poll status */
806 scmd->reply_buf = cmd->pdata;
807 scmd->reply_len = sizeof(cmd->pdata);
808 scmd->data_buf = cmd->pdata;
809 scmd->data_len = 1;
810 cmd->pdata[0] = 0;
811 cmd->stage = 1;
812 cmd->retries = 20;
813 smu_queue_cmd(scmd);
817 int smu_queue_i2c(struct smu_i2c_cmd *cmd)
819 unsigned long flags;
821 if (smu == NULL)
822 return -ENODEV;
824 /* Fill most fields of scmd */
825 cmd->scmd.cmd = SMU_CMD_I2C_COMMAND;
826 cmd->scmd.done = smu_i2c_low_completion;
827 cmd->scmd.misc = cmd;
828 cmd->scmd.reply_buf = cmd->pdata;
829 cmd->scmd.reply_len = sizeof(cmd->pdata);
830 cmd->scmd.data_buf = (u8 *)(char *)&cmd->info;
831 cmd->scmd.status = 1;
832 cmd->stage = 0;
833 cmd->pdata[0] = 0xff;
834 cmd->retries = 20;
835 cmd->status = 1;
837 /* Check transfer type, sanitize some "info" fields
838 * based on transfer type and do more checking
840 cmd->info.caddr = cmd->info.devaddr;
841 cmd->read = cmd->info.devaddr & 0x01;
842 switch(cmd->info.type) {
843 case SMU_I2C_TRANSFER_SIMPLE:
844 memset(&cmd->info.sublen, 0, 4);
845 break;
846 case SMU_I2C_TRANSFER_COMBINED:
847 cmd->info.devaddr &= 0xfe;
848 case SMU_I2C_TRANSFER_STDSUB:
849 if (cmd->info.sublen > 3)
850 return -EINVAL;
851 break;
852 default:
853 return -EINVAL;
856 /* Finish setting up command based on transfer direction
858 if (cmd->read) {
859 if (cmd->info.datalen > SMU_I2C_READ_MAX)
860 return -EINVAL;
861 memset(cmd->info.data, 0xff, cmd->info.datalen);
862 cmd->scmd.data_len = 9;
863 } else {
864 if (cmd->info.datalen > SMU_I2C_WRITE_MAX)
865 return -EINVAL;
866 cmd->scmd.data_len = 9 + cmd->info.datalen;
869 DPRINTK("SMU: i2c enqueuing command\n");
870 DPRINTK("SMU: %s, len=%d bus=%x addr=%x sub0=%x type=%x\n",
871 cmd->read ? "read" : "write", cmd->info.datalen,
872 cmd->info.bus, cmd->info.caddr,
873 cmd->info.subaddr[0], cmd->info.type);
876 /* Enqueue command in i2c list, and if empty, enqueue also in
877 * main command list
879 spin_lock_irqsave(&smu->lock, flags);
880 if (smu->cmd_i2c_cur == NULL) {
881 smu->cmd_i2c_cur = cmd;
882 list_add_tail(&cmd->scmd.link, &smu->cmd_list);
883 if (smu->cmd_cur == NULL)
884 smu_start_cmd();
885 } else
886 list_add_tail(&cmd->link, &smu->cmd_i2c_list);
887 spin_unlock_irqrestore(&smu->lock, flags);
889 return 0;
893 * Handling of "partitions"
896 static int smu_read_datablock(u8 *dest, unsigned int addr, unsigned int len)
898 DECLARE_COMPLETION_ONSTACK(comp);
899 unsigned int chunk;
900 struct smu_cmd cmd;
901 int rc;
902 u8 params[8];
904 /* We currently use a chunk size of 0xe. We could check the
905 * SMU firmware version and use bigger sizes though
907 chunk = 0xe;
909 while (len) {
910 unsigned int clen = min(len, chunk);
912 cmd.cmd = SMU_CMD_MISC_ee_COMMAND;
913 cmd.data_len = 7;
914 cmd.data_buf = params;
915 cmd.reply_len = chunk;
916 cmd.reply_buf = dest;
917 cmd.done = smu_done_complete;
918 cmd.misc = &comp;
919 params[0] = SMU_CMD_MISC_ee_GET_DATABLOCK_REC;
920 params[1] = 0x4;
921 *((u32 *)&params[2]) = addr;
922 params[6] = clen;
924 rc = smu_queue_cmd(&cmd);
925 if (rc)
926 return rc;
927 wait_for_completion(&comp);
928 if (cmd.status != 0)
929 return rc;
930 if (cmd.reply_len != clen) {
931 printk(KERN_DEBUG "SMU: short read in "
932 "smu_read_datablock, got: %d, want: %d\n",
933 cmd.reply_len, clen);
934 return -EIO;
936 len -= clen;
937 addr += clen;
938 dest += clen;
940 return 0;
943 static struct smu_sdbp_header *smu_create_sdb_partition(int id)
945 DECLARE_COMPLETION_ONSTACK(comp);
946 struct smu_simple_cmd cmd;
947 unsigned int addr, len, tlen;
948 struct smu_sdbp_header *hdr;
949 struct property *prop;
951 /* First query the partition info */
952 DPRINTK("SMU: Query partition infos ... (irq=%d)\n", smu->db_irq);
953 smu_queue_simple(&cmd, SMU_CMD_PARTITION_COMMAND, 2,
954 smu_done_complete, &comp,
955 SMU_CMD_PARTITION_LATEST, id);
956 wait_for_completion(&comp);
957 DPRINTK("SMU: done, status: %d, reply_len: %d\n",
958 cmd.cmd.status, cmd.cmd.reply_len);
960 /* Partition doesn't exist (or other error) */
961 if (cmd.cmd.status != 0 || cmd.cmd.reply_len != 6)
962 return NULL;
964 /* Fetch address and length from reply */
965 addr = *((u16 *)cmd.buffer);
966 len = cmd.buffer[3] << 2;
967 /* Calucluate total length to allocate, including the 17 bytes
968 * for "sdb-partition-XX" that we append at the end of the buffer
970 tlen = sizeof(struct property) + len + 18;
972 prop = kzalloc(tlen, GFP_KERNEL);
973 if (prop == NULL)
974 return NULL;
975 hdr = (struct smu_sdbp_header *)(prop + 1);
976 prop->name = ((char *)prop) + tlen - 18;
977 sprintf(prop->name, "sdb-partition-%02x", id);
978 prop->length = len;
979 prop->value = hdr;
980 prop->next = NULL;
982 /* Read the datablock */
983 if (smu_read_datablock((u8 *)hdr, addr, len)) {
984 printk(KERN_DEBUG "SMU: datablock read failed while reading "
985 "partition %02x !\n", id);
986 goto failure;
989 /* Got it, check a few things and create the property */
990 if (hdr->id != id) {
991 printk(KERN_DEBUG "SMU: Reading partition %02x and got "
992 "%02x !\n", id, hdr->id);
993 goto failure;
995 if (of_add_property(smu->of_node, prop)) {
996 printk(KERN_DEBUG "SMU: Failed creating sdb-partition-%02x "
997 "property !\n", id);
998 goto failure;
1001 return hdr;
1002 failure:
1003 kfree(prop);
1004 return NULL;
1007 /* Note: Only allowed to return error code in pointers (using ERR_PTR)
1008 * when interruptible is 1
1010 const struct smu_sdbp_header *__smu_get_sdb_partition(int id,
1011 unsigned int *size, int interruptible)
1013 char pname[32];
1014 const struct smu_sdbp_header *part;
1016 if (!smu)
1017 return NULL;
1019 sprintf(pname, "sdb-partition-%02x", id);
1021 DPRINTK("smu_get_sdb_partition(%02x)\n", id);
1023 if (interruptible) {
1024 int rc;
1025 rc = mutex_lock_interruptible(&smu_part_access);
1026 if (rc)
1027 return ERR_PTR(rc);
1028 } else
1029 mutex_lock(&smu_part_access);
1031 part = of_get_property(smu->of_node, pname, size);
1032 if (part == NULL) {
1033 DPRINTK("trying to extract from SMU ...\n");
1034 part = smu_create_sdb_partition(id);
1035 if (part != NULL && size)
1036 *size = part->len << 2;
1038 mutex_unlock(&smu_part_access);
1039 return part;
1042 const struct smu_sdbp_header *smu_get_sdb_partition(int id, unsigned int *size)
1044 return __smu_get_sdb_partition(id, size, 0);
1046 EXPORT_SYMBOL(smu_get_sdb_partition);
1050 * Userland driver interface
1054 static LIST_HEAD(smu_clist);
1055 static DEFINE_SPINLOCK(smu_clist_lock);
1057 enum smu_file_mode {
1058 smu_file_commands,
1059 smu_file_events,
1060 smu_file_closing
1063 struct smu_private
1065 struct list_head list;
1066 enum smu_file_mode mode;
1067 int busy;
1068 struct smu_cmd cmd;
1069 spinlock_t lock;
1070 wait_queue_head_t wait;
1071 u8 buffer[SMU_MAX_DATA];
1075 static int smu_open(struct inode *inode, struct file *file)
1077 struct smu_private *pp;
1078 unsigned long flags;
1080 pp = kzalloc(sizeof(struct smu_private), GFP_KERNEL);
1081 if (pp == 0)
1082 return -ENOMEM;
1083 spin_lock_init(&pp->lock);
1084 pp->mode = smu_file_commands;
1085 init_waitqueue_head(&pp->wait);
1087 mutex_lock(&smu_mutex);
1088 spin_lock_irqsave(&smu_clist_lock, flags);
1089 list_add(&pp->list, &smu_clist);
1090 spin_unlock_irqrestore(&smu_clist_lock, flags);
1091 file->private_data = pp;
1092 mutex_unlock(&smu_mutex);
1094 return 0;
1098 static void smu_user_cmd_done(struct smu_cmd *cmd, void *misc)
1100 struct smu_private *pp = misc;
1102 wake_up_all(&pp->wait);
1106 static ssize_t smu_write(struct file *file, const char __user *buf,
1107 size_t count, loff_t *ppos)
1109 struct smu_private *pp = file->private_data;
1110 unsigned long flags;
1111 struct smu_user_cmd_hdr hdr;
1112 int rc = 0;
1114 if (pp->busy)
1115 return -EBUSY;
1116 else if (copy_from_user(&hdr, buf, sizeof(hdr)))
1117 return -EFAULT;
1118 else if (hdr.cmdtype == SMU_CMDTYPE_WANTS_EVENTS) {
1119 pp->mode = smu_file_events;
1120 return 0;
1121 } else if (hdr.cmdtype == SMU_CMDTYPE_GET_PARTITION) {
1122 const struct smu_sdbp_header *part;
1123 part = __smu_get_sdb_partition(hdr.cmd, NULL, 1);
1124 if (part == NULL)
1125 return -EINVAL;
1126 else if (IS_ERR(part))
1127 return PTR_ERR(part);
1128 return 0;
1129 } else if (hdr.cmdtype != SMU_CMDTYPE_SMU)
1130 return -EINVAL;
1131 else if (pp->mode != smu_file_commands)
1132 return -EBADFD;
1133 else if (hdr.data_len > SMU_MAX_DATA)
1134 return -EINVAL;
1136 spin_lock_irqsave(&pp->lock, flags);
1137 if (pp->busy) {
1138 spin_unlock_irqrestore(&pp->lock, flags);
1139 return -EBUSY;
1141 pp->busy = 1;
1142 pp->cmd.status = 1;
1143 spin_unlock_irqrestore(&pp->lock, flags);
1145 if (copy_from_user(pp->buffer, buf + sizeof(hdr), hdr.data_len)) {
1146 pp->busy = 0;
1147 return -EFAULT;
1150 pp->cmd.cmd = hdr.cmd;
1151 pp->cmd.data_len = hdr.data_len;
1152 pp->cmd.reply_len = SMU_MAX_DATA;
1153 pp->cmd.data_buf = pp->buffer;
1154 pp->cmd.reply_buf = pp->buffer;
1155 pp->cmd.done = smu_user_cmd_done;
1156 pp->cmd.misc = pp;
1157 rc = smu_queue_cmd(&pp->cmd);
1158 if (rc < 0)
1159 return rc;
1160 return count;
1164 static ssize_t smu_read_command(struct file *file, struct smu_private *pp,
1165 char __user *buf, size_t count)
1167 DECLARE_WAITQUEUE(wait, current);
1168 struct smu_user_reply_hdr hdr;
1169 unsigned long flags;
1170 int size, rc = 0;
1172 if (!pp->busy)
1173 return 0;
1174 if (count < sizeof(struct smu_user_reply_hdr))
1175 return -EOVERFLOW;
1176 spin_lock_irqsave(&pp->lock, flags);
1177 if (pp->cmd.status == 1) {
1178 if (file->f_flags & O_NONBLOCK) {
1179 spin_unlock_irqrestore(&pp->lock, flags);
1180 return -EAGAIN;
1182 add_wait_queue(&pp->wait, &wait);
1183 for (;;) {
1184 set_current_state(TASK_INTERRUPTIBLE);
1185 rc = 0;
1186 if (pp->cmd.status != 1)
1187 break;
1188 rc = -ERESTARTSYS;
1189 if (signal_pending(current))
1190 break;
1191 spin_unlock_irqrestore(&pp->lock, flags);
1192 schedule();
1193 spin_lock_irqsave(&pp->lock, flags);
1195 set_current_state(TASK_RUNNING);
1196 remove_wait_queue(&pp->wait, &wait);
1198 spin_unlock_irqrestore(&pp->lock, flags);
1199 if (rc)
1200 return rc;
1201 if (pp->cmd.status != 0)
1202 pp->cmd.reply_len = 0;
1203 size = sizeof(hdr) + pp->cmd.reply_len;
1204 if (count < size)
1205 size = count;
1206 rc = size;
1207 hdr.status = pp->cmd.status;
1208 hdr.reply_len = pp->cmd.reply_len;
1209 if (copy_to_user(buf, &hdr, sizeof(hdr)))
1210 return -EFAULT;
1211 size -= sizeof(hdr);
1212 if (size && copy_to_user(buf + sizeof(hdr), pp->buffer, size))
1213 return -EFAULT;
1214 pp->busy = 0;
1216 return rc;
1220 static ssize_t smu_read_events(struct file *file, struct smu_private *pp,
1221 char __user *buf, size_t count)
1223 /* Not implemented */
1224 msleep_interruptible(1000);
1225 return 0;
1229 static ssize_t smu_read(struct file *file, char __user *buf,
1230 size_t count, loff_t *ppos)
1232 struct smu_private *pp = file->private_data;
1234 if (pp->mode == smu_file_commands)
1235 return smu_read_command(file, pp, buf, count);
1236 if (pp->mode == smu_file_events)
1237 return smu_read_events(file, pp, buf, count);
1239 return -EBADFD;
1242 static unsigned int smu_fpoll(struct file *file, poll_table *wait)
1244 struct smu_private *pp = file->private_data;
1245 unsigned int mask = 0;
1246 unsigned long flags;
1248 if (pp == 0)
1249 return 0;
1251 if (pp->mode == smu_file_commands) {
1252 poll_wait(file, &pp->wait, wait);
1254 spin_lock_irqsave(&pp->lock, flags);
1255 if (pp->busy && pp->cmd.status != 1)
1256 mask |= POLLIN;
1257 spin_unlock_irqrestore(&pp->lock, flags);
1259 if (pp->mode == smu_file_events) {
1260 /* Not yet implemented */
1262 return mask;
1265 static int smu_release(struct inode *inode, struct file *file)
1267 struct smu_private *pp = file->private_data;
1268 unsigned long flags;
1269 unsigned int busy;
1271 if (pp == 0)
1272 return 0;
1274 file->private_data = NULL;
1276 /* Mark file as closing to avoid races with new request */
1277 spin_lock_irqsave(&pp->lock, flags);
1278 pp->mode = smu_file_closing;
1279 busy = pp->busy;
1281 /* Wait for any pending request to complete */
1282 if (busy && pp->cmd.status == 1) {
1283 DECLARE_WAITQUEUE(wait, current);
1285 add_wait_queue(&pp->wait, &wait);
1286 for (;;) {
1287 set_current_state(TASK_UNINTERRUPTIBLE);
1288 if (pp->cmd.status != 1)
1289 break;
1290 spin_unlock_irqrestore(&pp->lock, flags);
1291 schedule();
1292 spin_lock_irqsave(&pp->lock, flags);
1294 set_current_state(TASK_RUNNING);
1295 remove_wait_queue(&pp->wait, &wait);
1297 spin_unlock_irqrestore(&pp->lock, flags);
1299 spin_lock_irqsave(&smu_clist_lock, flags);
1300 list_del(&pp->list);
1301 spin_unlock_irqrestore(&smu_clist_lock, flags);
1302 kfree(pp);
1304 return 0;
1308 static const struct file_operations smu_device_fops = {
1309 .llseek = no_llseek,
1310 .read = smu_read,
1311 .write = smu_write,
1312 .poll = smu_fpoll,
1313 .open = smu_open,
1314 .release = smu_release,
1317 static struct miscdevice pmu_device = {
1318 MISC_DYNAMIC_MINOR, "smu", &smu_device_fops
1321 static int smu_device_init(void)
1323 if (!smu)
1324 return -ENODEV;
1325 if (misc_register(&pmu_device) < 0)
1326 printk(KERN_ERR "via-pmu: cannot register misc device.\n");
1327 return 0;
1329 device_initcall(smu_device_init);