of: MSI: Simplify irqdomain lookup
[linux/fpc-iii.git] / drivers / md / dm-kcopyd.c
blob1452ed9aacb4222e4ee86c28480ddf373ac5e3c7
1 /*
2 * Copyright (C) 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2006 Red Hat GmbH
5 * This file is released under the GPL.
7 * Kcopyd provides a simple interface for copying an area of one
8 * block-device to one or more other block-devices, with an asynchronous
9 * completion notification.
12 #include <linux/types.h>
13 #include <linux/atomic.h>
14 #include <linux/blkdev.h>
15 #include <linux/fs.h>
16 #include <linux/init.h>
17 #include <linux/list.h>
18 #include <linux/mempool.h>
19 #include <linux/module.h>
20 #include <linux/pagemap.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/workqueue.h>
24 #include <linux/mutex.h>
25 #include <linux/delay.h>
26 #include <linux/device-mapper.h>
27 #include <linux/dm-kcopyd.h>
29 #include "dm.h"
31 #define SUB_JOB_SIZE 128
32 #define SPLIT_COUNT 8
33 #define MIN_JOBS 8
34 #define RESERVE_PAGES (DIV_ROUND_UP(SUB_JOB_SIZE << SECTOR_SHIFT, PAGE_SIZE))
36 /*-----------------------------------------------------------------
37 * Each kcopyd client has its own little pool of preallocated
38 * pages for kcopyd io.
39 *---------------------------------------------------------------*/
40 struct dm_kcopyd_client {
41 struct page_list *pages;
42 unsigned nr_reserved_pages;
43 unsigned nr_free_pages;
45 struct dm_io_client *io_client;
47 wait_queue_head_t destroyq;
48 atomic_t nr_jobs;
50 mempool_t *job_pool;
52 struct workqueue_struct *kcopyd_wq;
53 struct work_struct kcopyd_work;
55 struct dm_kcopyd_throttle *throttle;
58 * We maintain three lists of jobs:
60 * i) jobs waiting for pages
61 * ii) jobs that have pages, and are waiting for the io to be issued.
62 * iii) jobs that have completed.
64 * All three of these are protected by job_lock.
66 spinlock_t job_lock;
67 struct list_head complete_jobs;
68 struct list_head io_jobs;
69 struct list_head pages_jobs;
72 static struct page_list zero_page_list;
74 static DEFINE_SPINLOCK(throttle_spinlock);
77 * IO/IDLE accounting slowly decays after (1 << ACCOUNT_INTERVAL_SHIFT) period.
78 * When total_period >= (1 << ACCOUNT_INTERVAL_SHIFT) the counters are divided
79 * by 2.
81 #define ACCOUNT_INTERVAL_SHIFT SHIFT_HZ
84 * Sleep this number of milliseconds.
86 * The value was decided experimentally.
87 * Smaller values seem to cause an increased copy rate above the limit.
88 * The reason for this is unknown but possibly due to jiffies rounding errors
89 * or read/write cache inside the disk.
91 #define SLEEP_MSEC 100
94 * Maximum number of sleep events. There is a theoretical livelock if more
95 * kcopyd clients do work simultaneously which this limit avoids.
97 #define MAX_SLEEPS 10
99 static void io_job_start(struct dm_kcopyd_throttle *t)
101 unsigned throttle, now, difference;
102 int slept = 0, skew;
104 if (unlikely(!t))
105 return;
107 try_again:
108 spin_lock_irq(&throttle_spinlock);
110 throttle = ACCESS_ONCE(t->throttle);
112 if (likely(throttle >= 100))
113 goto skip_limit;
115 now = jiffies;
116 difference = now - t->last_jiffies;
117 t->last_jiffies = now;
118 if (t->num_io_jobs)
119 t->io_period += difference;
120 t->total_period += difference;
123 * Maintain sane values if we got a temporary overflow.
125 if (unlikely(t->io_period > t->total_period))
126 t->io_period = t->total_period;
128 if (unlikely(t->total_period >= (1 << ACCOUNT_INTERVAL_SHIFT))) {
129 int shift = fls(t->total_period >> ACCOUNT_INTERVAL_SHIFT);
130 t->total_period >>= shift;
131 t->io_period >>= shift;
134 skew = t->io_period - throttle * t->total_period / 100;
136 if (unlikely(skew > 0) && slept < MAX_SLEEPS) {
137 slept++;
138 spin_unlock_irq(&throttle_spinlock);
139 msleep(SLEEP_MSEC);
140 goto try_again;
143 skip_limit:
144 t->num_io_jobs++;
146 spin_unlock_irq(&throttle_spinlock);
149 static void io_job_finish(struct dm_kcopyd_throttle *t)
151 unsigned long flags;
153 if (unlikely(!t))
154 return;
156 spin_lock_irqsave(&throttle_spinlock, flags);
158 t->num_io_jobs--;
160 if (likely(ACCESS_ONCE(t->throttle) >= 100))
161 goto skip_limit;
163 if (!t->num_io_jobs) {
164 unsigned now, difference;
166 now = jiffies;
167 difference = now - t->last_jiffies;
168 t->last_jiffies = now;
170 t->io_period += difference;
171 t->total_period += difference;
174 * Maintain sane values if we got a temporary overflow.
176 if (unlikely(t->io_period > t->total_period))
177 t->io_period = t->total_period;
180 skip_limit:
181 spin_unlock_irqrestore(&throttle_spinlock, flags);
185 static void wake(struct dm_kcopyd_client *kc)
187 queue_work(kc->kcopyd_wq, &kc->kcopyd_work);
191 * Obtain one page for the use of kcopyd.
193 static struct page_list *alloc_pl(gfp_t gfp)
195 struct page_list *pl;
197 pl = kmalloc(sizeof(*pl), gfp);
198 if (!pl)
199 return NULL;
201 pl->page = alloc_page(gfp);
202 if (!pl->page) {
203 kfree(pl);
204 return NULL;
207 return pl;
210 static void free_pl(struct page_list *pl)
212 __free_page(pl->page);
213 kfree(pl);
217 * Add the provided pages to a client's free page list, releasing
218 * back to the system any beyond the reserved_pages limit.
220 static void kcopyd_put_pages(struct dm_kcopyd_client *kc, struct page_list *pl)
222 struct page_list *next;
224 do {
225 next = pl->next;
227 if (kc->nr_free_pages >= kc->nr_reserved_pages)
228 free_pl(pl);
229 else {
230 pl->next = kc->pages;
231 kc->pages = pl;
232 kc->nr_free_pages++;
235 pl = next;
236 } while (pl);
239 static int kcopyd_get_pages(struct dm_kcopyd_client *kc,
240 unsigned int nr, struct page_list **pages)
242 struct page_list *pl;
244 *pages = NULL;
246 do {
247 pl = alloc_pl(__GFP_NOWARN | __GFP_NORETRY | __GFP_KSWAPD_RECLAIM);
248 if (unlikely(!pl)) {
249 /* Use reserved pages */
250 pl = kc->pages;
251 if (unlikely(!pl))
252 goto out_of_memory;
253 kc->pages = pl->next;
254 kc->nr_free_pages--;
256 pl->next = *pages;
257 *pages = pl;
258 } while (--nr);
260 return 0;
262 out_of_memory:
263 if (*pages)
264 kcopyd_put_pages(kc, *pages);
265 return -ENOMEM;
269 * These three functions resize the page pool.
271 static void drop_pages(struct page_list *pl)
273 struct page_list *next;
275 while (pl) {
276 next = pl->next;
277 free_pl(pl);
278 pl = next;
283 * Allocate and reserve nr_pages for the use of a specific client.
285 static int client_reserve_pages(struct dm_kcopyd_client *kc, unsigned nr_pages)
287 unsigned i;
288 struct page_list *pl = NULL, *next;
290 for (i = 0; i < nr_pages; i++) {
291 next = alloc_pl(GFP_KERNEL);
292 if (!next) {
293 if (pl)
294 drop_pages(pl);
295 return -ENOMEM;
297 next->next = pl;
298 pl = next;
301 kc->nr_reserved_pages += nr_pages;
302 kcopyd_put_pages(kc, pl);
304 return 0;
307 static void client_free_pages(struct dm_kcopyd_client *kc)
309 BUG_ON(kc->nr_free_pages != kc->nr_reserved_pages);
310 drop_pages(kc->pages);
311 kc->pages = NULL;
312 kc->nr_free_pages = kc->nr_reserved_pages = 0;
315 /*-----------------------------------------------------------------
316 * kcopyd_jobs need to be allocated by the *clients* of kcopyd,
317 * for this reason we use a mempool to prevent the client from
318 * ever having to do io (which could cause a deadlock).
319 *---------------------------------------------------------------*/
320 struct kcopyd_job {
321 struct dm_kcopyd_client *kc;
322 struct list_head list;
323 unsigned long flags;
326 * Error state of the job.
328 int read_err;
329 unsigned long write_err;
332 * Either READ or WRITE
334 int rw;
335 struct dm_io_region source;
338 * The destinations for the transfer.
340 unsigned int num_dests;
341 struct dm_io_region dests[DM_KCOPYD_MAX_REGIONS];
343 struct page_list *pages;
346 * Set this to ensure you are notified when the job has
347 * completed. 'context' is for callback to use.
349 dm_kcopyd_notify_fn fn;
350 void *context;
353 * These fields are only used if the job has been split
354 * into more manageable parts.
356 struct mutex lock;
357 atomic_t sub_jobs;
358 sector_t progress;
360 struct kcopyd_job *master_job;
363 static struct kmem_cache *_job_cache;
365 int __init dm_kcopyd_init(void)
367 _job_cache = kmem_cache_create("kcopyd_job",
368 sizeof(struct kcopyd_job) * (SPLIT_COUNT + 1),
369 __alignof__(struct kcopyd_job), 0, NULL);
370 if (!_job_cache)
371 return -ENOMEM;
373 zero_page_list.next = &zero_page_list;
374 zero_page_list.page = ZERO_PAGE(0);
376 return 0;
379 void dm_kcopyd_exit(void)
381 kmem_cache_destroy(_job_cache);
382 _job_cache = NULL;
386 * Functions to push and pop a job onto the head of a given job
387 * list.
389 static struct kcopyd_job *pop(struct list_head *jobs,
390 struct dm_kcopyd_client *kc)
392 struct kcopyd_job *job = NULL;
393 unsigned long flags;
395 spin_lock_irqsave(&kc->job_lock, flags);
397 if (!list_empty(jobs)) {
398 job = list_entry(jobs->next, struct kcopyd_job, list);
399 list_del(&job->list);
401 spin_unlock_irqrestore(&kc->job_lock, flags);
403 return job;
406 static void push(struct list_head *jobs, struct kcopyd_job *job)
408 unsigned long flags;
409 struct dm_kcopyd_client *kc = job->kc;
411 spin_lock_irqsave(&kc->job_lock, flags);
412 list_add_tail(&job->list, jobs);
413 spin_unlock_irqrestore(&kc->job_lock, flags);
417 static void push_head(struct list_head *jobs, struct kcopyd_job *job)
419 unsigned long flags;
420 struct dm_kcopyd_client *kc = job->kc;
422 spin_lock_irqsave(&kc->job_lock, flags);
423 list_add(&job->list, jobs);
424 spin_unlock_irqrestore(&kc->job_lock, flags);
428 * These three functions process 1 item from the corresponding
429 * job list.
431 * They return:
432 * < 0: error
433 * 0: success
434 * > 0: can't process yet.
436 static int run_complete_job(struct kcopyd_job *job)
438 void *context = job->context;
439 int read_err = job->read_err;
440 unsigned long write_err = job->write_err;
441 dm_kcopyd_notify_fn fn = job->fn;
442 struct dm_kcopyd_client *kc = job->kc;
444 if (job->pages && job->pages != &zero_page_list)
445 kcopyd_put_pages(kc, job->pages);
447 * If this is the master job, the sub jobs have already
448 * completed so we can free everything.
450 if (job->master_job == job)
451 mempool_free(job, kc->job_pool);
452 fn(read_err, write_err, context);
454 if (atomic_dec_and_test(&kc->nr_jobs))
455 wake_up(&kc->destroyq);
457 return 0;
460 static void complete_io(unsigned long error, void *context)
462 struct kcopyd_job *job = (struct kcopyd_job *) context;
463 struct dm_kcopyd_client *kc = job->kc;
465 io_job_finish(kc->throttle);
467 if (error) {
468 if (job->rw & WRITE)
469 job->write_err |= error;
470 else
471 job->read_err = 1;
473 if (!test_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags)) {
474 push(&kc->complete_jobs, job);
475 wake(kc);
476 return;
480 if (job->rw & WRITE)
481 push(&kc->complete_jobs, job);
483 else {
484 job->rw = WRITE;
485 push(&kc->io_jobs, job);
488 wake(kc);
492 * Request io on as many buffer heads as we can currently get for
493 * a particular job.
495 static int run_io_job(struct kcopyd_job *job)
497 int r;
498 struct dm_io_request io_req = {
499 .bi_rw = job->rw,
500 .mem.type = DM_IO_PAGE_LIST,
501 .mem.ptr.pl = job->pages,
502 .mem.offset = 0,
503 .notify.fn = complete_io,
504 .notify.context = job,
505 .client = job->kc->io_client,
508 io_job_start(job->kc->throttle);
510 if (job->rw == READ)
511 r = dm_io(&io_req, 1, &job->source, NULL);
512 else
513 r = dm_io(&io_req, job->num_dests, job->dests, NULL);
515 return r;
518 static int run_pages_job(struct kcopyd_job *job)
520 int r;
521 unsigned nr_pages = dm_div_up(job->dests[0].count, PAGE_SIZE >> 9);
523 r = kcopyd_get_pages(job->kc, nr_pages, &job->pages);
524 if (!r) {
525 /* this job is ready for io */
526 push(&job->kc->io_jobs, job);
527 return 0;
530 if (r == -ENOMEM)
531 /* can't complete now */
532 return 1;
534 return r;
538 * Run through a list for as long as possible. Returns the count
539 * of successful jobs.
541 static int process_jobs(struct list_head *jobs, struct dm_kcopyd_client *kc,
542 int (*fn) (struct kcopyd_job *))
544 struct kcopyd_job *job;
545 int r, count = 0;
547 while ((job = pop(jobs, kc))) {
549 r = fn(job);
551 if (r < 0) {
552 /* error this rogue job */
553 if (job->rw & WRITE)
554 job->write_err = (unsigned long) -1L;
555 else
556 job->read_err = 1;
557 push(&kc->complete_jobs, job);
558 break;
561 if (r > 0) {
563 * We couldn't service this job ATM, so
564 * push this job back onto the list.
566 push_head(jobs, job);
567 break;
570 count++;
573 return count;
577 * kcopyd does this every time it's woken up.
579 static void do_work(struct work_struct *work)
581 struct dm_kcopyd_client *kc = container_of(work,
582 struct dm_kcopyd_client, kcopyd_work);
583 struct blk_plug plug;
586 * The order that these are called is *very* important.
587 * complete jobs can free some pages for pages jobs.
588 * Pages jobs when successful will jump onto the io jobs
589 * list. io jobs call wake when they complete and it all
590 * starts again.
592 blk_start_plug(&plug);
593 process_jobs(&kc->complete_jobs, kc, run_complete_job);
594 process_jobs(&kc->pages_jobs, kc, run_pages_job);
595 process_jobs(&kc->io_jobs, kc, run_io_job);
596 blk_finish_plug(&plug);
600 * If we are copying a small region we just dispatch a single job
601 * to do the copy, otherwise the io has to be split up into many
602 * jobs.
604 static void dispatch_job(struct kcopyd_job *job)
606 struct dm_kcopyd_client *kc = job->kc;
607 atomic_inc(&kc->nr_jobs);
608 if (unlikely(!job->source.count))
609 push(&kc->complete_jobs, job);
610 else if (job->pages == &zero_page_list)
611 push(&kc->io_jobs, job);
612 else
613 push(&kc->pages_jobs, job);
614 wake(kc);
617 static void segment_complete(int read_err, unsigned long write_err,
618 void *context)
620 /* FIXME: tidy this function */
621 sector_t progress = 0;
622 sector_t count = 0;
623 struct kcopyd_job *sub_job = (struct kcopyd_job *) context;
624 struct kcopyd_job *job = sub_job->master_job;
625 struct dm_kcopyd_client *kc = job->kc;
627 mutex_lock(&job->lock);
629 /* update the error */
630 if (read_err)
631 job->read_err = 1;
633 if (write_err)
634 job->write_err |= write_err;
637 * Only dispatch more work if there hasn't been an error.
639 if ((!job->read_err && !job->write_err) ||
640 test_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags)) {
641 /* get the next chunk of work */
642 progress = job->progress;
643 count = job->source.count - progress;
644 if (count) {
645 if (count > SUB_JOB_SIZE)
646 count = SUB_JOB_SIZE;
648 job->progress += count;
651 mutex_unlock(&job->lock);
653 if (count) {
654 int i;
656 *sub_job = *job;
657 sub_job->source.sector += progress;
658 sub_job->source.count = count;
660 for (i = 0; i < job->num_dests; i++) {
661 sub_job->dests[i].sector += progress;
662 sub_job->dests[i].count = count;
665 sub_job->fn = segment_complete;
666 sub_job->context = sub_job;
667 dispatch_job(sub_job);
669 } else if (atomic_dec_and_test(&job->sub_jobs)) {
672 * Queue the completion callback to the kcopyd thread.
674 * Some callers assume that all the completions are called
675 * from a single thread and don't race with each other.
677 * We must not call the callback directly here because this
678 * code may not be executing in the thread.
680 push(&kc->complete_jobs, job);
681 wake(kc);
686 * Create some sub jobs to share the work between them.
688 static void split_job(struct kcopyd_job *master_job)
690 int i;
692 atomic_inc(&master_job->kc->nr_jobs);
694 atomic_set(&master_job->sub_jobs, SPLIT_COUNT);
695 for (i = 0; i < SPLIT_COUNT; i++) {
696 master_job[i + 1].master_job = master_job;
697 segment_complete(0, 0u, &master_job[i + 1]);
701 int dm_kcopyd_copy(struct dm_kcopyd_client *kc, struct dm_io_region *from,
702 unsigned int num_dests, struct dm_io_region *dests,
703 unsigned int flags, dm_kcopyd_notify_fn fn, void *context)
705 struct kcopyd_job *job;
706 int i;
709 * Allocate an array of jobs consisting of one master job
710 * followed by SPLIT_COUNT sub jobs.
712 job = mempool_alloc(kc->job_pool, GFP_NOIO);
715 * set up for the read.
717 job->kc = kc;
718 job->flags = flags;
719 job->read_err = 0;
720 job->write_err = 0;
722 job->num_dests = num_dests;
723 memcpy(&job->dests, dests, sizeof(*dests) * num_dests);
725 if (from) {
726 job->source = *from;
727 job->pages = NULL;
728 job->rw = READ;
729 } else {
730 memset(&job->source, 0, sizeof job->source);
731 job->source.count = job->dests[0].count;
732 job->pages = &zero_page_list;
735 * Use WRITE SAME to optimize zeroing if all dests support it.
737 job->rw = WRITE | REQ_WRITE_SAME;
738 for (i = 0; i < job->num_dests; i++)
739 if (!bdev_write_same(job->dests[i].bdev)) {
740 job->rw = WRITE;
741 break;
745 job->fn = fn;
746 job->context = context;
747 job->master_job = job;
749 if (job->source.count <= SUB_JOB_SIZE)
750 dispatch_job(job);
751 else {
752 mutex_init(&job->lock);
753 job->progress = 0;
754 split_job(job);
757 return 0;
759 EXPORT_SYMBOL(dm_kcopyd_copy);
761 int dm_kcopyd_zero(struct dm_kcopyd_client *kc,
762 unsigned num_dests, struct dm_io_region *dests,
763 unsigned flags, dm_kcopyd_notify_fn fn, void *context)
765 return dm_kcopyd_copy(kc, NULL, num_dests, dests, flags, fn, context);
767 EXPORT_SYMBOL(dm_kcopyd_zero);
769 void *dm_kcopyd_prepare_callback(struct dm_kcopyd_client *kc,
770 dm_kcopyd_notify_fn fn, void *context)
772 struct kcopyd_job *job;
774 job = mempool_alloc(kc->job_pool, GFP_NOIO);
776 memset(job, 0, sizeof(struct kcopyd_job));
777 job->kc = kc;
778 job->fn = fn;
779 job->context = context;
780 job->master_job = job;
782 atomic_inc(&kc->nr_jobs);
784 return job;
786 EXPORT_SYMBOL(dm_kcopyd_prepare_callback);
788 void dm_kcopyd_do_callback(void *j, int read_err, unsigned long write_err)
790 struct kcopyd_job *job = j;
791 struct dm_kcopyd_client *kc = job->kc;
793 job->read_err = read_err;
794 job->write_err = write_err;
796 push(&kc->complete_jobs, job);
797 wake(kc);
799 EXPORT_SYMBOL(dm_kcopyd_do_callback);
802 * Cancels a kcopyd job, eg. someone might be deactivating a
803 * mirror.
805 #if 0
806 int kcopyd_cancel(struct kcopyd_job *job, int block)
808 /* FIXME: finish */
809 return -1;
811 #endif /* 0 */
813 /*-----------------------------------------------------------------
814 * Client setup
815 *---------------------------------------------------------------*/
816 struct dm_kcopyd_client *dm_kcopyd_client_create(struct dm_kcopyd_throttle *throttle)
818 int r = -ENOMEM;
819 struct dm_kcopyd_client *kc;
821 kc = kmalloc(sizeof(*kc), GFP_KERNEL);
822 if (!kc)
823 return ERR_PTR(-ENOMEM);
825 spin_lock_init(&kc->job_lock);
826 INIT_LIST_HEAD(&kc->complete_jobs);
827 INIT_LIST_HEAD(&kc->io_jobs);
828 INIT_LIST_HEAD(&kc->pages_jobs);
829 kc->throttle = throttle;
831 kc->job_pool = mempool_create_slab_pool(MIN_JOBS, _job_cache);
832 if (!kc->job_pool)
833 goto bad_slab;
835 INIT_WORK(&kc->kcopyd_work, do_work);
836 kc->kcopyd_wq = alloc_workqueue("kcopyd", WQ_MEM_RECLAIM, 0);
837 if (!kc->kcopyd_wq)
838 goto bad_workqueue;
840 kc->pages = NULL;
841 kc->nr_reserved_pages = kc->nr_free_pages = 0;
842 r = client_reserve_pages(kc, RESERVE_PAGES);
843 if (r)
844 goto bad_client_pages;
846 kc->io_client = dm_io_client_create();
847 if (IS_ERR(kc->io_client)) {
848 r = PTR_ERR(kc->io_client);
849 goto bad_io_client;
852 init_waitqueue_head(&kc->destroyq);
853 atomic_set(&kc->nr_jobs, 0);
855 return kc;
857 bad_io_client:
858 client_free_pages(kc);
859 bad_client_pages:
860 destroy_workqueue(kc->kcopyd_wq);
861 bad_workqueue:
862 mempool_destroy(kc->job_pool);
863 bad_slab:
864 kfree(kc);
866 return ERR_PTR(r);
868 EXPORT_SYMBOL(dm_kcopyd_client_create);
870 void dm_kcopyd_client_destroy(struct dm_kcopyd_client *kc)
872 /* Wait for completion of all jobs submitted by this client. */
873 wait_event(kc->destroyq, !atomic_read(&kc->nr_jobs));
875 BUG_ON(!list_empty(&kc->complete_jobs));
876 BUG_ON(!list_empty(&kc->io_jobs));
877 BUG_ON(!list_empty(&kc->pages_jobs));
878 destroy_workqueue(kc->kcopyd_wq);
879 dm_io_client_destroy(kc->io_client);
880 client_free_pages(kc);
881 mempool_destroy(kc->job_pool);
882 kfree(kc);
884 EXPORT_SYMBOL(dm_kcopyd_client_destroy);