2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2015 Red Hat, Inc. All rights reserved.
5 * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com>
7 * This file is released under the GPL.
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/bio.h>
16 #include <linux/blkdev.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/crypto.h>
20 #include <linux/workqueue.h>
21 #include <linux/kthread.h>
22 #include <linux/backing-dev.h>
23 #include <linux/atomic.h>
24 #include <linux/scatterlist.h>
25 #include <linux/rbtree.h>
27 #include <asm/unaligned.h>
28 #include <crypto/hash.h>
29 #include <crypto/md5.h>
30 #include <crypto/algapi.h>
32 #include <linux/device-mapper.h>
34 #define DM_MSG_PREFIX "crypt"
37 * context holding the current state of a multi-part conversion
39 struct convert_context
{
40 struct completion restart
;
43 struct bvec_iter iter_in
;
44 struct bvec_iter iter_out
;
47 struct ablkcipher_request
*req
;
51 * per bio private data
54 struct crypt_config
*cc
;
56 struct work_struct work
;
58 struct convert_context ctx
;
64 struct rb_node rb_node
;
65 } CRYPTO_MINALIGN_ATTR
;
67 struct dm_crypt_request
{
68 struct convert_context
*ctx
;
69 struct scatterlist sg_in
;
70 struct scatterlist sg_out
;
76 struct crypt_iv_operations
{
77 int (*ctr
)(struct crypt_config
*cc
, struct dm_target
*ti
,
79 void (*dtr
)(struct crypt_config
*cc
);
80 int (*init
)(struct crypt_config
*cc
);
81 int (*wipe
)(struct crypt_config
*cc
);
82 int (*generator
)(struct crypt_config
*cc
, u8
*iv
,
83 struct dm_crypt_request
*dmreq
);
84 int (*post
)(struct crypt_config
*cc
, u8
*iv
,
85 struct dm_crypt_request
*dmreq
);
88 struct iv_essiv_private
{
89 struct crypto_hash
*hash_tfm
;
93 struct iv_benbi_private
{
97 #define LMK_SEED_SIZE 64 /* hash + 0 */
98 struct iv_lmk_private
{
99 struct crypto_shash
*hash_tfm
;
103 #define TCW_WHITENING_SIZE 16
104 struct iv_tcw_private
{
105 struct crypto_shash
*crc32_tfm
;
111 * Crypt: maps a linear range of a block device
112 * and encrypts / decrypts at the same time.
114 enum flags
{ DM_CRYPT_SUSPENDED
, DM_CRYPT_KEY_VALID
,
115 DM_CRYPT_SAME_CPU
, DM_CRYPT_NO_OFFLOAD
,
116 DM_CRYPT_EXIT_THREAD
};
119 * The fields in here must be read only after initialization.
121 struct crypt_config
{
126 * pool for per bio private data, crypto requests and
127 * encryption requeusts/buffer pages
130 mempool_t
*page_pool
;
132 struct mutex bio_alloc_lock
;
134 struct workqueue_struct
*io_queue
;
135 struct workqueue_struct
*crypt_queue
;
137 struct task_struct
*write_thread
;
138 wait_queue_head_t write_thread_wait
;
139 struct rb_root write_tree
;
144 struct crypt_iv_operations
*iv_gen_ops
;
146 struct iv_essiv_private essiv
;
147 struct iv_benbi_private benbi
;
148 struct iv_lmk_private lmk
;
149 struct iv_tcw_private tcw
;
152 unsigned int iv_size
;
154 /* ESSIV: struct crypto_cipher *essiv_tfm */
156 struct crypto_ablkcipher
**tfms
;
160 * Layout of each crypto request:
162 * struct ablkcipher_request
165 * struct dm_crypt_request
169 * The padding is added so that dm_crypt_request and the IV are
172 unsigned int dmreq_start
;
174 unsigned int per_bio_data_size
;
177 unsigned int key_size
;
178 unsigned int key_parts
; /* independent parts in key buffer */
179 unsigned int key_extra_size
; /* additional keys length */
185 static void clone_init(struct dm_crypt_io
*, struct bio
*);
186 static void kcryptd_queue_crypt(struct dm_crypt_io
*io
);
187 static u8
*iv_of_dmreq(struct crypt_config
*cc
, struct dm_crypt_request
*dmreq
);
190 * Use this to access cipher attributes that are the same for each CPU.
192 static struct crypto_ablkcipher
*any_tfm(struct crypt_config
*cc
)
198 * Different IV generation algorithms:
200 * plain: the initial vector is the 32-bit little-endian version of the sector
201 * number, padded with zeros if necessary.
203 * plain64: the initial vector is the 64-bit little-endian version of the sector
204 * number, padded with zeros if necessary.
206 * essiv: "encrypted sector|salt initial vector", the sector number is
207 * encrypted with the bulk cipher using a salt as key. The salt
208 * should be derived from the bulk cipher's key via hashing.
210 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
211 * (needed for LRW-32-AES and possible other narrow block modes)
213 * null: the initial vector is always zero. Provides compatibility with
214 * obsolete loop_fish2 devices. Do not use for new devices.
216 * lmk: Compatible implementation of the block chaining mode used
217 * by the Loop-AES block device encryption system
218 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
219 * It operates on full 512 byte sectors and uses CBC
220 * with an IV derived from the sector number, the data and
221 * optionally extra IV seed.
222 * This means that after decryption the first block
223 * of sector must be tweaked according to decrypted data.
224 * Loop-AES can use three encryption schemes:
225 * version 1: is plain aes-cbc mode
226 * version 2: uses 64 multikey scheme with lmk IV generator
227 * version 3: the same as version 2 with additional IV seed
228 * (it uses 65 keys, last key is used as IV seed)
230 * tcw: Compatible implementation of the block chaining mode used
231 * by the TrueCrypt device encryption system (prior to version 4.1).
232 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
233 * It operates on full 512 byte sectors and uses CBC
234 * with an IV derived from initial key and the sector number.
235 * In addition, whitening value is applied on every sector, whitening
236 * is calculated from initial key, sector number and mixed using CRC32.
237 * Note that this encryption scheme is vulnerable to watermarking attacks
238 * and should be used for old compatible containers access only.
240 * plumb: unimplemented, see:
241 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
244 static int crypt_iv_plain_gen(struct crypt_config
*cc
, u8
*iv
,
245 struct dm_crypt_request
*dmreq
)
247 memset(iv
, 0, cc
->iv_size
);
248 *(__le32
*)iv
= cpu_to_le32(dmreq
->iv_sector
& 0xffffffff);
253 static int crypt_iv_plain64_gen(struct crypt_config
*cc
, u8
*iv
,
254 struct dm_crypt_request
*dmreq
)
256 memset(iv
, 0, cc
->iv_size
);
257 *(__le64
*)iv
= cpu_to_le64(dmreq
->iv_sector
);
262 /* Initialise ESSIV - compute salt but no local memory allocations */
263 static int crypt_iv_essiv_init(struct crypt_config
*cc
)
265 struct iv_essiv_private
*essiv
= &cc
->iv_gen_private
.essiv
;
266 struct hash_desc desc
;
267 struct scatterlist sg
;
268 struct crypto_cipher
*essiv_tfm
;
271 sg_init_one(&sg
, cc
->key
, cc
->key_size
);
272 desc
.tfm
= essiv
->hash_tfm
;
273 desc
.flags
= CRYPTO_TFM_REQ_MAY_SLEEP
;
275 err
= crypto_hash_digest(&desc
, &sg
, cc
->key_size
, essiv
->salt
);
279 essiv_tfm
= cc
->iv_private
;
281 err
= crypto_cipher_setkey(essiv_tfm
, essiv
->salt
,
282 crypto_hash_digestsize(essiv
->hash_tfm
));
289 /* Wipe salt and reset key derived from volume key */
290 static int crypt_iv_essiv_wipe(struct crypt_config
*cc
)
292 struct iv_essiv_private
*essiv
= &cc
->iv_gen_private
.essiv
;
293 unsigned salt_size
= crypto_hash_digestsize(essiv
->hash_tfm
);
294 struct crypto_cipher
*essiv_tfm
;
297 memset(essiv
->salt
, 0, salt_size
);
299 essiv_tfm
= cc
->iv_private
;
300 r
= crypto_cipher_setkey(essiv_tfm
, essiv
->salt
, salt_size
);
307 /* Set up per cpu cipher state */
308 static struct crypto_cipher
*setup_essiv_cpu(struct crypt_config
*cc
,
309 struct dm_target
*ti
,
310 u8
*salt
, unsigned saltsize
)
312 struct crypto_cipher
*essiv_tfm
;
315 /* Setup the essiv_tfm with the given salt */
316 essiv_tfm
= crypto_alloc_cipher(cc
->cipher
, 0, CRYPTO_ALG_ASYNC
);
317 if (IS_ERR(essiv_tfm
)) {
318 ti
->error
= "Error allocating crypto tfm for ESSIV";
322 if (crypto_cipher_blocksize(essiv_tfm
) !=
323 crypto_ablkcipher_ivsize(any_tfm(cc
))) {
324 ti
->error
= "Block size of ESSIV cipher does "
325 "not match IV size of block cipher";
326 crypto_free_cipher(essiv_tfm
);
327 return ERR_PTR(-EINVAL
);
330 err
= crypto_cipher_setkey(essiv_tfm
, salt
, saltsize
);
332 ti
->error
= "Failed to set key for ESSIV cipher";
333 crypto_free_cipher(essiv_tfm
);
340 static void crypt_iv_essiv_dtr(struct crypt_config
*cc
)
342 struct crypto_cipher
*essiv_tfm
;
343 struct iv_essiv_private
*essiv
= &cc
->iv_gen_private
.essiv
;
345 crypto_free_hash(essiv
->hash_tfm
);
346 essiv
->hash_tfm
= NULL
;
351 essiv_tfm
= cc
->iv_private
;
354 crypto_free_cipher(essiv_tfm
);
356 cc
->iv_private
= NULL
;
359 static int crypt_iv_essiv_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
362 struct crypto_cipher
*essiv_tfm
= NULL
;
363 struct crypto_hash
*hash_tfm
= NULL
;
368 ti
->error
= "Digest algorithm missing for ESSIV mode";
372 /* Allocate hash algorithm */
373 hash_tfm
= crypto_alloc_hash(opts
, 0, CRYPTO_ALG_ASYNC
);
374 if (IS_ERR(hash_tfm
)) {
375 ti
->error
= "Error initializing ESSIV hash";
376 err
= PTR_ERR(hash_tfm
);
380 salt
= kzalloc(crypto_hash_digestsize(hash_tfm
), GFP_KERNEL
);
382 ti
->error
= "Error kmallocing salt storage in ESSIV";
387 cc
->iv_gen_private
.essiv
.salt
= salt
;
388 cc
->iv_gen_private
.essiv
.hash_tfm
= hash_tfm
;
390 essiv_tfm
= setup_essiv_cpu(cc
, ti
, salt
,
391 crypto_hash_digestsize(hash_tfm
));
392 if (IS_ERR(essiv_tfm
)) {
393 crypt_iv_essiv_dtr(cc
);
394 return PTR_ERR(essiv_tfm
);
396 cc
->iv_private
= essiv_tfm
;
401 if (hash_tfm
&& !IS_ERR(hash_tfm
))
402 crypto_free_hash(hash_tfm
);
407 static int crypt_iv_essiv_gen(struct crypt_config
*cc
, u8
*iv
,
408 struct dm_crypt_request
*dmreq
)
410 struct crypto_cipher
*essiv_tfm
= cc
->iv_private
;
412 memset(iv
, 0, cc
->iv_size
);
413 *(__le64
*)iv
= cpu_to_le64(dmreq
->iv_sector
);
414 crypto_cipher_encrypt_one(essiv_tfm
, iv
, iv
);
419 static int crypt_iv_benbi_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
422 unsigned bs
= crypto_ablkcipher_blocksize(any_tfm(cc
));
425 /* we need to calculate how far we must shift the sector count
426 * to get the cipher block count, we use this shift in _gen */
428 if (1 << log
!= bs
) {
429 ti
->error
= "cypher blocksize is not a power of 2";
434 ti
->error
= "cypher blocksize is > 512";
438 cc
->iv_gen_private
.benbi
.shift
= 9 - log
;
443 static void crypt_iv_benbi_dtr(struct crypt_config
*cc
)
447 static int crypt_iv_benbi_gen(struct crypt_config
*cc
, u8
*iv
,
448 struct dm_crypt_request
*dmreq
)
452 memset(iv
, 0, cc
->iv_size
- sizeof(u64
)); /* rest is cleared below */
454 val
= cpu_to_be64(((u64
)dmreq
->iv_sector
<< cc
->iv_gen_private
.benbi
.shift
) + 1);
455 put_unaligned(val
, (__be64
*)(iv
+ cc
->iv_size
- sizeof(u64
)));
460 static int crypt_iv_null_gen(struct crypt_config
*cc
, u8
*iv
,
461 struct dm_crypt_request
*dmreq
)
463 memset(iv
, 0, cc
->iv_size
);
468 static void crypt_iv_lmk_dtr(struct crypt_config
*cc
)
470 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
472 if (lmk
->hash_tfm
&& !IS_ERR(lmk
->hash_tfm
))
473 crypto_free_shash(lmk
->hash_tfm
);
474 lmk
->hash_tfm
= NULL
;
480 static int crypt_iv_lmk_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
483 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
485 lmk
->hash_tfm
= crypto_alloc_shash("md5", 0, 0);
486 if (IS_ERR(lmk
->hash_tfm
)) {
487 ti
->error
= "Error initializing LMK hash";
488 return PTR_ERR(lmk
->hash_tfm
);
491 /* No seed in LMK version 2 */
492 if (cc
->key_parts
== cc
->tfms_count
) {
497 lmk
->seed
= kzalloc(LMK_SEED_SIZE
, GFP_KERNEL
);
499 crypt_iv_lmk_dtr(cc
);
500 ti
->error
= "Error kmallocing seed storage in LMK";
507 static int crypt_iv_lmk_init(struct crypt_config
*cc
)
509 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
510 int subkey_size
= cc
->key_size
/ cc
->key_parts
;
512 /* LMK seed is on the position of LMK_KEYS + 1 key */
514 memcpy(lmk
->seed
, cc
->key
+ (cc
->tfms_count
* subkey_size
),
515 crypto_shash_digestsize(lmk
->hash_tfm
));
520 static int crypt_iv_lmk_wipe(struct crypt_config
*cc
)
522 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
525 memset(lmk
->seed
, 0, LMK_SEED_SIZE
);
530 static int crypt_iv_lmk_one(struct crypt_config
*cc
, u8
*iv
,
531 struct dm_crypt_request
*dmreq
,
534 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
535 SHASH_DESC_ON_STACK(desc
, lmk
->hash_tfm
);
536 struct md5_state md5state
;
540 desc
->tfm
= lmk
->hash_tfm
;
541 desc
->flags
= CRYPTO_TFM_REQ_MAY_SLEEP
;
543 r
= crypto_shash_init(desc
);
548 r
= crypto_shash_update(desc
, lmk
->seed
, LMK_SEED_SIZE
);
553 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
554 r
= crypto_shash_update(desc
, data
+ 16, 16 * 31);
558 /* Sector is cropped to 56 bits here */
559 buf
[0] = cpu_to_le32(dmreq
->iv_sector
& 0xFFFFFFFF);
560 buf
[1] = cpu_to_le32((((u64
)dmreq
->iv_sector
>> 32) & 0x00FFFFFF) | 0x80000000);
561 buf
[2] = cpu_to_le32(4024);
563 r
= crypto_shash_update(desc
, (u8
*)buf
, sizeof(buf
));
567 /* No MD5 padding here */
568 r
= crypto_shash_export(desc
, &md5state
);
572 for (i
= 0; i
< MD5_HASH_WORDS
; i
++)
573 __cpu_to_le32s(&md5state
.hash
[i
]);
574 memcpy(iv
, &md5state
.hash
, cc
->iv_size
);
579 static int crypt_iv_lmk_gen(struct crypt_config
*cc
, u8
*iv
,
580 struct dm_crypt_request
*dmreq
)
585 if (bio_data_dir(dmreq
->ctx
->bio_in
) == WRITE
) {
586 src
= kmap_atomic(sg_page(&dmreq
->sg_in
));
587 r
= crypt_iv_lmk_one(cc
, iv
, dmreq
, src
+ dmreq
->sg_in
.offset
);
590 memset(iv
, 0, cc
->iv_size
);
595 static int crypt_iv_lmk_post(struct crypt_config
*cc
, u8
*iv
,
596 struct dm_crypt_request
*dmreq
)
601 if (bio_data_dir(dmreq
->ctx
->bio_in
) == WRITE
)
604 dst
= kmap_atomic(sg_page(&dmreq
->sg_out
));
605 r
= crypt_iv_lmk_one(cc
, iv
, dmreq
, dst
+ dmreq
->sg_out
.offset
);
607 /* Tweak the first block of plaintext sector */
609 crypto_xor(dst
+ dmreq
->sg_out
.offset
, iv
, cc
->iv_size
);
615 static void crypt_iv_tcw_dtr(struct crypt_config
*cc
)
617 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
619 kzfree(tcw
->iv_seed
);
621 kzfree(tcw
->whitening
);
622 tcw
->whitening
= NULL
;
624 if (tcw
->crc32_tfm
&& !IS_ERR(tcw
->crc32_tfm
))
625 crypto_free_shash(tcw
->crc32_tfm
);
626 tcw
->crc32_tfm
= NULL
;
629 static int crypt_iv_tcw_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
632 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
634 if (cc
->key_size
<= (cc
->iv_size
+ TCW_WHITENING_SIZE
)) {
635 ti
->error
= "Wrong key size for TCW";
639 tcw
->crc32_tfm
= crypto_alloc_shash("crc32", 0, 0);
640 if (IS_ERR(tcw
->crc32_tfm
)) {
641 ti
->error
= "Error initializing CRC32 in TCW";
642 return PTR_ERR(tcw
->crc32_tfm
);
645 tcw
->iv_seed
= kzalloc(cc
->iv_size
, GFP_KERNEL
);
646 tcw
->whitening
= kzalloc(TCW_WHITENING_SIZE
, GFP_KERNEL
);
647 if (!tcw
->iv_seed
|| !tcw
->whitening
) {
648 crypt_iv_tcw_dtr(cc
);
649 ti
->error
= "Error allocating seed storage in TCW";
656 static int crypt_iv_tcw_init(struct crypt_config
*cc
)
658 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
659 int key_offset
= cc
->key_size
- cc
->iv_size
- TCW_WHITENING_SIZE
;
661 memcpy(tcw
->iv_seed
, &cc
->key
[key_offset
], cc
->iv_size
);
662 memcpy(tcw
->whitening
, &cc
->key
[key_offset
+ cc
->iv_size
],
668 static int crypt_iv_tcw_wipe(struct crypt_config
*cc
)
670 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
672 memset(tcw
->iv_seed
, 0, cc
->iv_size
);
673 memset(tcw
->whitening
, 0, TCW_WHITENING_SIZE
);
678 static int crypt_iv_tcw_whitening(struct crypt_config
*cc
,
679 struct dm_crypt_request
*dmreq
,
682 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
683 u64 sector
= cpu_to_le64((u64
)dmreq
->iv_sector
);
684 u8 buf
[TCW_WHITENING_SIZE
];
685 SHASH_DESC_ON_STACK(desc
, tcw
->crc32_tfm
);
688 /* xor whitening with sector number */
689 memcpy(buf
, tcw
->whitening
, TCW_WHITENING_SIZE
);
690 crypto_xor(buf
, (u8
*)§or
, 8);
691 crypto_xor(&buf
[8], (u8
*)§or
, 8);
693 /* calculate crc32 for every 32bit part and xor it */
694 desc
->tfm
= tcw
->crc32_tfm
;
695 desc
->flags
= CRYPTO_TFM_REQ_MAY_SLEEP
;
696 for (i
= 0; i
< 4; i
++) {
697 r
= crypto_shash_init(desc
);
700 r
= crypto_shash_update(desc
, &buf
[i
* 4], 4);
703 r
= crypto_shash_final(desc
, &buf
[i
* 4]);
707 crypto_xor(&buf
[0], &buf
[12], 4);
708 crypto_xor(&buf
[4], &buf
[8], 4);
710 /* apply whitening (8 bytes) to whole sector */
711 for (i
= 0; i
< ((1 << SECTOR_SHIFT
) / 8); i
++)
712 crypto_xor(data
+ i
* 8, buf
, 8);
714 memzero_explicit(buf
, sizeof(buf
));
718 static int crypt_iv_tcw_gen(struct crypt_config
*cc
, u8
*iv
,
719 struct dm_crypt_request
*dmreq
)
721 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
722 u64 sector
= cpu_to_le64((u64
)dmreq
->iv_sector
);
726 /* Remove whitening from ciphertext */
727 if (bio_data_dir(dmreq
->ctx
->bio_in
) != WRITE
) {
728 src
= kmap_atomic(sg_page(&dmreq
->sg_in
));
729 r
= crypt_iv_tcw_whitening(cc
, dmreq
, src
+ dmreq
->sg_in
.offset
);
734 memcpy(iv
, tcw
->iv_seed
, cc
->iv_size
);
735 crypto_xor(iv
, (u8
*)§or
, 8);
737 crypto_xor(&iv
[8], (u8
*)§or
, cc
->iv_size
- 8);
742 static int crypt_iv_tcw_post(struct crypt_config
*cc
, u8
*iv
,
743 struct dm_crypt_request
*dmreq
)
748 if (bio_data_dir(dmreq
->ctx
->bio_in
) != WRITE
)
751 /* Apply whitening on ciphertext */
752 dst
= kmap_atomic(sg_page(&dmreq
->sg_out
));
753 r
= crypt_iv_tcw_whitening(cc
, dmreq
, dst
+ dmreq
->sg_out
.offset
);
759 static struct crypt_iv_operations crypt_iv_plain_ops
= {
760 .generator
= crypt_iv_plain_gen
763 static struct crypt_iv_operations crypt_iv_plain64_ops
= {
764 .generator
= crypt_iv_plain64_gen
767 static struct crypt_iv_operations crypt_iv_essiv_ops
= {
768 .ctr
= crypt_iv_essiv_ctr
,
769 .dtr
= crypt_iv_essiv_dtr
,
770 .init
= crypt_iv_essiv_init
,
771 .wipe
= crypt_iv_essiv_wipe
,
772 .generator
= crypt_iv_essiv_gen
775 static struct crypt_iv_operations crypt_iv_benbi_ops
= {
776 .ctr
= crypt_iv_benbi_ctr
,
777 .dtr
= crypt_iv_benbi_dtr
,
778 .generator
= crypt_iv_benbi_gen
781 static struct crypt_iv_operations crypt_iv_null_ops
= {
782 .generator
= crypt_iv_null_gen
785 static struct crypt_iv_operations crypt_iv_lmk_ops
= {
786 .ctr
= crypt_iv_lmk_ctr
,
787 .dtr
= crypt_iv_lmk_dtr
,
788 .init
= crypt_iv_lmk_init
,
789 .wipe
= crypt_iv_lmk_wipe
,
790 .generator
= crypt_iv_lmk_gen
,
791 .post
= crypt_iv_lmk_post
794 static struct crypt_iv_operations crypt_iv_tcw_ops
= {
795 .ctr
= crypt_iv_tcw_ctr
,
796 .dtr
= crypt_iv_tcw_dtr
,
797 .init
= crypt_iv_tcw_init
,
798 .wipe
= crypt_iv_tcw_wipe
,
799 .generator
= crypt_iv_tcw_gen
,
800 .post
= crypt_iv_tcw_post
803 static void crypt_convert_init(struct crypt_config
*cc
,
804 struct convert_context
*ctx
,
805 struct bio
*bio_out
, struct bio
*bio_in
,
808 ctx
->bio_in
= bio_in
;
809 ctx
->bio_out
= bio_out
;
811 ctx
->iter_in
= bio_in
->bi_iter
;
813 ctx
->iter_out
= bio_out
->bi_iter
;
814 ctx
->cc_sector
= sector
+ cc
->iv_offset
;
815 init_completion(&ctx
->restart
);
818 static struct dm_crypt_request
*dmreq_of_req(struct crypt_config
*cc
,
819 struct ablkcipher_request
*req
)
821 return (struct dm_crypt_request
*)((char *)req
+ cc
->dmreq_start
);
824 static struct ablkcipher_request
*req_of_dmreq(struct crypt_config
*cc
,
825 struct dm_crypt_request
*dmreq
)
827 return (struct ablkcipher_request
*)((char *)dmreq
- cc
->dmreq_start
);
830 static u8
*iv_of_dmreq(struct crypt_config
*cc
,
831 struct dm_crypt_request
*dmreq
)
833 return (u8
*)ALIGN((unsigned long)(dmreq
+ 1),
834 crypto_ablkcipher_alignmask(any_tfm(cc
)) + 1);
837 static int crypt_convert_block(struct crypt_config
*cc
,
838 struct convert_context
*ctx
,
839 struct ablkcipher_request
*req
)
841 struct bio_vec bv_in
= bio_iter_iovec(ctx
->bio_in
, ctx
->iter_in
);
842 struct bio_vec bv_out
= bio_iter_iovec(ctx
->bio_out
, ctx
->iter_out
);
843 struct dm_crypt_request
*dmreq
;
847 dmreq
= dmreq_of_req(cc
, req
);
848 iv
= iv_of_dmreq(cc
, dmreq
);
850 dmreq
->iv_sector
= ctx
->cc_sector
;
852 sg_init_table(&dmreq
->sg_in
, 1);
853 sg_set_page(&dmreq
->sg_in
, bv_in
.bv_page
, 1 << SECTOR_SHIFT
,
856 sg_init_table(&dmreq
->sg_out
, 1);
857 sg_set_page(&dmreq
->sg_out
, bv_out
.bv_page
, 1 << SECTOR_SHIFT
,
860 bio_advance_iter(ctx
->bio_in
, &ctx
->iter_in
, 1 << SECTOR_SHIFT
);
861 bio_advance_iter(ctx
->bio_out
, &ctx
->iter_out
, 1 << SECTOR_SHIFT
);
863 if (cc
->iv_gen_ops
) {
864 r
= cc
->iv_gen_ops
->generator(cc
, iv
, dmreq
);
869 ablkcipher_request_set_crypt(req
, &dmreq
->sg_in
, &dmreq
->sg_out
,
870 1 << SECTOR_SHIFT
, iv
);
872 if (bio_data_dir(ctx
->bio_in
) == WRITE
)
873 r
= crypto_ablkcipher_encrypt(req
);
875 r
= crypto_ablkcipher_decrypt(req
);
877 if (!r
&& cc
->iv_gen_ops
&& cc
->iv_gen_ops
->post
)
878 r
= cc
->iv_gen_ops
->post(cc
, iv
, dmreq
);
883 static void kcryptd_async_done(struct crypto_async_request
*async_req
,
886 static void crypt_alloc_req(struct crypt_config
*cc
,
887 struct convert_context
*ctx
)
889 unsigned key_index
= ctx
->cc_sector
& (cc
->tfms_count
- 1);
892 ctx
->req
= mempool_alloc(cc
->req_pool
, GFP_NOIO
);
894 ablkcipher_request_set_tfm(ctx
->req
, cc
->tfms
[key_index
]);
897 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
898 * requests if driver request queue is full.
900 ablkcipher_request_set_callback(ctx
->req
,
901 CRYPTO_TFM_REQ_MAY_BACKLOG
| CRYPTO_TFM_REQ_MAY_SLEEP
,
902 kcryptd_async_done
, dmreq_of_req(cc
, ctx
->req
));
905 static void crypt_free_req(struct crypt_config
*cc
,
906 struct ablkcipher_request
*req
, struct bio
*base_bio
)
908 struct dm_crypt_io
*io
= dm_per_bio_data(base_bio
, cc
->per_bio_data_size
);
910 if ((struct ablkcipher_request
*)(io
+ 1) != req
)
911 mempool_free(req
, cc
->req_pool
);
915 * Encrypt / decrypt data from one bio to another one (can be the same one)
917 static int crypt_convert(struct crypt_config
*cc
,
918 struct convert_context
*ctx
)
922 atomic_set(&ctx
->cc_pending
, 1);
924 while (ctx
->iter_in
.bi_size
&& ctx
->iter_out
.bi_size
) {
926 crypt_alloc_req(cc
, ctx
);
928 atomic_inc(&ctx
->cc_pending
);
930 r
= crypt_convert_block(cc
, ctx
, ctx
->req
);
934 * The request was queued by a crypto driver
935 * but the driver request queue is full, let's wait.
938 wait_for_completion(&ctx
->restart
);
939 reinit_completion(&ctx
->restart
);
942 * The request is queued and processed asynchronously,
943 * completion function kcryptd_async_done() will be called.
950 * The request was already processed (synchronously).
953 atomic_dec(&ctx
->cc_pending
);
958 /* There was an error while processing the request. */
960 atomic_dec(&ctx
->cc_pending
);
968 static void crypt_free_buffer_pages(struct crypt_config
*cc
, struct bio
*clone
);
971 * Generate a new unfragmented bio with the given size
972 * This should never violate the device limitations (but only because
973 * max_segment_size is being constrained to PAGE_SIZE).
975 * This function may be called concurrently. If we allocate from the mempool
976 * concurrently, there is a possibility of deadlock. For example, if we have
977 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
978 * the mempool concurrently, it may deadlock in a situation where both processes
979 * have allocated 128 pages and the mempool is exhausted.
981 * In order to avoid this scenario we allocate the pages under a mutex.
983 * In order to not degrade performance with excessive locking, we try
984 * non-blocking allocations without a mutex first but on failure we fallback
985 * to blocking allocations with a mutex.
987 static struct bio
*crypt_alloc_buffer(struct dm_crypt_io
*io
, unsigned size
)
989 struct crypt_config
*cc
= io
->cc
;
991 unsigned int nr_iovecs
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
992 gfp_t gfp_mask
= GFP_NOWAIT
| __GFP_HIGHMEM
;
993 unsigned i
, len
, remaining_size
;
995 struct bio_vec
*bvec
;
998 if (unlikely(gfp_mask
& __GFP_DIRECT_RECLAIM
))
999 mutex_lock(&cc
->bio_alloc_lock
);
1001 clone
= bio_alloc_bioset(GFP_NOIO
, nr_iovecs
, cc
->bs
);
1005 clone_init(io
, clone
);
1007 remaining_size
= size
;
1009 for (i
= 0; i
< nr_iovecs
; i
++) {
1010 page
= mempool_alloc(cc
->page_pool
, gfp_mask
);
1012 crypt_free_buffer_pages(cc
, clone
);
1014 gfp_mask
|= __GFP_DIRECT_RECLAIM
;
1018 len
= (remaining_size
> PAGE_SIZE
) ? PAGE_SIZE
: remaining_size
;
1020 bvec
= &clone
->bi_io_vec
[clone
->bi_vcnt
++];
1021 bvec
->bv_page
= page
;
1023 bvec
->bv_offset
= 0;
1025 clone
->bi_iter
.bi_size
+= len
;
1027 remaining_size
-= len
;
1031 if (unlikely(gfp_mask
& __GFP_DIRECT_RECLAIM
))
1032 mutex_unlock(&cc
->bio_alloc_lock
);
1037 static void crypt_free_buffer_pages(struct crypt_config
*cc
, struct bio
*clone
)
1042 bio_for_each_segment_all(bv
, clone
, i
) {
1043 BUG_ON(!bv
->bv_page
);
1044 mempool_free(bv
->bv_page
, cc
->page_pool
);
1049 static void crypt_io_init(struct dm_crypt_io
*io
, struct crypt_config
*cc
,
1050 struct bio
*bio
, sector_t sector
)
1054 io
->sector
= sector
;
1057 atomic_set(&io
->io_pending
, 0);
1060 static void crypt_inc_pending(struct dm_crypt_io
*io
)
1062 atomic_inc(&io
->io_pending
);
1066 * One of the bios was finished. Check for completion of
1067 * the whole request and correctly clean up the buffer.
1069 static void crypt_dec_pending(struct dm_crypt_io
*io
)
1071 struct crypt_config
*cc
= io
->cc
;
1072 struct bio
*base_bio
= io
->base_bio
;
1073 int error
= io
->error
;
1075 if (!atomic_dec_and_test(&io
->io_pending
))
1079 crypt_free_req(cc
, io
->ctx
.req
, base_bio
);
1081 base_bio
->bi_error
= error
;
1082 bio_endio(base_bio
);
1086 * kcryptd/kcryptd_io:
1088 * Needed because it would be very unwise to do decryption in an
1089 * interrupt context.
1091 * kcryptd performs the actual encryption or decryption.
1093 * kcryptd_io performs the IO submission.
1095 * They must be separated as otherwise the final stages could be
1096 * starved by new requests which can block in the first stages due
1097 * to memory allocation.
1099 * The work is done per CPU global for all dm-crypt instances.
1100 * They should not depend on each other and do not block.
1102 static void crypt_endio(struct bio
*clone
)
1104 struct dm_crypt_io
*io
= clone
->bi_private
;
1105 struct crypt_config
*cc
= io
->cc
;
1106 unsigned rw
= bio_data_dir(clone
);
1110 * free the processed pages
1113 crypt_free_buffer_pages(cc
, clone
);
1115 error
= clone
->bi_error
;
1118 if (rw
== READ
&& !error
) {
1119 kcryptd_queue_crypt(io
);
1123 if (unlikely(error
))
1126 crypt_dec_pending(io
);
1129 static void clone_init(struct dm_crypt_io
*io
, struct bio
*clone
)
1131 struct crypt_config
*cc
= io
->cc
;
1133 clone
->bi_private
= io
;
1134 clone
->bi_end_io
= crypt_endio
;
1135 clone
->bi_bdev
= cc
->dev
->bdev
;
1136 clone
->bi_rw
= io
->base_bio
->bi_rw
;
1139 static int kcryptd_io_read(struct dm_crypt_io
*io
, gfp_t gfp
)
1141 struct crypt_config
*cc
= io
->cc
;
1145 * We need the original biovec array in order to decrypt
1146 * the whole bio data *afterwards* -- thanks to immutable
1147 * biovecs we don't need to worry about the block layer
1148 * modifying the biovec array; so leverage bio_clone_fast().
1150 clone
= bio_clone_fast(io
->base_bio
, gfp
, cc
->bs
);
1154 crypt_inc_pending(io
);
1156 clone_init(io
, clone
);
1157 clone
->bi_iter
.bi_sector
= cc
->start
+ io
->sector
;
1159 generic_make_request(clone
);
1163 static void kcryptd_io_read_work(struct work_struct
*work
)
1165 struct dm_crypt_io
*io
= container_of(work
, struct dm_crypt_io
, work
);
1167 crypt_inc_pending(io
);
1168 if (kcryptd_io_read(io
, GFP_NOIO
))
1169 io
->error
= -ENOMEM
;
1170 crypt_dec_pending(io
);
1173 static void kcryptd_queue_read(struct dm_crypt_io
*io
)
1175 struct crypt_config
*cc
= io
->cc
;
1177 INIT_WORK(&io
->work
, kcryptd_io_read_work
);
1178 queue_work(cc
->io_queue
, &io
->work
);
1181 static void kcryptd_io_write(struct dm_crypt_io
*io
)
1183 struct bio
*clone
= io
->ctx
.bio_out
;
1185 generic_make_request(clone
);
1188 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1190 static int dmcrypt_write(void *data
)
1192 struct crypt_config
*cc
= data
;
1193 struct dm_crypt_io
*io
;
1196 struct rb_root write_tree
;
1197 struct blk_plug plug
;
1199 DECLARE_WAITQUEUE(wait
, current
);
1201 spin_lock_irq(&cc
->write_thread_wait
.lock
);
1204 if (!RB_EMPTY_ROOT(&cc
->write_tree
))
1207 if (unlikely(test_bit(DM_CRYPT_EXIT_THREAD
, &cc
->flags
))) {
1208 spin_unlock_irq(&cc
->write_thread_wait
.lock
);
1212 __set_current_state(TASK_INTERRUPTIBLE
);
1213 __add_wait_queue(&cc
->write_thread_wait
, &wait
);
1215 spin_unlock_irq(&cc
->write_thread_wait
.lock
);
1219 spin_lock_irq(&cc
->write_thread_wait
.lock
);
1220 __remove_wait_queue(&cc
->write_thread_wait
, &wait
);
1221 goto continue_locked
;
1224 write_tree
= cc
->write_tree
;
1225 cc
->write_tree
= RB_ROOT
;
1226 spin_unlock_irq(&cc
->write_thread_wait
.lock
);
1228 BUG_ON(rb_parent(write_tree
.rb_node
));
1231 * Note: we cannot walk the tree here with rb_next because
1232 * the structures may be freed when kcryptd_io_write is called.
1234 blk_start_plug(&plug
);
1236 io
= crypt_io_from_node(rb_first(&write_tree
));
1237 rb_erase(&io
->rb_node
, &write_tree
);
1238 kcryptd_io_write(io
);
1239 } while (!RB_EMPTY_ROOT(&write_tree
));
1240 blk_finish_plug(&plug
);
1245 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io
*io
, int async
)
1247 struct bio
*clone
= io
->ctx
.bio_out
;
1248 struct crypt_config
*cc
= io
->cc
;
1249 unsigned long flags
;
1251 struct rb_node
**rbp
, *parent
;
1253 if (unlikely(io
->error
< 0)) {
1254 crypt_free_buffer_pages(cc
, clone
);
1256 crypt_dec_pending(io
);
1260 /* crypt_convert should have filled the clone bio */
1261 BUG_ON(io
->ctx
.iter_out
.bi_size
);
1263 clone
->bi_iter
.bi_sector
= cc
->start
+ io
->sector
;
1265 if (likely(!async
) && test_bit(DM_CRYPT_NO_OFFLOAD
, &cc
->flags
)) {
1266 generic_make_request(clone
);
1270 spin_lock_irqsave(&cc
->write_thread_wait
.lock
, flags
);
1271 rbp
= &cc
->write_tree
.rb_node
;
1273 sector
= io
->sector
;
1276 if (sector
< crypt_io_from_node(parent
)->sector
)
1277 rbp
= &(*rbp
)->rb_left
;
1279 rbp
= &(*rbp
)->rb_right
;
1281 rb_link_node(&io
->rb_node
, parent
, rbp
);
1282 rb_insert_color(&io
->rb_node
, &cc
->write_tree
);
1284 wake_up_locked(&cc
->write_thread_wait
);
1285 spin_unlock_irqrestore(&cc
->write_thread_wait
.lock
, flags
);
1288 static void kcryptd_crypt_write_convert(struct dm_crypt_io
*io
)
1290 struct crypt_config
*cc
= io
->cc
;
1293 sector_t sector
= io
->sector
;
1297 * Prevent io from disappearing until this function completes.
1299 crypt_inc_pending(io
);
1300 crypt_convert_init(cc
, &io
->ctx
, NULL
, io
->base_bio
, sector
);
1302 clone
= crypt_alloc_buffer(io
, io
->base_bio
->bi_iter
.bi_size
);
1303 if (unlikely(!clone
)) {
1308 io
->ctx
.bio_out
= clone
;
1309 io
->ctx
.iter_out
= clone
->bi_iter
;
1311 sector
+= bio_sectors(clone
);
1313 crypt_inc_pending(io
);
1314 r
= crypt_convert(cc
, &io
->ctx
);
1317 crypt_finished
= atomic_dec_and_test(&io
->ctx
.cc_pending
);
1319 /* Encryption was already finished, submit io now */
1320 if (crypt_finished
) {
1321 kcryptd_crypt_write_io_submit(io
, 0);
1322 io
->sector
= sector
;
1326 crypt_dec_pending(io
);
1329 static void kcryptd_crypt_read_done(struct dm_crypt_io
*io
)
1331 crypt_dec_pending(io
);
1334 static void kcryptd_crypt_read_convert(struct dm_crypt_io
*io
)
1336 struct crypt_config
*cc
= io
->cc
;
1339 crypt_inc_pending(io
);
1341 crypt_convert_init(cc
, &io
->ctx
, io
->base_bio
, io
->base_bio
,
1344 r
= crypt_convert(cc
, &io
->ctx
);
1348 if (atomic_dec_and_test(&io
->ctx
.cc_pending
))
1349 kcryptd_crypt_read_done(io
);
1351 crypt_dec_pending(io
);
1354 static void kcryptd_async_done(struct crypto_async_request
*async_req
,
1357 struct dm_crypt_request
*dmreq
= async_req
->data
;
1358 struct convert_context
*ctx
= dmreq
->ctx
;
1359 struct dm_crypt_io
*io
= container_of(ctx
, struct dm_crypt_io
, ctx
);
1360 struct crypt_config
*cc
= io
->cc
;
1363 * A request from crypto driver backlog is going to be processed now,
1364 * finish the completion and continue in crypt_convert().
1365 * (Callback will be called for the second time for this request.)
1367 if (error
== -EINPROGRESS
) {
1368 complete(&ctx
->restart
);
1372 if (!error
&& cc
->iv_gen_ops
&& cc
->iv_gen_ops
->post
)
1373 error
= cc
->iv_gen_ops
->post(cc
, iv_of_dmreq(cc
, dmreq
), dmreq
);
1378 crypt_free_req(cc
, req_of_dmreq(cc
, dmreq
), io
->base_bio
);
1380 if (!atomic_dec_and_test(&ctx
->cc_pending
))
1383 if (bio_data_dir(io
->base_bio
) == READ
)
1384 kcryptd_crypt_read_done(io
);
1386 kcryptd_crypt_write_io_submit(io
, 1);
1389 static void kcryptd_crypt(struct work_struct
*work
)
1391 struct dm_crypt_io
*io
= container_of(work
, struct dm_crypt_io
, work
);
1393 if (bio_data_dir(io
->base_bio
) == READ
)
1394 kcryptd_crypt_read_convert(io
);
1396 kcryptd_crypt_write_convert(io
);
1399 static void kcryptd_queue_crypt(struct dm_crypt_io
*io
)
1401 struct crypt_config
*cc
= io
->cc
;
1403 INIT_WORK(&io
->work
, kcryptd_crypt
);
1404 queue_work(cc
->crypt_queue
, &io
->work
);
1408 * Decode key from its hex representation
1410 static int crypt_decode_key(u8
*key
, char *hex
, unsigned int size
)
1417 for (i
= 0; i
< size
; i
++) {
1421 if (kstrtou8(buffer
, 16, &key
[i
]))
1431 static void crypt_free_tfms(struct crypt_config
*cc
)
1438 for (i
= 0; i
< cc
->tfms_count
; i
++)
1439 if (cc
->tfms
[i
] && !IS_ERR(cc
->tfms
[i
])) {
1440 crypto_free_ablkcipher(cc
->tfms
[i
]);
1448 static int crypt_alloc_tfms(struct crypt_config
*cc
, char *ciphermode
)
1453 cc
->tfms
= kmalloc(cc
->tfms_count
* sizeof(struct crypto_ablkcipher
*),
1458 for (i
= 0; i
< cc
->tfms_count
; i
++) {
1459 cc
->tfms
[i
] = crypto_alloc_ablkcipher(ciphermode
, 0, 0);
1460 if (IS_ERR(cc
->tfms
[i
])) {
1461 err
= PTR_ERR(cc
->tfms
[i
]);
1462 crypt_free_tfms(cc
);
1470 static int crypt_setkey_allcpus(struct crypt_config
*cc
)
1472 unsigned subkey_size
;
1475 /* Ignore extra keys (which are used for IV etc) */
1476 subkey_size
= (cc
->key_size
- cc
->key_extra_size
) >> ilog2(cc
->tfms_count
);
1478 for (i
= 0; i
< cc
->tfms_count
; i
++) {
1479 r
= crypto_ablkcipher_setkey(cc
->tfms
[i
],
1480 cc
->key
+ (i
* subkey_size
),
1489 static int crypt_set_key(struct crypt_config
*cc
, char *key
)
1492 int key_string_len
= strlen(key
);
1494 /* The key size may not be changed. */
1495 if (cc
->key_size
!= (key_string_len
>> 1))
1498 /* Hyphen (which gives a key_size of zero) means there is no key. */
1499 if (!cc
->key_size
&& strcmp(key
, "-"))
1502 if (cc
->key_size
&& crypt_decode_key(cc
->key
, key
, cc
->key_size
) < 0)
1505 set_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
);
1507 r
= crypt_setkey_allcpus(cc
);
1510 /* Hex key string not needed after here, so wipe it. */
1511 memset(key
, '0', key_string_len
);
1516 static int crypt_wipe_key(struct crypt_config
*cc
)
1518 clear_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
);
1519 memset(&cc
->key
, 0, cc
->key_size
* sizeof(u8
));
1521 return crypt_setkey_allcpus(cc
);
1524 static void crypt_dtr(struct dm_target
*ti
)
1526 struct crypt_config
*cc
= ti
->private;
1533 if (cc
->write_thread
) {
1534 spin_lock_irq(&cc
->write_thread_wait
.lock
);
1535 set_bit(DM_CRYPT_EXIT_THREAD
, &cc
->flags
);
1536 wake_up_locked(&cc
->write_thread_wait
);
1537 spin_unlock_irq(&cc
->write_thread_wait
.lock
);
1538 kthread_stop(cc
->write_thread
);
1542 destroy_workqueue(cc
->io_queue
);
1543 if (cc
->crypt_queue
)
1544 destroy_workqueue(cc
->crypt_queue
);
1546 crypt_free_tfms(cc
);
1549 bioset_free(cc
->bs
);
1551 mempool_destroy(cc
->page_pool
);
1552 mempool_destroy(cc
->req_pool
);
1554 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->dtr
)
1555 cc
->iv_gen_ops
->dtr(cc
);
1558 dm_put_device(ti
, cc
->dev
);
1561 kzfree(cc
->cipher_string
);
1563 /* Must zero key material before freeing */
1567 static int crypt_ctr_cipher(struct dm_target
*ti
,
1568 char *cipher_in
, char *key
)
1570 struct crypt_config
*cc
= ti
->private;
1571 char *tmp
, *cipher
, *chainmode
, *ivmode
, *ivopts
, *keycount
;
1572 char *cipher_api
= NULL
;
1576 /* Convert to crypto api definition? */
1577 if (strchr(cipher_in
, '(')) {
1578 ti
->error
= "Bad cipher specification";
1582 cc
->cipher_string
= kstrdup(cipher_in
, GFP_KERNEL
);
1583 if (!cc
->cipher_string
)
1587 * Legacy dm-crypt cipher specification
1588 * cipher[:keycount]-mode-iv:ivopts
1591 keycount
= strsep(&tmp
, "-");
1592 cipher
= strsep(&keycount
, ":");
1596 else if (sscanf(keycount
, "%u%c", &cc
->tfms_count
, &dummy
) != 1 ||
1597 !is_power_of_2(cc
->tfms_count
)) {
1598 ti
->error
= "Bad cipher key count specification";
1601 cc
->key_parts
= cc
->tfms_count
;
1602 cc
->key_extra_size
= 0;
1604 cc
->cipher
= kstrdup(cipher
, GFP_KERNEL
);
1608 chainmode
= strsep(&tmp
, "-");
1609 ivopts
= strsep(&tmp
, "-");
1610 ivmode
= strsep(&ivopts
, ":");
1613 DMWARN("Ignoring unexpected additional cipher options");
1616 * For compatibility with the original dm-crypt mapping format, if
1617 * only the cipher name is supplied, use cbc-plain.
1619 if (!chainmode
|| (!strcmp(chainmode
, "plain") && !ivmode
)) {
1624 if (strcmp(chainmode
, "ecb") && !ivmode
) {
1625 ti
->error
= "IV mechanism required";
1629 cipher_api
= kmalloc(CRYPTO_MAX_ALG_NAME
, GFP_KERNEL
);
1633 ret
= snprintf(cipher_api
, CRYPTO_MAX_ALG_NAME
,
1634 "%s(%s)", chainmode
, cipher
);
1640 /* Allocate cipher */
1641 ret
= crypt_alloc_tfms(cc
, cipher_api
);
1643 ti
->error
= "Error allocating crypto tfm";
1648 cc
->iv_size
= crypto_ablkcipher_ivsize(any_tfm(cc
));
1650 /* at least a 64 bit sector number should fit in our buffer */
1651 cc
->iv_size
= max(cc
->iv_size
,
1652 (unsigned int)(sizeof(u64
) / sizeof(u8
)));
1654 DMWARN("Selected cipher does not support IVs");
1658 /* Choose ivmode, see comments at iv code. */
1660 cc
->iv_gen_ops
= NULL
;
1661 else if (strcmp(ivmode
, "plain") == 0)
1662 cc
->iv_gen_ops
= &crypt_iv_plain_ops
;
1663 else if (strcmp(ivmode
, "plain64") == 0)
1664 cc
->iv_gen_ops
= &crypt_iv_plain64_ops
;
1665 else if (strcmp(ivmode
, "essiv") == 0)
1666 cc
->iv_gen_ops
= &crypt_iv_essiv_ops
;
1667 else if (strcmp(ivmode
, "benbi") == 0)
1668 cc
->iv_gen_ops
= &crypt_iv_benbi_ops
;
1669 else if (strcmp(ivmode
, "null") == 0)
1670 cc
->iv_gen_ops
= &crypt_iv_null_ops
;
1671 else if (strcmp(ivmode
, "lmk") == 0) {
1672 cc
->iv_gen_ops
= &crypt_iv_lmk_ops
;
1674 * Version 2 and 3 is recognised according
1675 * to length of provided multi-key string.
1676 * If present (version 3), last key is used as IV seed.
1677 * All keys (including IV seed) are always the same size.
1679 if (cc
->key_size
% cc
->key_parts
) {
1681 cc
->key_extra_size
= cc
->key_size
/ cc
->key_parts
;
1683 } else if (strcmp(ivmode
, "tcw") == 0) {
1684 cc
->iv_gen_ops
= &crypt_iv_tcw_ops
;
1685 cc
->key_parts
+= 2; /* IV + whitening */
1686 cc
->key_extra_size
= cc
->iv_size
+ TCW_WHITENING_SIZE
;
1689 ti
->error
= "Invalid IV mode";
1693 /* Initialize and set key */
1694 ret
= crypt_set_key(cc
, key
);
1696 ti
->error
= "Error decoding and setting key";
1701 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->ctr
) {
1702 ret
= cc
->iv_gen_ops
->ctr(cc
, ti
, ivopts
);
1704 ti
->error
= "Error creating IV";
1709 /* Initialize IV (set keys for ESSIV etc) */
1710 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->init
) {
1711 ret
= cc
->iv_gen_ops
->init(cc
);
1713 ti
->error
= "Error initialising IV";
1724 ti
->error
= "Cannot allocate cipher strings";
1729 * Construct an encryption mapping:
1730 * <cipher> <key> <iv_offset> <dev_path> <start>
1732 static int crypt_ctr(struct dm_target
*ti
, unsigned int argc
, char **argv
)
1734 struct crypt_config
*cc
;
1735 unsigned int key_size
, opt_params
;
1736 unsigned long long tmpll
;
1738 size_t iv_size_padding
;
1739 struct dm_arg_set as
;
1740 const char *opt_string
;
1743 static struct dm_arg _args
[] = {
1744 {0, 3, "Invalid number of feature args"},
1748 ti
->error
= "Not enough arguments";
1752 key_size
= strlen(argv
[1]) >> 1;
1754 cc
= kzalloc(sizeof(*cc
) + key_size
* sizeof(u8
), GFP_KERNEL
);
1756 ti
->error
= "Cannot allocate encryption context";
1759 cc
->key_size
= key_size
;
1762 ret
= crypt_ctr_cipher(ti
, argv
[0], argv
[1]);
1766 cc
->dmreq_start
= sizeof(struct ablkcipher_request
);
1767 cc
->dmreq_start
+= crypto_ablkcipher_reqsize(any_tfm(cc
));
1768 cc
->dmreq_start
= ALIGN(cc
->dmreq_start
, __alignof__(struct dm_crypt_request
));
1770 if (crypto_ablkcipher_alignmask(any_tfm(cc
)) < CRYPTO_MINALIGN
) {
1771 /* Allocate the padding exactly */
1772 iv_size_padding
= -(cc
->dmreq_start
+ sizeof(struct dm_crypt_request
))
1773 & crypto_ablkcipher_alignmask(any_tfm(cc
));
1776 * If the cipher requires greater alignment than kmalloc
1777 * alignment, we don't know the exact position of the
1778 * initialization vector. We must assume worst case.
1780 iv_size_padding
= crypto_ablkcipher_alignmask(any_tfm(cc
));
1784 cc
->req_pool
= mempool_create_kmalloc_pool(MIN_IOS
, cc
->dmreq_start
+
1785 sizeof(struct dm_crypt_request
) + iv_size_padding
+ cc
->iv_size
);
1786 if (!cc
->req_pool
) {
1787 ti
->error
= "Cannot allocate crypt request mempool";
1791 cc
->per_bio_data_size
= ti
->per_bio_data_size
=
1792 ALIGN(sizeof(struct dm_crypt_io
) + cc
->dmreq_start
+
1793 sizeof(struct dm_crypt_request
) + iv_size_padding
+ cc
->iv_size
,
1794 ARCH_KMALLOC_MINALIGN
);
1796 cc
->page_pool
= mempool_create_page_pool(BIO_MAX_PAGES
, 0);
1797 if (!cc
->page_pool
) {
1798 ti
->error
= "Cannot allocate page mempool";
1802 cc
->bs
= bioset_create(MIN_IOS
, 0);
1804 ti
->error
= "Cannot allocate crypt bioset";
1808 mutex_init(&cc
->bio_alloc_lock
);
1811 if (sscanf(argv
[2], "%llu%c", &tmpll
, &dummy
) != 1) {
1812 ti
->error
= "Invalid iv_offset sector";
1815 cc
->iv_offset
= tmpll
;
1817 ret
= dm_get_device(ti
, argv
[3], dm_table_get_mode(ti
->table
), &cc
->dev
);
1819 ti
->error
= "Device lookup failed";
1824 if (sscanf(argv
[4], "%llu%c", &tmpll
, &dummy
) != 1) {
1825 ti
->error
= "Invalid device sector";
1833 /* Optional parameters */
1838 ret
= dm_read_arg_group(_args
, &as
, &opt_params
, &ti
->error
);
1843 while (opt_params
--) {
1844 opt_string
= dm_shift_arg(&as
);
1846 ti
->error
= "Not enough feature arguments";
1850 if (!strcasecmp(opt_string
, "allow_discards"))
1851 ti
->num_discard_bios
= 1;
1853 else if (!strcasecmp(opt_string
, "same_cpu_crypt"))
1854 set_bit(DM_CRYPT_SAME_CPU
, &cc
->flags
);
1856 else if (!strcasecmp(opt_string
, "submit_from_crypt_cpus"))
1857 set_bit(DM_CRYPT_NO_OFFLOAD
, &cc
->flags
);
1860 ti
->error
= "Invalid feature arguments";
1867 cc
->io_queue
= alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM
, 1);
1868 if (!cc
->io_queue
) {
1869 ti
->error
= "Couldn't create kcryptd io queue";
1873 if (test_bit(DM_CRYPT_SAME_CPU
, &cc
->flags
))
1874 cc
->crypt_queue
= alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE
| WQ_MEM_RECLAIM
, 1);
1876 cc
->crypt_queue
= alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE
| WQ_MEM_RECLAIM
| WQ_UNBOUND
,
1878 if (!cc
->crypt_queue
) {
1879 ti
->error
= "Couldn't create kcryptd queue";
1883 init_waitqueue_head(&cc
->write_thread_wait
);
1884 cc
->write_tree
= RB_ROOT
;
1886 cc
->write_thread
= kthread_create(dmcrypt_write
, cc
, "dmcrypt_write");
1887 if (IS_ERR(cc
->write_thread
)) {
1888 ret
= PTR_ERR(cc
->write_thread
);
1889 cc
->write_thread
= NULL
;
1890 ti
->error
= "Couldn't spawn write thread";
1893 wake_up_process(cc
->write_thread
);
1895 ti
->num_flush_bios
= 1;
1896 ti
->discard_zeroes_data_unsupported
= true;
1905 static int crypt_map(struct dm_target
*ti
, struct bio
*bio
)
1907 struct dm_crypt_io
*io
;
1908 struct crypt_config
*cc
= ti
->private;
1911 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1912 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1913 * - for REQ_DISCARD caller must use flush if IO ordering matters
1915 if (unlikely(bio
->bi_rw
& (REQ_FLUSH
| REQ_DISCARD
))) {
1916 bio
->bi_bdev
= cc
->dev
->bdev
;
1917 if (bio_sectors(bio
))
1918 bio
->bi_iter
.bi_sector
= cc
->start
+
1919 dm_target_offset(ti
, bio
->bi_iter
.bi_sector
);
1920 return DM_MAPIO_REMAPPED
;
1923 io
= dm_per_bio_data(bio
, cc
->per_bio_data_size
);
1924 crypt_io_init(io
, cc
, bio
, dm_target_offset(ti
, bio
->bi_iter
.bi_sector
));
1925 io
->ctx
.req
= (struct ablkcipher_request
*)(io
+ 1);
1927 if (bio_data_dir(io
->base_bio
) == READ
) {
1928 if (kcryptd_io_read(io
, GFP_NOWAIT
))
1929 kcryptd_queue_read(io
);
1931 kcryptd_queue_crypt(io
);
1933 return DM_MAPIO_SUBMITTED
;
1936 static void crypt_status(struct dm_target
*ti
, status_type_t type
,
1937 unsigned status_flags
, char *result
, unsigned maxlen
)
1939 struct crypt_config
*cc
= ti
->private;
1941 int num_feature_args
= 0;
1944 case STATUSTYPE_INFO
:
1948 case STATUSTYPE_TABLE
:
1949 DMEMIT("%s ", cc
->cipher_string
);
1951 if (cc
->key_size
> 0)
1952 for (i
= 0; i
< cc
->key_size
; i
++)
1953 DMEMIT("%02x", cc
->key
[i
]);
1957 DMEMIT(" %llu %s %llu", (unsigned long long)cc
->iv_offset
,
1958 cc
->dev
->name
, (unsigned long long)cc
->start
);
1960 num_feature_args
+= !!ti
->num_discard_bios
;
1961 num_feature_args
+= test_bit(DM_CRYPT_SAME_CPU
, &cc
->flags
);
1962 num_feature_args
+= test_bit(DM_CRYPT_NO_OFFLOAD
, &cc
->flags
);
1963 if (num_feature_args
) {
1964 DMEMIT(" %d", num_feature_args
);
1965 if (ti
->num_discard_bios
)
1966 DMEMIT(" allow_discards");
1967 if (test_bit(DM_CRYPT_SAME_CPU
, &cc
->flags
))
1968 DMEMIT(" same_cpu_crypt");
1969 if (test_bit(DM_CRYPT_NO_OFFLOAD
, &cc
->flags
))
1970 DMEMIT(" submit_from_crypt_cpus");
1977 static void crypt_postsuspend(struct dm_target
*ti
)
1979 struct crypt_config
*cc
= ti
->private;
1981 set_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
);
1984 static int crypt_preresume(struct dm_target
*ti
)
1986 struct crypt_config
*cc
= ti
->private;
1988 if (!test_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
)) {
1989 DMERR("aborting resume - crypt key is not set.");
1996 static void crypt_resume(struct dm_target
*ti
)
1998 struct crypt_config
*cc
= ti
->private;
2000 clear_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
);
2003 /* Message interface
2007 static int crypt_message(struct dm_target
*ti
, unsigned argc
, char **argv
)
2009 struct crypt_config
*cc
= ti
->private;
2015 if (!strcasecmp(argv
[0], "key")) {
2016 if (!test_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
)) {
2017 DMWARN("not suspended during key manipulation.");
2020 if (argc
== 3 && !strcasecmp(argv
[1], "set")) {
2021 ret
= crypt_set_key(cc
, argv
[2]);
2024 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->init
)
2025 ret
= cc
->iv_gen_ops
->init(cc
);
2028 if (argc
== 2 && !strcasecmp(argv
[1], "wipe")) {
2029 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->wipe
) {
2030 ret
= cc
->iv_gen_ops
->wipe(cc
);
2034 return crypt_wipe_key(cc
);
2039 DMWARN("unrecognised message received.");
2043 static int crypt_iterate_devices(struct dm_target
*ti
,
2044 iterate_devices_callout_fn fn
, void *data
)
2046 struct crypt_config
*cc
= ti
->private;
2048 return fn(ti
, cc
->dev
, cc
->start
, ti
->len
, data
);
2051 static void crypt_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
2054 * Unfortunate constraint that is required to avoid the potential
2055 * for exceeding underlying device's max_segments limits -- due to
2056 * crypt_alloc_buffer() possibly allocating pages for the encryption
2057 * bio that are not as physically contiguous as the original bio.
2059 limits
->max_segment_size
= PAGE_SIZE
;
2062 static struct target_type crypt_target
= {
2064 .version
= {1, 14, 1},
2065 .module
= THIS_MODULE
,
2069 .status
= crypt_status
,
2070 .postsuspend
= crypt_postsuspend
,
2071 .preresume
= crypt_preresume
,
2072 .resume
= crypt_resume
,
2073 .message
= crypt_message
,
2074 .iterate_devices
= crypt_iterate_devices
,
2075 .io_hints
= crypt_io_hints
,
2078 static int __init
dm_crypt_init(void)
2082 r
= dm_register_target(&crypt_target
);
2084 DMERR("register failed %d", r
);
2089 static void __exit
dm_crypt_exit(void)
2091 dm_unregister_target(&crypt_target
);
2094 module_init(dm_crypt_init
);
2095 module_exit(dm_crypt_exit
);
2097 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
2098 MODULE_DESCRIPTION(DM_NAME
" target for transparent encryption / decryption");
2099 MODULE_LICENSE("GPL");